
© 2000 Prentice Hall, Inc. All rights reserved.

1

Lesson 6 - Operator Overloading

Outline

1.Introduction

2.Restrictions on Operator Overloading

3.Operator Functions as Class Members vs. as friend Functions

4.Overloading Unary Operators

5.Overloading Binary Operators

6.Overloading Stream-Insertion and Stream-Extraction Operators

7.Overloading ++ and --

8.Case Study: A Date Class

© 2000 Prentice Hall, Inc. All rights reserved.

2

Introduction

• Operator overloading
– Enabling C++’s operators to work with class objects
– Requires great care => programs difficult to understand
– Compiler generates the appropriate code

• Overloading an operator
– Function name is keyword operator followed by the

symbol for the operator being overloaded
– operator+ used to overload the addition operator (+)

• Using operators
– To use an operator it must be overloaded, but

• the assignment operator(=)and the address operator(&)
have default behavior, and may not be overloaded

© 2000 Prentice Hall, Inc. All rights reserved.

3

Operator Overloading

• C++ operators that can be overloaded

• C++ Operators that cannot be overloaded
Operators that cannot be overloaded

. .* :: ?: sizeof

Operators that can be overloaded

+ - * / % ^ & |

~ ! = < > += -= *=

/= %= ^= &= |= << >> >>=

<<= == != <= >= && || ++

-- ->* , -> [] () new delete

new[] delete[]

© 2000 Prentice Hall, Inc. All rights reserved.

4

Restrictions on Operator Overloading

• Overloading restrictions
– Precedence of an operator cannot be changed
– Associativity of an operator cannot be changed
– Arity (number of operands) cannot be changed

• Unary operators remain unary, and binary operators remain binary
• Operators &, *, + and - each have unary and binary versions
• Unary and binary versions can be overloaded separately

• No new operators can be created
– Use only existing operators

• No overloading operators for built-in types
– Cannot change how two integers are added
– Produces a syntax error

© 2000 Prentice Hall, Inc. All rights reserved.

5

Class Members vs friend Functions

• Member vs non-member
– Operator functions can be member or non-member functions
– When overloading (), [], -> or any of the assignment

operators, must use a member function

• Operator functions as member functions
– Leftmost operand must be an object of the class (or reference)

• Operator functions as non-member functions
– If left operand of a different type, operator function must be a

non-member function
– Must be friends if needs to access private or protected

members
– Enable the operator to be commutative

© 2000 Prentice Hall, Inc. All rights reserved.

6

Overloading Unary Operators

• Unary operators
– Can be overloaded with no arguments or one argument
– Should usually be implemented as member functions

• Avoid friend functions => violate the encapsulation

– Example declaration as a member function:
class String {
public:

bool operator!() const;
... };

– Example declaration as a non-member function (to be avoided)
class String {

friend bool operator!(const String &);
... };

© 2000 Prentice Hall, Inc. All rights reserved.

7

Overloading Binary Operators

• Binary operator as a member function:
– Non-static member function, one argument

class String {
public:

const String &operator+=(const String &);
...};

• y += z is equivalent to y.operator+=(z)

• Binary operator as a non-member function:
– Non-member function, two arguments

class String {
friend const String &operator+=(

String &, const String &);
... };

– y += z is equivalent to operator+=(y, z)

© 2000 Prentice Hall, Inc. All rights reserved.

8

Stream-Insertion and Stream-Extraction

• A special case of binary operators:
– operator<< and operator>>

• Overloaded to perform input/output for user-
defined types
– Left operand of types ostream & and istream &

– Must be a non-member function
• because left operand is not an object of the class

– Must be a friend function

• to access private data members

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
9

1. Class definition

1.1 Function definitions

1 // Fig. 8.3: fig08_03.cpp

2 // Overloading the stream-insertion and

3 // stream-extraction operators.

4 #include <iostream>

5

6 using std::cout;

7 using std::cin;

8 using std::endl;

9 using std::ostream;

10 using std::istream;

11

12 #include <iomanip>

13

14 using std::setw;

15

16 class PhoneNumber {

17 friend ostream &operator<<(ostream&, const PhoneNumber &);

18 friend istream &operator>>(istream&, PhoneNumber &);

19

20 private:

21 char areaCode[4]; // 3-digit area code and null

22 char exchange[4]; // 3-digit exchange and null

23 char line[5]; // 4-digit line and null

24 };

25

26 // Overloaded stream-insertion operator (cannot be

27 // a member function if we would like to invoke it with

28 // cout << somePhoneNumber;).

29 ostream &operator<<(ostream &output, const PhoneNumber &num)

30 {

Notice function prototypes for
overloaded operators >> and <<

They must be friend functions.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
10

1.1 Function definition

1.2 Initialize variables

2. Get input

2.1 Assign to object

2.2 Output data

31 output << "(" << num.areaCode << ") "
32 << num.exchange << "-" << num.line;
33 return output; // enables cout << a << b << c;
34 }
35
36 istream &operator>>(istream &input, PhoneNumber &num)
37 {
38 input.ignore(); // skip (
39 input >> setw(4) >> num.areaCode; // input area code
40 input.ignore(2); // skip) and space
41 input >> setw(4) >> num.exchange; // input exchange
42 input.ignore(); // skip dash (-)
43 input >> setw(5) >> num.line; // input line
44 return input; // enables cin >> a >> b >> c;
45 }
46
47 int main()
48 {
49 PhoneNumber phone; // create object phone
50
51 cout << "Enter phone number in the form (123) 456-7890:\n";
52
53 // cin >> phone invokes operator>> function by
54 // issuing the call operator>>(cin, phone).
55 cin >> phone;
56
57 // cout << phone invokes operator<< function by
58 // issuing the call operator<<(cout, phone).
59 cout << "The phone number entered was: " << phone << endl;
60 return 0;
61 }

The function call

cin >> phone;

interpreted as

operator>>(cin, phone);

input is an alias for cin, and num
is an alias for phone.

© 2000 Prentice Hall, Inc. All rights reserved.

11

Overloading ++ and --

• Pre/post incrementing/decrementing operators
– Allowed to be overloaded

– Distinguishing between pre and post operators
• prefix version:

d1.operator++(); // for ++d1

• Convention for postincrementing expression:

d1.operator++(0); // for d1++

• 0 is a dummy value to make the argument list of operator++
distinguishable from the argument list for ++operator

© 2000 Prentice Hall, Inc. All rights reserved.

Date Class

• Overloading operator<<
• Overloading operator+=
• Overloading unary operator ++

– Preincrement

– Post increment

12

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
13

1. Class definition

1.1 Member functions

1.2 Member variables

1 // Fig. 8.6: date1.h

2 // Definition of class Date

3 #ifndef DATE1_H

4 #define DATE1_H

5 #include <iostream>

6

7 using std::ostream;

8

9 class Date {

10 friend ostream &operator<<(ostream &, const Date &);

11

12 public:

13 Date(int m = 1, int d = 1, int y = 1900); // constructor

14 void setDate(int, int, int); // set the date

15 Date &operator++(); // preincrement operator

16 Date operator++(int); // postincrement operator

17 const Date &operator+=(int); // add days, modify object

18 bool leapYear(int) const; // is this a leap year?

19 bool endOfMonth(int) const; // is this end of month?

20

21 private:

22 int month;

23 int day;

24 int year;

25

26 static const int days[]; // array of days per month

27 void helpIncrement(); // utility function

28 };

29

30 #endif

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
14

1. Load header

1.1 Define days[]

1.2 Function definitions

1.3 Constructor

1.4 operator++
(preincrement)

31 // Fig. 8.6: date1.cpp
32 // Member function definitions for Date class
33 #include <iostream>
34 #include "date1.h"
35
36 // Initialize static member at file scope;
37 // one class-wide copy.
38 const int Date::days[] = { 0, 31, 28, 31, 30, 31, 30,
39 31, 31, 30, 31, 30, 31 };
40
41 // Date constructor
42 Date::Date(int m, int d, int y) { setDate(m, d, y); }
43
44 // Set the date
45 void Date::setDate(int mm, int dd, int yy)
46 {
47 month = (mm >= 1 && mm <= 12) ? mm : 1;
48 year = (yy >= 1900 && yy <= 2100) ? yy : 1900;
49
50 // test for a leap year
51 if (month == 2 && leapYear(year))
52 day = (dd >= 1 && dd <= 29) ? dd : 1;
53 else
54 day = (dd >= 1 && dd <= days[month]) ? dd : 1;
55 }
56
57 // Preincrement operator overloaded as a member function.
58 Date &Date::operator++()
59 {
60 helpIncrement();
61 return *this; // reference return to create an lvalue
62 }
63

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
15

1.5 operator++(int)
(postincrement)

1.6 operator+=

1.7 leapYear

1.8 endOfMonth

64 // Postincrement operator overloaded as a member function.
65 // Note that the dummy integer parameter does not have a
66 // parameter name.
67 Date Date::operator++(int)
68 {
69 Date temp = *this;
70 helpIncrement();
71
72 // return non-incremented, saved, temporary object
73 return temp; // value return; not a reference return
74 }
75
76 // Add a specific number of days to a date
77 const Date &Date::operator+=(int additionalDays)
78 {
79 for (int i = 0; i < additionalDays; i++)
80 helpIncrement();
81
82 return *this; // enables cascading
83 }
84
85 // If the year is a leap year, return true;
86 // otherwise, return false
87 bool Date::leapYear(int y) const
88 {
89 if (y % 400 == 0 || (y % 100 != 0 && y % 4 == 0))
90 return true; // a leap year
91 else
92 return false; // not a leap year
93 }
94
95 // Determine if the day is the end of the month
96 bool Date::endOfMonth(int d) const
97 {

postincrement operator
has a dummy int value.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
16

1.9 helpIncrement

1.10 operator<<
(output Date)

98 if (month == 2 && leapYear(year))
99 return d == 29; // last day of Feb. in leap year
100 else
101 return d == days[month];
102}
103
104// Function to help increment the date
105void Date::helpIncrement()
106{
107 if (endOfMonth(day) && month == 12) { // end year
108 day = 1;
109 month = 1;
110 ++year;
111 }
112 else if (endOfMonth(day)) { // end month
113 day = 1;
114 ++month;
115 }
116 else // not end of month or year; increment day
117 ++day;
118}
119
120// Overloaded output operator
121ostream &operator<<(ostream &output, const Date &d)
122{
123 static char *monthName[13] = { "", "January",
124 "February", "March", "April", "May", "June",
125 "July", "August", "September", "October",
126 "November", "December" };
127
128 output << monthName[d.month] << ' '
129 << d.day << ", " << d.year;
130
131 return output; // enables cascading
132}

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
17

1. Load header

1.1 Initialize objects

2. Function calls

3. Print results

133// Fig. 8.6: fig08_06.cpp
134// Driver for class Date
135#include <iostream>
136
137using std::cout;
138using std::endl;
139
140#include "date1.h"
141
142int main()
143{
144 Date d1, d2(12, 27, 1992), d3(0, 99, 8045);
145 cout << "d1 is " << d1
146 << "\nd2 is " << d2
147 << "\nd3 is " << d3 << "\n\n";
148
149 cout << "d2 += 7 is " << (d2 += 7) << "\n\n";
150
151 d3.setDate(2, 28, 1992);
152 cout << " d3 is " << d3;
153 cout << "\n++d3 is " << ++d3 << "\n\n";
154
155 Date d4(3, 18, 1969);
156
157 cout << "Testing the preincrement operator:\n"
158 << " d4 is " << d4 << '\n';
159 cout << "++d4 is " << ++d4 << '\n';
160 cout << " d4 is " << d4 << "\n\n";
161
162 cout << "Testing the postincrement operator:\n"
163 << " d4 is " << d4 << '\n';
164 cout << "d4++ is " << d4++ << '\n';
165 cout << " d4 is " << d4 << endl;
166
167 return 0;
168}

d1 is January 1, 1900

d2 is December 27, 1992

d3 is January 1, 1900

d2 += 7 is January 3, 1993

d3 is February 28, 1992

++d3 is February 29, 1992

Testing the preincrement operator:

d4 is March 18, 1969

++d4 is March 19, 1969

d4 is March 19, 1969

Testing the preincrement operator:

d4 is March 18, 1969

++d4 is March 19, 1969

d4 is March 19, 1969

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
18

Program Output

d1 is January 1, 1900
d2 is December 27, 1992
d3 is January 1, 1900

d2 += 7 is January 3, 1993

d3 is February 28, 1992
++d3 is February 29, 1992

Testing the preincrement operator:
d4 is March 18, 1969

++d4 is March 19, 1969
d4 is March 19, 1969

Testing the postincrement operator:
d4 is March 19, 1969

d4++ is March 19, 1969
d4 is March 20, 1969

