
1

1

 2000 Prentice Hall, Inc. All rights reserved.

Capitolo 2 - Control Structures

Outline
2.1 Introduction
2.2 Algorithms
2.3 Pseudocode
2.4 Control Structures
2.5 The if Selection Structure
2.6 The if/else Selection Structure
2.7 The while Repetition Structure
2.8 Formulating Algorithms: Case Study 1

(Counter-Controlled Repetition)
2.9 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 2 (Sentinel-Controlled Repetition)
2.10 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 3 (Nested Control Structures)
2.11 Assignment Operators
2.12 Increment and Decrement Operators
2.13 Essentials of Counter-Controlled Repetition
2.14 The for Repetition Structure
2.15 Examples Using the for Structure

2

 2000 Prentice Hall, Inc. All rights reserved.

Capitolo 2 - Control Structures

Outline
2.16 The switch Multiple-Selection Structure
2.17 The do/while Repetition Structure
2.18 The break and continue Statements
2.19 Logical Operators
2.20 Confusing Equality (==) and Assignment (=) Operators
2.21 Structured-Programming Summary

2

3

 2000 Prentice Hall, Inc. All rights reserved.

2.1 Introduction

• Before writing a program:
– Have a thorough understanding of problem

– Carefully plan your approach for solving it

• While writing a program:
– Know what “building blocks” are available

– Use good programming principles

4

 2000 Prentice Hall, Inc. All rights reserved.

2.2 Algorithms

• All computing problems
– can be solved by executing a series of actions in a specific

order

• Algorithm
– A procedure determining the

• Actions to be executed

• Order in which these actions are to be executed

• Program control
– Specifies the order in which statements are to executed

3

5

 2000 Prentice Hall, Inc. All rights reserved.

2.3 Pseudocode

• Pseudocode
– Artificial, informal language used to develop algorithms

– Similar to everyday English

– Not actually executed on computers

– Allows us to “think out” a program before writing the code
for it

– Easy to convert into a corresponding C++ program

– Consists only of executable statements

6

 2000 Prentice Hall, Inc. All rights reserved.

2.4 Control Structures

• Sequential execution
– Statements executed one after the other in the order written

• Transfer of control
– When the next statement executed is not the next one in

sequence

• Bohm and Jacopini: all programs written in terms
of 3 control structures
– Sequence structure

• Built into C++. Programs executed sequentially by default.
– Selection structures

• C++ has three types - if, if/else, and switch
– Repetition structures

• C++ has three types - while, do/while, and for

4

7

 2000 Prentice Hall, Inc. All rights reserved.

2.4 Control Structures

• C++ keywords
– Cannot be used as identifiers or variable names.

C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while
C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

8

 2000 Prentice Hall, Inc. All rights reserved.

2.4 Control Structures

• Flowchart
– Graphical representation of an algorithm

– Drawn using certain special-purpose symbols connected by
arrows called flowlines.

– Rectangle symbol (action symbol)
• Indicates any type of action.

– Oval symbol
• indicates beginning or end of a program, or a section of code

(circles).

• single-entry/single-exit control structures
– Connect exit point of one control structure to entry point of

the next (control-structure stacking).

– Makes programs easy to build.

5

9

 2000 Prentice Hall, Inc. All rights reserved.

2.5 The if Selection Structure

• Selection structure
– used to choose among alternative courses of action

– Pseudocode example:
If student’s grade is greater than or equal to 60

Print “Passed”

– If the condition is true
• print statement executed and program goes on to next

statement

– If the condition is false
• print statement is ignored and the program goes onto the next

statement

– Indenting makes programs easier to read
• C++ ignores whitespace characters

10

 2000 Prentice Hall, Inc. All rights reserved.

2.5 The if Selection Structure

• Translation of pseudocode statement into C++:
if (grade >= 60)
 cout << "Passed";

• Diamond symbol (decision symbol)
– indicates decision is to be made

– Contains an expression that can be true or false.
• Test the condition, follow appropriate path

• if structure is a single-entry/single-exit structure

6

11

 2000 Prentice Hall, Inc. All rights reserved.

2.5 The if Selection Structure

• Flowchart of pseudocode statement

true

false

grade >= 60 print “Passed”

A decision can be made on
any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

12

 2000 Prentice Hall, Inc. All rights reserved.

2.6 The if/else Selection Structure
• if

– Only performs an action if the condition is true

• if/else
– A different action is performed when condition is true and

when condition is false

• Psuedocode
if student’s grade is greater than or equal to 60

print “Passed”
else

print “Failed”

• C++ code
if (grade >= 60)
 cout << "Passed";
else
 cout << "Failed";

7

13

 2000 Prentice Hall, Inc. All rights reserved.

2.6 The if/else Selection Structure

• Ternary conditional operator (?:)
– Takes three arguments (condition, value if true, value if false)

• Our pseudocode could be written:
cout << (grade >= 60 ? “Passed” : “Failed”);

truefalse

print “Failed” print “Passed”

grade >= 60

14

 2000 Prentice Hall, Inc. All rights reserved.

2.6 The if/else Selection Structure
• Nested if/else structures

– Test for multiple cases by placing if/else selection
structures inside if/else selection structures.

if student’s grade is greater than or equal to 90
 Print “A”
else
 if student’s grade is greater than or equal to 80

 Print “B”
else

 if student’s grade is greater than or equal to 70
 Print “C”
 else
 if student’s grade is greater than or equal to 60
 Print “D”

 else

 Print “F”

– Once a condition is met, the rest of the statements are skipped

8

15

 2000 Prentice Hall, Inc. All rights reserved.

2.6 The if/else Selection Structure

• Compound statement:
– Set of statements within a pair of braces

– Example:
if (grade >= 60)
 cout << "Passed.\n";
else {
 cout << "Failed.\n";
 cout << "You must take this course
again.\n";
}

– Without the braces,
cout << "You must take this course again.\n";
 would be automatically executed

• Block
– Compound statements with declarations

16

 2000 Prentice Hall, Inc. All rights reserved.

2.6 The if/else Selection Structure

• Syntax errors
– Errors caught by compiler

• Logic errors
– Errors which have their effect at execution time

• Non-fatal logic errors

– program runs, but has incorrect output

• Fatal logic errors

– program exits prematurely

9

17

 2000 Prentice Hall, Inc. All rights reserved.

2.7 The while Repetition Structure

• Repetition structure
– Programmer specifies an action to be repeated while some

condition remains true

– Psuedocode
while there are more items on my shopping list

 Purchase next item and cross it off my list

– while loop repeated until condition becomes false.

• Example
int product = 2;
while (product <= 1000)
 product = 2 * product;

18

 2000 Prentice Hall, Inc. All rights reserved.

2.7 The while Repetition Structure

• Flowchart of while loop

product <= 1000 product = 2 * product
true

false

10

19

 2000 Prentice Hall, Inc. All rights reserved.

2.8 Formulating Algorithms (Counter-
Controlled Repetition)

• Counter-controlled repetition
– Loop repeated until counter reaches a certain value.

• Definite repetition
– Number of repetitions is known

• Example
 A class of ten students took a quiz. The grades (integers in

the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz.

20

 2000 Prentice Hall, Inc. All rights reserved.

2.8 Formulating Algorithms (Counter-
Controlled Repetition)

• Pseudocode for example:
Set total to zero

Set grade counter to one
While grade counter is less than or equal to ten

Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

• Following is the C++ code for this example

11

 2000 Prentice Hall, Inc. All rights reserved.

Outline
21

1. Initialize Variables

2. Execute Loop

3. Output results

1 // Fig. 2.7: fig02_07.cpp
2 // Class average program with counter-controlled repetition
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 int main()
10 {
11 int total, // sum of grades
12 gradeCounter, // number of grades entered
13 grade, // one grade
14 average; // average of grades
15
16 // initialization phase
17 total = 0; // clear total
18 gradeCounter = 1; // prepare to loop
19
20 // processing phase
21 while (gradeCounter <= 10) { // loop 10 times
22 cout << "Enter grade: "; // prompt for input
23 cin >> grade; // input grade
24 total = total + grade; // add grade to total
25 gradeCounter = gradeCounter + 1; // increment counter
26 }
27
28 // termination phase
29 average = total / 10; // integer division
30 cout << "Class average is " << average << endl;
31
32 return 0; // indicate program ended successfully
33 }

 2000 Prentice Hall, Inc. All rights reserved.

Outline
22

Program Output

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

12

23

 2000 Prentice Hall, Inc. All rights reserved.

2.9 Formulating Algorithms with Top-
Down, Stepwise Refinement (Sentinel-

Controlled Repetition)

• Suppose the problem becomes:
Develop a class-averaging program that will process an
arbitrary number of grades each time the program is run.

– Unknown number of students - how will the program know
to end?

• Sentinel value
– Indicates “end of data entry”

– Loop ends when sentinel inputted

– Sentinel value chosen so it cannot be confused with a regular
input (such as -1 in this case)

24

 2000 Prentice Hall, Inc. All rights reserved.

2.9 Formulating Algorithms with Top-
Down, Stepwise Refinement (Sentinel-

Controlled Repetition)

• Top-down, stepwise refinement
– begin with a pseudocode representation of the top:

Determine the class average for the quiz

– Divide top into smaller tasks and list them in order:
Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

13

25

 2000 Prentice Hall, Inc. All rights reserved.

2.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

• Many programs can be divided into three phases:
– Initialization

• Initializes the program variables

– Processing
• Inputs data values and adjusts program variables accordingly

– Termination
• Calculates and prints the final results.

• Helps the breakup of programs for top-down refinement.

• Refine the initialization phase from
Initialize variables

 to

Initialize total to zero

Initialize counter to zero

26

 2000 Prentice Hall, Inc. All rights reserved.

2.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

• Refine
Input, sum and count the quiz grades

to

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade (possibly the sentinel)

• Refine
Calculate and print the class average

to

If the counter is not equal to zero

 Set the average to the total divided by the counter

 Print the average

Else

 Print “No grades were entered”

14

 2000 Prentice Hall, Inc. All rights reserved.

Outline
27

1. Initialize Variables

2. Get user input

2.1 Perform Loop

1 // Fig. 2.9: fig02_09.cpp

2 // Class average program with sentinel-controlled repetition.
3 #include <iostream>

4
5 using std::cout;

6 using std::cin;
7 using std::endl;

8 using std::ios;
9

10 #include <iomanip>
11

12 using std::setprecision;
13 using std::setiosflags;

14
15 int main()

16 {
17 int total, // sum of grades

18 gradeCounter, // number of grades entered
19 grade; // one grade

20 double average; // number with decimal point for average
21

22 // initialization phase
23 total = 0;

24 gradeCounter = 0;
25

26 // processing phase
27 cout << "Enter grade, -1 to end: ";

28 cin >> grade;
29

30 while (grade != -1) {

Data type double used to represent
decimal numbers.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
28

3. Calculate Average

3.1 Print Results

Program Output

31 total = total + grade;
32 gradeCounter = gradeCounter + 1;
33 cout << "Enter grade, -1 to end: ";
34 cin >> grade;
35 }
36
37 // termination phase
38 if (gradeCounter != 0) {
39 average = static_cast< double >(total) / gradeCounter;
40 cout << "Class average is " << setprecision(2)
41 << setiosflags(ios::fixed | ios::showpoint)
42 << average << endl;
43 }
44 else
45 cout << "No grades were entered" << endl;
46
47 return 0; // indicate program ended successfully
48 }

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

15

29

 2000 Prentice Hall, Inc. All rights reserved.

2.10 Nested control structures

• Problem:
 A college has a list of test results (1 = pass, 2 = fail) for 10

students. Write a program that analyzes the results. If more
than 8 students pass, print "Raise Tuition".

• We can see that
– The program must process 10 test results. A counter-

controlled loop will be used.
– Two counters can be used—one to count the number of

students who passed the exam and one to count the number
of students who failed the exam.

– Each test result is a number—either a 1 or a 2. If the number
is not a 1, we assume that it is a 2.

• Top level outline:
Analyze exam results and decide if tuition should be raised

30

 2000 Prentice Hall, Inc. All rights reserved.

2.10 Nested control structures

• First Refinement:
Initialize variables

Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide if tuition
should be raised

• Refine
Initialize variables

to

Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

16

31

 2000 Prentice Hall, Inc. All rights reserved.

2.10 Nested control structures
• Refine

Input the ten quiz grades and count passes and failures
 to

While student counter is less than or equal to ten
Input the next exam result
If the student passed
 Add one to passes
Else
 Add one to failures
Add one to student counter

• Refine
Print a summary of the exam results and decide if tuition should be raised

 to
Print the number of passes
Print the number of failures
If more than eight students passed

Print “Raise tuition”

 2000 Prentice Hall, Inc. All rights reserved.

Outline
32

1. Initialize variables

2. Input data and
count passes/failures

1 // Fig. 2.11: fig02_11.cpp

2 // Analysis of examination results

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 // initialize variables in declarations

12 int passes = 0, // number of passes

13 failures = 0, // number of failures

14 studentCounter = 1, // student counter

15 result; // one exam result

16

17 // process 10 students; counter-controlled loop

18 while (studentCounter <= 10) {

19 cout << "Enter result (1=pass,2=fail): ";

20 cin >> result;

21

22 if (result == 1) // if/else nested in while

23 passes = passes + 1;

17

 2000 Prentice Hall, Inc. All rights reserved.

Outline
33

3. Print results

Program Output

24 else

25 failures = failures + 1;

26

27 studentCounter = studentCounter + 1;

28 }

29

30 // termination phase

31 cout << "Passed " << passes << endl;

32 cout << "Failed " << failures << endl;

33

34 if (passes > 8)

35 cout << "Raise tuition " << endl;

36

37 return 0; // successful termination

38 }

Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Passed 9
Failed 1
Raise tuition

34

 2000 Prentice Hall, Inc. All rights reserved.

2.11 Assignment Operators

• Assignment expression abbreviations
c = c + 3; can be abbreviated as c += 3; using the

addition assignment operator

• Statements of the form
variable = variable operator expression;

can be rewritten as
variable operator= expression;

• Examples of other assignment operators include:
d -= 4 (d = d - 4)
e *= 5 (e = e * 5)
f /= 3 (f = f / 3)
g %= 9 (g = g % 9)

18

35

 2000 Prentice Hall, Inc. All rights reserved.

2.12 Increment and Decrement Operators
• Increment operator (++) - can be used instead of c
+= 1

• Decrement operator (--) - can be used instead of c -
= 1
– Preincrement

• When the operator is used before the variable (++c or –c)
• Variable is changed, then the expression it is in is evaluated.

– Posincrement
• When the operator is used after the variable (c++ or c--)
• Expression the variable is in executes, then the variable is changed.

• If c = 5, then
– cout << ++c; prints out 6 (c is changed before cout is

executed)
– cout << c++; prints out 5 (cout is executed before the

increment. c now has the value of 6)

36

 2000 Prentice Hall, Inc. All rights reserved.

2.12 Increment and Decrement Operators

• When Variable is not in an expression
– Preincrementing and postincrementing have the same effect.

++c;
cout << c;

and
c++;
cout << c;

have the same effect.

19

37

 2000 Prentice Hall, Inc. All rights reserved.

2.13 Essentials of Counter-Controlled
Repetition

• Counter-controlled repetition requires:
– The name of a control variable (or loop counter).
– The initial value of the control variable.
– The condition that tests for the final value of the control

variable (i.e., whether looping should continue).
– The increment (or decrement) by which the control variable

is modified each time through the loop.

• Example:
int counter =1; //initialization
while (counter <= 10){ //repetition
condition
 cout << counter << endl;
 ++counter; //increment

 }

38

 2000 Prentice Hall, Inc. All rights reserved.

2.13 Essentials of Counter-Controlled
Repetition

• The declaration
int counter = 1;

– Names counter
– Declares counter to be an integer

– Reserves space for counter in memory

– Sets counter to an initial value of 1

20

39

 2000 Prentice Hall, Inc. All rights reserved.

2.14 The for Repetition Structure

• The general format when using for loops is
for (initialization; LoopContinuationTest;

 increment)

 statement

• Example:
for(int counter = 1; counter <= 10; counter++)

cout << counter << endl;

– Prints the integers from one to ten

No
semicolon
after last
statement

40

 2000 Prentice Hall, Inc. All rights reserved.

2.14 The for Repetition Structure

• For loops can usually be rewritten as while loops:
initialization;
while (loopContinuationTest){
 statement
 increment;
}

• Initialization and increment as comma-separated lists
for (int i = 0, j = 0; j + i <= 10; j++, i++)
 cout << j + i << endl;

21

41

 2000 Prentice Hall, Inc. All rights reserved.

2.15 Examples Using the for Structure

1 // Fig. 2.20: fig02_20.cpp
2 // Summation with for

3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int main()
9 {
10 int sum = 0;
11
12 for (int number = 2; number <= 100; number += 2)
13 sum += number;
14
15 cout << "Sum is " << sum << endl;
16
17 return 0;
18 }

Sum is 2550

• Program to sum the even numbers from 2 to 100

42

 2000 Prentice Hall, Inc. All rights reserved.

2.16 The switch Multiple-Selection Structure

• switch
– Useful when variable or expression is tested for multiple values
– Consists of a series of case labels and an optional default case

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

22

 2000 Prentice Hall, Inc. All rights reserved.

Outline
43

1. Initialize variables

2. Input data

2.1 Use switch loop to
update count

1 // Fig. 2.22: fig02_22.cpp
2 // Counting letter grades
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 int main()
10 {
11 int grade, // one grade
12 aCount = 0, // number of A's
13 bCount = 0, // number of B's
14 cCount = 0, // number of C's
15 dCount = 0, // number of D's
16 fCount = 0; // number of F's
17
18 cout << "Enter the letter grades." << endl
19 << "Enter the EOF character to end input." << endl;
20 grade = cin.get();
21 while (grade != EOF) {
22
23 switch (grade) { // switch nested in while
24
25 case 'A': // grade was uppercase A
26 case 'a': // or lowercase a
27 ++aCount;
28 break; // necessary to exit switch
29
30 case 'B': // grade was uppercase B
31 case 'b': // or lowercase b
32 ++bCount;
33 break;
34

Notice how the case statement is used

 2000 Prentice Hall, Inc. All rights reserved.

Outline
4435 case 'C': // grade was uppercase C

36 case 'c': // or lowercase c
37 ++cCount;
38 break;
39
40 case 'D': // grade was uppercase D
41 case 'd': // or lowercase d
42 ++dCount;
43 break;
44
45 case 'F': // grade was uppercase F
46 case 'f': // or lowercase f
47 ++fCount;
48 break;
49
50 case '\n': // ignore newlines,
51 case '\t': // tabs,
52 case ' ': // and spaces in input
53 break;
54
55 default: // catch all other characters
56 cout << "Incorrect letter grade entered."
57 << " Enter a new grade." << endl;
58 break; // optional
59 }
60 grade = cin.get();
61 }
62 cout << "\n\nTotals for each letter grade are:"
63 << "\nA: " << aCount
64 << "\nB: " << bCount
65 << "\nC: " << cCount
66 << "\nD: " << dCount
67 << "\nF: " << fCount << endl;
68
69 return 0;
70 }

2.1 Use switch loop to
update count

3. Print results

break causes switch to end and
the program continues with the first
statement after the switch
structure.

Notice the default statement.

23

 2000 Prentice Hall, Inc. All rights reserved.

Outline
45

Program Output

Enter the letter grades.
Enter the EOF character to end input.
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

46

 2000 Prentice Hall, Inc. All rights reserved.

2.17 The do/while Repetition Structure

• The do/while repetition structure is similar to the while
structure,
– Condition for repetition tested after the body of the loop is executed

• Format:
do {
 statement
} while (condition);

• Example (letting counter = 1):
do {
cout << counter << " ";
counter++;

} while (counter <= 10);

– This prints the integers from 1 to 10

• All actions are performed at least once.

true

false

action(s)

condition

24

47

 2000 Prentice Hall, Inc. All rights reserved.

2.18 The break and continue Statements

• Break
– Causes immediate exit from a while, for, do/while or
switch structure

– Program execution continues with the first statement after the
structure

– Common uses of the break statement:
• Escape early from a loop
• Skip the remainder of a switch structure

48

 2000 Prentice Hall, Inc. All rights reserved.

2.18 The break and continue Statements

• Continue
– Skips the remaining statements in the body of a while,
for or do/while structure and proceeds with the next
iteration of the loop

– In while and do/while, the loop-continuation test is
evaluated immediately after the continue statement is
executed

– In the for structure, the increment expression is executed,
then the loop-continuation test is evaluated

25

49

 2000 Prentice Hall, Inc. All rights reserved.

2.19 Logical Operators

• && (logical AND)
– Returns true if both conditions are true

• || (logical OR)
– Returns true if either of its conditions are true

• ! (logical NOT, logical negation)
– Reverses the truth/falsity of its condition
– Returns true when its condition is false
– Is a unary operator, only takes one condition

• Logical operators used as conditions in loops
 Expression Result
true && false false
true || false true
!false true

50

 2000 Prentice Hall, Inc. All rights reserved.

2.20 Confusing Equality (==) and
Assignment (=) Operators

• These errors are damaging because they do not
ordinarily cause syntax errors.
– Recall that any expression that produces a value can be used in

control structures. Nonzero values are true, and zero values
are false

• Example:
if (payCode == 4)
 cout << "You get a bonus!" << endl;

– Checks the paycode, and if it is 4 then a bonus is awarded

• If == was replaced with =
if (payCode = 4)
 cout << "You get a bonus!" << endl;

– Sets paycode to 4
– 4 is nonzero, so the expression is true and a bonus is awarded,

regardless of paycode.

26

51

 2000 Prentice Hall, Inc. All rights reserved.

2.20 Confusing Equality (==) and
Assignment (=) Operators

• Lvalues
– Expressions that can appear on the left side of an equation

– Their values can be changed
– Variable names are a common example (as in x = 4;)

• Rvalues
– Expressions that can only appear on the right side of an

equation
– Constants, such as numbers (i.e. you cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

52

 2000 Prentice Hall, Inc. All rights reserved.

2.21 Structured-Programming Summary

• Structured programming
– Programs are easier to understand, test, debug and, modify.

• Rules for structured programming
– Only single-entry/single-exit control structures are used

– Rules:
1) Begin with the “simplest flowchart”.

2) Any rectangle (action) can be replaced by two rectangles
(actions) in sequence.

3) Any rectangle (action) can be replaced by any control
structure (sequence, if, if/else, switch, while, do/while or for).

4) Rules 2 and 3 can be applied in any order and multiple times.

27

53

 2000 Prentice Hall, Inc. All rights reserved.

2.21 Structured-Programming Summary

Rule 3

Rule 3Rule 3

Representation of Rule 3 (replacing any rectangle with a control structure)

54

 2000 Prentice Hall, Inc. All rights reserved.

2.21 Structured-Programming Summary

• All programs can be broken down into
– Sequence

– Selection
• if, if/else, or switch
• Any selection can be rewritten as an if statement

– Repetition
• while, do/while or for
• Any repetition structure can be rewritten as a while statement

