Lesson 1 - Outline

Object-Oriented Programming (OOP)
History of C and C++

Typical C++ Environment

Class Definition

Class Declarations

Member Functions

Class Scope and Accessing Class Members

© 2000 Prentice Hall, Inc. All rights reserved. - -

Object-Oriented Programming (OOP)

 OORP allows to encapsulate data (attributes) and
functions (behavior) into packages called classes

o Class (standard unit of programming):
— Component modeling real world items = modularity
— Is like (or serves as) a “blueprint” = reusability/libraries

— Contains functions and data

e ODbject (instance of a class):
— Is like a “magazine” printed from a “blueprint”

— E.g.: date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, etc.

© 2000 Prentice Hall, Inc. All rights reserved. - -

Object-Oriented Programming (OOP)

e Abstraction - think in terms of houses, not bricks

— Natural way to think about the world and write computer programs
— See a photograph rather than a group of colored dots

« Attributes - properties of objects
— Size, shape, color, weight, etc.
e Behaviors - actions

— A ball rolls, bounces, inflates and deflates

e |nheritance

— New classes of objects absorb characteristics from existing classes

 Information hiding

— Objects usually do not know how other objects are implemented
— Implementation details are hidden within the classes themselves

© 2000 Prentice Hall, Inc. All rights reserved. - -

History of C and C++

e C++ evolved from C
— Cevolved from BCPL and B

« ANSIC

— Established worldwide standards for C programming

e C++ “spruces up” C
— Provides capabilities for object-oriented programming
— Object-oriented programs are easy to
« Understand

e Correct
* Modify

© 2000 Prentice Hall, Inc. All rights reserved. - -

Typical C++ Environment

Program is created in
4—>— the editor and stored
on disk.
Preprocessor program
processes the code.
Compiler creates
4—- object code and stores
it on disk.
Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Primary
Memo

Phases of C++ Programs:
1. Edit

2. Preprocess
3. Compile

4. Link
5
6

Loader puts program

in memory.
|_oad
. ExeCUte Primary
Memo
- CPU takes each
instruction and

executes it, possibly
storing new data
values as the program
executes.

© 2000 Prentice Hall, Inc. All rights reserved. - -

Class Definition

 Starts with the keyword class

e Has a body delineated with braces { ... and ... }

e Terminates with a semicolon

e Contains
— attributes (or data members)
— behaviors (or member functions)

o Example:

class Time {
public:

Time();
void setTime(int, Iint, int);

public: and private: are
member-access specifiers.

void printMilitary();

void printStandard();
private:

int hour; // 0 - 23

setTime, printMilitary, and
printStandard are member
functions.

Time is the constructor.

int minute; // 0 - 59

int second; // 0 - 59 ‘\\\\\\\\\\\\\

¥

hour, minute, and
second are data members.

© 2000 Prentice Hall, Inc. All rights reserved. - -

Class Definition

 Member access specifiers

— Classes can limit the access to their member functions and data

— The three types of access a class can grant are:

e publ 1c — Accessible wherever the program has access to an
object of the class

= private — Accessible only to member functions of the class
= protected — Similar to private and discussed later

e Constructor

— Special member function that initializes the data members of a
class object

— Cannot return values
— Have the same name as the class

© 2000 Prentice Hall, Inc. All rights reserved. - -

Class Declarations

e Once a class has been defined, It can be used as a
type In object, array and pointer declarations

e Example:

Time sunset;
Time arrayOfTimes[5];
Time *pointerToTime;

Time &dinnerTime = sunset;

A

Note: The class name
becomes the new type
specifier.

© 2000 Prentice Hall, Inc. All rights reserved.

// object of type Time

// array of Time objects

// pointer to a Time object
// reference to a Time object

© 0 ~NO 01 & WDN P

W W WNDNDNDNNDNMNDNNMNNNREPEPPRPPRPEPPEPERPPERPRERER
NP, O OO0W~NO U, WNPEP OO NO O WDN PP O

// Fig. 6.3: fig06_03.cpp
// Time class.
#include <iostream>

using std::cout;
using std::endl;

// Time abstract data type (ADT)

class Time {

public:
Time(Q);
void setTime(int, int,
void printMilitary(Q);
void printStandard();
private:
int hour; // 0 — 23
int minute; // 0 — 59
Int second; // 0 — 59
};
// Time constructor

definition

// constructor

int); // set hour, minute, second
// print military time format
// print standard time format

initializes each data member to zero.

// Ensures all Time objects start In a consistent state.

Time::Time() { hour = minute = second = 0; } <«

A
\%

1. Define a Time class

Qutline

1.1 Define default values for
the time

// Set a new Time value using military time. Perform validity

// checks on the data values.

void Time::setTime(int h,

{

hour = Ch >=0&& h <24) ? h :
=(m>08& m<60) ?m: 0;
(s> 08&& s <60) ?s

minute
second

-

Set i1nvalid values to zero.

int m, int s)

Note the : = preceding
the function names.

“‘ _ 10
QOutline
void Time::printMilitaryQ) V
{
cout << (hour < 10 ? "0" : "™) << hour << ":"
<< (minute < 10 ? "0 : ') << minute;
by
void Time::printStandard()
{
cout << ((hour == O || hour == 12) ? 12 - hour % 12) 1.2 Define the two
<< ":" << ((minute < 10 ? 0" : ") << minute functions
<< ":"™ << (second < 10 ? "0" : "') << second printMi | itary and
<< (hour < 12 ?2 "™ AM™ - ™ PM"); printstandard
}
2. In main, create an
) _ object of class Time
int mainQ)
{
Time t; The initial military time is 00:00

cout << "The initial military time is "
t.printMilitary();

The initial standard time i1s 12:00:00 AM

Notice how functions are

cout << '"\nThe initiat Standard time 1S
t.printStandard();

© 2000 Prentice Hall, Inc. All rights reserved.

called using the dot (.)
operator.

t.setTime(13, 27, 6);

t.printMilitary();

cout << "\n\nMilitary time after setTime is "; A Outline

cout << "\nStandard time after setTime is '';

t.printStandard();

t.setTime(99, 99, 99);

Military time after setTime i1s 13:27
Standard time after setTime is 1:27:06 PM

cout << "\n\nAfter attempting invalid settings:"

<< "\nMilitary time: ";
t.printMilitary();
cout << '""\nStandard time: "';
t.printStandard();
cout << endl;
return O;

The initial military time is 00:00

2.2 Set and print the
time

After attempting invalid settings: b t0 an
Military time: 00:00
Standard time: 12:00:00 AM

2.4 Print the time

The initial standard time is 12:00:00 AM

Military time after setTime is 13:27

Standard time after setTime is 1:27:06 PM

After attempting invalid settings:
Military time: 00:00
Standard time: 12:00:00 AM

© 2000 Prentice Hall, Inc. All rights reserved.

Program Output

11

Member Functions

 Binary scope resolution operator (: :)

— Combines the class name with the member function name

— Different classes can have member functions with the same
name

« Format for defining member functions

returnType ClassName: :memberFunctionName()

{

}

 |f a member function Is defined inside the class
— Scope resolution operator and class name are not needed

— Defining a function outside a class does not change it being
publicor private

© 2000 Prentice Hall, Inc. All rights reserved. - -

12

Class Scope and Accessing Class Members

e Function scope
— Variables only known to function they are defined in
— Variables are destroyed after function completion

» Accessing class members
— Same as structs
— Dot (.) for objects and arrow (->) for pointers

— Example:
e t._hour is the hour element of t
e TimePtr->hour is the hour element

© 2000 Prentice Hall, Inc. All rights reserved. - -

13

14

A Outline
Vv

1. Class definition

#include <iostream> It is rare to have
publ 1c member 2. Create an object of the class
using std::cout; .
9 variables. Usually 2.1 Assign a value to the

using std::endl; only member object. Print the value using

. the dot operator
// Simple class Count functions are

class Count { pUbI 1C; this 2.2_ Set a new value and print it
public: keeps as much using a reference
int x; information hidden
void print() { cout << x << endl; } as possible.
};
int main(Q)
{
Count counter,
*counterPtr = &counter,
&counterRef = counter;

cout << "Assign 7 to x and print using the object®s name: "
counter.x = 7;
counter.print();

cout << "Assign 8 to x and print using a reference: "
counterRef.x = 8;
counterRef.print();

cout << "Assign 10 to x and print using a pointer: ';
counterPtr->x = 10;
counterPtr->print();

return O;

Assign 7 to x and print using the object®"s name: 7
Assign 8 to x and print using a reference: 8
Assign 10 to x and print using a pointer: 10

© 2000 Prentice Hall, Inc. All rights reserved.

“‘ 15

Qutline
\V4

2.3 Set a new value and print
it using a pointer

Program Output

