
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 1

Project management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 2

● Activities ensuring that:
• software is delivered on time and on schedule
• and in accordance with the requirements of the

organisations developing and procuring the
software.

● Project management is needed because
software development is always subject to
budget and schedule constraints that are set
by the organisation developing the software.

Software project management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 3

● The product is intangible.
● The product is uniquely flexible.
● Software engineering is not recognized as an

engineering discipline with the sane status as
mechanical, electrical engineering, etc.

● The software development process is not
standardised.

● Many software projects are 'one-off' projects.

Software management distinctions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 4

● Proposal writing.
● Project planning and scheduling.
● Project costing.
● Project monitoring and reviews.
● Personnel selection and evaluation.
● Report writing and presentations.

Management activities

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 5

● These activities are not peculiar to software
management.

● Many techniques of engineering project
management are equally applicable to
software project management.

● Technically complex engineering systems tend
to suffer from the same problems as software
systems.

Management commonalities

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 6

Project staffing

● May not be possible to appoint the ideal people to
work on a project
• Project budget may not allow for the use of highly-paid

staff;
• Staff with the appropriate experience may not be

available;
• An organisation may wish to develop employee skills

on a software project.
● Managers have to work within these constraints

especially when there are shortages of trained staff.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 7

Managing Groups

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 8

People in the process

● People are an organisation’s most important
assets.

● The tasks of a manager are essentially
people-oriented. Unless there is some
understanding of people, management will be
unsuccessful.

● Poor people management is an important
contributor to project failure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 9

People management factors

● Consistency
• Team members should all be treated in a comparable

way without favourites or discrimination.
● Respect

• Different team members have different skills and these
differences should be respected.

● Inclusion
• Involve all team members and make sure that people’s

views are considered.
● Honesty

• You should always be honest about what is going well
and what is going badly in a project.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 10

Selecting staff

● An important project management task is team
selection.

● Information on selection comes from:
• Information provided by the candidates.
• Information gained by interviewing and talking with

candidates.
• Recommendations and comments from other

people who know or who have worked with the
candidates.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 11

Motivating people

● An important role of a manager is to motivate
the people working on a project.

● Motivation is a complex issue but it appears
that their are different types of motivation
based on:
• Basic needs (e.g. food, sleep, etc.);
• Personal needs (e.g. respect, self-esteem);
• Social needs (e.g. to be accepted as part of a

group).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 12

Human needs hierarchy

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 13

Need satisfaction

● Social
• Provide communal facilities;
• Allow informal communications.

● Esteem
• Recognition of achievements;
• Appropriate rewards.

● Self-realization
• Training - people want to learn more;
• Responsibility.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 14

Personality types

● The needs hierarchy is almost certainly an
over-simplification of motivation in practice.

● Motivation should also take into account
different personality types:
• Task-oriented;
• Self-oriented;
• Interaction-oriented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 15

Personality types

● Task-oriented.
• The motivation for doing the work is the work itself;

● Self-oriented.
• The work is a means to an end which is the

achievement of individual goals - e.g. to get rich, to
play tennis, to travel etc.;

● Interaction-oriented
• The principal motivation is the presence and actions of

co-workers. People go to work because they like to go
to
work.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 16

Motivation balance

● Individual motivations are made up of elements
of each class.

● The balance can change depending on personal
circumstances and external events.

● However, people are not just motivated by personal
factors but also by being part of a group and culture.

● People go to work because they are motivated by the
people that they work with.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 17

Managing groups

● Most software engineering is a group activity
• The development schedule for most non-trivial

software projects is such that they cannot be
completed by one person working alone.

● Group interaction is a key determinant of
group performance.

● Flexibility in group composition is limited
• Managers must do the best they can with

available people.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 18

Factors influencing group working

● Group composition.
● Group cohesiveness.
● Group communications.
● Group organisation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 19

Group composition

● Group composed of members who share the
same motivation can be problematic
• Task-oriented - everyone wants to do their own thing;
• Self-oriented - everyone wants to be the boss;
• Interaction-oriented - too much chatting, not enough

work.
● An effective group has a balance of all types.
● This can be difficult to achieve software engineers are

often task-oriented.
● Interaction-oriented people are very important as they

can detect and defuse tensions that arise.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 20

● Leadership depends on respect not titular
status.

● There may be both a technical and an
administrative leader.

● Democratic leadership is more effective that
autocratic leadership.

Group leadership

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 21

Group cohesiveness

● In a cohesive group, members consider the group to
be more important than any individual in it.

● The advantages of a cohesive group are:
• Group quality standards can be developed;
• Group members work closely together so inhibitions

caused by ignorance are reduced;
• Team members learn from each other and get to

know each other’s work;
• Egoless programming where members strive to

improve each other’s programs can be practised.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 22

Developing cohesiveness

● Cohesiveness is influenced by factors such as
the organisational culture and the personalities
in the group.

● Cohesiveness can be encouraged through
• Social events;
• Developing a group identity and territory;
• Explicit team-building activities.

● Openness with information is a simple way of
ensuring all group members feel part of the
group.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 23

● Group members tend to be loyal to cohesive
groups.

● 'Groupthink' is preservation of group
irrespective of technical or organizational
considerations.

● Management should act positively to avoid
groupthink by forcing external involvement
with each group.

Group loyalties

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 24

Group communications

● Good communications are essential for
effective group working.

● Information must be exchanged on the status
of work, design decisions and changes to
previous decisions.

● Good communications also strengthens group
cohesion as it promotes understanding.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 25

Group organisation

● Small software engineering groups are usually
organised informally without a rigid structure.

● For large projects, there may be a hierarchical
structure where different groups are
responsible for different sub-projects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 26

Informal groups

● The group acts as a whole and comes to a
consensus on decisions affecting the system.

● The group leader serves as the external
interface of the group but does not allocate
specific work items.

● Rather, work is discussed by the group as a
whole and tasks are allocated according to
ability and experience.

● This approach is successful for groups where
all members are experienced and competent.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 27

Extreme programming groups

● Extreme programming groups are variants of
an informal, democratic organisation.

● In extreme programming groups, some
‘management’ decisions are devolved to group
members.

● Programmers work in pairs and take a
collective responsibility for code that is
developed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 28

Chief programmer teams

● Consist of a kernel of specialists helped by
others added to the project as required.

● The motivation behind their development is
the wide difference in ability in different
programmers.

● Chief programmer teams provide a supporting
environment for very able programmers to be
responsible for most of the system
development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 29

Problems

● This chief programmer approach, in different forms,
has been successful in some settings.

● However, it suffers from a number of problems
• Talented designers and programmers are hard to find.

Without exceptional people in these roles, the
approach will fail;

• Other group members may resent the chief
programmer taking the credit for success so may
deliberately undermine his/her role;

• There is a high project risk as the project will fail if both
the chief and deputy programmer are unavailable.

• The organisational structures and grades in a
company may be unable to accommodate this type of
group.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 30

● The physical workplace provision has an important
effect on individual productivity and satisfaction
• Comfort;
• Privacy;
• Facilities.

● Health and safety considerations must be taken
into account
• Lighting;
• Heating;
• Furniture.

Working environments

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 31

● Privacy - each engineer requires an area for
uninterrupted work.

● Outside awareness - people prefer to work in
natural light.

● Personalization - individuals adopt different
working practices and like to organize their
environment in different ways.

Environmental factors

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 32

…other issues
Project Management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 33

Project planning

● Probably the most time-consuming project
management activity.

● Continuous activity from initial concept through
to system delivery. Plans must be regularly
revised as new information becomes available.

● Various different types of plan may be
developed to support the main software
project plan that is concerned with schedule
and budget.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 34

Types of project plan

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 35

The project plan

● The project plan sets out:
• The resources available to the project;
• The work breakdown;
• A schedule for the work.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 36

Project plan structure

● Introduction.
● Project organisation.
● Risk analysis.
● Hardware and software resource

requirements.
● Work breakdown.
● Project schedule.
● Monitoring and reporting mechanisms.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 37

Activity organization

● Activities in a project should be organised to
produce tangible outputs for management to
judge progress.

● Milestones are the end-point of a process
activity.

● Deliverables are project results delivered to
customers.

● The waterfall process allows for the
straightforward definition of progress
milestones.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 38

Project scheduling

● Split project into tasks and estimate time and
resources required to complete each task.

● Organize tasks concurrently to make optimal
use of workforce.

● Minimize task dependencies to avoid delays
caused by one task waiting for another to
complete.

● Dependent on project managers intuition and
experience.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 39

The project scheduling process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 40

Bar charts and activity networks

● Graphical notations used to illustrate the
project schedule.

● Show project breakdown into tasks. Tasks
should not be too small. They should take
about a week or two.

● Activity charts show task dependencies and
the the critical path.

● Bar charts show schedule against calendar
time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 41

Task durations and dependencies

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 42

Activity network

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 43

Activity timeline

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 44

Staff allocation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 45

Risk management

● Risk management is concerned with
identifying risks and drawing up plans to
minimise their effect on a project.

● A risk is a probability that some adverse
circumstance will occur
• Project risks affect schedule or resources;
• Product risks affect the quality or performance of

the software being developed;
• Business risks affect the organisation developing

or procuring the software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 46

Software risks

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 47

Software cost estimation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 48

Fundamental estimation questions

● How much effort is required to complete an
activity?

● How much calendar time is needed to
complete an activity?

● What is the total cost of an activity?
● Project estimation and scheduling are

interleaved management activities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 49

Software cost components

● Hardware and software costs.
● Travel and training costs.
● Effort costs (the dominant factor in most

projects)
• The salaries of engineers involved in the project;
• Social and insurance costs.

● Effort costs must take overheads into account
• Costs of building, heating, lighting.
• Costs of networking and communications.
• Costs of shared facilities (e.g library, staff restaurant,

etc.).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 50

Costing and pricing

● Estimates are made to discover the cost, to
the developer, of producing a software system.

● There is not a simple relationship between the
development cost and the price charged to the
customer.

● Broader organisational, economic, political and
business considerations influence the price
charged.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 51

Software pricing factors

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 52

● A measure of the rate at which individual
engineers involved in software development
produce software and associated
documentation.

● Not quality-oriented although quality
assurance is a factor in productivity
assessment.

● Essentially, we want to measure useful
functionality produced per time unit.

Software productivity

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 53

● Size related measures based on some output
from the software process. This may be lines
of delivered source code, object code
instructions, etc.

● Function-related measures based on an
estimate of the functionality of the delivered
software. Function-points are the best known
of this type of measure.

Productivity measures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 54

● Estimating the size of the measure
• (e.g. how many function points).

● Estimating the total number of programmer
months that have elapsed.

● Estimating contractor productivity
(e.g. documentation team) and
incorporating this estimate in overall estimate.

Measurement problems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 55

● What's a line of code?
• The measure was first proposed when programs were

typed on cards with one line per card;
• How does this correspond to statements as in Java

which can span several lines or where there can be
several statements on one line.

● What programs should be counted as part of the
system?

● This model assumes that there is a linear relationship
between system size and volume of documentation.

Lines of code (LOC)

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 56

● The lower level the language, the more
productive the programmer
• The same functionality takes more code to

implement in a lower-level language than in a
high-level language.

● The more verbose the programmer, the higher
the productivity
• Measures of productivity based on lines of code

suggest that programmers who write verbose
code are more productive than programmers who
write compact code.

Productivity comparisons

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 57

Function points

● Based on a combination of program characteristics
• external inputs and outputs;
• user interactions;
• external interfaces;
• files used by the system.

● A weight is associated with each of these and the
function point count is computed by multiplying each
raw count by the weight and summing all values.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 58

Function points

● The function point count is modified by complexity of
the project

● FPs can be used to estimate LOC depending on the
average number of LOC per FP for a given language
• LOC = AVC * number of function points;
• AVC is a language-dependent factor varying from 200-

300 for assemble language to 2-40 for a 4GL;
● FPs are very subjective. They depend on the estimator

• Automatic function-point counting is impossible.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 59

Object points

● Object points are an alternative
• (also named application points)

● Object points are NOT the same as object classes.
● The number of object points in a program is a

weighted estimate of
• The number of separate screens that are displayed;
• The number of reports that are produced by the

system;
• The number of program modules that must be

developed to supplement the database code;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 60

Object point estimation

● Object points are easier to estimate from a
specification than function points
• they are simply concerned with screens, reports

and programming language modules.
● They can therefore be estimated at a fairly

early point in the development process.
● At this stage, it is very difficult to estimate the

number of lines of code in a system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 61

● Real-time embedded systems, 40-160
LOC/P-month.

● Systems programs , 150-400 LOC/P-month.
● Commercial applications, 200-900

LOC/P-month.
● In object points, productivity has been

measured between 4 and 50 object
points/month depending on tool support and
developer capability.

Productivity estimates

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 62

Factors affecting productivity

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 63

● All metrics based on volume/unit time are
flawed because they do not take quality into
account.

● Productivity may generally be increased at the
cost of quality.

● It is not clear how productivity/quality metrics
are related.

● If requirements are constantly changing then an
approach based on counting lines of code is not
meaningful as the program itself is not static;

Quality and productivity

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 64

Estimation techniques

● There is no simple way to make an accurate estimate
of the effort required to develop a software system
• Initial estimates are based on inadequate information

in a user requirements definition;
• The software may run on unfamiliar computers or use

new technology;
• The people in the project may be unknown.

● Project cost estimates may be self-fulfilling
• The estimate defines the budget and the product is

adjusted to meet the budget.
● Changing technologies may mean that previous

estimating experience does not carry over to new
systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 65

Estimation techniques

● Algorithmic cost modelling.
● Expert judgement.
● Estimation by analogy.
● Parkinson's Law.
● Pricing to win.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 66

Estimation techniques

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 67

Pricing to win

● The project costs whatever the customer has
to spend on it.

● Advantages:
• You get the contract.

● Disadvantages:
• The probability that the customer gets the system

he or she wants is small. Costs do not accurately
reflect the work required.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 68

Top-down and bottom-up estimation

● Any of these approaches may be used top-
down or bottom-up.

● Top-down
• Start at the system level and assess the overall

system functionality and how this is delivered
through sub-systems.

● Bottom-up
• Start at the component level and estimate the

effort required for each component. Add these
efforts to reach a final estimate.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 69

Pricing to win

● This approach may seem unethical and un-
businesslike.

● However, when detailed information is lacking
it may be the only appropriate strategy.

● The project cost is agreed on the basis of an
outline proposal and the development is
constrained by that cost.

● A detailed specification may be negotiated or
an evolutionary approach used for system
development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 70

Algorithmic cost modelling

● Cost is estimated as a mathematical function of
product, project and process attributes whose
values are estimated by project managers:
• Effort = A × SizeB × M
• A is an organisation-dependent constant, B reflects the

disproportionate effort for large projects and M is a
multiplier reflecting product, process and people
attributes.

● The most commonly used product attribute for cost
estimation is code size.

● Most models are similar but they use different values
for A, B and M.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 71

Estimation accuracy

● The size of a software system can only be
known accurately when it is finished.

● Several factors influence the final size
• Use of COTS and components;
• Programming language;
• Distribution of system.

● As the development process progresses then
the size estimate becomes more accurate.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 72

Estimate uncertainty

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 73

COCOMO 81

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 74

COCOMO 2 models

● COCOMO 2 incorporates a range of sub-models that
produce increasingly detailed software estimates.

● The sub-models in COCOMO 2 are:
• Application composition model. Used when software is

composed from existing parts.
• Early design model. Used when requirements are

available but design has not yet started.
• Reuse model. Used to compute the effort of integrating

reusable components.
• Post-architecture model. Used once the system

architecture has been designed and more information
about the system is available.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 75

Application composition model

● Supports prototyping projects and projects where there
is extensive reuse.

● Based on standard estimates of developer productivity
in application (object) points/month.

● Takes CASE tool use into account.
● Formula is

• PM = (NAP × (1 - %reuse/100)) / PROD
• PM is the effort in person-months, NAP is the number

of application points and PROD is the productivity.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 76

Object point productivity

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 77

Early design model

● Estimates can be made after the requirements have
been agreed.

● Based on a standard formula for algorithmic models
• PM = A × SizeB × M where
• M = PERS × RCPX × RUSE × PDIF × PREX × FCIL ×

SCED;
• A = 2.94 in initial calibration, Size in KLOC, B varies

from 1.1 to 1.24 depending on novelty of the project,
development flexibility, risk management approaches
and the process maturity.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 78

Multipliers

● Multipliers reflect the capability of the developers, the
non-functional requirements, the familiarity with the
development platform, etc.
• RCPX - product reliability and complexity;
• RUSE - the reuse required;
• PDIF - platform difficulty;
• PREX - personnel experience;
• PERS - personnel capability;
• SCED - required schedule;
• FCIL - the team support facilities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 79

The reuse model

● Takes into account black-box code that is
reused without change and code that has to
be adapted to integrate it with new code.

● There are two versions:
• Black-box reuse where code is not modified. An

effort estimate (PM) is computed.
• White-box reuse where code is modified. A size

estimate equivalent to the number of lines of new
source code is computed. This then adjusts the
size estimate for new code.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 80

Reuse model estimates 1

● For generated code:
• PM = (ASLOC * AT/100)/ATPROD
• ASLOC is the number of lines of generated code
• AT is the percentage of code automatically

generated.
• ATPROD is the productivity of engineers in

integrating this code.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 81

Reuse model estimates 2

● When code has to be understood and
integrated:
• ESLOC = ASLOC * (1-AT/100) * AAM.
• ASLOC and AT as before.
• AAM is the adaptation adjustment multiplier

computed from the costs of changing the reused
code, the costs of understanding how to integrate
the code and the costs of reuse decision making.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 82

Post-architecture level

● Uses the same formula as the early design
model but with 17 rather than 7 associated
multipliers.

● The code size is estimated as:
• Number of lines of new code to be developed;
• Estimate of equivalent number of lines of new code

computed using the reuse model;
• An estimate of the number of lines of code that have

to be modified according to requirements changes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 83

Project duration and staffing

● As well as effort estimation, managers must estimate
the calendar time required to complete a project and
when staff will be required.

● Calendar time can be estimated using a COCOMO 2
formula
• TDEV = 3 × (PM)(0.33+0.2*(B-1.01))

• PM is the effort computation and B is the exponent
computed as discussed above (B is 1 for the early
prototyping model). This computation predicts the
nominal schedule for the project.

● The time required is independent of the number of
people working on the project.

