. Creational Patterns

| Creational Patterns

s Factory Method (FM)
= Abstract Factory (AF)
= Singleton (SI)

= Prototype (PR)

= Builder (BU)

| Factory Method (FM)

s Intent:

» Define an interface for creating an object,
but let subclasses decide which class to
Instantiate.

= Factory Method lets a class defer
Instantiation to subclasses.

s Also Known As
= Virtual Constructor

| FM Motivation (1)

= Consider a framework for applications that can
present multiple documents to the user.

= [0 create a drawing application, for example, we
define the classes DrawingApplication and
DrawingDocument.

= The Application class is responsible for managing
Documents

= the Application class can't predict the subclass of
Document to instantiate

= Application subclasses redefine an abstract
CreateDocument operation on Application to return
the appropriate Document subclass.

FM Motivation (2

docs
Document I..._CJ Application

o —————————

Document® doc = CreateDocument();
docs.Add(doc);
doc->0pen();

Openy) CreateDocumenli()
Close() NewDocument() o-
Save() OpenDocument()
Revert() A
MyDocument ln- -------- MyApplication

CreateDocument() o

—— .-

return new MyDocument ﬁ

| FM Applicability

s Use a FM when:

= a class can't anticipate the class of objects it must
create.

= a class wants its subclasses to specify the objects
it creates.

» classes delegate responsibility to one of several
helper subclasses, and you want to localize the
knowledge of which helper subclass is the
delegate.

FM Structure

Product

AN

ConcreteProduct h

Creator

FactoryMethod(
AnOperation()

[

product = FactoryMethod()

A

- ———————— —

ConcreleCreator

FactoryMethod(’

O

return new ConcreteProduct

| FM Participants

s Product (Document)
» the interface of objects the factory method creates.
s ConcreteProduct (MyDocument)
= implements the Product interface.
= Creator (Application)
» declares the factory method (returns a Product).
= may define a default implementation of the FM
= may call the factory method to create a Product
s ConcreteCreator (MyApplication)

» overrides the factory method to return an instance
of a ConcreteProduct.

| FM Collaboration

m Creator relies on its subclasses to
define the factory method
so that it returns an instance of the
appropriate ConcreteProduct.

| FM Consequences()

s FM eliminate the need to bind application-
specific classes into your code.
» The code only deals with the Product interface

= Clients might have to subclass Creator just to
create a particular ConcreteProduct object.

= IS fine when the client has to subclass the Creator
class anyway!

» ...0therwise is a drawback
(the hierarchy can explode)

FM Consequences)

Figure

CreateManipulator()

AN

LineFigure

TextFigure

CreateManipulator()

CreateManipulaton)

Client l'I Manipulator
DownClick()
Dragy()
UpClick()

LineManipulator TextManipulator

DownClick() DownClick()

Drag() Drag()

UpClick() i UpClick()

| FM Implementation(,)

s [wo possibilities:

= Creator is an abstract class and does not provide
an implementation for the FMs it provides

= Creator is a concrete class and provides a default
implementation for the FMs it provides

s Parameterized factory methods.

= lets the factory method create multiple kinds of
products.

» The factory method takes a parameter that
identifies the kind of object to create.

» May require downcasting

FM Implementation(2)

= Naming Conventions

class Creator {
public:
virtual Product* CreateProduct() = 0;

template <class TheProducts>
class StandardCreator: public Creator {
class MyProduct : public Product {
public:

MyProduct () ;

//
}i

StandardCreator<MyProduct> myCreator;

]

reateProduct () {

Building a Maze for a game

Maze

AddRoom()
RoomNol)

we MapSite
Enter()
sides

Room Wall Door

Enter() Enter() Enter()

SetSide() |
rooms - GetSide() IsOpen

roomNumber

Sample Code

class MazeGame {
public:
Maze* CreateMaze() ;

// factory methods:

virtual Maze* MakeMaze () const
{ return new Maze;)}

virtual Room* MakeRoom(int n) const
{ return new Room(n); }

virtual Wall* MakeWall () const
{ return new wWall; }

virtual Door* MakeDoor (Room* rl, Room* r2) const
{ return new Door(rl, r2); |}

class BombedMazeGame : public MazeGame

public:
BombedMazeGame () ;

virtual Wall* MakeWall () const
{ return new Bombedwall; } ;

virtual Room* MakeRoom(int n) const
{ return new RoomWithABomb (n); }

class EnchantedMazeGame : public MazeGame {
public:
EnchantedMazeGame () ;
virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()); }
virtual Door* MakeDoor (Room* rl, Room* r2) const
{ return new DoorNeedingSpell (rl, r2); }
protected:

Spell* CastSpell () const;

bi

FM Known uses

| and Related Patterns

= Known Uses
= Can be used in Abstract Factory
=many softwares

= Related Patterns
» Abstract Factory
= [emplate Methods
= Prototypes

| Abstract Factory (AF)

s Intent

= Provide an interface for creating families of
related or dependent objects without
specifying theirconcrete classes.

s Also Known As
a Kit

| AF Motivation (1)

s Consider a user interface toolkit that supports
multiple look-and-feel standards, such as
Motif and Presentation Manager.

m Different look-and-feels define different
appearances and behaviors for user interface
"widgets" like scroll bars, windows, and
buttons.

s [0 be portable across look-and-feel
standards, an application should not hard-
code its widgets for a particular look and feel.

AF Motivation (2

WidgetFactory I-

CreateScroliBary)
Create Window()

T
|

MotifWidgetFactory PMWidgetFactory

CreateScroliBar(}
CreateWindow/()

CreateScrollBar()
CreateWindow()

Client

Window &

[I
- -l PMWindow MotifWindow (=& --,
I
:
|
I
|
|
I
:
ScrollBar :
:
I
|
I
[1 ;
--l* PMScrollBar MotifScrollBar - -:
:
I

| AF Applicability

s Use the AF when:

= a system should be independent of how its
products are created, composed, and represented.

» | a system should be configured with one of
multiple families of products.

» | a family of related product objects is designed to
be used together, and you need to enforce this
constraint.

= | you want to provide a class library of products,
and you want to reveal just their interfaces,
nottheir implementations.

1 AF Structure

AbstractFactory

CreateProductAf)
CraatefroductBy)

ConcreteFactory1

-

ConcreteFactory?2

CreateProductA()
CreateProductB()

CreateProductAl)
CreateProduc1Bl{)

AbstractProductA =

Client

ProductA2 ProductA1

AbslractProductB =

| AF Participants

s AbstractFactory (WidgetFactory)
» declares an interface for creating abstract products.
s ConcreteFactory (MotifWidgetFactory, ...)
» Implements the operations creating concrete products
s AbstractProduct (Window, ScrollBar)
» declares an interface for a type of product object.
s ConcreteProduct (MotifWindow, ...)

» defines a product object to be created by the AF
= implements the AbstractProduct interface.

s Client
= uses only interfaces declared by AF and Abs. Prod.

| AF Collaborations

= A single instance of a ConcreteFactory
class is created at run-time.

= This concrete factory creates product
objects having a particular implementation.

= [0 create different product objects, clients
should use a different concrete factory.
» AbstractFactory defers creation of
product objects to its ConcreteFactory
subclass.

AF Consequences (1)

m |t isolates concrete classes.

» The Abstract Factory pattern helps you control the
classes of objects

= Clients manipulate instances through their abstract
interfaces.

= Product class names do not appear in client code.

» It makes exchanging product families easy.

= The class of a concrete factory appears only once
In an application.

« This makes it easy to change the concrete factory an
application uses.

« It can use different product configurations simply by
changing the concrete factory.

| AF Consequences (2

» |t promotes consistency among products.

= an application use objects from only one family at
a time.

s Supporting new kinds of products is difficult.

» Extending abstract factories to produce new kinds
of Products isn't easy.

= Supporting new kinds of products requires
extending the factory interface

» involves changing the AF class and all of its subclasses
« This can be (partially) solved (see implementation)

| AF implementation (1)

s Factories as singletons.

= An application typically needs only one instance of
a ConcreteFactory (Singleton).

= Creating the products.

= AF only declares an interface for creating
products.

» It's up to ConcreteProduct subclasses to actually
create them.

= Implement AF by using Factory Method
= Implement AF by using Prototype

| AF implementation (2

» Defining extensible factories.

» AF usually defines a different operation for each
kind of product

= A more flexible design is to add a parameter to
operations that create objects.

= easier to use in a dynamically typed language like
Smalltalk than in C++.

» (see FM implementation)

AF Sample Code

class MazeFactory {
public:
MazeFactory() ;

virtual Maze* MakeMaze() const
{ return new Maze; |}
virtual Wall* MakeWall() const
{ return new Wall; }
virtual Room* MakeRoom(int n) const
{ return new Room(n); }
virtual Door* MakeDoor (Room* rl, Room* r2) const

{ return new Door(rl, r2); |}

Wall* BombedMazeFactory::MakeWall () const {
. return new BombedWall;

J

Room* BombedMazeFactory::MakeRoom(int n) const {
return new RoomWithABomb (n) ;); }

MazeGame game; const

BombedMazeFactory factory;
P

} game.CreateMaze (factory) ;

rzZ->setislae (NOrtn, ILactory.mMakewall());
r2->SetSide(East, factory.MakeWall());
r2->SetSide(South, factory.MakeWall());
r2->SetSide (West, aDoor) ;

return aMaze;

AF Known Uses

| and Related Patterns

= Known Uses
= ...Mmany applications

= Related Patters
= Factory Mathod
= Singleton
= Prototype

Singleton (Sl)

s Intent

» Ensure a class only has one instance, and provide a
global point of access to it.

= Motivation
» If is needed to have exactly one instance of a class.
» A global variable makes an object accessible,
« but it doesn't keep you from instantiating multiple objects.

= Make the class itself responsible of its sole instance.

= [he class can ensure that no other instance can be created
= by intercepting requests to create new objects,

« ...and it can provide a way to access the instance.

| S| Applicability

s Use the Singleton pattern when
» there must be exactly one instance of a class,

= ...and it must be accessible to clients from a
wellknown access point.

= When the sole instance should be extensible by
subclassing,

= ...and clients should be able to use an extended
instance without modifying their code.

S| Structure

Singleton

=

static Instance() O---q1---—------ retum uniguelnstance
SingletonOperation()
GetSingletonData()

static uniquelnstance
singletonData

S| Participants

| and Collaborations

= Participants

= Singleton

« defines an Instance operation that lets clients access its
unique instance.

» Instance is a class operation (e.g. static member)
= may be responsible for creating its own unique
Instance.
s Collaborations

» Clients access a Singleton instance solely through
Singleton's Instance operation.

| S| Consequences

m Controlled access to sole instance.

= strict control over how and when the client access.
s Reduced name space.

= No name space-pollution by global variables

s Permits refinement of operations and
representation.

» The Singleton class may be subclassed
= Use the instance of the class you need at run-time.

s Permits a variable number of instances.

s More flexible than class operations.
= Static member functions in C++ are never virtual

| S| Implementation

= Ensuring a unique instance.

» Hide the operation that creates the instance
behind a class operation
(private constructor + static member)

s Subclassing the singleton class

= The variable that refers to the singleton instance
must get initialized with an instance of the
subclass.

» May be flexible to use a registry of singletons.

class Singleton {
— public:
-on*) ;

MySingleton::MySingleton() {

/] ...
Singleton::Register ("MySingleton", this);

STtatlcC Llst<Nameslngletonralr>* TYeglstry;

static MySingleton theSingleton;

S.I.J.lv.l.\.p e NSA L U.LJ.LU e S W NSAL v e A LAWY e CALLNS N \NJ l
if (instance == 0) {
const char* singletonName = getenv ("SINGLETON") ;
// user or environment supplies this at startup

_linstance = Lookup (singletonName) ;
// Lookup returns 0 if there's no such singleton

)

return _instance;

S| Sample Code

MazeFactory* MazeFactory::Instance ()

if (_instance == 0) {
_instance = new MazeFactory;
}

return _instance;

static MazeFactory* 1instance;

b

MazeFactory* MazeFactory: :_instance

{

S| Known Uses

| and Related Patterns

= Known Uses
= ...Mmany applications

= Related Pattterns
= Abstract Factory
= Builder
= Prototype

Prototype (PR)

s Intent

= Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying (cloning)
this prototype.

s Motivation
= Build an editor for music scores
= by customizing a general framework

= Scores are created by adding new objects that
represent notes, rests, and staves from a palette

= Sublcassing from an abstract Graphic class

= produce lots of subclasses that differ only
in the kind of music object they instantiate.

PR MOtlvathn (continued)

Tool

Manipuiate()

A

RotateTool

Manipulate()

GraphicTool

Manipulate()

-—---4-0

prototype
S

p = prolotype-

=Clone()

while (user drags mouse) {
p—>Draw(new position)

}
insert p inte drawing

Graphic

Draw(Position)
Clone()

A

Staff

Draw(Position)
Clone()

MusicalNote

WholeNote

HalfNote

Clone() @

1

Draw(Position)

Draw(Position)
Clone() ¢

return copy of sell

return copy of self

...make GraphicTool create a new Graphic by cloning an

mstance of a Graphic subclass (the prototype!).

| PR Applicability

s Use the PR when

= a system should be independent of
how its products are created,
composed, and represented;

= the classes to instantiate are specified
at run-time

= Parallels AF hierarchy may be very big

= Instances have one of only a few
different combinations of state.

PR Structure

Client prololype .J Prototype
Operation{) ¢ Cione()
|
1
I
I
=
p = prototype->Clore()
ConcretePrototypet ConcretePrototype2

Clone() @

o P ——

retum copy of self

Clone() ¢

e — —

retirn copy of self

PR Participants

| and Collaborations

= Participants
= Prototype (Graphic)

» declares an interface for cloning itself.

= ConcretePrototype (Staff, WholeNote, HalfNote)

« M implements an operation for cloning itself.

= Client (GraphicTool)

» Creates a new object by asking a prototype to clone itself.

s Collaborations
= A client asks a prototype to clone itself.

| PR Consequences (1)

s PR similar to AF and BU it:

= hides the concrete product classes from the client

= lets a client work with application-specific classes
without modification.

= Adding and removing products at run-time.

= a bit more flexible than other creational patterns,
because a client can install and remove prototypes
at run-time.

» Specifying new objects by varying values.

» PR lets users define new "classes" without
programming.

| PR Consequences (2)

= Reduced subclassing.

= FM often produces a hierarchy of Creator classes
that parallels the product class hierarchy.

» PR lets you clone a prototype instead of asking a
factory method to make a new object.

=« NO Creator class hierarchy at all.
s Configuring an application with classes
dynamically.
= The Prototype pattern is the key to exploiting

facilities like Java reflection in a language like
C++.

PR Implementation

m Particularly useful with static languages (C++)

= Where classes are not objects, and little or no type
information is available at run-time.

s Implementation issues:

= Using a prototype manager.

« When the number of prototypes in a system isn't fixed
keep a registry of available prototypes.

» Implementing the Clone operation.

« It's particularly tricky when object structures contain
circular references.

» Initializing clones

« If clients want to initialize the internal state
= Introduce an Initialize(...) operation.

C

PR Sample Code

lass BombedWall

public wall {

Pl MazeGame game ;
MazePrototypeFactory simpleMazeFactory(

P

}.

new Maze,

)

, Maze* maze =
bool bomb;

’

new Wall, new Room, new Door

game .CreateMaze (simpleMazeFactory) ;

p MazePrototypeFactory bombedMazeFactory (r) : Wall (other)

}

new Maze,

new BombedWall,

new RoomWithABomb, new Door

) ;

Wall* BombedWall::Clone () const {
return new BombedWall (*this) ;

}

{

——

PR Known Uses

| and Related Patterns

= Known Uses
= ...Mmany applications

= Related Patterns
» Abstract Factory
= Composite
= Decorator

Builder (BU)

s Intent

= Separate the construction of a complex object
from its representation so that the same
construction process can create different
representations.

= Motivation
» Areader for the RTF (Rich Text Format) format

« should be able to convert RTF to many text formats.
= into plain ASCII text
= Or into a text widget that can be edited interactively.

» It should be easy to add a new conversion without
modifying the reader.

1 BU Motivation (continued)

RTFReader

budider

TextConverter

ParseRTF() ¢
|
I
I
I
|

whie (1 = get the next token) |

'

switch . Type |
CHAR:

builder—>ConveriCharacter (L. Char)
FONT:

bullder->ConvertFomChange(t. Font)

PARA:
bullder->ConvenParagraphi)
y

e

ConvertCharacter{char)
CanvartFontChange(Font)
ConvertParagrapty)

A

I

I

I

ASCliConverter

TeXConverter

TextWidgetConverter

ConvenCharacter(char)

GetASClIText()

—————— -

--l ASClIText

ConvenCharacter{char)

ConvenCharacter|(char)

ConvertFontChange(Font) ConvertFontChange(Font)
ConvenParagraph() ConvenParagraphi)
GetTeXText() GetTextWidgst()

: i

1 1

i i

. -l TeXText . * TextWidget

| BU Applicabiliy

s Use the Builder pattern when:

= the algorithm for creating a complex object
should be independent of the parts that
make up the object and how they're
assembled.

= the construction process must allow
different representations for the object
that's constructed.

BU Structure

Director

Construct{) 0
|
I
I
I

for all objects in structure {
builder—>BuildPart()
i

builder i
- Builder
BuildPart()
-

ConcreteBuilder

e — - — - — - -

BuildPart()
GetResult()

| BU Participants

= Builder (TextConverter)
= abstract interface for creating parts of a Product

s ConcreteBuilder (ASCIIConverter, ...)

» constructs and assembles parts of the product by
implementing the Builder interface.

= provides an interface for retrieving the product
(e.g., GetASClIIText, GetTextWidget).

» Director (RTFReader)
= constructs an object using the Builder interface.

s Product (ASCIIText, TeXText, TextWidget)

= represents the complex object under construction.
» includes classes that define the constituent parts

BU Collaborations

aClient aDirector aConcreteBuilder
I |

new ConcraeteBuilder

Construct()

s | BuildPartAf()

BuildPanrtB()

BuikdPanC{)

-

H_]_

“_]_
GetResult() -[::

| BU Consequences (1)

» |t lets you vary a product's internal
representation.

= The Builder object provides the director with an
abstract interface for constructing the product.

= [he interface lets the builder hide the

representation and internal structure of the
product.

» It also hides how the product gets assembled.

| BU Consequences (2)

m |t isolates code for construction and
representation.

= BU improves modularity by encapsulating the way
a complex object is constructed and represented.

= Clients needn't know anything about the product's
internal structure
» |t gives you finer control over the construction
Process.

= The product is built step by step under the
director's control.

= Only when the product is finished does the director
retrieve it from the builder.

| BU Implementation (1)

= An abstract Builder class that defines
an operation for each component that a
director may ask it to create.

= The operations do nothing by default.

s A ConcreteBuilder class overrides
operations for components it's
interested in creating.

| BU Implementation (2

= Assembly and construction interface.
» Builders construct their products step-by-step

= The BU interface allows the construction of
products for all kinds of concrete builders.

= Why no abstract class for products?

= The products differ so greatly in their
representation
(e.g. ASClIIText and TextWidget differs)

s Empty methods as default in Builder.

= Virtual member functions have empty methods
letting clients override only the operations they're
interested in.

BU Sample Code

Maze* MazeGame::CreateMaze (MazeBuilder& builder) |
builder.BuildMaze () ;

builder.BuildRoom(1l) ;
builder.BuildRoom(2) ;

builder.BuildDoor (1, 2);
[return 0; }
return builder.GetMaze () ;

o) { }

BU Known Uses

| and Related Patterns

= Known Uses
= ...Mmany applications

= Related Patterns
» Abstract Factory
= Composite

| Discussion (1)

= [Two common ways to parameterize a
system by the classes of objects it
creates:

s [0 subclass the class that creates the

objects
(Factory Method)

= to parameterize a system relying on object
composition
(Abstract Factory, Builder, Prototype)

Discussion (2)

= [he main drawback of FM is that it can
require creating a new subclass just to
change the class of the product.

= Such changes can cascade.

s [he “composition-based” pattern

= Involve creating a new "factory object"” whose
responsibility is to create product objects.

« Abstract Factory has the factory object producing
objects of several classes.

« Builder has the factory object building a complex
product incrementally using a complex protocol.

»« Prototype has the factory object (the prototype itself)
building a product by copying a prototype object.

