Lesson 5 - Outline

“new”’ - Dynamic Memory Allocation

“delete” - Dynamic Memory de-Allocation
Destructors

Constructors and Destructors: When are they called?

When to Write an Explicit Destructor

© 2000 Prentice Hall, Inc. All rights reserved. . .

“new” - Dynamic Memory Allocation

* new

— Creates an object of the proper size
— Calls its constructor
— Returns a pointer of the correct type

« Examples of new
— TypeName *tNPtr;
» Creates pointer to a TypeName object
— tNPtr = new TypeName;

« new creates TypeName object
 returns pointer which tNPtr is set equal to

 Initializing objects
— double *dPtr = new double(3.14159);
* Initializes object of type double to 3.14159
— Int *arrayPtr = new int[10];
» Creates a ten element 1nt array and assigns it to arrayPtr

© 2000 Prentice Hall, Inc. All rights reserved. . -

“delete” - Dynamic Memory de-Allocation

- delete
— ““Destroys™ object and frees space

 Examples of delete

— delete tNPtr;

o “Destroys” the TypeName object and frees its memory area
— delete dPtr;

o “Destroys” the doub l e object and frees its memory area
— delete [] arrayPtr;

o Used to dynamically “destroy’” array arrayPtr

© 2000 Prentice Hall, Inc. All rights reserved. . -

Destructors

e One purpose of a constructor Is to provide for the
automatic acquisition of a resource.

e Having allocated the resource in the constructor,
we need a corresponding operation that
automatically deallocates or otherwise releases
the resource.

e The destructor Is a special member function that
can be used to do whatever resource deallocation
IS needed.

» A destructor serves as the complement to the
constructors of the class.

© 2000 Prentice Hall, Inc. All rights reserved. . -

Destructors

e Perform ““termination housekeeping’ before the
system reclaims the object’s memory

 Name is tilde (~) followed by the class name
— Le,~Time()
— Recall that the constructor’s name is the class name

* Receives no parameters, returns no value

* One destructor per class
— No overloading allowed

e Crucial to handle dynamic memory allocation!

© 2000 Prentice Hall, Inc. All rights reserved. . -

Constructors and Destructors
When are they called?

« Constructors and destructors called automatically
— QOrder depends on scope of objects

e Global scope objects
— Constructors called before any other function (including main)
— Destructors called when main terminates (or ex 1t function called)
— Destructors not called if program terminates with abort

« Automatic local objects
— Constructors called when objects are defined

— Destructors called when objects leave scope
* 1.e., when the block in which they are defined is exited
— Destructors not called if the program ends with exit or abort

© 2000 Prentice Hall, Inc. All rights reserved. . -

Constructors and Destructors
When are they called?

o Static local objects

— Constructors called when execution reaches the point where
the objects are defined

— Destructors called when marn terminates or the exit
function is called

— Destructors not called if the program ends with abort

© 2000 Prentice Hall, Inc. All rights reserved. . -

© 00 N o o0 A W N P

e e o e
o A W N B O

// Fig. 6.9: create.h

// Definition of class CreateAndDestroy.
// Member functions defined in create.cpp.-
#ifndef CREATE_H

#define CREATE_H

class CreateAndDestroy {
public:
CreateAndDestroy(int); // constructor
~CreateAndDestroy(); // destructor
private:
int data;

#endif

© 2000 Prentice Hall, Inc. All rights reserved.

A

Qutline

\

1. Create a header file

1.1 Include function
prototypes for the destructor
and constructor

Qutline
#include <iostream> 2. Load the header file

2.1 Modify the constructor
and destructor
using std::cout;

using std::endl;

#include '‘create.h"

CreateAndDestroy: :CreateAndDestroy(int value)

{ Constructor and Destructor changed to
print when they are called.

data = value;

cout << "Object " << data << " constructor™;

CreateAndDestroy: :~CreateAndDestroy()

{ cout << "Object " << data << " destructor " << endl; }

© 2000 Prentice Hall, Inc. All rights reserved.

#include <iostream>

using std::cout;
using std::endl;

#include "create.h"

void create(void);
CreateAndDestroy first(1);
int main(Q)

{

cout << " (global created before main)" << endl;

CreateAndDestroy second(2);
cout << " (local automatic in main)" << endl;

static CreateAndDestroy third(3);
cout << " (local static in main)" << endl;

create();
CreateAndDestroy fourth(4);

cout << " (local automatic in main)" << endl;
return O;

A

Qutline

\

3. Create multiple objects of
varying types

10

VOI

{

OUTPUT
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object

d create(void)

Qutline

CreateAndDestroy fifth(5);
cout << " (local automatic in create)" << endl;

static CreateAndDestroy sixth(6);
cout << " (local static in create)” << endl;

CreateAndDestroy seventh(7);

cout << " (local automatic in create)" << endl;
Program Output
1 constructor (global created before main)
2 constructor (local automatic In main)
3 constructor (local static in main)
5 constructor (local automatic In create)
6 constructor (local static iIn create)
7 constructor (local automatic In create)
7 destructor
2 destriicton L Notice how the order of the
4 constructor (local automatic In main) truct d destruct I
A eI T constructor and aestructor c_a
2 destructor depends on the types of variables
6 destructor (automatic, global and static)
3 destructor h iated with
1 destructor they are assoclated with.

© 2000 Prentice Hall, Inc. All rights reserved.

11

When to Write an Explicit Destructor

* Many classes do not require an explicit destructor.

— In particular, a class that has a constructor does not
necessarily need to define its own destructor.

 Destructors are needed only if there is work for
them to do.

— A destructor is not limited only to relinquishing resources. A
destructor, in general, can perform any operation that the
class designer wishes to have executed subsequent to the last
use of an object of that class.

© 2000 Prentice Hall, Inc. All rights reserved. . -

When to Write an Explicit Destructor

« Ordinarily they are used to relinquish resources
acquired In the constructor or during the lifetime
of the object.

« A useful rule of thumb is that if a class needs a
destructor, it will also need the assignment
operator and a copy constructor.

— This rule is often referred to as the Rule of Three, indicating
that if you need a destructor, then you need all three copy-
control members.

© 2000 Prentice Hall, Inc. All rights reserved. . -

A 14

Qutline
V

1 // Fig. 7.9: employl.h

2 // An employee class

3 #ifndef EMPLOY1 H

4 #define EMPLOY1_H

5

6 class Employee {

7 public:

8 Employee(const char*, const char*); // constructor

9 ~Employee(); // destructor

10 const char *getFirstName() const; // return first name

11 const char *getLastName() const; // return last name

12

13 // static member function

14 static int getCount(); // return # objects instantiated

15 -

16 private: sta1_:|c membe_r
function and variable

17 char *firstName; declared.

18 char *lastName;

19

20 // static data me r

21 static int count; // number of objects instantiated

22 };

23

24 #endif

1. Class definition

1.1 Function prototypes

1.2 Declare variables

#include <iostream>

usina std::cout:

15

A
4

1. Load header file

Qutline

usina std::endl:

#include <cstrina>

static data member count
and function getCount()
initialized at file scope (required).

1 Initialize static data
embers

#include <cassert>
#include "emplovl_.h"

int Emplovee::count = O:

int Emplovee: :aetCount() { return count: %}

1.2 Function definitions

Note the use of assert to test for memory
allocation.

firstName = new charl strl
assert(firstName 1= 0):
strcpv(firstName. First):

lastName = new charl strl
assert(lastName !'= 0):

strcpv(lastName

++count;

static data member count changed
when a constructor/destructor called.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

t

cout << "Employee constructor for ' << firstName A
<< " " << lastName << " called." << endl;

1.2 Function definitions

Qutline

// Destructor deallocates dynamically allocated memory

Emplovee: :~Emplovee()

{

t

static data member count changed

cout << "~Employee() called for " << firs when a constructor/destructor called.

<< " " << lastName << endl;
delete [1 firstName; /L capture memory

// Return first name of employee
const char *Employee: :getFirstName() const

{

T

// Const before return type prevents client from modifying
// private data. Client should copy returned string before
// destructor deletes storage to prevent undefined pointer.
return firstName;

// Return last name of emplovee
const char *Employee: :getLastName() const

{

// Const before return type prevents client Count decremented
// private data. Client should cop because of destructor
// destructor deletes st o prevent und| calls from delete.
return lastName;

16

#include <iostream>

usi| count incremented

usi| pecause of constructor
calls from new.

#1nNncyooc Mo NOYL-TT
int main()
{
cout << ""Numbe
<< Emplovee:

Employee *elPtr = new Employee
Employee *e2Ptr

cout <<
<<

cout <<
<<
<<
<<
<<
<<

new Empl

"Number
elPtr->getCount();

"\n\nEmployee 1: "
elPtr->getFirstName()

ee(""Robert

A

=1
If no Emp loyee objects exist
getCount must be accessed
using the classname and (Z2). |4

Qutline

bjects

D _Devint Aot

Number of employees before instantiation is O

fempkweasbeﬁwein.ezptr_>getcount() or
(raetcount() << endl: | Epgloyee: zgetCount() would also work.

Susan'', "'Baker'):;

Number of employees after iInstantiation is 2

/

r instantiation is

Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.

" " << elPtr->getLastName() Employee 1: Susan Baker

"\nEmployee 2: "
e2Ptr->getFirstName()

«— | Employee 2: Robert Jones

" " << e2Ptr->getLastName() << ""\n\n"';

delete elPtr;

elPtr =

0;

delete e2Ptr:

e2Ptr =

0;

17

~Employee() called for Susan Baker
“—
~Employee() called for Robert Jones

cout << "Number of employees after deletion is "

<< Employee::getCount() << endl;

Qutline

return O; \

count back to zero.

Number of employees before instantiation is 0O
Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.
Number of employees after instantiation is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Susan Baker

~Employee() called for Robert Jones
Number of employees after deletion is O

© 2000 Prentice Hall, Inc. All rights reserved.

Program Output

18

