
 Slide 1

GNU Make

 Slide 2

What Is GNU Make?

Make is a tool which controls:
• the generation of executables
• and other non-source files

of a program
• from the program's source files.

From http://www.gnu.org/software/make

 Slide 3

Capabilities of Make

● Enables the end user to build and install your package
• without knowing the details of how that is done

● Automatically build and intelligently rebuild
• Figures out which files it needs to update, based on which source files

have changed and determines the proper order for updating files, in
case one non-source file depends on another non-source file.

• if you change a few source files it does not recompile all of your
program.

● Make is not limited to any particular language.
• the makefile calls the shell commands you need

(e.g. runs a compiler to produce an object file, the linker etc…)
● Make is not limited to building a package.

• You can also use Make to control installing or deinstalling a package,
build the docs etc..

From http://www.gnu.org/software/make

 Slide 4

Writing a Makefile

● A rule in the makefile tells Make how to execute a series
of commands

target ... : dependencies ...
 command
 ...
 ...
● A target is usually the name of a file that is generated by

a program (can also be the name of an action to carry
out, such as `clean').

● A dependency is a file that is used as input to create the
target. A target often depends on several files.

● A command is an action that make carries out.
• put a tab character at the beginning of every command

 Slide 5

Building a cake…

cake: cake_mix eggs water icing
mix cake_mix eggs water
bake cake
cool cake
apply_icing cake icing

cake_mix: money
buy cake_mix

money: job
go to work

job: ...

 Slide 6

A simple Makefile

edit : main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
 cc -o edit main.o kbd.o command.o \

display.o insert.o search.o files.o \
utils.o

main.o : main.c defs.h
 cc -c main.c

kbd.o : kbd.c defs.h command.h
 cc -c kbd.c

command.o : command.c defs.h command.h
 cc -c command.c

display.o : display.c defs.h buffer.h
 cc -c display.c

insert.o : insert.c defs.h buffer.h
 cc -c insert.c

search.o : search.c defs.h buffer.h
 cc -c search.c

files.o : files.c defs.h buffer.h command.h
 cc -c files.c

utils.o : utils.c defs.h
 cc -c utils.c

clean :
 rm edit main.o kbd.o command.o \

display.o insert.o search.o \
 files.o utils.o

 Slide 7

Variables

A variable is defined with the syntax
var_name = definition

and is expanded with with $(var_name)

objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
…
edit : $(objects)
 cc -o edit $(objects)

 Slide 8

Comments and Pattern Rules

● “#” identifies comments
• Everithing follows “#” is considered to be a comment

● Pattern rules
Assemble the program.
t1.%.o : t1.%.dlx dlxasm
commands

• $* The stem with which an implicit rule matches.
• $@ The file name of the target of the rule.
• $< The name of the first dependency.
• $? The names of all the dependencies that are newer than the

target, with spaces between them.
• $^ The names of all the dependencies, with spaces between

them.

 Slide 9

Special target names

.PHONY : clean
clean :
 -rm edit $(objects)

.SILENT
 make will not the print commands to remake those

particular files before executing them.

…and more (see the manual)

 Slide 10

What Makefiles Contain

● Explicit rules says when and how to remake one
or more files, called the rule's targets.

● Implicit rule says when and how to remake a
class of files based on their names.

● A variable definition is a line that specifies a text
string value for a variable

● A directive is a command for make to do
something special while reading the makefile.

● `#' in a line of a makefile starts a comment.

 Slide 11

For further info:

● On Unix/Linux write “man make”
● On the Internet:

• http://www.gnu.org/software/make/
• http://www.gnu.org/software/make/manual/
• http://www.student.cs.uwaterloo.ca/~isg/res/unix/

make/tutorial/index.html

 Slide 12

A working example

….the DLV Makefile

