
1

Lesson 10 - Streams and Files

Outline

1. Introduction

2. Input and Output

3. Classes for Stream I/O in C++

4. File Operations

5. Example

Introduction

• C++ provides:
– A common interface for reading and writing output;
– This is done by exploiting a hierarchy of objects;
– Standard I/O + files seen as streams;
– Once a stream has been created, it can be manipulated using

the usual I/O operations.

Input and Output

Program

Files

Input

Stream

Output

Stream

Standard Input Output

C++ Program
Keyboard input

cin

Output Screen

cout

File Input / Output features

C++ Program

Keyboard input

cin

Output Screen

cout

ifstream infile;

ofstream outfile;

Classes for Stream I/O in C++

• ios is the base class.
• istream and ostream inherit from ios
• ifstream inherits from istream (and ios)
• ofstream inherits from ostream (and ios)
• iostream inherits from istream and ostream (& ios)
• fstream inherits from ifstream, iostream, and ofstream

I/O Streams

Stream Description

cin Standard input stream
cout Standard output stream
cerr Standard error stream

File I/O Streams

Stream Classes required for File I/O :
• ifstream
• ofstream
• fstream

Ifstream / ofstream

Input
• Input file stream Class
• open() is a member function of the class ifstream
• Inherited functions of ifstream class, from the class

istream are
– get(); getline(); read(); seekg(); tellg();

Output
• Output file stream Class
• open() is a member function of the class ofstream
• Inherited functions of ofstream class, from the class

ostream are
– put(); write(); seekp(); tellp();

fstream

• It supports files for simultaneous input and output
• fstream is derived from

– ifstream
– ofstream
– iostream

• They are parent classes and fstream is the child
class

• Member functions of the class fstream
– open(); close(); seekg(); seekp(); tellg(); tellp();

Stream I/O Library Header Files

Note: There is no “.h” on standard header files.
Be careful about “using namespace std”

• iostream -- contains basic information required for all
stream I/O operations

• iomanip -- contains information useful for performing
formatted I/O with parameterized stream manipulators

• fstream -- contains information for performing file I/O
operations

• strstream -- contains information for performing in-
memory I/O operations (i.e., into or from strings in
memory)

File Operations

• Open, close, << and >> operators
• eof() operation on an input file object returns a

true or false (Boolean)
• get() reads a single character from an input file

and put(char) writes a single character into an
output file.

• fail() operation indicates if the opening of a
file is successful or failure. Return Boolean type
(true or false)

Defining File Streams

1. Include fstream (#include <fstream>)
2. declare file stream variable (object)

1. ifstream fin;
2. ofstream fout;

3. use open() to initialize file stream variable
4. use input file stream variable as you would use cin and use

output file stream variable as you would use cout
5. use close() to close the file when finished with it

Writing Output to a File

• Similar to writing to screen
• Use object connected to output file
• Need the fstream header

#include <fstream>
• Open file for writing

– Declare object of ofstream class

ofstream outfile;

Opening Files

• General form
outfile.open(“file_name”);

• Choose object_name like variable name
• object_name is object of class ofstream
• Filename is where output will be stored

Ex: outfile.open(“grades.out”);

Writing to Files

• General form
object_name << variable_name;

• Use ofstream object to write to file like cout was
used
outfile << “Salary for week was ” << money;

• Additional writing appended to file

Closing Files (input and output)

• General form
object_name.close ();

• Use C++ library function close
• Use both object and function name separated by a

period
• Example: outfile.close();

Open File for Reading

• Need fstream header
#include <fstream>

• Declare object of ifstream
ifstream infile;

• Open the file:
infile.open(“points.dat”);

• Use ifstream object to read file like cin

Reading From a File

• Use ifstream object to read file like cin used for
keyboard

infile >> salary1 >> salary2;

• C++ looks for whitespace between numbers
– Newline character treated as whitespace

• Additional reading continues sequentially

Example: General Behaviour

• We want to access a file containing numbers in
order to compute the average of this numbers. In
particular our program should:
– display a prompt for the name of the input file;
– read this file;
– open a connection from itself to that input file;
– read the numbers contained in the input file;
– count them and compute their sum;
– close the connection;
– compute and display the average of the numbers.

Example: Algorithm

0. Display a prompt for input file name.
1. Read name of input file from cin into inFileName.
2. Open connection named fin to file named in inFileName.
3. Initialize sum, count to zero.
4. Loop:

a. Read a value from fin into number;
b. If no values were left, terminate repetition.
c. Add number to sum.
d. Increment count.
End loop.

5. Close fin.
6. If count > 0: display sum / count.

Else display error message.
End if.

Example: Notes

• To establish connections to an input file, the
fstream library provides the ifstream class.

• Always check using the ifstream is_open()
function member.

• Once an ifstream is created, it can be read from
using >>, like an istream.

• The ifstream function member eof() returns true
if the last attempted read found no data remaining
in the file.

• The fstream function member close() destroys
the connection between a program and a file.

Example: Coding (1)
/* average.cpp
* ...
*/

#include <iostream> // cin, cout, ...
#include <fstream> // ifstream, ofstream, ...
#include <string> // string
#include <cassert> // assert()
using namespace std;

int main()
{

cout << “\nTo average the numbers in an input file,”
<< “\n enter the name of the file: “;

string inFileName;
cin >> inFileName;

ifstream fin(inFileName.data()); // open the connection

assert(fin.is_open()); // verify it opened

double number, sum = 0.0; // variables for
int count = 0; // computing average

while (true) // input loop
{

fin >> number; // read number

if (fin.eof()) break; // if none were left, quit

sum += number; // add it to sum
count++; // bump count

} // end loop

fin.close(); // close fstream

if (count > 0)
cout << “\nThe average of the values in “

<< inFileName << “ is “ << sum/count << endl;
else

cout << “\n*** No values found in file “
<< inFileName << endl;

}

Example: Coding (2)

Example: Further Observations (1)

If a program tries to open an ofstream to a file that doesn’t
exist, the open operation creates a new, empty file for
output.

If a program tries to open an ofstream to a file that does exist,
the open operation (by default) empties that file of its
contents, creating a clean file for output.

Once an ifstream (or ofstream) has been opened, it can be
read from using the usual input (or output) operations:

• input: >>, get(), getline(), ...
• output: <<, put(), ...
In general, anything that can be done to an istream (or

ostream) can also be done to an ifstream (or ofstream).

Example: Further Observations (2)

When the most recent input operation found no data
remaining in the file, the input operation is said to fail.

This can be detected using the ifstream function member
eof() (or fail()), which returns true if the last input
operation encountered the end of the file, and returns false
otherwise.

Once we are done using an ifstream (or ofstream), it
can be closed using the close() function member:

fin.close();
fout.close();

Most systems limit the number of files a program can have
open simultaneously, so it is a good practice to close a
stream when you are finished using it.

	Lesson 10 - Streams and Files
	Introduction
	Input and Output
	Standard Input Output
	File Input / Output features
	Classes for Stream I/O in C++
	I/O Streams
	File I/O Streams
	Ifstream / ofstream
	fstream
	Stream I/O Library Header Files
	File Operations
	Defining File Streams
	Writing Output to a File
	Opening Files
	Writing to Files
	Closing Files (input and output)
	Open File for Reading
	Reading From a File
	Example: General Behaviour
	Example: Algorithm
	Example: Notes
	Example: Coding (1)
	Example: Coding (2)
	Example: Further Observations (1)
	Example: Further Observations (2)

