
© 2000 Prentice Hall, Inc. All rights reserved.

1

Lesson 8 - Inheritance
Outline
1.Introduction
2.Composition vs. Inheritance
3.Base Classes and Derived Classes
4.Inheritance
5.Direct Base Classes and Indirect Base Classes
6.Overriding Base-Class Members in a Derived Class
7.Public, Protected and Private Inheritance
8.Using Constructors and Destructors in Derived Classes
9.Implicit Derived-Class Object to Base-Class Object Conversion
10.Casting Base-Class Pointers to Derived-Class Pointers
11.Case Study: Point, Circle, Cylinder
12.Multiple Inheritance

© 2000 Prentice Hall, Inc. All rights reserved.

2

Introduction
• Inheritance

– New classes created from existing classes
• Absorb attributes and behaviors

– Derived class
• Class that inherits data members and member functions from a

previously defined base class
– Single or Multiple inheritance

• Class inherits from one/multiple base class
– Types of inheritance

• public: Derived objects are accessible by the base class objects
• private: Derived objects are inaccessible by the base class
• protected: Derived classes and friends can access protected members

of the base class

© 2000 Prentice Hall, Inc. All rights reserved.

3

Composition vs. Inheritance

• “Is a” relationships
– Inheritance

• Relationship in which a class is derived from another class

• “Has a” relationships
– Composition

• Relationship in which a class contains other classes as
members

© 2000 Prentice Hall, Inc. All rights reserved.

4

Base and Derived Classes
• Base and derived classes

– Often an object from a derived class (subclass) is also an
object of a base class (superclass)

• A rectangle is a derived class in reference to a quadrilateral and
a base class in reference to a square

• Inheritance examples
Base class Derived classes

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

© 2000 Prentice Hall, Inc. All rights reserved.

5

Inheritance

• Implementation of (public) inheritance
class CommissionWorker : public Employee {

...
};

– (derived) Class CommissionWorker inherits from (base) class
Employee

– friend functions not inherited
– private members of base class not accessible from derived class

• Protect encapsulation
– protected access

• protection between public and private
– Derived-class members can refer to public and protected

members of the base class simply by using the member names
• Note that protected data “breaks” encapsulation

© 2000 Prentice Hall, Inc. All rights reserved.

6

Direct and Indirect Base Classes

• Direct base class
– Explicitly listed derived class’s header with the colon (:)

notation when that derived class is declared
class HourlyWorker : public Employee

• Employee is a direct base class of HourlyWorker

• Indirect base class
– Not listed in derived class’s header
– Inherited from two or more levels up the class hierarchy

class MinuteWorker : public HourlyWorker
• Employee is an indirect base class of MinuteWorker

© 2000 Prentice Hall, Inc. All rights reserved.

7

Overriding Base-Class Members in a
Derived Class

• Overloading is not the same as Overriding
• To override a base-class member function

– In the derived class, supply a new version of that function
with the same signature

• same function name, different definition
– When the function is then mentioned by name in the derived

class, the derived version is automatically called
– The scope-resolution operator may be used to access the

base class version from the derived class

© 2000 Prentice Hall, Inc. All rights reserved.

8

public, private, and protected Inheritance

Type of inheritance Base class
member
access
specifier

public
inheritance

protected
inheritance

private
inheritance

Public

public in derived class.
Can be accessed directly by any
non-static member functions,
friend functions and non-
member functions.

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

private in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

Protected

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

private in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

Private

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

© 2000 Prentice Hall, Inc. All rights reserved.

9

Using Constructors and Destructors in
Derived Classes

• Base class initializer
– Uses member-initializer syntax
– Can be provided in the derived class constructor to call the

base-class constructor explicitly
• Otherwise base class’s default constructor called implicitly

– Base-class constructors and base-class assignment operators
are not inherited by derived classes

• Derived-class constructors and assignment operators, however,
can call base-class constructors and assignment operators

© 2000 Prentice Hall, Inc. All rights reserved.

10

Using Constructors and Destructors in
Derived Classes (II)

• A derived-class constructor
– Calls the constructor for its base class first to initialize its

base-class members
– If the derived-class constructor is omitted, its default

constructor calls the base-class’ default constructor

• Destructors are called in the reverse order of
constructor calls
– So a derived-class destructor is called before its base-class

destructor

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
11

1. Point definition

1. Load header

1.1 Function definitions

1 // Fig. 9.7: point2.h
2 // Definition of class Point

3 #ifndef POINT2_H
4 #define POINT2_H
5
6 class Point {
7 public:
8 Point(int = 0, int = 0); // default constructor
9 ~Point(); // destructor
10 protected: // accessible by derived classes
11 int x, y; // x and y coordinates of Point
12 };
13
14 #endif
15 // Fig. 9.7: point2.cpp
16 // Member function definitions for class Point
17 #include <iostream>
18
19 using std::cout;
20 using std::endl;
21
22 #include "point2.h"
23
24 // Constructor for class Point
25 Point::Point(int a, int b)
26 {
27 x = a;
28 y = b;
29
30 cout << "Point constructor: "
31 << '[' << x << ", " << y << ']' << endl;
32 }

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
12

1.1 Function definitions

1. Load header

1.1 Circle Definition

33

34 // Destructor for class Point

35 Point::~Point()

36 {

37 cout << "Point destructor: "

38 << '[' << x << ", " << y << ']' << endl;

39 }

40 // Fig. 9.7: circle2.h

41 // Definition of class Circle

42 #ifndef CIRCLE2_H

43 #define CIRCLE2_H

44

45 #include "point2.h"

46

47 class Circle : public Point {

48 public:

49 // default constructor

50 Circle(double r = 0.0, int x = 0, int y = 0);

51

52 ~Circle();

53 private:

54 double radius;

55 };

56

57 #endif

Circle inherits from
Point.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
13

1. Load header

1.1 Function Definitions

58 // Fig. 9.7: circle2.cpp

59 // Member function definitions for class Circle

60 #include <iostream>

61

62 using std::cout;

63 using std::endl;

64

65 #include "circle2.h"

66

67 // Constructor for Circle calls constructor for Point

68 Circle::Circle(double r, int a, int b)

69 : Point(a, b) // call base-class constructor

70 {

71 radius = r; // should validate

72 cout << "Circle constructor: radius is "

73 << radius << " [" << x << ", " << y << ']' << endl;

74 }

75

76 // Destructor for class Circle

77 Circle::~Circle()

78 {

79 cout << "Circle destructor: radius is "

80 << radius << " [" << x << ", " << y << ']' << endl;

81 }

Constructor for Circle
calls constructor for
Point, first. Uses
member-initializer syntax.

Destructor for Circle
calls destructor for Point,
last.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
14

1. Load headers

1.1 Initialize objects

2. Objects enter and leave
scope

82 // Fig. 9.7: fig09_07.cpp

83 // Demonstrate when base-class and derived-class

84 // constructors and destructors are called.

85 #include <iostream>

86

87 using std::cout;

88 using std::endl;

89

90 #include "point2.h"

91 #include "circle2.h"

92

93 int main()

94 {

95 // Show constructor and destructor calls for Point

96 {

97 Point p(11, 22);

98 }

99

100 cout << endl;

101 Circle circle1(4.5, 72, 29);

102 cout << endl;

103 Circle circle2(10, 5, 5);

104 cout << endl;

105 return 0;

106}

Point constructor: [11, 22]

Point destructor: [11, 22]

Object created inside a block destroyed
once it leaves scope.

Remember that the Point
constructor is called for
Circle objects before the
Circle constructor (inside
to out).

Point constructor: [72, 29]

Circle constructor: radius is 4.5 [72, 29]

Point constructor: [5, 5]

Circle constructor: radius is 10 [5, 5]
Point destructor called after
Circle destructor (outside
in).

Circle destructor: radius is 10 [5, 5]

Point destructor: [5, 5]

Circle destructor: radius is 4.5 [72, 29]

Point destructor: [72, 29]

© 2000 Prentice Hall, Inc. All rights reserved.

15

Implicit Derived-Class Object
to Base-Class Object Conversion

• Assignment of derived and base classes
– Derived-class type and base-class type are different
– Derived-class object can be treated as a base-class object

• Derived class has members corresponding to all of the base
class’s members

• Derived-class has more members than the base-class object
• Base-class can be assigned a derived-class

– Base-class object cannot be treated as a derived-class object
• Would leave additional derived class members undefined
• Derived-class cannot be assigned a base-class
• Assignment operator can be overloaded to allow such an

assignment

© 2000 Prentice Hall, Inc. All rights reserved.

16

Casting Base-Class Pointers to Derived
Class Pointers

• Derived classes relationships to base classes
– Objects of a derived class can be treated as objects of the base

class
• Reverse not true — base class objects cannot be derived-class objects

• Downcasting a pointer
– Use an explicit cast to convert a base-class pointer to a derived-

class pointer
– If pointer is going to be dereferenced, the type of the pointer must

match the type of object to which the pointer points
– Format:

derivedPtr = static_cast< DerivedClass * > basePtr;

© 2000 Prentice Hall, Inc. All rights reserved.

17

Case Study: Point, Circle, Cylinder

• Point, circle, cylinder hierarchy
– Point class is base class
– Circle class is derived from Point class
– Cylinder class is derived from Circle class

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
18

1. Point definition

1.1 Function definitions

1 // Fig. 9.8: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11 friend ostream &operator<<(ostream &, const Point &);
12 public:
13 Point(int = 0, int = 0); // default constructor
14 void setPoint(int, int); // set coordinates
15 int getX() const { return x; } // get x coordinate
16 int getY() const { return y; } // get y coordinate
17 protected: // accessible to derived classes
18 int x, y; // coordinates of the point
19 };
20
21 #endif
22 // Fig. 9.8: point2.cpp
23 // Member functions for class Point
24 #include "point2.h"
25
26 // Constructor for class Point
27 Point::Point(int a, int b) { setPoint(a, b); }
28
29 // Set the x and y coordinates
30 void Point::setPoint(int a, int b)
31 {
32 x = a;

Point data members are
protected to be made
accessible by Circle.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
19

1.1 Function definitions

33 y = b;

34 }

35

36 // Output the Point

37 ostream &operator<<(ostream &output, const Point &p)

38 {

39 output << '[' << p.x << ", " << p.y << ']';

40

41 return output; // enables cascading

42 }

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
20

1. circle definition

1.1 Function definitions

1 // Fig. 9.9: circle2.h
2 // Definition of class Circle
3 #ifndef CIRCLE2_H
4 #define CIRCLE2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "point2.h"
11
12 class Circle : public Point {
13 friend ostream &operator<<(ostream &, const Circle &);
14 public:
15 // default constructor
16 Circle(double r = 0.0, int x = 0, int y = 0);
17 void setRadius(double); // set radius
18 double getRadius() const; // return radius
19 double area() const; // calculate area
20 protected: // accessible to derived classes
21 double radius; // radius of the Circle
22 };
23
24 #endif
25 // Fig. 9.9: circle2.cpp

26 // Member function definitions for class Circle

27 #include <iomanip>

28

29 using std::ios;

30 using std::setiosflags;

31 using std::setprecision;

32

33 #include "circle2.h"

Circle data members are
protected to be made
accessible by Cylinder.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
21

1.1 Function definitions

34

35 // Constructor for Circle calls constructor for Point

36 // with a member initializer and initializes radius

37 Circle::Circle(double r, int a, int b)

38 : Point(a, b) // call base-class constructor

39 { setRadius(r); }

40

41 // Set radius

42 void Circle::setRadius(double r)

43 { radius = (r >= 0 ? r : 0); }

44

45 // Get radius

46 double Circle::getRadius() const { return radius; }

47

48 // Calculate area of Circle

49 double Circle::area() const

50 { return 3.14159 * radius * radius; }

51

52 // Output a circle in the form:

53 // Center = [x, y]; Radius = #.##

54 ostream &operator<<(ostream &output, const Circle &c)

55 {

56 output << "Center = " << static_cast< Point > (c)

57 << "; Radius = "

58 << setiosflags(ios::fixed | ios::showpoint)

59 << setprecision(2) << c.radius;

60

61 return output; // enables cascaded calls

62 }

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
22

1. Cylinder definition

1 // Fig. 9.10: cylindr2.h

2 // Definition of class Cylinder

3 #ifndef CYLINDR2_H

4 #define CYLINDR2_H

5

6 #include <iostream>

7

8 using std::ostream;

9

10 #include "circle2.h"

11

12 class Cylinder : public Circle {

13 friend ostream &operator<<(ostream &, const Cylinder &);

14

15 public:

16 // default constructor

17 Cylinder(double h = 0.0, double r = 0.0,

18 int x = 0, int y = 0);

19

20 void setHeight(double); // set height

21 double getHeight() const; // return height

22 double area() const; // calculate and return area

23 double volume() const; // calculate and return volume

24

25 protected:

26 double height; // height of the Cylinder

27 };

28

29 #endif

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
23

1.1 Function definitions

30 // Fig. 9.10: cylindr2.cpp
31 // Member and friend function definitions
32 // for class Cylinder.
33 #include "cylindr2.h"
34
35 // Cylinder constructor calls Circle constructor
36 Cylinder::Cylinder(double h, double r, int x, int y)
37 : Circle(r, x, y) // call base-class constructor
38 { setHeight(h); }
39
40 // Set height of Cylinder
41 void Cylinder::setHeight(double h)
42 { height = (h >= 0 ? h : 0); }
43
44 // Get height of Cylinder
45 double Cylinder::getHeight() const { return height; }
46
47 // Calculate area of Cylinder (i.e., surface area)
48 double Cylinder::area() const
49 {
50 return 2 * Circle::area() +
51 2 * 3.14159 * radius * height;
52 }
53
54 // Calculate volume of Cylinder
55 double Cylinder::volume() const
56 { return Circle::area() * height; }
57
58 // Output Cylinder dimensions
59 ostream &operator<<(ostream &output, const Cylinder &c)
60 {

Circle::area() is
overidden.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
24

1.1 Function definitions

1. Load headers

1.1 Initialize object

2. Function calls

2.1 Change attributes

3. Output data

61 output << static_cast< Circle >(c)

62 << "; Height = " << c.height;

63

64 return output; // enables cascaded calls

65 }

66 // Fig. 9.10: fig09_10.cpp
67 // Driver for class Cylinder
68 #include <iostream>
69
70 using std::cout;
71 using std::endl;
72
73 #include "point2.h"
74 #include "circle2.h"
75 #include "cylindr2.h"
76
77 int main()
78 {
79 // create Cylinder object
80 Cylinder cyl(5.7, 2.5, 12, 23);
81
82 // use get functions to display the Cylinder
83 cout << "X coordinate is " << cyl.getX()
84 << "\nY coordinate is " << cyl.getY()
85 << "\nRadius is " << cyl.getRadius()
86 << "\nHeight is " << cyl.getHeight() << "\n\n";
87
88 // use set functions to change the Cylinder's attributes
89 cyl.setHeight(10);
90 cyl.setRadius(4.25);
91 cyl.setPoint(2, 2);

X coordinate is 12

Y coordinate is 23

Radius is 2.5

Height is 5.7

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
25

3. Output data

Program Output

92 cout << "The new location, radius, and height of cyl are:\n"
93 << cyl << '\n';
94
95 cout << "The area of cyl is:\n"
96 << cyl.area() << '\n';
97
98 // display the Cylinder as a Point
99 Point &pRef = cyl; // pRef "thinks" it is a Point
100 cout << "\nCylinder printed as a Point is: "
101 << pRef << "\n\n";
102
103 // display the Cylinder as a Circle
104 Circle &circleRef = cyl; // circleRef thinks it is a Circle
105 cout << "Cylinder printed as a Circle is:\n" << circleRef
106 << "\nArea: " << circleRef.area() << endl;
107
108 return 0;
109}

X coordinate is 12
Y coordinate is 23
Radius is 2.5
Height is 5.7

The new location, radius, and height of cyl are:
Center = [2, 2]; Radius = 4.25; Height = 10.00
The area of cyl is:
380.53
Cylinder printed as a Point is: [2, 2]

Cylinder printed as a Circle is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

The new location, radius, and height of cyl
are:

Center = [2, 2]; Radius = 4.25; Height = 10.00

The area of cyl is:

380.53

Cylinder printed as a Point is: [2, 2]

pref "thinks" cyl is a Point, so it
prints as one.

circleref "thinks" cyl is a
Circle, so it prints as one.

Cylinder printed as a Circle is:

Center = [2, 2]; Radius = 4.25

Area: 56.74

© 2000 Prentice Hall, Inc. All rights reserved.

26

Multiple Inheritance

• Multiple Inheritance
– Derived-class inherits from multiple base-classes
– Encourages software reuse, but can create ambiguities

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
27

1. Base1 definition

1. Base2 definition

1 // Fig. 9.11: base1.h

2 // Definition of class Base1

3 #ifndef BASE1_H

4 #define BASE1_H

5

6 class Base1 {

7 public:

8 Base1(int x) { value = x; }

9 int getData() const { return value; }

10 protected: // accessible to derived classes

11 int value; // inherited by derived class

12 };

13

14 #endif

15 // Fig. 9.11: base2.h

16 // Definition of class Base2

17 #ifndef BASE2_H

18 #define BASE2_H

19

20 class Base2 {

21 public:

22 Base2(char c) { letter = c; }

23 char getData() const { return letter; }

24 protected: // accessible to derived classes

25 char letter; // inherited by derived class

26 };

27

28 #endif

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
28

1. Derived Definition

29 // Fig. 9.11: derived.h

30 // Definition of class Derived which inherits

31 // multiple base classes (Base1 and Base2).

32 #ifndef DERIVED_H

33 #define DERIVED_H

34

35 #include <iostream>

36

37 using std::ostream;

38

39 #include "base1.h"

40 #include "base2.h"

41

42 // multiple inheritance

43 class Derived : public Base1, public Base2 {

44 friend ostream &operator<<(ostream &, const Derived &);

45

46 public:

47 Derived(int, char, double);

48 double getReal() const;

49

50 private:

51 double real; // derived class's private data

52 };

53

54 #endif

Derived inherits from
Base1 and Base2.

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
29

1. Load header

1.1 Function Definitions

55 // Fig. 9.11: derived.cpp
56 // Member function definitions for class Derived
57 #include "derived.h"
58
59 // Constructor for Derived calls constructors for
60 // class Base1 and class Base2.
61 // Use member initializers to call base-class constructors
62 Derived::Derived(int i, char c, double f)
63 : Base1(i), Base2(c), real (f) { }
64
65 // Return the value of real
66 double Derived::getReal() const { return real; }
67
68 // Display all the data members of Derived
69 ostream &operator<<(ostream &output, const Derived &d)
70 {
71 output << " Integer: " << d.value
72 << "\n Character: " << d.letter
73 << "\nReal number: " << d.real;
74
75 return output; // enables cascaded calls
76 }
77 // Fig. 9.11: fig09_11.cpp
78 // Driver for multiple inheritance example
79 #include <iostream>
80
81 using std::cout;
82 using std::endl;
83
84 #include "base1.h"
85 #include "base2.h"

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
30

1. Load header

1.1 Create objects

2. Function calls

3. Output data

86 #include "derived.h"
87
88 int main()
89 {
90 Base1 b1(10), *base1Ptr = 0; // create Base1 object
91 Base2 b2('Z'), *base2Ptr = 0; // create Base2 object
92 Derived d(7, 'A', 3.5); // create Derived object
93
94 // print data members of base class objects
95 cout << "Object b1 contains integer " << b1.getData()
96 << "\nObject b2 contains character " << b2.getData()
97 << "\nObject d contains:\n" << d << "\n\n";
98
99 // print data members of derived class object
100 // scope resolution operator resolves getData ambiguity
101 cout << "Data members of Derived can be"
102 << " accessed individually:"
103 << "\n Integer: " << d.Base1::getData()
104 << "\n Character: " << d.Base2::getData()
105 << "\nReal number: " << d.getReal() << "\n\n";
106
107 cout << "Derived can be treated as an "
108 << "object of either base class:\n";
109
110 // treat Derived as a Base1 object
111 base1Ptr = &d;
112 cout << "base1Ptr->getData() yields "
113 << base1Ptr->getData() << '\n';
114
115 // treat Derived as a Base2 object
116 base2Ptr = &d;

Treat d as a Base1
object.

Treat d as a Base2 object.

Object b1 contains integer 10

Object b2 contains character Z

Object d contains:

Integer: 7

Character: A

Real number: 3.5

Data members of Derived can be accessed
individually:

Integer: 7

Character: A

Real number: 3.5

Derived can be treated as an object of either base class:

base1Ptr->getData() yields 7

© 2000 Prentice Hall, Inc. All rights reserved.

Outline
31

3. Output data

Program Output

117 cout << "base2Ptr->getData() yields "

118 << base2Ptr->getData() << endl;

119

120 return 0;

121}

Object b1 contains integer 10
Object b2 contains character Z
Object d contains:

Integer: 7
Character: A

Real number: 3.5

Data members of Derived can be accessed individually:
Integer: 7

Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

base2Ptr->getData() yields A

