
© 2000 Prentice Hall, Inc. All rights reserved.

1

• “newnew” - Dynamic Memory Allocation

• “deletedelete” - Dynamic Memory de-Allocation

• Destructors

• Constructors and Destructors: When are they called?

• When to Write an Explicit Destructor

Lesson 5 - Outline

© 2000 Prentice Hall, Inc. All rights reserved.

2

“newnew” - Dynamic Memory Allocation
• new

– Creates an object of the proper size
– Calls its constructor
– Returns a pointer of the correct type

• Examples of new
– TypeName *tNPtr;

• Creates pointer to a TypeName object
– tNPtr = new TypeName;

• new creates TypeName object
• returns pointer which tNPtr is set equal to

• Initializing objects
– double *dPtr = new double(3.14159);

• Initializes object of type double to 3.14159
– int *arrayPtr = new int[10];

• Creates a ten element int array and assigns it to arrayPtr

© 2000 Prentice Hall, Inc. All rights reserved.

3

“deletedelete” - Dynamic Memory de-Allocation

• delete
– “Destroys” object and frees space

• Examples of delete
– delete tNPtr;

• “Destroys” the TypeName object and frees its memory area
– delete dPtr;

• “Destroys” the double object and frees its memory area
– delete [] arrayPtr;

• Used to dynamically “destroy” array arrayPtr

© 2000 Prentice Hall, Inc. All rights reserved.

Destructors

• One purpose of a constructor is to provide for the
automatic acquisition of a resource.

• Having allocated the resource in the constructor,
we need a corresponding operation that
automatically deallocates or otherwise releases
the resource.

• The destructor is a special member function that
can be used to do whatever resource deallocation
is needed.

• A destructor serves as the complement to the
constructors of the class.

© 2000 Prentice Hall, Inc. All rights reserved.

5

Destructors

• Perform “termination housekeeping” before the
system reclaims the object’s memory

• Name is tilde (~) followed by the class name
– i.e., ~Time()
– Recall that the constructor’s name is the class name

• Receives no parameters, returns no value
• One destructor per class

– No overloading allowed

• Crucial to handle dynamic memory allocation!

© 2000 Prentice Hall, Inc. All rights reserved.

6

Constructors and Destructors
When are they called?

• Constructors and destructors called automatically
– Order depends on scope of objects

• Global scope objects
– Constructors called before any other function (including main)
– Destructors called when main terminates (or exit function called)
– Destructors not called if program terminates with abort

• Automatic local objects
– Constructors called when objects are defined
– Destructors called when objects leave scope

• i.e., when the block in which they are defined is exited
– Destructors not called if the program ends with exit or abort

© 2000 Prentice Hall, Inc. All rights reserved.

7

Constructors and Destructors
When are they called?

• Static local objects
– Constructors called when execution reaches the point where

the objects are defined
– Destructors called when main terminates or the exit

function is called
– Destructors not called if the program ends with abort

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
81 // Fig. 6.9: create.h

2 // Definition of class CreateAndDestroy.

3 // Member functions defined in create.cpp.

4 #ifndef CREATE_H

5 #define CREATE_H

6

7 class CreateAndDestroy {

8 public:

9 CreateAndDestroy(int); // constructor

10 ~CreateAndDestroy(); // destructor

11 private:

12 int data;

13 };

14

15 #endif

1. Create a header file

1.1 Include function
prototypes for the destructor
and constructor

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
916 // Fig. 6.9: create.cpp

17 // Member function definitions for class CreateAndDestroy

18 #include <iostream>

19

20 using std::cout;

21 using std::endl;

22

23 #include "create.h"

24

25 CreateAndDestroy::CreateAndDestroy(int value)

26 {

27 data = value;

28 cout << "Object " << data << " constructor";

29 }

30

31 CreateAndDestroy::~CreateAndDestroy()

32 { cout << "Object " << data << " destructor " << endl; }

Constructor and Destructor changed to
print when they are called.

2. Load the header file

2.1 Modify the constructor
and destructor

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
10

3. Create multiple objects of
varying types

33 // Fig. 6.9: fig06_09.cpp

34 // Demonstrating the order in which constructors and

35 // destructors are called.

36 #include <iostream>

37

38 using std::cout;

39 using std::endl;

40

41 #include "create.h"

42

43 void create(void); // prototype

44

45 CreateAndDestroy first(1); // global object

46

47 int main()

48 {

49 cout << " (global created before main)" << endl;

50

51 CreateAndDestroy second(2); // local object

52 cout << " (local automatic in main)" << endl;

53

54 static CreateAndDestroy third(3); // local object

55 cout << " (local static in main)" << endl;

56

57 create(); // call function to create objects

58

59 CreateAndDestroy fourth(4); // local object

60 cout << " (local automatic in main)" << endl;

61 return 0;

62 }

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
1163

64 // Function to create objects

65 void create(void)

66 {

67 CreateAndDestroy fifth(5);

68 cout << " (local automatic in create)" << endl;

69

70 static CreateAndDestroy sixth(6);

71 cout << " (local static in create)" << endl;

72

73 CreateAndDestroy seventh(7);

74 cout << " (local automatic in create)" << endl;

75 }

OUTPUT
Object 1 constructor (global created before main)
Object 2 constructor (local automatic in main)
Object 3 constructor (local static in main)
Object 5 constructor (local automatic in create)
Object 6 constructor (local static in create)
Object 7 constructor (local automatic in create)
Object 7 destructor
Object 5 destructor
Object 4 constructor (local automatic in main)
Object 4 destructor
Object 2 destructor
Object 6 destructor
Object 3 destructor
Object 1 destructor

Notice how the order of the
constructor and destructor call
depends on the types of variables
(automatic, global and static)
they are associated with.

Program Output

© 2000 Prentice Hall, Inc. All rights reserved.

When to Write an Explicit Destructor

• Many classes do not require an explicit destructor.
– In particular, a class that has a constructor does not

necessarily need to define its own destructor.

• Destructors are needed only if there is work for
them to do.
– A destructor is not limited only to relinquishing resources. A

destructor, in general, can perform any operation that the
class designer wishes to have executed subsequent to the last
use of an object of that class.

© 2000 Prentice Hall, Inc. All rights reserved.

When to Write an Explicit Destructor

• Ordinarily they are used to relinquish resources
acquired in the constructor or during the lifetime
of the object.

• A useful rule of thumb is that if a class needs a
destructor, it will also need the assignment
operator and a copy constructor.
– This rule is often referred to as the Rule of Three, indicating

that if you need a destructor, then you need all three copy-
control members.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
141 // Fig. 7.9: employ1.h

2 // An employee class

3 #ifndef EMPLOY1_H

4 #define EMPLOY1_H

5

6 class Employee {

7 public:

8 Employee(const char*, const char*); // constructor

9 ~Employee(); // destructor

10 const char *getFirstName() const; // return first name

11 const char *getLastName() const; // return last name

12

13 // static member function

14 static int getCount(); // return # objects instantiated

15

16 private:

17 char *firstName;

18 char *lastName;

19

20 // static data member

21 static int count; // number of objects instantiated

22 };

23

24 #endif

1. Class definition

1.1 Function prototypes

1.2 Declare variables

static member
function and variable
declared.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
15

1. Load header file

1.1 Initialize static data
members

1.2 Function definitions

25 // Fig. 7.9: employ1.cpp
26 // Member function definitions for class Employee
27 #include <iostream>
28
29 using std::cout;
30 using std::endl;
31
32 #include <cstring>
33 #include <cassert>
34 #include "employ1.h"
35
36 // Initialize the static data member
37 int Employee::count = 0;
38
39 // Define the static member function that
40 // returns the number of employee objects instantiated.
41 int Employee::getCount() { return count; }
42
43 // Constructor dynamically allocates space for the
44 // first and last name and uses strcpy to copy
45 // the first and last names into the object
46 Employee::Employee(const char *first, const char *last)
47 {
48 firstName = new char[strlen(first) + 1];
49 assert(firstName != 0); // ensure memory allocated
50 strcpy(firstName, first);
51
52 lastName = new char[strlen(last) + 1];
53 assert(lastName != 0); // ensure memory allocated
54 strcpy(lastName, last);
55
56 ++count; // increment static count of employees

static data member count
and function getCount()
initialized at file scope (required).

Note the use of assert to test for memory
allocation.

static data member count changed
when a constructor/destructor called.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
16

1.2 Function definitions

57 cout << "Employee constructor for " << firstName
58 << ' ' << lastName << " called." << endl;
59 }
60
61 // Destructor deallocates dynamically allocated memory
62 Employee::~Employee()
63 {
64 cout << "~Employee() called for " << firstName
65 << ' ' << lastName << endl;
66 delete [] firstName; // recapture memory
67 delete [] lastName; // recapture memory
68 --count; // decrement static count of employees
69 }
70
71 // Return first name of employee
72 const char *Employee::getFirstName() const
73 {
74 // Const before return type prevents client from modifying
75 // private data. Client should copy returned string before
76 // destructor deletes storage to prevent undefined pointer.
77 return firstName;
78 }
79
80 // Return last name of employee
81 const char *Employee::getLastName() const
82 {
83 // Const before return type prevents client from modifying
84 // private data. Client should copy returned string before
85 // destructor deletes storage to prevent undefined pointer.
86 return lastName;
87 }

Count decremented
because of destructor
calls from delete.

static data member count changed
when a constructor/destructor called.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
17

1. Initialize objects

2. Function calls

3. Print data

88 // Fig. 7.9: fig07_09.cpp
89 // Driver to test the employee class
90 #include <iostream>
91
92 using std::cout;
93 using std::endl;
94
95 #include "employ1.h"
96
97 int main()
98 {
99 cout << "Number of employees before instantiation is "
100 << Employee::getCount() << endl; // use class name
101
102 Employee *e1Ptr = new Employee("Susan", "Baker");
103 Employee *e2Ptr = new Employee("Robert", "Jones");
104
105 cout << "Number of employees after instantiation is "
106 << e1Ptr->getCount();
107
108 cout << "\n\nEmployee 1: "
109 << e1Ptr->getFirstName()
110 << " " << e1Ptr->getLastName()
111 << "\nEmployee 2: "
112 << e2Ptr->getFirstName()
113 << " " << e2Ptr->getLastName() << "\n\n";
114
115 delete e1Ptr; // recapture memory
116 e1Ptr = 0;
117 delete e2Ptr; // recapture memory
118 e2Ptr = 0;

If no Employee objects exist
getCount must be accessed
using the class name and (::).

Number of employees before instantiation is 0

e2Ptr->getCount() or
Employee::getCount() would also work.

Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.

Number of employees after instantiation is 2

Employee 1: Susan Baker

Employee 2: Robert Jones

~Employee() called for Susan Baker

~Employee() called for Robert Jones

count incremented
because of constructor
calls from new.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
18

Program Output

119

120 cout << "Number of employees after deletion is "

121 << Employee::getCount() << endl;

122

123 return 0;

124}

Number of employees before instantiation is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after instantiation is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Susan Baker
~Employee() called for Robert Jones
Number of employees after deletion is 0

count back to zero.

