
© 2000 Prentice Hall, Inc. All rights reserved.

1

Lesson 1 - Outline

• Object-Oriented Programming (OOP)

• History of C and C++

• Typical C++ Environment

• Class Definition

• Class Declarations

• Member Functions

• Class Scope and Accessing Class Members

© 2000 Prentice Hall, Inc. All rights reserved.

2

Object-Oriented Programming (OOP)

• OOP allows to encapsulate data (attributes) and
functions (behavior) into packages called classes

• Class (standard unit of programming):

– Component modeling real world items modularity

– Is like (or serves as) a “blueprint” reusability/libraries

– Contains functions and data

• Object (instance of a class):

– Is like a “magazine” printed from a “blueprint”

– E.g.: date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, etc.

© 2000 Prentice Hall, Inc. All rights reserved.

3

Object-Oriented Programming (OOP)

• Abstraction - think in terms of houses, not bricks
– Natural way to think about the world and write computer programs
– See a photograph rather than a group of colored dots

• Attributes - properties of objects
– Size, shape, color, weight, etc.

• Behaviors - actions
– A ball rolls, bounces, inflates and deflates

• Inheritance
– New classes of objects absorb characteristics from existing classes

• Information hiding
– Objects usually do not know how other objects are implemented
– Implementation details are hidden within the classes themselves

© 2000 Prentice Hall, Inc. All rights reserved.

4

History of C and C++

• C++ evolved from C
– C evolved from BCPL and B

• ANSI C
– Established worldwide standards for C programming

• C++ “spruces up” C
– Provides capabilities for object-oriented programming

– Object-oriented programs are easy to
• Understand

• Correct

• Modify

© 2000 Prentice Hall, Inc. All rights reserved.

5

Typical C++ Environment

Phases of C++ Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

© 2000 Prentice Hall, Inc. All rights reserved.

6

1 class Time {
2 public:
3 Time();
4 void setTime(int, int, int);
5 void printMilitary();
6 void printStandard();
7 private:
8 int hour; // 0 - 23
9 int minute; // 0 - 59

10 int second; // 0 - 59
11 };

Class Definition
• Starts with the keyword class
• Has a body delineated with braces { … and … }
• Terminates with a semicolon
• Contains

– attributes (or data members)
– behaviors (or member functions)

• Example:

public: and private: are
member-access specifiers.

setTime, printMilitary, and
printStandard are member
functions.
Time is the constructor.

hour, minute, and
second are data members.

© 2000 Prentice Hall, Inc. All rights reserved.

7

Class Definition

• Member access specifiers
– Classes can limit the access to their member functions and data
– The three types of access a class can grant are:

• public — Accessible wherever the program has access to an
object of the class

• private — Accessible only to member functions of the class
• protected — Similar to private and discussed later

• Constructor
– Special member function that initializes the data members of a

class object
– Cannot return values
– Have the same name as the class

© 2000 Prentice Hall, Inc. All rights reserved.

8

Class Declarations

• Once a class has been defined, it can be used as a
type in object, array and pointer declarations

• Example:

Time sunset; // object of type Time
Time arrayOfTimes[5]; // array of Time objects
Time *pointerToTime; // pointer to a Time object
Time &dinnerTime = sunset; // reference to a Time object

Note: The class name
becomes the new type
specifier.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
91 // Fig. 6.3: fig06_03.cpp

2 // Time class.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // Time abstract data type (ADT) definition
9 class Time {
10 public:
11 Time(); // constructor
12 void setTime(int, int, int); // set hour, minute, second
13 void printMilitary(); // print military time format
14 void printStandard(); // print standard time format
15 private:
16 int hour; // 0 – 23
17 int minute; // 0 – 59
18 int second; // 0 – 59
19 };
20
21 // Time constructor initializes each data member to zero.
22 // Ensures all Time objects start in a consistent state.
23 Time::Time() { hour = minute = second = 0; }
24
25 // Set a new Time value using military time. Perform validity
26 // checks on the data values. Set invalid values to zero.
27 void Time::setTime(int h, int m, int s)
28 {
29 hour = (h >= 0 && h < 24) ? h : 0;
30 minute = (m >= 0 && m < 60) ? m : 0;
31 second = (s >= 0 && s < 60) ? s : 0;
32 }

Note the :: preceding
the function names.

1. Define a Time class

1.1 Define default values for
the time

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
1033

34 // Print Time in military format

35 void Time::printMilitary()

36 {

37 cout << (hour < 10 ? "0" : "") << hour << ":"

38 << (minute < 10 ? "0" : "") << minute;

39 }

40

41 // Print Time in standard format

42 void Time::printStandard()

43 {

44 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

45 << ":" << (minute < 10 ? "0" : "") << minute

46 << ":" << (second < 10 ? "0" : "") << second

47 << (hour < 12 ? " AM" : " PM");

48 }

49

50 // Driver to test simple class Time

51 int main()

52 {

53 Time t; // instantiate object t of class Time

54

55 cout << "The initial military time is ";

56 t.printMilitary();

57 cout << "\nThe initial standard time is ";

58 t.printStandard();

59

Notice how functions are
called using the dot (.)
operator.

1.2 Define the two
functions
printMilitary and
printstandard

2. In main, create an
object of class Time

2.1Print the initial
(default) time

The initial military time is 00:00

The initial standard time is 12:00:00 AM

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
1160 t.setTime(13, 27, 6);

61 cout << "\n\nMilitary time after setTime is ";

62 t.printMilitary();

63 cout << "\nStandard time after setTime is ";

64 t.printStandard();

65

66 t.setTime(99, 99, 99); // attempt invalid settings

67 cout << "\n\nAfter attempting invalid settings:"

68 << "\nMilitary time: ";

69 t.printMilitary();

70 cout << "\nStandard time: ";

71 t.printStandard();

72 cout << endl;

73 return 0;

74 }

The initial military time is 00:00
The initial standard time is 12:00:00 AM

Military time after setTime is 13:27
Standard time after setTime is 1:27:06 PM

After attempting invalid settings:
Military time: 00:00
Standard time: 12:00:00 AM

2.2 Set and print the
time

2.3 Set the time to an
invalid hour

2.4 Print the time

Program Output

Military time after setTime is 13:27

Standard time after setTime is 1:27:06 PM

After attempting invalid settings:

Military time: 00:00

Standard time: 12:00:00 AM

© 2000 Prentice Hall, Inc. All rights reserved.

12

Member Functions

• Binary scope resolution operator (::)
– Combines the class name with the member function name
– Different classes can have member functions with the same

name

• Format for defining member functions
returnType ClassName::memberFunctionName()
{
…

}

• If a member function is defined inside the class
– Scope resolution operator and class name are not needed
– Defining a function outside a class does not change it being
public or private

© 2000 Prentice Hall, Inc. All rights reserved.

13

Class Scope and Accessing Class Members

• Function scope
– Variables only known to function they are defined in
– Variables are destroyed after function completion

• Accessing class members
– Same as structs
– Dot (.) for objects and arrow (->) for pointers
– Example:

• t.hour is the hour element of t
• TimePtr->hour is the hour element

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
14

1. Class definition

2. Create an object of the class

2.1 Assign a value to the object. Print the value using the dot operator

2.2 Set a new value and print it using a reference

1. Class definition

2. Create an object of the class

2.1 Assign a value to the
object. Print the value using
the dot operator

2.2 Set a new value and print it
using a reference

1 // Fig. 6.4: fig06_04.cpp

2 // Demonstrating the class member access operators . and ->

3 //

4 // CAUTION: IN FUTURE EXAMPLES WE AVOID PUBLIC DATA!

5 #include <iostream>

6

7 using std::cout;

8 using std::endl;

9

10 // Simple class Count

11 class Count {

12 public:

13 int x;

14 void print() { cout << x << endl; }

15 };

16

17 int main()

18 {

19 Count counter, // create counter object

20 *counterPtr = &counter, // pointer to counter

21 &counterRef = counter; // reference to counter

22

23 cout << "Assign 7 to x and print using the object's name: ";

24 counter.x = 7; // assign 7 to data member x

25 counter.print(); // call member function print

26

27 cout << "Assign 8 to x and print using a reference: ";

28 counterRef.x = 8; // assign 8 to data member x

29 counterRef.print(); // call member function print

30

It is rare to have
public member
variables. Usually
only member
functions are
public; this
keeps as much
information hidden
as possible.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
15

2.3 Set a new value and print
it using a pointer

Program Output

31 cout << "Assign 10 to x and print using a pointer: ";

32 counterPtr->x = 10; // assign 10 to data member x

33 counterPtr->print(); // call member function print

34 return 0;

35 }

Assign 7 to x and print using the object's name: 7
Assign 8 to x and print using a reference: 8
Assign 10 to x and print using a pointer: 10

