
Creational Patterns

Creational Patterns
 Factory Method (FM)
 Abstract Factory (AF)
 Singleton (SI)
 Prototype (PR)
 Builder (BU)

Factory Method (FM)
 Intent:

 Define an interface for creating an object,
but let subclasses decide which class to
instantiate.

 Factory Method lets a class defer
instantiation to subclasses.

 Also Known As
 Virtual Constructor

FM Motivation (1)

 Consider a framework for applications that can
present multiple documents to the user.

 To create a drawing application, for example, we
define the classes DrawingApplication and
DrawingDocument.

 The Application class is responsible for managing
Documents

 the Application class can't predict the subclass of
Document to instantiate

 Application subclasses redefine an abstract
CreateDocument operation on Application to return
the appropriate Document subclass.

FM Motivation (2)

FM Applicability
 Use a FM when:

 a class can't anticipate the class of objects it must
create.

 a class wants its subclasses to specify the objects
it creates.

 classes delegate responsibility to one of several
helper subclasses, and you want to localize the
knowledge of which helper subclass is the
delegate.

FM Structure

FM Participants
 Product (Document)

 the interface of objects the factory method creates.
 ConcreteProduct (MyDocument)

 implements the Product interface.
 Creator (Application)

 declares the factory method (returns a Product).
 may define a default implementation of the FM
 may call the factory method to create a Product

 ConcreteCreator (MyApplication)
 overrides the factory method to return an instance

of a ConcreteProduct.

FM Collaboration
 Creator relies on its subclasses to

define the factory method
so that it returns an instance of the
appropriate ConcreteProduct.

FM Consequences(1)

 FM eliminate the need to bind application-
specific classes into your code.
 The code only deals with the Product interface

 Clients might have to subclass Creator just to
create a particular ConcreteProduct object.
 is fine when the client has to subclass the Creator

class anyway!
 …otherwise is a drawback

(the hierarchy can explode)

FM Consequences(2)

 FM
 Provides hooks for subclasses.

 Creating objects inside a class with a FM is
always more flexible than creating an object
directly.

 FM gives subclasses a hook for providing an
extended version of an object.

 Connects parallel class hierarchies.
 Parallel class hierarchies result when a class

delegates some of its responsibilities to a
separate class.

FM Implementation(1)

 Two possibilities:
 Creator is an abstract class and does not provide

an implementation for the FMs it provides
 Creator is a concrete class and provides a default

implementation for the FMs it provides
 Parameterized factory methods.

 lets the factory method create multiple kinds of
products.

 The factory method takes a parameter that
identifies the kind of object to create.

 May require downcasting

FM Implementation(2)

 Naming Conventions
 It's good practice to use naming

conventions that make it clear you're using
factory methods.

 Using templates to avoid subclassing.

Building a Maze for a game

Sample Code

FM Known uses
 and Related Patterns
 Known Uses

 Can be used in Abstract Factory
 ….many softwares

 Related Patterns
 Abstract Factory
 Template Methods
 Prototypes

Abstract Factory (AF)
 Intent

 Provide an interface for creating families of
related or dependent objects without
specifying theirconcrete classes.

 Also Known As
 Kit

AF Motivation (1)

 Consider a user interface toolkit that supports
multiple look-and-feel standards, such as
Motif and Presentation Manager.

 Different look-and-feels define different
appearances and behaviors for user interface
"widgets" like scroll bars, windows, and
buttons.

 To be portable across look-and-feel
standards, an application should not hard-
code its widgets for a particular look and feel.

AF Motivation (2)

AF Applicability
 Use the AF when:

 a system should be independent of how its
products are created, composed, and represented.

 l a system should be configured with one of
multiple families of products.

 l a family of related product objects is designed to
be used together, and you need to enforce this
constraint.

 l you want to provide a class library of products,
and you want to reveal just their interfaces,
nottheir implementations.

AF Structure

AF Participants
 AbstractFactory (WidgetFactory)

 declares an interface for creating abstract products.
 ConcreteFactory (MotifWidgetFactory, …)

 implements the operations creating concrete products
 AbstractProduct (Window, ScrollBar)

 declares an interface for a type of product object.
 ConcreteProduct (MotifWindow, …)

 defines a product object to be created by the AF
 implements the AbstractProduct interface.

 Client
 uses only interfaces declared by AF and Abs. Prod.

AF Collaborations
 A single instance of a ConcreteFactory

class is created at run-time.
 This concrete factory creates product

objects having a particular implementation.
 To create different product objects, clients

should use a different concrete factory.
 AbstractFactory defers creation of

product objects to its ConcreteFactory
subclass.

AF Consequences (1)

 It isolates concrete classes.
 The Abstract Factory pattern helps you control the

classes of objects
 Clients manipulate instances through their abstract

interfaces.
 Product class names do not appear in client code.

 It makes exchanging product families easy.
 The class of a concrete factory appears only once

in an application.
 This makes it easy to change the concrete factory an

application uses.
 It can use different product configurations simply by

changing the concrete factory.

AF Consequences (2)

 It promotes consistency among products.
 an application use objects from only one family at

a time.
 Supporting new kinds of products is difficult.

 Extending abstract factories to produce new kinds
of Products isn't easy.

 Supporting new kinds of products requires
extending the factory interface

 involves changing the AF class and all of its subclasses
 This can be (partially) solved (see implementation)

AF implementation (1)

 Factories as singletons.
 An application typically needs only one instance of

a ConcreteFactory (Singleton).
 Creating the products.

 AF only declares an interface for creating
products.

 It's up to ConcreteProduct subclasses to actually
create them.

 Implement AF by using Factory Method
 Implement AF by using Prototype

AF implementation (2)

 Defining extensible factories.
 AF usually defines a different operation for each

kind of product
 A more flexible design is to add a parameter to

operations that create objects.
 easier to use in a dynamically typed language like

Smalltalk than in C++.
 (see FM implementation)

AF Sample Code

AF Known Uses
 and Related Patterns
 Known Uses

 …many applications

 Related Patters
 Factory Mathod
 Singleton
 Prototype

Singleton (SI)
 Intent

 Ensure a class only has one instance, and provide a
global point of access to it.

 Motivation
 If is needed to have exactly one instance of a class.
 A global variable makes an object accessible,

 but it doesn't keep you from instantiating multiple objects.

 Make the class itself responsible of its sole instance.
 The class can ensure that no other instance can be created

 by intercepting requests to create new objects,
 …and it can provide a way to access the instance.

SI Applicability
 Use the Singleton pattern when

 there must be exactly one instance of a class,
 …and it must be accessible to clients from a

wellknown access point.
 when the sole instance should be extensible by

subclassing,
 …and clients should be able to use an extended

instance without modifying their code.

SI Structure

SI Participants
 and Collaborations
 Participants

 Singleton
 defines an Instance operation that lets clients access its

unique instance.
 Instance is a class operation (e.g. static member)

 may be responsible for creating its own unique
instance.

 Collaborations
 Clients access a Singleton instance solely through

Singleton's Instance operation.

SI Consequences
 Controlled access to sole instance.

 strict control over how and when the client access.
 Reduced name space.

 No name space-pollution by global variables
 Permits refinement of operations and

representation.
 The Singleton class may be subclassed
 Use the instance of the class you need at run-time.

 Permits a variable number of instances.
 More flexible than class operations.

 static member functions in C++ are never virtual

SI Implementation
 Ensuring a unique instance.

 Hide the operation that creates the instance
behind a class operation
(private constructor + static member)

 Subclassing the singleton class
 The variable that refers to the singleton instance

must get initialized with an instance of the
subclass.

 May be flexible to use a registry of singletons.

SI Sample Code

SI Known Uses
 and Related Patterns
 Known Uses

 …many applications
 Related Pattterns

 Abstract Factory
 Builder
 Prototype

Prototype (PR)
 Intent

 Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying (cloning)
this prototype.

 Motivation
 Build an editor for music scores

 by customizing a general framework
 Scores are created by adding new objects that

represent notes, rests, and staves from a palette
 Sublcassing from an abstract Graphic class

 produce lots of subclasses that differ only
in the kind of music object they instantiate.

PR Motivation (continued)

…make GraphicTool create a new Graphic by cloning an
instance of a Graphic subclass (the prototype!).

PR Applicability
 Use the PR when

 a system should be independent of
how its products are created,
composed, and represented;

 the classes to instantiate are specified
at run-time

 Parallels AF hierarchy may be very big
 instances have one of only a few

different combinations of state.

PR Structure

PR Participants
 and Collaborations
 Participants

 Prototype (Graphic)
 declares an interface for cloning itself.

 ConcretePrototype (Staff, WholeNote, HalfNote)
 m implements an operation for cloning itself.

 Client (GraphicTool)
 creates a new object by asking a prototype to clone itself.

 Collaborations
 A client asks a prototype to clone itself.

PR Consequences (1)

 PR similar to AF and BU it:
 hides the concrete product classes from the client
 lets a client work with application-specific classes

without modification.
 Adding and removing products at run-time.

 a bit more flexible than other creational patterns,
because a client can install and remove prototypes
at run-time.

 Specifying new objects by varying values.
 PR lets users define new "classes" without

programming.

PR Consequences (2)

 Reduced subclassing.
 FM often produces a hierarchy of Creator classes

that parallels the product class hierarchy.
 PR lets you clone a prototype instead of asking a

factory method to make a new object.
 NO Creator class hierarchy at all.

 Configuring an application with classes
dynamically.
 The Prototype pattern is the key to exploiting

facilities like Java reflection in a language like
C++.

PR Implementation
 Particularly useful with static languages (C++)

 where classes are not objects, and little or no type
information is available at run-time.

 Implementation issues:
 Using a prototype manager.

 When the number of prototypes in a system isn't fixed
keep a registry of available prototypes.

 Implementing the Clone operation.
 It's particularly tricky when object structures contain

circular references.
 Initializing clones

 If clients want to initialize the internal state
 Introduce an Initialize(…) operation.

PR Sample Code

PR Known Uses
 and Related Patterns
 Known Uses

 …many applications
 Related Patterns

 Abstract Factory
 Composite
 Decorator

Builder (BU)
 Intent

 Separate the construction of a complex object
from its representation so that the same
construction process can create different
representations.

 Motivation
 A reader for the RTF (Rich Text Format) format

 should be able to convert RTF to many text formats.
 into plain ASCII text
 or into a text widget that can be edited interactively.

 It should be easy to add a new conversion without
modifying the reader.

BU Motivation (continued)

BU Applicabiliy
 Use the Builder pattern when:

 the algorithm for creating a complex object
should be independent of the parts that
make up the object and how they're
assembled.

 the construction process must allow
different representations for the object
that's constructed.

BU Structure

BU Participants
 Builder (TextConverter)

 abstract interface for creating parts of a Product
 ConcreteBuilder (ASCIIConverter, …)

 constructs and assembles parts of the product by
implementing the Builder interface.

 provides an interface for retrieving the product
(e.g., GetASCIIText, GetTextWidget).

 Director (RTFReader)
 constructs an object using the Builder interface.

 Product (ASCIIText, TeXText, TextWidget)
 represents the complex object under construction.
 includes classes that define the constituent parts

BU Collaborations
 The client creates the Director object and

configures it with the desired Builder object.
 Director notifies the builder whenever a part

of the product should be built.
 Builder handles requests from the director

and adds parts to the product.
 The client retrieves the product from the

builder.

BU Consequences (1)

 It lets you vary a product's internal
representation.
 The Builder object provides the director with an

abstract interface for constructing the product.
 The interface lets the builder hide the

representation and internal structure of the
product.

 It also hides how the product gets assembled.

BU Consequences (2)

 It isolates code for construction and
representation.
 BU improves modularity by encapsulating the way

a complex object is constructed and represented.
 Clients needn't know anything about the product's

internal structure
 It gives you finer control over the construction

process.
 The product is built step by step under the

director's control.
 Only when the product is finished does the director

retrieve it from the builder.

BU Implementation (1)

 An abstract Builder class that defines
an operation for each component that a
director may ask it to create.

 The operations do nothing by default.
 A ConcreteBuilder class overrides

operations for components it's
interested in creating.

BU Implementation (2)

 Assembly and construction interface.
 Builders construct their products step-by-step
 The BU interface allows the construction of

products for all kinds of concrete builders.
 Why no abstract class for products?

 The products differ so greatly in their
representation
(e.g. ASCIIText and TextWidget differs)

 Empty methods as default in Builder.
 Virtual member functions have empty methods

letting clients override only the operations they're
interested in.

BU Sample Code

BU Known Uses
 and Related Patterns
 Known Uses

 …many applications
 Related Patterns

 Abstract Factory
 Composite

Discussion (1)

 Two common ways to parameterize a
system by the classes of objects it
creates:
 To subclass the class that creates the

objects
(Factory Method)

 to parameterize a system relying on object
composition
(Abstract Factory, Builder, Prototype)

Discussion (2)

 The main drawback of FM is that it can
require creating a new subclass just to
change the class of the product.
 Such changes can cascade.

 The “composition-based” pattern
 Involve creating a new "factory object" whose

responsibility is to create product objects.
 Abstract Factory has the factory object producing

objects of several classes.
 Builder has the factory object building a complex

product incrementally using a complex protocol.
 Prototype has the factory object (the prototype itself)

building a product by copying a prototype object.

