Lesson 5 - Outline

“new”’ - Dynamic Memory Allocation

“delete” - Dynamic Memory de-Allocation
Destructors

Constructors and Destructors: When are they called?

When to Write an Explicit Destructor
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“new” - Dynamic Memory Allocation

* new

— Creates an object of the proper size
— Calls its constructor
— Returns a pointer of the correct type

« Examples of new
— TypeName *tNPtr;
» Creates pointer to a TypeName object
— tNPtr = new TypeName;

« new creates TypeName object
 returns pointer which tNPtr is set equal to

 Initializing objects
— double *dPtr = new double( 3.14159 );
* Initializes object of type double to 3.14159
— Int *arrayPtr = new int[ 10 ];
» Creates a ten element 1nt array and assigns it to arrayPtr
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“delete” - Dynamic Memory de-Allocation

- delete
— ““Destroys™ object and frees space

 Examples of delete

— delete tNPtr;

o “Destroys” the TypeName object and frees its memory area
— delete dPtr;

o “Destroys” the doub l e object and frees its memory area
— delete [] arrayPtr;

o Used to dynamically “destroy’” array arrayPtr
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Destructors

e One purpose of a constructor Is to provide for the
automatic acquisition of a resource.

e Having allocated the resource in the constructor,
we need a corresponding operation that
automatically deallocates or otherwise releases
the resource.

e The destructor Is a special member function that
can be used to do whatever resource deallocation
IS needed.

» A destructor serves as the complement to the
constructors of the class.
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Destructors

e Perform ““termination housekeeping’ before the
system reclaims the object’s memory

 Name is tilde (~) followed by the class name
— Le,~Time()
— Recall that the constructor’s name is the class name

* Receives no parameters, returns no value

* One destructor per class
— No overloading allowed

e Crucial to handle dynamic memory allocation!
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Constructors and Destructors
When are they called?

« Constructors and destructors called automatically
— QOrder depends on scope of objects

e Global scope objects
— Constructors called before any other function (including main)
— Destructors called when main terminates (or ex 1t function called)
— Destructors not called if program terminates with abort

« Automatic local objects
— Constructors called when objects are defined

— Destructors called when objects leave scope
* 1.e., when the block in which they are defined is exited
— Destructors not called if the program ends with exit or abort
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Constructors and Destructors
When are they called?

o Static local objects

— Constructors called when execution reaches the point where
the objects are defined

— Destructors called when marn terminates or the exit
function is called

— Destructors not called if the program ends with abort
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// Fig. 6.9: create.h

// Definition of class CreateAndDestroy.
// Member functions defined in create.cpp.-
#ifndef CREATE_H

#define CREATE_H

class CreateAndDestroy {
public:
CreateAndDestroy( int ); // constructor
~CreateAndDestroy(); // destructor
private:
int data;

#endif
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1. Create a header file

1.1 Include function
prototypes for the destructor
and constructor



Qutline
#include <iostream> 2. Load the header file

2.1 Modify the constructor
and destructor
using std::cout;

using std::endl;

#include '‘create.h"

CreateAndDestroy: :CreateAndDestroy( int value )

{ Constructor and Destructor changed to
print when they are called.

data = value;

cout << "Object " << data << " constructor™;

CreateAndDestroy: :~CreateAndDestroy()

{ cout << "Object " << data << " destructor " << endl; }
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#include <iostream>

using std::cout;
using std::endl;

#include "create.h"

void create( void );
CreateAndDestroy first( 1 );
int main(Q)

{

cout << " (global created before main)" << endl;

CreateAndDestroy second( 2 );
cout << " (local automatic in main)" << endl;

static CreateAndDestroy third( 3 );
cout << " (local static in main)" << endl;

create();
CreateAndDestroy fourth( 4 );

cout << " (local automatic in main)" << endl;
return O;
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3. Create multiple objects of
varying types
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Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object

d create( void )

Qutline

CreateAndDestroy fifth( 5 );
cout << " (local automatic in create)" << endl;

static CreateAndDestroy sixth( 6 );
cout << " (local static in create)” << endl;

CreateAndDestroy seventh( 7 );

cout << " (local automatic in create)" << endl;
Program Output
1 constructor (global created before main)
2 constructor (local automatic In main)
3 constructor (local static in main)
5 constructor (local automatic In create)
6 constructor (local static iIn create)
7 constructor (local automatic In create)
7 destructor
2 destriicton L Notice how the order of the
4 constructor (local automatic In main) truct d destruct I
A eI T constructor and aestructor c_a
2  destructor depends on the types of variables
6 destructor (automatic, global and static)
3 destructor h iated with
1  destructor they are assoclated with.
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When to Write an Explicit Destructor

* Many classes do not require an explicit destructor.

— In particular, a class that has a constructor does not
necessarily need to define its own destructor.

 Destructors are needed only if there is work for
them to do.

— A destructor is not limited only to relinquishing resources. A
destructor, in general, can perform any operation that the
class designer wishes to have executed subsequent to the last
use of an object of that class.
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When to Write an Explicit Destructor

« Ordinarily they are used to relinquish resources
acquired In the constructor or during the lifetime
of the object.

« A useful rule of thumb is that if a class needs a
destructor, it will also need the assignment
operator and a copy constructor.

— This rule is often referred to as the Rule of Three, indicating
that if you need a destructor, then you need all three copy-
control members.
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1 // Fig. 7.9: employl.h

2 // An employee class

3 #ifndef EMPLOY1 H

4 #define EMPLOY1_H

5

6 class Employee {

7 public:

8 Employee( const char*, const char* ); // constructor

9 ~Employee(); // destructor

10 const char *getFirstName() const; // return first name

11 const char *getLastName() const; // return last name

12

13 // static member function

14 static int getCount(); // return # objects instantiated

15 -

16 private: sta1_:|c membe_r
function and variable

17 char *firstName; declared.

18 char *lastName;

19

20 // static data me r

21 static int count; // number of objects instantiated

22 };

23

24 #endif

1. Class definition

1.1 Function prototypes

1.2 Declare variables



#include <iostream>

usina std::cout:
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1. Load header file

Qutline

usina std::endl:

#include <cstrina>

static data member count
and function getCount( )
initialized at file scope (required).

1 Initialize static data
embers

#include <cassert>
#include "emplovl_.h"

int Emplovee::count = O:

int Emplovee: :aetCount() { return count: %}

1.2 Function definitions

Note the use of assert to test for memory
allocation.

firstName = new charl strl
assert( firstName 1= 0 ):
strcpv( firstName. First ):

lastName = new charl strl
assert( lastName !'= 0 ):

strcpv( lastName

++count;

static data member count changed
when a constructor/destructor called.
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cout << "Employee constructor for ' << firstName A
<< " " << lastName << " called." << endl;

1.2 Function definitions

Qutline

// Destructor deallocates dynamically allocated memory

Emplovee: :~Emplovee()

{

t

static data member count changed

cout << "~Employee() called for " << firs when a constructor/destructor called.

<< " " << lastName << endl;
delete [1 firstName; /L capture memory

// Return first name of employee
const char *Employee: :getFirstName() const

{

T

// Const before return type prevents client from modifying
// private data. Client should copy returned string before
// destructor deletes storage to prevent undefined pointer.
return firstName;

// Return last name of emplovee
const char *Employee: :getLastName() const

{

// Const before return type prevents client Count decremented
// private data. Client should cop because of destructor
// destructor deletes st o prevent und| calls from delete.
return lastName;
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#include <iostream>

usi| count incremented

usi| pecause of constructor
calls from new.

#1nNncyooc Mo NOYL-TT
int main()
{
cout << ""Numbe
<< Emplovee:

Employee *elPtr = new Employee
Employee *e2Ptr

cout <<
<<

cout <<
<<
<<
<<
<<
<<

new Empl

"Number
elPtr->getCount();

"\n\nEmployee 1: "
elPtr->getFirstName()

ee( ""Robert

A

=1
If no Emp loyee objects exist
getCount must be accessed
using the classname and (Z2). |4

Qutline

bjects

D _Devint Aot

Number of employees before instantiation is O

fempkweasbeﬁwein.ezptr_>getcount() or
(raetcount() << endl: | Epgloyee: zgetCount() would also work.

Susan'', "'Baker' ):;

Number of employees after iInstantiation is 2

/

r instantiation is

Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.

" " << elPtr->getLastName() Employee 1: Susan Baker

"\nEmployee 2: "
e2Ptr->getFirstName()

«— | Employee 2: Robert Jones

" " << e2Ptr->getLastName() << ""\n\n"';

delete elPtr;

elPtr =

0;

delete e2Ptr:

e2Ptr =

0;
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~Employee() called for Susan Baker
“—
~Employee() called for Robert Jones




cout << "Number of employees after deletion is "

<< Employee::getCount() << endl;

Qutline

return O; \

count back to zero.

Number of employees before instantiation is 0O
Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.
Number of employees after instantiation is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Susan Baker

~Employee() called for Robert Jones
Number of employees after deletion is O
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Program Output
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