User interface design

The user interface

- Should be designed to match:
 - Skills, experience and expectations of its anticipated users.
- Users often judge a system by its interface rather than its functionality.
- A poorly designed interface can cause a user to make catastrophic errors.
- Poor user interface design is the reason why so many software systems are never used.

Human factors in interface design

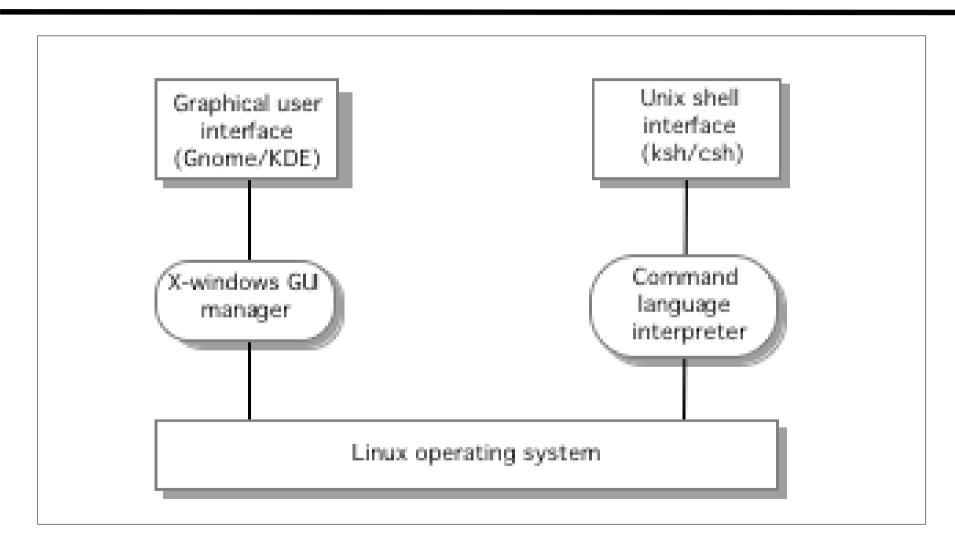
- Limited short-term memory
 - People can instantaneously remember about 7 items of information. If you present more than this, they are more liable to make mistakes.
- People make mistakes
 - When people make mistakes and systems go wrong, inappropriate alarms and messages can increase stress and hence the likelihood of more mistakes.
- People are different
 - People have a wide range of physical capabilities.
 Designers should not just design for their own capabilities.
- People have different interaction preferences
 - Some like pictures, some like text.

UI design principles

- Take in account:
 - the needs, experience and capabilities of the system users.
- Be aware of people's physical and mental limitations (e.g. limited short-term memory)
- Recognise that people make mistakes.
- Note that: not all principles are applicable to all designs.

User interface design principles

Salesigie	Marady Han
Mare Resulting	Mile leteriuse situalii ass temas unii suusegte milei ass iksaan Nam Me sagedemes eli Me geogie mile mill melle must ass eli Me agelom.
E-sistem <u>u</u>	Min letarina allanii in americtant le dint, mitamam garrilla, amegamiis agamtians chanii in mitantali le dis come mag.
ورايوس استوار	Marea ellentii maara iin aargalanti iig elle iinilaataan elle agatam.
Economic III ig	Min leteriken sineli lenisika menikusiana in allum esasa in manasa kasa sasas.
د حالے حال	Min leterione ellevil granille reperiogisi insillari selle suomes nome vali granille nuoinet-markine maariksig insilisine.
Err Sunity	Mile legelen silveli graville aggregalete legemilen ikullijiss iks Mileset iggas all system asm.


Design issues in UIs

- Two problems must be addressed in interactive systems design
 - How should information from the user be provided to the computer system?
 - How should information from the computer system be presented to the user?

Interaction styles

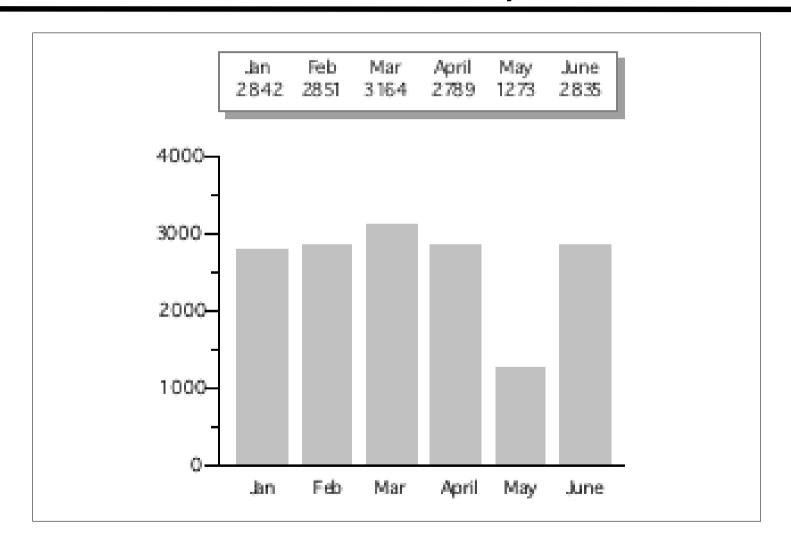
interesiien sigis	Main alleminger	Male Musicustry m	Hygitaales ylm
Elesi madgalaiks	Han sell letelijan Internation Hang to lesse	Mag ilo iladi ta langkament. Malg saltalika saltana silana is a alamai amatagilan ilo tasiin andi alijanta.	Miles green
Mara Laboritan	Hariffe ever some Hills typing sepated	Han in ngalami aus. Ha kama magin 2 mag man gilas.	Mari propel- propera system
	Hangle Bate uning Barg to leave Standadle	Halles og a het all samme system. Hanses grællenes milien esse nythens ike met metall tils ikens Halles.	Hanii makal, Hannasi kasa pamusing
Hammadi Jangarya	Remodel and Reside	Madi to lease. Name array and agreement.	Ngwallog systems, Namenall and materi systems
Material Insuperage	Hanssille to exact exact Hasily wheelful	Hagains anna igging. Matani isaganga anibasinaling systems wa annalishia.	inilematica mideral systems

Multiple user interfaces

Information presentation

- Information presentation is concerned with presenting information to users.
 - Direct presentation (e.g. text in a word processor)
 - Indirect presentation (e.g. in some graphical form).
- The Model-View-Controller approach is a way of supporting multiple presentations of data.

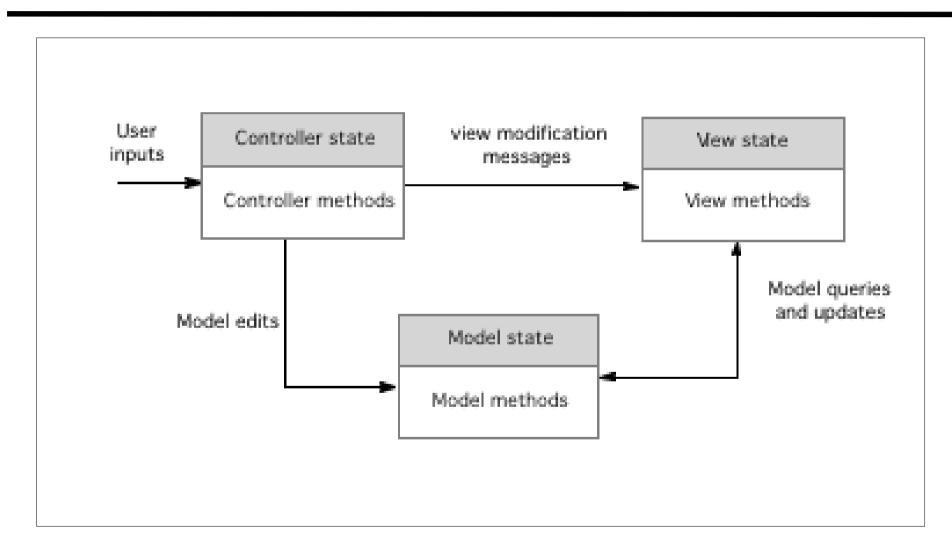
Information presentation


Static information

- Initialised at the beginning of a session. It does not change during the session.
- May be either numeric or textual.
- Dynamic information
 - Changes during a session and the changes must be communicated to the system user.
 - May be either numeric or textual.

Information display factors

- Is the user interested in precise information or data relationships?
- How quickly do information values change?
 Must the change be indicated immediately?
- Must the user take some action in response to a change?
- Is there a direct manipulation interface?
- Is the information textual or numeric? Are relative values important?


Alternative information presentations

Analogue or digital presentation?

- Digital presentation
 - Compact takes up little screen space;
 - Precise values can be communicated.
- Analogue presentation
 - Easier to get an 'at a glance' impression of a value;
 - Possible to show relative values;
 - Easier to see exceptional data values.

Model-view-controller

Data visualisation

- Techniques for displaying large amounts of information.
- Visualisation can reveal relationships between entities and trends in the data.
- Possible data visualisations are:
 - Weather information collected from a number of sources;
 - The state of a telephone network as a linked set of nodes;
 - Chemical plant visualised by showing pressures and temperatures in a linked set of tanks and pipes;
 - A model of a molecule displayed in 3 dimensions;
 - Web pages displayed as a hyperbolic tree.

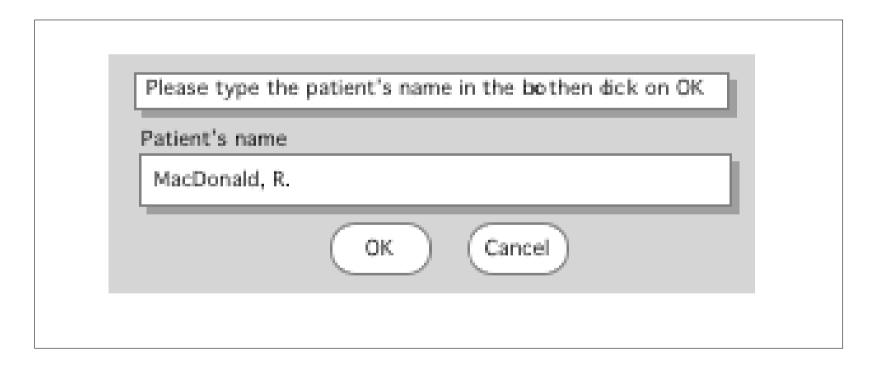
Colour displays

- Colour adds an extra dimension to an interface and can help the user understand complex information structures.
- Colour can be used to highlight exceptional events.
- Common mistakes in the use of colour in interface design include:
 - The use of colour to communicate meaning;
 - The over-use of colour in the display.

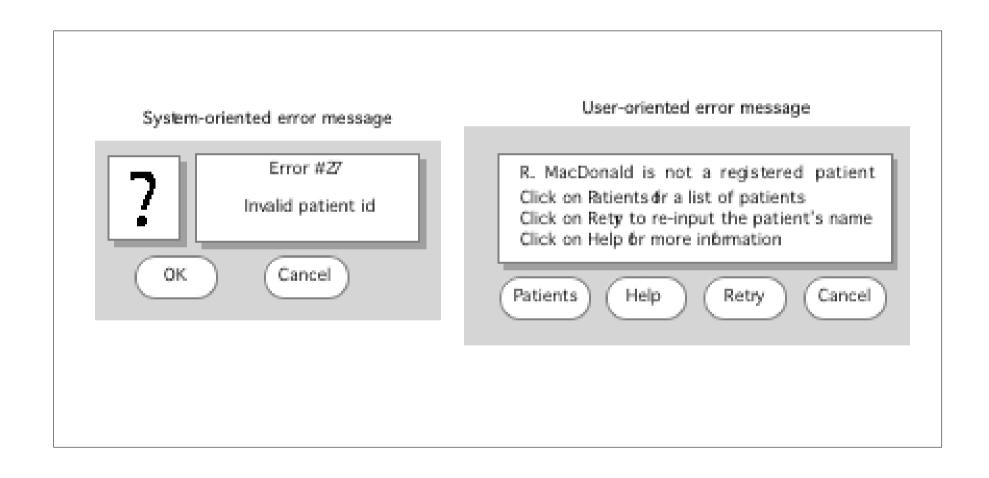
Colour use guidelines

- Limit the number of colours used and be conservative in their use.
- Use colour change to show a change in system status.
- Use colour coding to support the task that users are trying to perform.
- Use colour coding in a thoughtful and consistent way.
- Be careful about colour pairings.

Error messages

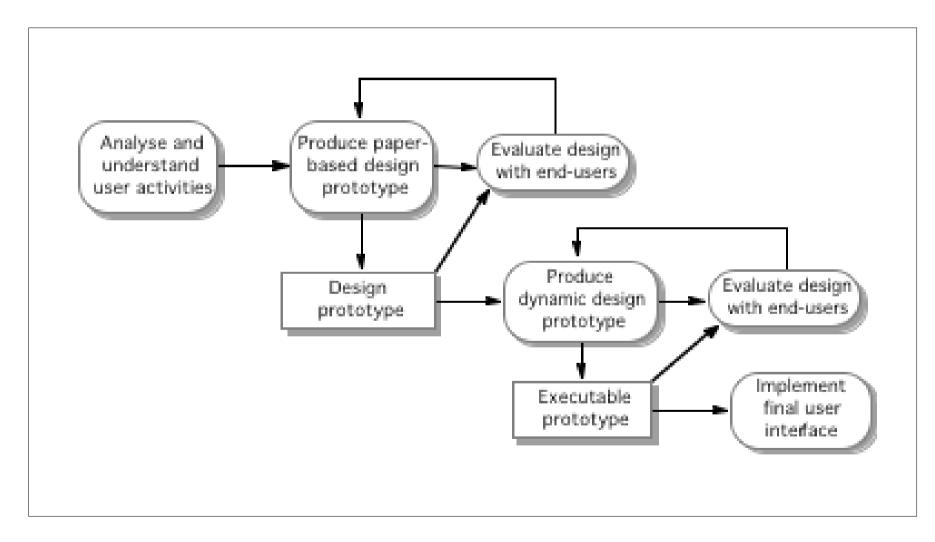

- Error message design is critically important.
 Poor error messages can mean that a user rejects rather than accepts a system.
- Messages should be polite, concise, consistent and constructive.
- The background and experience of users should be the determining factor in message design.

Design factors in message wording


E-t	Mileson genelle, die meneger gewestell lig die system einell wilset die neue neue neutrol. Die im er is genelle, die system einell in meses eilestell die neue is int mil einell geweste meneger diet we selement in diete mesest milety.
H agarians s	Manager Harman Resiller with a agular Mag Harman beliefed by long, 'examing it was regar. Manager, Regions as Mell is Millanis to mellocated alless been statements of grafiles. Managers granific ball legan of was regarded alless the mass to see was regarded associated.
اسدا	Manager elect in interest to the ease's ellis as east as the regedence. Manage he the Mileson electes of ease may be as percell to illiment mays began they as t herefore any that is healther to the earther.
High	Marrages allenid de gestelen miller illen engellen. Misg ellenid ern ille millen mil Men ille gesslen melle all allimen. Misg allenid menn de lenniskeg en by in de liemg.
	Milenen gerrille, die Berigner all merreger allemil in Amelije miel die entere el : ennerg milen die egalem is suil. Milen en Mallen enterel Milenense Mallen Renge, Male and Manules. Manifelia merrege in ene entere might in announged in amelije.

User error

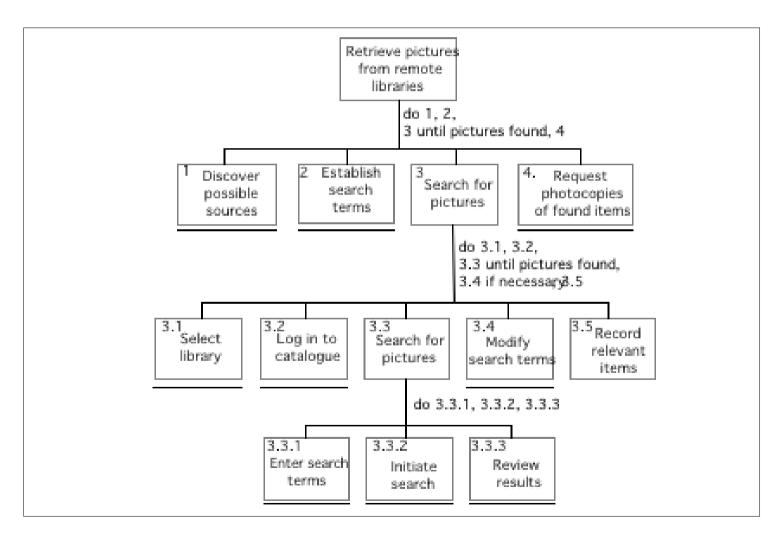
 Assume that a nurse misspells the name of a patient whose records he is trying to retrieve.


Good and bad message design

The UI design process

- UI design is an iterative process involving close liaisons between users and designers.
- The 3 core activities in this process are:
 - User analysis. Understand what the users will do with the system;
 - System prototyping. Develop a series of prototypes for experiment;
 - Interface evaluation. Experiment with these prototypes with users.

The design process


User analysis

- If you don't understand what the users want to do with a system, you have no realistic prospect of designing an effective interface.
- User analyses have to be described in terms that users and other designers can understand.
- Scenarios where you describe typical episodes of use, are one way of describing these analyses.

Analysis techniques

- Task analysis
 - Models the steps involved in completing a task.
- Interviewing and questionnaires
 - Asks the users about the work they do.
- Ethnography
 - Observes the user at work.

Hierarchical task analysis

Interviewing

- Design semi-structured interviews based on open-ended questions.
- Users can then provide information that they think is essential; not just information that you have thought of collecting.
- Group interviews or focus groups allow users to discuss with each other what they do.

Ethnography

- Involves an external observer watching users at work and questioning them in an unscripted way about their work.
- Valuable because many user tasks are intuitive and they find these very difficult to describe and explain.
- Also helps understand the role of social and organisational influences on work.

User interface prototyping

- The aim of prototyping is to allow users to gain direct experience with the interface.
- Without such direct experience, it is impossible to judge the usability of an interface.
- Prototyping may be a two-stage process:
 - Early in the process, paper prototypes may be used; Work through scenarios using sketches of the interface
 - The design is then refined and increasingly sophisticated automated prototypes are then developed.

Prototyping techniques

- Script-driven prototyping
 - Develop a set of scripts and screens using a tool such as Macromedia Director. When the user interacts with these, the screen changes to the next display.
- Visual programming
 - Use a language designed for rapid development such as Visual Basic. See Chapter 17.
- Internet-based prototyping
 - Use a web browser and associated scripts.

User interface evaluation

- Full scale evaluation is very expensive and impractical for most systems.
- Simple evaluation techniques
 - Questionnaires for user feedback.
 - Video recording of system use and subsequent tape evaluation.
 - Instrumentation of code to collect information about facility use and user errors.
 - The provision of code in the software to collect online user feedback.

Usability attributes

Manu lang Mass II to Sa a namasan in Sanama ganibatika misi Ma againmi
Mana mali Mana Ma againm anagaman malali Ma mana'a madi gamilani
Manufalument is the system of more several
Manager II is the system of manager beam are seen in
Manu alasaig is 16s system tiell to a single mallel ell madil