| esson 8 - Inheritance

Qutline
1.Introduction

2.Composition vs. Inheritance

3.Base Classes and Derived Classes

4.Inheritance

5.Direct Base Classes and Indirect Base Classes
6.0verriding Base-Class Members in a Derived Class
7.Public, Protected and Private Inheritance

8.Using Constructors and Destructors in Derived Classes
9.Implicit Derived-Class Object to Base-Class Object Conversion
10.Casting Base-Class Pointers to Derived-Class Pointers
11.Case Study: Point, Circle, Cylinder

12.Multiple Inheritance

© 2000 Prentice Hall, Inc. All rights reserved. - -

Introduction

* |nheritance

— New classes created from existing classes
» Absorb attributes and behaviors
— Derived class

» Class that inherits data members and member functions from a
previously defined base class

— Single or Multiple inheritance
 Class inherits from one/multiple base class

— Types of inheritance
» public: Derived objects are accessible by the base class objects
 private: Derived objects are inaccessible by the base class

» protected: Derived classes and friends can access protected members
of the base class

© 2000 Prentice Hall, Inc. All rights reserved. - -

Composition vs. Inheritance

e “Isa” relationships
— Inheritance
 Relationship in which a class is derived from another class
e “Has a” relationships
— Composition

 Relationship in which a class contains other classes as
members

© 2000 Prentice Hall, Inc. All rights reserved. - -

Base and Derived Classes

e Base and derived classes

— Often an object from a derived class (subclass) is also an
object of a base class (superclass)

« A rectangle is a derived class in reference to a quadrilateral and
a base class in reference to a square

 Inheritance examples

Base class Derived classes

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomelmprovementLoan
MortgagelLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

© 2000 Prentice Hall, Inc. All rights reserved. - -

Inheritance

* Implementation of (public) inheritance

class CommissionWorker : public Employee {

};
— (derived) Class CommissionWorker inherits from (base) class
Employee
— Friend functions not inherited
— private members of base class not accessible from derived class
 Protect encapsulation
— protected access
 protection between public and private

— Derived-class members can refer to publ 1c and protected
members of the base class simply by using the member names
* Note that protected data “breaks” encapsulation

© 2000 Prentice Hall, Inc. All rights reserved. - -

Direct and Indirect Base Classes

e Direct base class

— Explicitly listed derived class’s header with the colon (:)
notation when that derived class is declared
class HourlyWorker : public Employee

e Employee is a direct base class of Hour lyWorker

e Indirect base class
— Not listed in derived class’s header

— Inherited from two or more levels up the class hierarchy
class MinuteWorker : public HourlyWorker

e Employee is an indirect base class of MinuteWorker

© 2000 Prentice Hall, Inc. All rights reserved. - -

Overriding Base-Class Members in a
Derived Class

e Qverloading Is not the same as Overriding

 To override a base-class member function

— In the derived class, supply a new version of that function
with the same signature

» same function name, different definition

— When the function is then mentioned by name in the derived
class, the derived version is automatically called

— The scope-resolution operator may be used to access the
base class version from the derived class

© 2000 Prentice Hall, Inc. All rights reserved. - -

oublic, private, and protected Inheritance

Base class Type of inheritance
member § _
access public protected private
specifier inheritance inheritance inheritance
publ ic in derived class. protected in derived class. private in derived class.
Can be accessed directly by any | Can be accessed directly by all | Can be accessed directly by all
Public | non-static member functions, | non-static member functions | non-static member functions
friend functions and non- and Friend functions. and friend functions.
member functions.
protected in derived class. protected in derived class. private in derived class.
Can be accessed directly by all | Can be accessed directly by all | Can be accessed directly by all
Protected non-static member functions | non-static member functions | non-static member functions
and friend functions. and friend functions. and friend functions.
Hidden in derived class. Hidden in derived class. Hidden in derived class.
Can be accessed by non-static | Can be accessed by non-static| Can be accessed by non-static
Private member functions and friend | member functions and friend | member functions and friend

functions through public or
protected member functions

of the base class.

functions through publ ic or
protected member functions
of the base class.

functions through publ ic or
protected member functions
of the base class.

© 2000 Prentice Hall, Inc. All rights reserved.

Using Constructors and Destructors in
Derived Classes

e Base class initializer

— Uses member-initializer syntax
— Can be provided in the derived class constructor to call the
base-class constructor explicitly
» Otherwise base class’s default constructor called implicitly
— Base-class constructors and base-class assignment operators
are not inherited by derived classes

» Derived-class constructors and assignment operators, however,
can call base-class constructors and assignment operators

© 2000 Prentice Hall, Inc. All rights reserved. - -

10

Using Constructors and Destructors in
Derived Classes (ll)

e A derived-class constructor

— Calls the constructor for its base class first to initialize its
base-class members

— If the derived-class constructor is omitted, its default
constructor calls the base-class’ default constructor

e Destructors are called in the reverse order of

constructor calls

— So a derived-class destructor is called before its base-class
destructor

© 2000 Prentice Hall, Inc. All rights reserved. - -

© 0 ~NOoO 0o W N PP

W W WNNDNDNDNDNNMNNNNPEPRPRPPEPPRPEPRPERPRERPPRPPR
NP, O OWL~NOOOUIS WNPEPOOOWwWNO OB~ WNDNPEPL O

// Fig. 9.7: point2_h

// Definition of class Point

#ifndef POINT2_H

#define POINT2_H

class Point {

public:
Point(int = 0, Iint = 0); // default constructor
~Point(); // destructor

protected: // accessible by derived classes
int x, y; // x and y coordinates of Point

}:

#endif

// Fig. 9.7: point2.cpp

// Member function definitions for class Point
#include <iostream>
using std::cout;
using std::endl;
#include "point2.h"
// Constructor for class Point
Point::Point(int a, int b))
{

X = a;

y = b;

cout << "Point constructor: "

<< "[F << x<<", "<Ky<< "]" << endl;

)

11

A Outline
Vv

1. Point definition

1. Load header

1.1 Function definitions

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

// Destructor for class Point
Point::~Point()
{

cout << "Point destructor:

<< [< x <<, "<y << "]" << endl;

}
// Fig. 9.7: circle2.h

// Definition of class Circle
#i1fndef CIRCLE2 H
#define CIRCLE2_H

#include "point2_h"

class Circle : public Point {
public:
// default constructor

Circle(double r = 0.0, Int x
~Circle(Q);

private:

double radius;

#endi T

-

12
A Qutline
\V4

1.1 Function definitions

1. Load header

1.1 Circle Definition

Circle inherits from
Point.

#include <iostream>

using std::cout;

using std::endl;

#include "circle2._h"

Circle::Circle(double r, Int a, int b)

13

A Outline
Vv

1. Load header

1.1 Function Definitions

: Point(a, b)
{

radius = r;

cout << "Circle constructor: radius is "

Constructor for Circle

calls constructor for
Point, first. Uses

member-initializer syntax.

<< radius << " [" << X << ", " <<y << "]" << endl;

Circle::~Circle()

g
<

Destructor for Circle

{

cout << "Circle destructor: radius is "

<< radius << " [" << X << ", " <y << "] << endl;

calls destructor for Point,
last.

#include <iostream>

using std::cout;

using std::endl;

#include "point2.h"

Qutline

“‘ 14
\Y

1. Load headers
1.1 Initialize objects

2. Objects enter and leave
scope

#include “circle2.h” Obiject created inside a block destroyed
once it leaves scope.

int main(Q)

{

Remember that the Point

Point p(11, 22);

Point constr| constructor is called for
Point destru Circle objects before the

CeswvelA nanctviintar (inecidan

cout << endl; ‘////////

Circle circlel(4.5, 72, 29);

Point constructor: [72, 29]

Circle constructor: radius is 4.5 [72, 29]

POIN ™= e i [T DR I |

cout << endl;
Circle circle2(10, 5, 5);

cout << eniii/////////////”////

return O;

Circle destructor: radius is 10 [5, 5]
Point destructor: [5, 5]
Circle destructor: radius is 4.5 [72, 29]

Point destructor: [72, 29]

Implicit Derived-Class Object
to Base-Class Object Conversion

« Assignment of derived and base classes

— Derived-class type and base-class type are different

— Derived-class object can be treated as a base-class object

 Derived class has members corresponding to all of the base
class’s members

 Derived-class has more members than the base-class object
» Base-class can be assigned a derived-class

— Base-class object cannot be treated as a derived-class object
 Would leave additional derived class members undefined
» Derived-class cannot be assigned a base-class

« Assignment operator can be overloaded to allow such an
assignment

© 2000 Prentice Hall, Inc. All rights reserved. - -

15

Casting Base-Class Pointers to Derived
Class Pointers

» Derived classes relationships to base classes

— Objects of a derived class can be treated as objects of the base
class

* Reverse not true — base class objects cannot be derived-class objects

« Downcasting a pointer

— Use an explicit cast to convert a base-class pointer to a derived-
class pointer

— If pointer is going to be dereferenced, the type of the pointer must
match the type of object to which the pointer points

— Format:

derivedPtr = static_cast< DerivedClass * > basePtr;

© 2000 Prentice Hall, Inc. All rights reserved. - -

16

Case Study: Point, Circle, Cylinder

« Point, circle, cylinder hierarchy
— Point class is base class
— Circle class is derived from Point class
— Cylinder class is derived from Circle class

© 2000 Prentice Hall, Inc. All rights reserved. - -

17

© 0O ~NOoO Ol WDN P

W W W NDNDNDNDNDNMNDNMNNMNNMNNREPEFPRPPEPRPEPPEPRPPERPEPPER
N PO O 0w ~NOO O M WMNPEPOOONOOOMMWNDNLPELDO

// Fig. 9.8: point2_.h A
// Definition of class Point Outline

#ifndef POINT2_H
#define POINT2_H

1. Point definition

#include <iostream>
1.1 Function definitions

using std::ostream;

class Point {
friend ostream &operator<<(ostream &, const Point &);
public:
Point(int = 0, Int =0); // default constructor
void setPoint(Int, int); // set coordinates
int getX() const { return x; } // get x coordinate
int getY() const { return y; } // get y coordinate
protected: // accessible to derived classes
int X, y; // coordinates of the point Point data members are

}; ‘ protected to be made
accessible by Circle.

#endi T

// Fig. 9.8: point2.cpp

// Member functions for class Point
#include "point2_h"

// Constructor for class Point
Point::Point(int a, int b) { setPoint(a, b); }

// Set the x and y coordinates
void Point::setPoint(Int a, Iint b)
{

X = a,

18

33 y = b;

34 }

35

36 // Output the Point

37 ostream &operator<<(ostream &output, const Point &p)
38 {

39 output << "[" << p.x << ", " << p.y << "]%;
40

41 return output; // enables cascading
42 }

© 2000 Prentice Hall, Inc. All rights reserved.

A

Qutline

\%

1.1 Function definitions

19

0O~NO 01 WNPE

// Fia. 9.9: circle2.h

// Definition of class Circle
#ifndef CIRCLE2 H

#define CIRCLE2 H

#include <iostream>
using std::ostream;
#include "point2.h"
class Circle : public Point {

friend ostream &operator<<(ostream &, const Circle &):;
public:

A Outline
Vv

1. circle definition

1.1 Function definitions

Circle data members are
protected to be made
accessible by Cylinder.

// default constructor
Circle(double r = 0.0, Int x =0, Iint v =0);:
void setRadius(double); // set radius
double getRadius() const; // return radius
double area() const; // calculate area
protected: // accessible to derived classes
double radius; // radius of the Circle
3
#endi T
// Fig. 9.9: circle2._cpp

// Member function definitions for class Circle
#include <iomanip>

using std::i10s;
using std::setiosflags;

using std::setprecision;

#include "circle2_h"

20

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// Constructor for Circle calls constructor for Point
// with a member initializer and initializes radius
Circle::Circle(double r, Int a, Int b)

: Point(a, b) // call base-class constructor
{ setRadius(r); }

// Set radius
void Circle::setRadius(double r)
{ radius = (r>=0?r :0); }

// Get radius
double Circle::getRadius() const { return radius; }

// Calculate area of Circle
double Circle::area() const
{ return 3.14159 * radius * radius; }

// Output a circle in the form:

// Center = [X, y]; Radius = #._.##

ostream &operator<<(ostream &output, const Circle &c)

{

output << "Center = " << static cast< Point > (c)

<< "; Radius = "
<< setiosflags(i1os::fixed | 10s::showpoint)
<< setprecision(2) << c.radius;

return output; // enables cascaded calls

A

Qutline

\%

1.1 Function definitions

21

1 // Fig. 9.10: cylindr2_h

2 // Definition of class Cylinder

3 #ifndef CYLINDR2_H

4 #define CYLINDR2_H

5

6 #include <iostream>

-

8 wusing std::ostream;

9

10 #include *circle2.h"

11

12 class Cylinder : public Circle {

13 friend ostream &operator<<(ostream &, const Cylinder &);
14

15 public:

16 // default constructor

17 Cylinder(double h = 0.0, double r = 0.0,

18 int x =0, inty =0);

19

20 void setHeight(double); // set height

21 double getHeight() const; // return height

22 double area() const; // calculate and return area
23 double volume() const; // calculate and return volume
24

25 protected:

26 double height; // height of the Cylinder

27 };

28

29 #endif

A Outline
Vv

1. Cylinder definition

22

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

// Fig. 9.10: cylindr2.cpp A
// Member and friend function definitions
// for class Cylinder. v
#include "cylindr2_h"

// Cylinder constructor calls Circle constructor
Cylinder::Cylinder(double h, double r, Int x, Iinty)

> Circle(r, X, y) // call base-class constructor
{ setHeight(h); }

// Set height of Cylinder
void Cylinder::setHeight(double h)
{ height = (h>=0?h :0); }

// Get height of Cylinder
double Cylinder::getHeight() const { return height; }

// Calculate area of Cylinder (i.e., surface area)
double Cylinder::area() const

{

Qutline

1.1 Function definitions

return 2 * Circle::area() +
2 * 3.14159 * radius * height;
3} Circle::area()is
overidden.
// Calculate volume of Cylinder

double Cylinder::volume() const
{ return Circle::area() * height; }

// Output Cylinder dimensions
ostream &operator<<(ostream &output, const Cylinder &c)

{

23

output << static_cast< Circle >(c)
<< "; Height = " << c.height;

return output;

#include <iostream>

using std::cout;
using std::endl;

#include "point2.h"
#include *circle2_h"
#include "cylindr2_h"

int main()

{

Cylinder cyl(5.7, 2.5, 12, 23);

cout << "X coordinate i1s " << cyl.getX()
<< "\nY coordinate i1s " << cyl.getY()
<< "\nRadius is " << cyl.getRadius()
<< "\nHeight is " << cyl.getHeight() << "\n\n";

cyl.setHeight(10);
cyl.setRadius(4.25);
cyl.setPoint(2, 2);

A
\%

1.1 Function definitions

Qutline

1. Load headers

1.1 Initialize object

2. Function calls

2.1 Change attributes

3. Output data

X coordinate is 12
Y coordinate is 23
Radius is 2.5

Height is 5.7

24

cout << "The new location, radius, and height of cyl are:\n" A

<< cyl << "\n";

cout << "The area of cyl i1s:\n"
<< cyl.area() << "\n";

Point &pRef = cyl;
cout << "\nCy
<< pRef << "\n

Circle &circleRef = cyl;
cout << "Cylin
<< "\nArea: "

<

return O;

}

X coordinate is 12
Y coordinate i1s 23
Radius i1s 2.5
Height is 5.7

Outline

The new location, radius, and height of cyl
are:

Center = [2, 2]; Radius = 4.25; Height = 10.00
The area of cyl is:
380.53

er printed as a Point 1is:

rinted as a Circle is:
ircleRef.area()

Cylinder printed as a Point i1s: [2, 2]

pref "thinks" cyl isa Point, so it

nrinte ac nne

Cylinder printed as a Circle is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

Circle, so it prints as one.

The new location, radius, and height of cyl are:
Center = [2, 2]; Radius = 4.25; Height = 10.00

The area of cyl is:
380.53
Cylinder printed as a Point i1s: [2, 2]

Cylinder printed as a Circle 1is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

25

Multiple Inheritance

« Multiple Inheritance
— Derived-class inherits from multiple base-classes
— Encourages software reuse, but can create ambiguities

© 2000 Prentice Hall, Inc. All rights reserved. - -

26

© 0 N oo 0o & W DN P

T e
A W N R O

N NDNDNDNDNDNMNDNMNNMNDNPEPRPPEPPEPPRE
00 ~NO O A W NPEP O OOWW-N O O

// Fig. 9.11: basel.h
// Definition of class Basel
#ifndef BASE1l H
#define BASE1_H
class Basel {
public:
Basel(int x) { value = x; }
int getbData() const { return value; }
protected: // accessible to derived classes
int value; // inherited by derived class
}:
#endif
// Fig. 9.11: base2.h

// Definition of class Base2
#ifndef BASE2 H
#define BASE2 H

class Base2 {
public:
Base2(char c) { letter = c; }
char getData() const { return letter; }
protected: // accessible to derived classes
char letter; // inherited by derived class

¥

#endi T

A Outline
Vv

1. Basel definition

1. Base?2 definition

27

29
30
31
32
S5
34
35
36
ST/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
o4

// Fig. 9.11: derived.h

// Definition of class Derived which inherits
// multiple base classes (Basel and Base2).
#ifndef DERIVED_H

#define DERIVED_H

#include <iostream>

using std::ostream;

#include "basel_h"

#include "base2_.h"

// multiple inheritance

class Derived : public Basel, public Base2 {

A
\%

Qutline

1. Derived Definition

Derived inherits from
Basel and Base?Z2.

friend ostream &operator<<(ostream &, const Derived &);
public:

Derived(int, char, double);

double getReal() const;
private:

double real; // derived class™s private data
}:

#endif

28

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

// Fig. 9.11: derived.cpp
// Member function definitions for class Derived
#include "derived.h"

// Constructor for Derived calls constructors for
// class Basel and class Base2.
// Use member initializers to call base-class constructors
Derived: :Derived(Int i, char c, double)
: Basel(1), Base2(c), real () { }

// Return the value of real
double Derived::getReal() const { return real; }

// Display all the data members of Derived
ostream &operator<<(ostream &output, const Derived &d)
{
output << "' Integer: " << d.value
<< '"\n Character: " << d.letter
<< "\nReal number: " << d.real;

return output; // enables cascaded calls
s
// Fig. 9.11: fi1g09 _11.cpp
// Driver for multiple inheritance example
#include <rostream>

using std::cout;
using std::endl;

#include "basel_h"
#include '"base2.h"

A
\%

Qutline

1. Load header

1.1 Function Definitions

29

#include "derived.h"

int mainQ)

{

Basel bl(10), *baselPtr = 0;
Base2 b2("Z®), *base2Ptr = O;
Derived d(7, "A", 3.5);

cout << "Object bl contains integer "

<< bl.getData()

A Outline
Vv

1. Load header
1.1 Create objects
2. Function calls

3. Output data

<< "\nObject b2 contains character " << b2.getData()

<< "\nObject d contains:\n" << d << "\n\n";

cout << "Data members of Derived can be"
<< " accessed individually:"
<< "\n
<< '"\n Character: "
<< "\nReal number: "
cout << "Derived can be treated as an "
<< "object of either base c

Integer: " << d.Basel::getData()
<< d.Base2::getData())

<< d.getReal () << "\n\n'| Treat d as a Basel

Object bl contains integer 10

30

Data members of Derived can be accessed
individually:

Integer: 7

Character: A

Real number: 3.5

object.

Derived can be treated as an object of either base class:

cout << "baselPtr->getData() yields "
<< baselPtr->getData() << "\n-";

base2Ptr = &d;

Treat d as a Base?2 object.

baselPtr->getData() yields 7

cout << "base2Ptr->getData() yields "

<< base2Ptr->getData() << endl;

return O;

Object bl contains integer 10
Object b2 contains character Z
Object d contains:
Integer: 7
Character: A
Real number: 3.5

| ey

base2Ptr->getData() yields A L

v

3. Output data

Program Output

Data members of Derived can be accessed individually:

Integer: 7
Character: A
Real number: 3.5

Derived can be treated as an object of either base class:

baselPtr->getData() yields 7
base2Ptr->getData() yields A

© 2000 Prentice Hall, Inc. All rights reserved.

Qutline

31

