
1

1

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Capitolo 5 - Pointers and Strings

Outline
5.1 Introduction
5.2 Pointer Variable Declarations and Initialization
5.3 Pointer Operators
5.4 Calling Functions by Reference
5.5 Using the Const Qualifier with Pointers
5.6 Bubble Sort Using Call-by-reference
5.7 Pointer Expressions and Pointer Arithmetic
5.8 The Relationship Between Pointers and Arrays
5.9 Arrays of Pointers
5.10 Case Study: A Card Shuffling and Dealing Simulation
5.11 Function Pointers
5.12 Introduction to Character and String Processing

5.12.1 Fundamentals of Characters and Strings
5.12.2 String Manipulation Functions of the

String-handling Library
5.13 Thinking About Objects: Interactions Among Objects

2

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.1 Introduction

• Pointers
– Powerful, but difficult to master

– Simulate call-by-reference

– Close relationship with arrays and strings

2

3

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.2 Pointer Variable Declarations and
Initialization

• Pointer variables
– Contain memory addresses as their values
– Normal variables contain a specific value (direct reference)
– Pointers contain the address of a variable that has a specific

value (indirect reference)

• Indirection
– Referencing a pointer value

• Pointer declarations
– * indicates variable is a pointer

int *myPtr;
 declares a pointer to an int, a pointer of type int *
– Multiple pointers require multiple asterisks

int *myPtr1, *myPtr2;

count

7

countPtr

count

7

4

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.2 Pointer Variable Declarations and
Initialization

• Can declare pointers to any data type

• Pointers initialization
– Initialized to 0, NULL, or an address

• 0 or NULL points to nothing

3

5

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.3 Pointer Operators
• & (address operator)

– Returns the address of its operand

– Example
 int y = 5;
int *yPtr;
yPtr = &y; // yPtr gets address of y

– yPtr “points to” y

yPtr

y
5

yptr

500000 600000

y

600000 5

address of y
is value of
yptr

6

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.3 Pointer Operators
• * (indirection/dereferencing operator)

– Returns the value of what its operand points to
– *yPtr returns y (because yPtr points to y).

– * can be used to assign a value to a location in memory
*yptr = 7; // changes y to 7

– Dereferenced pointer (operand of *) must be an lvalue (no
constants)

• * and & are inverses
– Cancel each other out

*&myVar == myVar
 and
&*yPtr == yPtr

4

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Declare variables

2 Initialize variables

3. Print

Program Output

The address of a is the value
of aPtr.

1 // Fig. 5.4: fig05_04.cpp
2 // Using the & and * operators
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int main()
9 {
10 int a; // a is an integer
11 int *aPtr; // aPtr is a pointer to an integer
12
13 a = 7;
14 aPtr = &a; // aPtr set to address of a
15
16 cout << "The address of a is " << &a
17 << "\nThe value of aPtr is " << aPtr;
18
19 cout << "\n\nThe value of a is " << a
20 << "\nThe value of *aPtr is " << *aPtr;
21
22 cout << "\n\nShowing that * and & are inverses of "
23 << "each other.\n&*aPtr = " << &*aPtr
24 << "\n*&aPtr = " << *&aPtr << endl;
25 return 0;
26 }

Notice how * and
& are inverses

The address of a is 006AFDF4
The value of aPtr is 006AFDF4
The value of a is 7
The value of *aPtr is 7
Showing that * and & are inverses of each other.
&*aPtr = 006AFDF4
*&aPtr = 006AFDF4

The * operator returns an
alias to what its operand
points to. aPtr points to a,
so *aPtr returns a.

8

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.4 Calling Functions by Reference

• Call by reference with pointer arguments
– Pass address of argument using & operator

– Allows you to change actual location in memory
– Arrays are not passed with & because the array name is

already a pointer
– * operator used as alias/nickname for variable inside of

function
 void doubleNum(int *number)
 {
 *number = 2 * (*number);
}

– *number used as nickname for the variable passed in

– When the function is called, must be passed an address
 doubleNum(&myNum);

5

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Function prototype
- takes a pointer to an
int.

1.1 Initialize variables

2. Call function

3. Define function

Program Output

1 // Fig. 5.7: fig05_07.cpp
2 // Cube a variable using call-by-reference
3 // with a pointer argument
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 void cubeByReference(int *); // prototype
10
11 int main()
12 {
13 int number = 5;
14
15 cout << "The original value of number is " << number;
16 cubeByReference(&number);
17 cout << "\nThe new value of number is " << number << endl;
18 return 0;
19 }
20
21 void cubeByReference(int *nPtr)
22 {
23 *nPtr = *nPtr * *nPtr * *nPtr; // cube number in main
24 }

Inside cubeByReference,
*nPtr is used (*nPtr is
number).

The original value of number is 5
The new value of number is 125

Notice how the address of
number is given -
cubeByReference expects a
pointer (an address of a variable).

10

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.5 Using the Const Qualifier with Pointers
• const qualifier

– Variable cannot be changed
– const used when function does not need to change a variable

– Attempting to change a const variable is a compiler error

• const pointers
– Point to same memory location

– Must be initialized when declared
int *const myPtr = &x;

• Constant pointer to a non-constant int
const int *myPtr = &x;

• Non-constant pointer to a constant int
const int *const Ptr = &x;

• Constant pointer to a constant int

6

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Declare variables

1.1 Declare const
pointer to an int.

2. Change *ptr
(which is x).

2.1 Attempt to change
ptr.

3. Output

Program Output

1 // Fig. 5.13: fig05_13.cpp

2 // Attempting to modify a constant pointer to

3 // non-constant data

4 #include <iostream>

5

6 int main()

7 {

8 int x, y;

9

10 int * const ptr = &x; // ptr is a constant pointer to an

11 // integer. An integer can be modified

12 // through ptr, but ptr always points

13 // to the same memory location.

14 *ptr = 7;

15 ptr = &y;

16

17 return 0;

18 }

Error E2024 Fig05_13.cpp 15: Cannot modify a const object in function
main()

Changing *ptr is allowed - x is
not a constant.

Changing ptr is an error -
ptr is a constant pointer.

12

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.6 Bubble Sort Using Call-by-reference

• Implement bubblesort using pointers
– swap function must receive the address (using &) of the

array elements
• array elements have call-by-value default

– Using pointers and the * operator, swap is able to switch
the values of the actual array elements

• Psuedocode
Initialize array

 print data in original order

Call function bubblesort

print sorted array

Define bubblesort

7

13

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.6 Bubble Sort Using Call-by-reference
• sizeof

– Returns size of operand in bytes

– For arrays, sizeof returns
(the size of 1 element) * (number of elements)

– if sizeof(int) = 4, then
int myArray[10];
cout << sizeof(myArray);

 will print 40

• sizeof can be used with
– Variable names

– Type names

– Constant values

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline
1 // Fig. 5.15: fig05_15.cpp
2 // This program puts values into an array, sorts the values into
3 // ascending order, and prints the resulting array.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 #include <iomanip>
10
11 using std::setw;
12
13 void bubbleSort(int *, const int);
14
15 int main()
16 {
17 const int arraySize = 10;
18 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
19 int i;
20
21 cout << "Data items in original order\n";
22
23 for (i = 0; i < arraySize; i++)
24 cout << setw(4) << a[i];
25
26 bubbleSort(a, arraySize); // sort the array
27 cout << "\nData items in ascending order\n";
28
29 for (i = 0; i < arraySize; i++)
30 cout << setw(4) << a[i];
31
32 cout << endl;
33 return 0;
34 }

1. Initialize array

1.1 Declare variables

2. Print array

2.1 Call bubbleSort

2.2 Print array

Bubblesort gets passed the
address of array elements
(pointers). The name of an
array is a pointer.

8

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

3. Define bubbleSort

3.1 Define swap

Program Output

36 void bubbleSort(int *array, const int size)

37 {

38 void swap(int * const, int * const);

39

40 for (int pass = 0; pass < size - 1; pass++)

41

42 for (int j = 0; j < size - 1; j++)

43

44 if (array[j] > array[j + 1])

45 swap(&array[j], &array[j + 1]);

46 }

47

48 void swap(int * const element1Ptr, int * const element2Ptr)

49 {

50 int hold = *element1Ptr;

51 *element1Ptr = *element2Ptr;

52 *element2Ptr = hold;

53 }

swap takes pointers (addresses of array
elements) and dereferences them to
modify the original array elements.

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

16

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.7 Pointer Expressions and Pointer
Arithmetic

• Pointer arithmetic
– Increment/decrement pointer (++ or --)

– Add/subtract an integer to/from a pointer(+ or += , - or -=)

– Pointers may be subtracted from each other

– Pointer arithmetic is meaningless unless performed on an array

• 5 element int array on a machine using 4 byte ints
– vPtr points to first element v[0], which is at location 3000

• vPtr = 3000

– vPtr += 2; sets vPtr to 3008
• vPtr points to v[2]

pointer variable vPtr

v[0] v[1] v[2] v[4]v[3]

3000 3004 3008 3012 3016

location

9

17

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.7 Pointer Expressions and Pointer
Arithmetic

• Subtracting pointers
– Returns the number of elements between two addresses

vPtr2 = v[2];
vPtr = v[0];
vPtr2 - vPtr == 2

• Pointer comparison
– Test which pointer points to the higher numbered array

element
– Test if a pointer points to 0 (NULL)

if (vPtr == ‘0’)
 statement

18

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.7 Pointer Expressions and Pointer
Arithmetic

• Pointers assignment
– If not the same type, a cast operator must be used
– Exception: pointer to void (type void *)

• Generic pointer, represents any type
• No casting needed to convert a pointer to void pointer

• void pointers cannot be dereferenced

10

19

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.8 The Relationship Between Pointers
and Arrays

• Arrays and pointers closely related
– Array name like constant pointer

– Pointers can do array subscripting operations
– Having declared an array b[5] and a pointer bPtr

• bPtr is equal to b
bptr == b

• bptr is equal to the address of the first element of b
bptr == &b[0]

20

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.8 The Relationship Between Pointers
and Arrays

• Accessing array elements with pointers
– Element b[n] can be accessed by *(bPtr + n)

• Called pointer/offset notation

– Array itself can use pointer arithmetic.
• b[3] same as *(b + 3)

– Pointers can be subscripted (pointer/subscript notation)
• bPtr[3] same as b[3]

11

21

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.9 Arrays of Pointers

• Arrays can contain pointers
– Commonly used to store an array of strings

char *suit[4] = {"Hearts", "Diamonds",
 "Clubs", "Spades" };

– Each element of suit is a pointer to a char * (a string)

– The strings are not in the array, only pointers to the strings
are in the array

– suit array has a fixed size, but strings can be of any size

suit[3]

suit[2]

suit[1]

suit[0] ’H’ ’e’ ’a’ ’r’ ’t’ ’s’ ’\0’

’D’ ’i’ ’a’ ’m’ ’o’ ’n’ ’d’ ’s’ ’\0’

’C’ ’l’ ’u’ ’b’ ’s’ ’\0’

’S’ ’p’ ’a’ ’d’ ’e’ ’s’ ’\0’

22

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.10 Case Study: A Card Shuffling and
Dealing Simulation

• Card shuffling program
– Use an array of pointers to strings, to store suit names

– Use a double scripted array (suit by value)

– Place 1-52 into the array to specify the order in which the
cards are dealt

deck[2][12] represents the King of Clubs

Hearts

Diamonds

Clubs

Spades

0

1

2

3

Ace Two Three Four Five Six Seven Eight Nine Ten Jack Queen King
0 1 2 3 4 5 6 7 8 9 10 11 12

Clubs King

12

23

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.10 Case Study: A Card Shuffling and
Dealing Simulation

• Pseudocode for shuffling and dealing
simulation

For each of the 52 cards

Place card number in randomly
selected unoccupied slot of deck

For each of the 52 cards

Find card number in deck array
and print face and suit of card

Choose slot of deck randomly

While chosen slot of deck has
been previously chosen

Choose slot of deck randomly
Place card number in chosen
slot of deck

For each slot of the deck array

If slot contains card number
 Print the face and suit of the
card

Second refinement

Third refinement

First refinement

Initialize the suit array

Initialize the face array

Initialize the deck array

Shuffle the deck

Deal 52 cards

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Initialize suit and
face arrays

1.1 Initialize deck
array

2. Call function
shuffle

2.1 Call function deal

1 // Fig. 5.24: fig05_24.cpp
2 // Card shuffling dealing program
3 #include <iostream>
4
5 using std::cout;
6 using std::ios;
7
8 #include <iomanip>
9
10 using std::setw;
11 using std::setiosflags;
12
13 #include <cstdlib>
14 #include <ctime>
15
16 void shuffle(int [][13]);
17 void deal(const int [][13], const char *[], const char *[]);
18
19 int main()
20 {
21 const char *suit[4] =
22 { "Hearts", "Diamonds", "Clubs", "Spades" };
23 const char *face[13] =
24 { "Ace", "Deuce", "Three", "Four",
25 "Five", "Six", "Seven", "Eight",
26 "Nine", "Ten", "Jack", "Queen", "King" };
27 int deck[4][13] = { 0 };
28
29 srand(time(0));
30
31 shuffle(deck);
32 deal(deck, face, suit);
33

13

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

3. Define functions

34 return 0;
35 }
36
37 void shuffle(int wDeck[][13])
38 {
39 int row, column;
40
41 for (int card = 1; card <= 52; card++) {
42 do {
43 row = rand() % 4;
44 column = rand() % 13;
45 } while(wDeck[row][column] != 0);
46
47 wDeck[row][column] = card;
48 }
49 }
50
51 void deal(const int wDeck[][13], const char *wFace[],
52 const char *wSuit[])
53 {
54 for (int card = 1; card <= 52; card++)
55
56 for (int row = 0; row <= 3; row++)
57
58 for (int column = 0; column <= 12; column++)
59
60 if (wDeck[row][column] == card)
61 cout << setw(5) << setiosflags(ios::right)
62 << wFace[column] << " of "
63 << setw(8) << setiosflags(ios::left)
64 << wSuit[row]
65 << (card % 2 == 0 ? '\n' : '\t');
66 }

The numbers 1-52 are
randomly placed into the
deck array.

Searches deck for the
card number, then prints
the face and suit.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

Program Output

Six of Clubs Seven of Diamonds
 Ace of Spades Ace of Diamonds
 Ace of Hearts Queen of Diamonds
Queen of Clubs Seven of Hearts
 Ten of Hearts Deuce of Clubs
 Ten of Spades Three of Spades
 Ten of Diamonds Four of Spades
 Four of Diamonds Ten of Clubs
 Six of Diamonds Six of Spades
Eight of Hearts Three of Diamonds
 Nine of Hearts Three of Hearts
Deuce of Spades Six of Hearts
 Five of Clubs Eight of Clubs
Deuce of Diamonds Eight of Spades
 Five of Spades King of Clubs
 King of Diamonds Jack of Spades
Deuce of Hearts Queen of Hearts
 Ace of Clubs King of Spades
Three of Clubs King of Hearts
 Nine of Clubs Nine of Spades
 Four of Hearts Queen of Spades
Eight of Diamonds Nine of Diamonds
 Jack of Diamonds Seven of Clubs
 Five of Hearts Five of Diamonds
 Four of Clubs Jack of Hearts
 Jack of Clubs Seven of Spades

14

27

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.11 Function Pointers

• Pointers to functions
– Contain the address of the function

– Similar to how an array name is the address of its first element

– Function name is starting address of code that defines function

• Function pointers can be
– Passed to functions

– Stored in arrays

– Assigned to other function pointers

28

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.11 Function Pointers

• Example: bubblesort
– Function bubble takes a function pointer

• The function determines whether the the array is sorted into
ascending or descending sorting

– The argument in bubble for the function pointer
bool (*compare)(int, int)

tells bubble to expect a pointer to a function that takes two
ints and returns a bool

– If the parentheses were left out
bool *compare(int, int)

 would declare a function that receives two integers and
returns a pointer to a bool

15

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

3.1 Define functions

35 }
36 else {
37 bubble(a, arraySize, descending);
38 cout << "\nData items in descending order\n";
39 }
40
41 for (counter = 0; counter < arraySize; counter++)
42 cout << setw(4) << a[counter];
43
44 cout << endl;
45 return 0;
46 }
47
48 void bubble(int work[], const int size,
49 bool (*compare)(int, int))
50 {
51 void swap(int * const, int * const); // prototype
52
53 for (int pass = 1; pass < size; pass++)
54
55 for (int count = 0; count < size - 1; count++)
56
57 if ((*compare)(work[count], work[count + 1]))
58 swap(&work[count], &work[count + 1]);
59 }
60
61 void swap(int * const element1Ptr, int * const element2Ptr)
62 {
63 int temp;
64
65 temp = *element1Ptr;
66 *element1Ptr = *element2Ptr;
67 *element2Ptr = temp;
68 }

ascending and
descending return true or
false. bubble calls swap if
the function call returns true.

Notice how function pointers
are called using the
dereferencing operator. The *
is not required, but emphasizes
that compare is a function
pointer and not a function.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

1. Initialize array

2. Prompt for
ascending or
descending sorting

2.1 Put appropriate
function pointer into
bubblesort

2.2 Call bubble

3. Print results

1 // Fig. 5.26: fig05_26.cpp
2 // Multipurpose sorting program using function pointers
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 #include <iomanip>
10
11 using std::setw;
12
13 void bubble(int [], const int, bool (*)(int, int));
14 bool ascending(int, int);
15 bool descending(int, int);
16
17 int main()
18 {
19 const int arraySize = 10;
20 int order,
21 counter,
22 a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
23
24 cout << "Enter 1 to sort in ascending order,\n"
25 << "Enter 2 to sort in descending order: ";
26 cin >> order;
27 cout << "\nData items in original order\n";
28
29 for (counter = 0; counter < arraySize; counter++)
30 cout << setw(4) << a[counter];
31
32 if (order == 1) {
33 bubble(a, arraySize, ascending);
34 cout << "\nData items in ascending order\n";

Notice the function pointer
parameter.

16

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Outline

3.1 Define functions

Program output

69

70 bool ascending(int a, int b)

71 {

72 return b < a; // swap if b is less than a

73 }

74

75 bool descending(int a, int b)

76 {

77 return b > a; // swap if b is greater than a

78 }

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in descending order
 89 68 45 37 12 10 8 6 4 2

32

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.1 Fundamentals of Characters and
Strings

• Character constant
– Integer value of a character

– Single quotes
– 'z' is the integer value of z, which is 122

• String
– Series of characters treated as one unit
– Can include letters, digits, special characters +, -, * ...

– String literal (string constants)
• Enclosed in double quotes, for example:

"I like C++"

– Array of characters, ends with null character '\0'
– Strings are constant pointers (like arrays)

• Value of string is the address of its first character

17

33

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.1 Fundamentals of Characters and
Strings

• String assignment
– Character array:

char color[] = "blue";
• Creates 5 element char array, color, (last element is '\0')

– variable of type char *
char *colorPtr = "blue";

• Creates a pointer to string “blue”, colorPtr, and stores it
somewhere in memory

34

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.1 Fundamentals of Characters and
Strings

• Reading strings
– Assign input to character array word[20]

cin >> word
• Reads characters until whitespace or EOF

• String could exceed array size
cin >> setw(20) >> word;

• Reads 19 characters (space reserved for '\0')

• cin.getline
– Reads a line of text
– Using cin.getline

cin.getline(array, size, delimiter character);

18

35

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.1 Fundamentals of Characters and
Strings

• cin.getline
– Copies input into specified array until either

• One less than the size is reached

• The delimiter character is input

– Example
char sentence[80];
cin.getline(sentence, 80, '\n');

36

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.2 String Manipulation Functions of the
String-handling Library

• String handling library <cstring> provides functions to
– Manipulate strings

– Compare strings

– Search strings

– Tokenize strings (separate them into logical pieces)

• ASCII character code
– Strings are compared using their character codes

– Easy to make comparisons (greater than, less than, equal to)

• Tokenizing
– Breaking strings into tokens, separated by user-specified characters
– Tokens are usually logical units, such as words (separated by spaces)
– "This is my string" has 4 word tokens (separated by spaces)

19

37

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.2 String Manipulation Functions of the String-handling
Library

Compares the string s1 with the string s2. The
function returns a value of zero, less than zero
or greater than zero if s1 is equal to, less than
or greater than s2, respectively.

int strcmp(const char *s1,
const char *s2);

Appends at most n characters of string s2 to
string s1. The first character of s2 overwrites
the terminating null character of s1. The value
of s1 is returned.

char *strncat(char *s1, const
char *s2, size_t n);

Appends the string s2 to the string s1. The
first character of s2 overwrites the terminating
null character of s1. The value of s1 is
returned.

char *strcat(char *s1, const
char *s2);

Copies at most n characters of the string s2
into the character array s1. The value of s1 is
returned.

char *strncpy(char *s1, const
char *s2, size_t n);

Copies the string s2 into the character

array s1. The value of s1 is returned.

char *strcpy(char *s1, const
char *s2);

38

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

5.12.2 String Manipulation Functions of the String-handling
Library (III)

 Determines the length of string s. The
number of characters preceding the
terminating null character is returned.

size_t strlen(const char *s);

 A sequence of calls to strtok breaks
string s1 into “tokens”—logical pieces
such as words in a line of text—delimited
by characters contained in string s2. The
first call contains s1 as the first argument,
and subsequent calls to continue tokenizing
the same string contain NULL as the first
argument. A pointer to the current to_ken is
returned by each call. If there are no more
tokens when the function is called, NULL is
returned.

char *strtok(char *s1, const char
*s2);

 Compares up to n characters of the string
s1 with the string s2. The function returns
zero, less than zero or greater than zero if
s1 is equal to, less than or greater than s2,
respectively.

int strncmp(const char *s1, const
char *s2, size_t n);

