
Creational Patterns

Creational Patterns
 Factory Method (FM)
 Abstract Factory (AF)
 Singleton (SI)
 Prototype (PR)
 Builder (BU)

Factory Method (FM)
 Intent:

 Define an interface for creating an object,
but let subclasses decide which class to
instantiate.

 Factory Method lets a class defer
instantiation to subclasses.

 Also Known As
 Virtual Constructor

FM Motivation (1)

 Consider a framework for applications that can
present multiple documents to the user.

 To create a drawing application, for example, we
define the classes DrawingApplication and
DrawingDocument.

 The Application class is responsible for managing
Documents

 the Application class can't predict the subclass of
Document to instantiate

 Application subclasses redefine an abstract
CreateDocument operation on Application to return
the appropriate Document subclass.

FM Motivation (2)

FM Applicability
 Use a FM when:

 a class can't anticipate the class of objects it must
create.

 a class wants its subclasses to specify the objects
it creates.

 classes delegate responsibility to one of several
helper subclasses, and you want to localize the
knowledge of which helper subclass is the
delegate.

FM Structure

FM Participants
 Product (Document)

 the interface of objects the factory method creates.
 ConcreteProduct (MyDocument)

 implements the Product interface.
 Creator (Application)

 declares the factory method (returns a Product).
 may define a default implementation of the FM
 may call the factory method to create a Product

 ConcreteCreator (MyApplication)
 overrides the factory method to return an instance

of a ConcreteProduct.

FM Collaboration
 Creator relies on its subclasses to

define the factory method
so that it returns an instance of the
appropriate ConcreteProduct.

FM Consequences(1)

 FM eliminate the need to bind application-
specific classes into your code.
 The code only deals with the Product interface

 Clients might have to subclass Creator just to
create a particular ConcreteProduct object.
 is fine when the client has to subclass the Creator

class anyway!
 …otherwise is a drawback

(the hierarchy can explode)

FM Consequences(2)

 FM
 Provides hooks for subclasses.

 Creating objects inside a class with a FM is
always more flexible than creating an object
directly.

 FM gives subclasses a hook for providing an
extended version of an object.

 Connects parallel class hierarchies.
 Parallel class hierarchies result when a class

delegates some of its responsibilities to a
separate class.

FM Implementation(1)

 Two possibilities:
 Creator is an abstract class and does not provide

an implementation for the FMs it provides
 Creator is a concrete class and provides a default

implementation for the FMs it provides
 Parameterized factory methods.

 lets the factory method create multiple kinds of
products.

 The factory method takes a parameter that
identifies the kind of object to create.

 May require downcasting

FM Implementation(2)

 Naming Conventions
 It's good practice to use naming

conventions that make it clear you're using
factory methods.

 Using templates to avoid subclassing.

Building a Maze for a game

Sample Code

FM Known uses
 and Related Patterns
 Known Uses

 Can be used in Abstract Factory
 ….many softwares

 Related Patterns
 Abstract Factory
 Template Methods
 Prototypes

Abstract Factory (AF)
 Intent

 Provide an interface for creating families of
related or dependent objects without
specifying theirconcrete classes.

 Also Known As
 Kit

AF Motivation (1)

 Consider a user interface toolkit that supports
multiple look-and-feel standards, such as
Motif and Presentation Manager.

 Different look-and-feels define different
appearances and behaviors for user interface
"widgets" like scroll bars, windows, and
buttons.

 To be portable across look-and-feel
standards, an application should not hard-
code its widgets for a particular look and feel.

AF Motivation (2)

AF Applicability
 Use the AF when:

 a system should be independent of how its
products are created, composed, and represented.

 l a system should be configured with one of
multiple families of products.

 l a family of related product objects is designed to
be used together, and you need to enforce this
constraint.

 l you want to provide a class library of products,
and you want to reveal just their interfaces,
nottheir implementations.

AF Structure

AF Participants
 AbstractFactory (WidgetFactory)

 declares an interface for creating abstract products.
 ConcreteFactory (MotifWidgetFactory, …)

 implements the operations creating concrete products
 AbstractProduct (Window, ScrollBar)

 declares an interface for a type of product object.
 ConcreteProduct (MotifWindow, …)

 defines a product object to be created by the AF
 implements the AbstractProduct interface.

 Client
 uses only interfaces declared by AF and Abs. Prod.

AF Collaborations
 A single instance of a ConcreteFactory

class is created at run-time.
 This concrete factory creates product

objects having a particular implementation.
 To create different product objects, clients

should use a different concrete factory.
 AbstractFactory defers creation of

product objects to its ConcreteFactory
subclass.

AF Consequences (1)

 It isolates concrete classes.
 The Abstract Factory pattern helps you control the

classes of objects
 Clients manipulate instances through their abstract

interfaces.
 Product class names do not appear in client code.

 It makes exchanging product families easy.
 The class of a concrete factory appears only once

in an application.
 This makes it easy to change the concrete factory an

application uses.
 It can use different product configurations simply by

changing the concrete factory.

AF Consequences (2)

 It promotes consistency among products.
 an application use objects from only one family at

a time.
 Supporting new kinds of products is difficult.

 Extending abstract factories to produce new kinds
of Products isn't easy.

 Supporting new kinds of products requires
extending the factory interface

 involves changing the AF class and all of its subclasses
 This can be (partially) solved (see implementation)

AF implementation (1)

 Factories as singletons.
 An application typically needs only one instance of

a ConcreteFactory (Singleton).
 Creating the products.

 AF only declares an interface for creating
products.

 It's up to ConcreteProduct subclasses to actually
create them.

 Implement AF by using Factory Method
 Implement AF by using Prototype

AF implementation (2)

 Defining extensible factories.
 AF usually defines a different operation for each

kind of product
 A more flexible design is to add a parameter to

operations that create objects.
 easier to use in a dynamically typed language like

Smalltalk than in C++.
 (see FM implementation)

AF Sample Code

AF Known Uses
 and Related Patterns
 Known Uses

 …many applications

 Related Patters
 Factory Mathod
 Singleton
 Prototype

Singleton (SI)
 Intent

 Ensure a class only has one instance, and provide a
global point of access to it.

 Motivation
 If is needed to have exactly one instance of a class.
 A global variable makes an object accessible,

 but it doesn't keep you from instantiating multiple objects.

 Make the class itself responsible of its sole instance.
 The class can ensure that no other instance can be created

 by intercepting requests to create new objects,
 …and it can provide a way to access the instance.

SI Applicability
 Use the Singleton pattern when

 there must be exactly one instance of a class,
 …and it must be accessible to clients from a

wellknown access point.
 when the sole instance should be extensible by

subclassing,
 …and clients should be able to use an extended

instance without modifying their code.

SI Structure

SI Participants
 and Collaborations
 Participants

 Singleton
 defines an Instance operation that lets clients access its

unique instance.
 Instance is a class operation (e.g. static member)

 may be responsible for creating its own unique
instance.

 Collaborations
 Clients access a Singleton instance solely through

Singleton's Instance operation.

SI Consequences
 Controlled access to sole instance.

 strict control over how and when the client access.
 Reduced name space.

 No name space-pollution by global variables
 Permits refinement of operations and

representation.
 The Singleton class may be subclassed
 Use the instance of the class you need at run-time.

 Permits a variable number of instances.
 More flexible than class operations.

 static member functions in C++ are never virtual

SI Implementation
 Ensuring a unique instance.

 Hide the operation that creates the instance
behind a class operation
(private constructor + static member)

 Subclassing the singleton class
 The variable that refers to the singleton instance

must get initialized with an instance of the
subclass.

 May be flexible to use a registry of singletons.

SI Sample Code

SI Known Uses
 and Related Patterns
 Known Uses

 …many applications
 Related Pattterns

 Abstract Factory
 Builder
 Prototype

Prototype (PR)
 Intent

 Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying (cloning)
this prototype.

 Motivation
 Build an editor for music scores

 by customizing a general framework
 Scores are created by adding new objects that

represent notes, rests, and staves from a palette
 Sublcassing from an abstract Graphic class

 produce lots of subclasses that differ only
in the kind of music object they instantiate.

PR Motivation (continued)

…make GraphicTool create a new Graphic by cloning an
instance of a Graphic subclass (the prototype!).

PR Applicability
 Use the PR when

 a system should be independent of
how its products are created,
composed, and represented;

 the classes to instantiate are specified
at run-time

 Parallels AF hierarchy may be very big
 instances have one of only a few

different combinations of state.

PR Structure

PR Participants
 and Collaborations
 Participants

 Prototype (Graphic)
 declares an interface for cloning itself.

 ConcretePrototype (Staff, WholeNote, HalfNote)
 m implements an operation for cloning itself.

 Client (GraphicTool)
 creates a new object by asking a prototype to clone itself.

 Collaborations
 A client asks a prototype to clone itself.

PR Consequences (1)

 PR similar to AF and BU it:
 hides the concrete product classes from the client
 lets a client work with application-specific classes

without modification.
 Adding and removing products at run-time.

 a bit more flexible than other creational patterns,
because a client can install and remove prototypes
at run-time.

 Specifying new objects by varying values.
 PR lets users define new "classes" without

programming.

PR Consequences (2)

 Reduced subclassing.
 FM often produces a hierarchy of Creator classes

that parallels the product class hierarchy.
 PR lets you clone a prototype instead of asking a

factory method to make a new object.
 NO Creator class hierarchy at all.

 Configuring an application with classes
dynamically.
 The Prototype pattern is the key to exploiting

facilities like Java reflection in a language like
C++.

PR Implementation
 Particularly useful with static languages (C++)

 where classes are not objects, and little or no type
information is available at run-time.

 Implementation issues:
 Using a prototype manager.

 When the number of prototypes in a system isn't fixed
keep a registry of available prototypes.

 Implementing the Clone operation.
 It's particularly tricky when object structures contain

circular references.
 Initializing clones

 If clients want to initialize the internal state
 Introduce an Initialize(…) operation.

PR Sample Code

PR Known Uses
 and Related Patterns
 Known Uses

 …many applications
 Related Patterns

 Abstract Factory
 Composite
 Decorator

Builder (BU)
 Intent

 Separate the construction of a complex object
from its representation so that the same
construction process can create different
representations.

 Motivation
 A reader for the RTF (Rich Text Format) format

 should be able to convert RTF to many text formats.
 into plain ASCII text
 or into a text widget that can be edited interactively.

 It should be easy to add a new conversion without
modifying the reader.

BU Motivation (continued)

BU Applicabiliy
 Use the Builder pattern when:

 the algorithm for creating a complex object
should be independent of the parts that
make up the object and how they're
assembled.

 the construction process must allow
different representations for the object
that's constructed.

BU Structure

BU Participants
 Builder (TextConverter)

 abstract interface for creating parts of a Product
 ConcreteBuilder (ASCIIConverter, …)

 constructs and assembles parts of the product by
implementing the Builder interface.

 provides an interface for retrieving the product
(e.g., GetASCIIText, GetTextWidget).

 Director (RTFReader)
 constructs an object using the Builder interface.

 Product (ASCIIText, TeXText, TextWidget)
 represents the complex object under construction.
 includes classes that define the constituent parts

BU Collaborations
 The client creates the Director object and

configures it with the desired Builder object.
 Director notifies the builder whenever a part

of the product should be built.
 Builder handles requests from the director

and adds parts to the product.
 The client retrieves the product from the

builder.

BU Consequences (1)

 It lets you vary a product's internal
representation.
 The Builder object provides the director with an

abstract interface for constructing the product.
 The interface lets the builder hide the

representation and internal structure of the
product.

 It also hides how the product gets assembled.

BU Consequences (2)

 It isolates code for construction and
representation.
 BU improves modularity by encapsulating the way

a complex object is constructed and represented.
 Clients needn't know anything about the product's

internal structure
 It gives you finer control over the construction

process.
 The product is built step by step under the

director's control.
 Only when the product is finished does the director

retrieve it from the builder.

BU Implementation (1)

 An abstract Builder class that defines
an operation for each component that a
director may ask it to create.

 The operations do nothing by default.
 A ConcreteBuilder class overrides

operations for components it's
interested in creating.

BU Implementation (2)

 Assembly and construction interface.
 Builders construct their products step-by-step
 The BU interface allows the construction of

products for all kinds of concrete builders.
 Why no abstract class for products?

 The products differ so greatly in their
representation
(e.g. ASCIIText and TextWidget differs)

 Empty methods as default in Builder.
 Virtual member functions have empty methods

letting clients override only the operations they're
interested in.

BU Sample Code

BU Known Uses
 and Related Patterns
 Known Uses

 …many applications
 Related Patterns

 Abstract Factory
 Composite

Discussion (1)

 Two common ways to parameterize a
system by the classes of objects it
creates:
 To subclass the class that creates the

objects
(Factory Method)

 to parameterize a system relying on object
composition
(Abstract Factory, Builder, Prototype)

Discussion (2)

 The main drawback of FM is that it can
require creating a new subclass just to
change the class of the product.
 Such changes can cascade.

 The “composition-based” pattern
 Involve creating a new "factory object" whose

responsibility is to create product objects.
 Abstract Factory has the factory object producing

objects of several classes.
 Builder has the factory object building a complex

product incrementally using a complex protocol.
 Prototype has the factory object (the prototype itself)

building a product by copying a prototype object.

