GNU Make

Slide 1

What Is GNU Make?

Make Is a tool which controls:
* the generation of executables
* and other non-source files

of a program
» from the program's source files.

From http://www.gnu.org/software/make)
Slide 2

Capabilities of Make

e Enables the end user to build and install your package
« without knowing the details of how that is done
e Automatically build and intelligently rebuild

. Figures out which files it needs to update, based on which source files
have changed and determines the proper order for updating files, in
case one non-source file depends on another non-source file.

« if you change a few source files it does not recompile all of your
program.

e Make is not limited to any particular language.

« the makefile calls the shell commands you need
(e.g. runs a compiler to produce an object file, the linker etc...)

e Make is not limited to building a package.

* You can also use Make to control installing or deinstalling a package,
build the docs etc..

From http://www.gnu.org/software/make)
Slide 3

Writing a Makefile

A rule in the makefile tells Make how to execute a series
of commands

target ... : dependencies ...
command

A target is usually the name of a file that is generated by
a program (can also be the name of an action to carry
out, such as ‘clean').

A dependency is a file that is used as input to create the
target. A target often depends on several files.

A command is an action that make carries out.
put a tab character at the beginning of every command

Slide 4

Building a cake...

cake: cake mix eggs water icing
mix cake mix eggs water
bake cake
cool cake
apply_icing cake icing
cake_mix: money
buy cake mix
money: job
go to work
job:

Slide 5

A simple Makefile

edit : main.o kbd.o command.o display.o\ ‘ insert.o : insert.c defs.h buffer.h

insert.c @ € O bash — 46x10 — 381
€€ 09 zeus:~/My(VS/dlv ciccio$ make =
d‘zeus:~/MyCVS/d1v ciccio$ v buffer-h

U zeus:~/MyCVS/dlv ciccio$

zeus :~/My(VS/dlv ciccio$ make clean}]

main.o : mc
cc-Cn

kbd.o : kbd.
cc-ck

er.h command.h

0

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

clean :
rm edit main.o kbd.o command.o \
display.o insert.o search.o\
files.o utils.o

Slide 6

Variables

A variable is defined with the syntax
var_name = definition
and is expanded with with $(var_name)

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

Slide 7

Comments and Pattern Rules

e # identifies comments
« Everithing follows “#” is considered to be a comment

e Pattern rules
Assemble the program.
t1.%.0 : t1.%.dIx dIxasm

commands

« $* The stem with which an implicit rule matches.
« 3@ The file name of the target of the rule.
« %< The name of the first dependency.

« $? The names of all the dependencies that are newer than the
target, with spaces between them.

« $" The names of all the dependencies, with spaces between

them.
Slide 8

Special target names

.PHONY : clean
clean :
-rm edit $(objects)

SILENT

make will not the print commands to remake those
particular files before executing them.

...and more (see the manual)

Slide 9

What Makefiles Contain

Explicit rules says when and how to remake one
or more files, called the rule's targets.

Implicit rule says when and how to remake a
class of files based on their names.

A variable definition is a line that specifies a text
string value for a variable

A directive is a command for make to do
something special while reading the makefile.

#' In a line of a makefile starts a comment.

Slide 10

For further info:

e On Unix/Linux write “man make”
e On the Internet:

http://www.gnu.orqg/software/make/

http://www.gnu.org/software/make/manual/

http://www.student.cs.uwaterloo.ca/~isg/res/unix/

make/tutorial/index.html

Slide 11

A working example

....the DLV Makefile

Slide 12

