
1

1

 2000 Prentice Hall, Inc. All rights reserved.

Capitolo 1 – Introduction to Computers
and C++ Programming

Outline
1.1 Introduction
1.2 What is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal Computing, Distributed Computing

and Client/Server Computing
1.6 Machine Languages, Assembly Languages,

and High-level Languages
1.7 History of C and C++
1.8 C++ Standard Library
1.9 Java and Java How to Program
1.10 Other High-level Languages
1.11 Structured Programming
1.12 The Key Software Trend: Object Technology
1.13 Basics of a Typical C++ Environment
1.14 Hardware Trends
1.15 History of the Internet

2

 2000 Prentice Hall, Inc. All rights reserved.

Capitolo 1 – Introduction to Computers
and C++ Programming

Outline
1.16 History of the World Wide Web
1.17 General Notes About C++ and This Book
1.18 Introduction to C++ Programming
1.19 A Simple Program: Printing a Line of Text
1.20 Another Simple Program: Adding Two Integers
1.21 Memory Concepts
1.22 Arithmetic
1.23 Decision Making: Equality and Relational Operators
1.24 Thinking About Objects: Introduction to Object Technology

and the Unified Modeling Language

2

3

 2000 Prentice Hall, Inc. All rights reserved.

1.1 Introduction

• In this course you will learn
– C and C++

– Structured programming and object oriented programming

4

 2000 Prentice Hall, Inc. All rights reserved.

1.2 What is a Computer?

• Computer
– A device capable of performing computations and making

logical decisions

• Computer programs
– Sets of instructions that control a computer’s processing of

data

• Hardware
– Various devices comprising a computer

• Examples: keyboard, screen, mouse, disks, memory, CD-ROM,
and processing units

• Software
– Programs that run a computer

3

5

 2000 Prentice Hall, Inc. All rights reserved.

1.3 Computer Organization
• Six logical units in every computer:

– Input unit
• Obtains information from input devices (keyboard, mouse)

– Output unit
• Outputs information (to screen, to printer, to control other

devices)
– Memory unit

• Rapid access, low capacity, stores input information

– Arithmetic and logic unit (ALU)
• Performs arithmetic calculations and logic decisions

– Central processing unit (CPU)
• Supervises and coordinates the other sections of the computer

– Secondary storage unit
• Cheap, long-term, high-capacity storage, stores inactive

programs

6

 2000 Prentice Hall, Inc. All rights reserved.

1.4 Evolution of Operating Systems

• Batch processing
– Do only one job or task at a time

• Operating systems
– Manage transitions between jobs

– Increased throughput
• Amount of work computers process

• Multiprogramming
– Many jobs or tasks sharing a computer’s resources

• Timesharing
– Perform a small portion of one user’s job then moves on to

service the next user

4

7

 2000 Prentice Hall, Inc. All rights reserved.

1.5 Personal Computing, Distributed
Computing, and Client/Server Computing

• Personal computers
– Economical enough for individual

• Distributed computing
– Organizations computing is distributed over networks

• Client/server computing
– Sharing of information, across computer networks, between

file servers and clients (personal computers)

8

 2000 Prentice Hall, Inc. All rights reserved.

1.6 Machine Languages, Assembly
Languages, and High-level Languages

• Three types of programming languages
– Machine languages

• Strings of numbers giving machine specific instructions

• Example:
+1300042774
+1400593419
+1200274027

– Assembly languages
• English-like abbreviations representing elementary computer

operations (translated via assemblers)

• Example:
 LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

5

9

 2000 Prentice Hall, Inc. All rights reserved.

1.6 Machine Languages, Assembly
Languages, and High-level Languages

– High-level languages
• Similar to everyday English, use mathematical notations

(translated via compilers)

• Example:
grossPay = basePay + overTimePay

10

 2000 Prentice Hall, Inc. All rights reserved.

1.7 History of C and C++

• C++ evolved from C
– C evolved from two other programming languages, BCPL

and B

• ANSI C
– Established worldwide standards for C programming

• C++ “spruces up” C
– Provides capabilities for object-oriented programming

• Objects are reusable software components that model things in
the real world

• Object-oriented programs are easy to understand, correct and
modify

6

11

 2000 Prentice Hall, Inc. All rights reserved.

1.8 C++ Standard Library

• C++ programs
– Built from pieces called classes and functions

• C++ standard library
– Provides rich collections of existing classes and functions for

all programmers to use

12

 2000 Prentice Hall, Inc. All rights reserved.

1.9 Java and Java How to Program

• Java used to
– Create web pages with dynamic and interactive content

– Develop large-scale enterprise applications

– Enhance the functionality of web servers

– Provide applications for consumer devices (such as cell
phones, pagers and personal digital assistants)

• Java how to program
– Closely followed the development of Java by sun

– Teaches first-year programming students the essentials of
graphics, images, animation, audio, video, database,
networking, multithreading and collaborative computing

7

13

 2000 Prentice Hall, Inc. All rights reserved.

1.10 Other High-level Languages

• Other high-level languages
– FORTRAN

• Used in scientific and engineering applications

– COBOL
• Used to manipulate large amounts of data

– Pascal
• Used to teach structured programming

14

 2000 Prentice Hall, Inc. All rights reserved.

1.11 Structured Programming

• Structured programming
– Disciplined approach to writing programs

– Clear, easy to test and debug, and easy to modify

• Multitasking
– Many activities to run in parallel

8

15

 2000 Prentice Hall, Inc. All rights reserved.

1.12 The Key Software Trend: Object
Technology

• Objects
– Reusable software components that model real world items

– Meaningful software units
• Date objects, time objects, paycheck objects, invoice objects,

audio objects, video objects, file objects, record objects, etc.

• Any noun can be represented as an object

– More understandable, better organized and easier to maintain
than procedural programming

– Favor modularity

16

 2000 Prentice Hall, Inc. All rights reserved.

1.13 Basics of a Typical C++ Environment

Phases of C++ Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

9

17

 2000 Prentice Hall, Inc. All rights reserved.

1.14 Hardware Trends

• Every year or two computers approximately double
– The amount of memory they contain

• Memory used to execute programs

– The amount of secondary storage they contain
• Secondary storage (such as disk storage) is used to to hold

programs and data over time

– Their processor speeds
• The speed at which computers execute their programs

18

 2000 Prentice Hall, Inc. All rights reserved.

1.15 History of the Internet

• The Internet enables
– Quick and easy communication via e-mail

– International networking of computers

• Packet switching
– Transfers digital data via small packets

– Allows multiple users to send and receive data
simultaneously

• No centralized control
– If one part of the Internet fails, other parts can still operate

• Bandwidth
– Carrying capacity of communications lines

10

19

 2000 Prentice Hall, Inc. All rights reserved.

1.16 History of the World Wide Web

• World Wide Web
– Allows users to locate and view multimedia-based

documents on almost any subject

– Makes information instantly and conveniently accessible
worldwide

– Makes it possible for individuals and small businesses to get
worldwide exposure

– Is changing the way business is done

20

 2000 Prentice Hall, Inc. All rights reserved.

1.17 General Notes About C++
and This Book

• Book is geared toward novice programmers

• Programming clarity is stressed

• C and C++ are portable languages
– Programs written in C and C++ can run on many different

computers

11

21

 2000 Prentice Hall, Inc. All rights reserved.

1.18 Introduction to C++ Programming

• C++ language
– Facilitates a structured and disciplined approach to computer

program design

• Following are several examples
– The examples illustrate many important features of C++

– Each example is analyzed one statement at a time.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
22

1. Comments

2. Load <iostream>

3. main

3.1 Print "Welcome
to C++\n"

3.2 exit (return 0)

Program Output

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

12

23

 2000 Prentice Hall, Inc. All rights reserved.

1.19 A Simple Program:
Printing a Line of Text

• std::cout
– Standard output stream object
– “Connected” to the screen
– std:: specifies the "namespace" which cout belongs to

• std:: can be removed through the use of using statements

• <<
– Stream insertion operator
– Value to the right of the operator (right operand) inserted

into output stream (which is connected to the screen)
– std::cout << “Welcome to C++!\n”;

• \
– Escape character
– Indicates that a “special” character is to be output

24

 2000 Prentice Hall, Inc. All rights reserved.

1.19 A Simple Program:
Printing a Line of Text

• There are multiple ways to print text
– Following are more examples

Escape Sequence Description

\n Newline. Position the screen cursor to the
beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote
character.

13

 2000 Prentice Hall, Inc. All rights reserved.

Outline
25

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 Print "to C++!"

2.3 newline

2.4 exit (return 0)

Program OutputWelcome to C++!

1 // Fig. 1.4: fig01_04.cpp

2 // Printing a line with multiple statements

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome ";

8 std::cout << "to C++!\n";

9

10 return 0; // indicate that program ended successfully

11 }

Unless new line '\n' is specified, the text continues
on the same line.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
26

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 newline

2.3 Print "to"

2.4 newline

2.5 newline

2.6 Print "C++!"

2.7 newline

2.8 exit (return 0)

Program Output

1 // Fig. 1.5: fig01_05.cpp

2 // Printing multiple lines with a single statement

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome\nto\n\nC++!\n";

8

9 return 0; // indicate that program ended successfully

10 }

Welcome
to

C++!

Multiple lines can be printed with one
statement.

14

27

 2000 Prentice Hall, Inc. All rights reserved.

1.20 Another Simple Program:
Adding Two Integers

• Variables
– Location in memory where a value can be stored for use by a

program

– Must be declared with a name and a data type before they
can be used

– Some common data types are:
• int - integer numbers
• char - characters

• double - floating point numbers

– Example: int myvariable;
• Declares a variable named myvariable of type int

– Example: int variable1, variable2;
• Declares two variables, each of type int

28

 2000 Prentice Hall, Inc. All rights reserved.

1.20 Another Simple Program:
Adding Two Integers

• >> (stream extraction operator)
– When used with std::cin, waits for the user to input a

value and stores the value in the variable to the right of the
operator

– The user types a value, then presses the Enter (Return) key
to send the data to the computer

– Example:
int myVariable;
std::cin >> myVariable;

• Waits for user input, then stores input in myVariable

• = (assignment operator)
– Assigns value to a variable
– Binary operator (has two operands)
– Example:

sum = variable1 + variable2;

15

 2000 Prentice Hall, Inc. All rights reserved.

Outline
29

1.Load <iostream>

2. main

2.1 Initialize variables
integer1,
integer2, and sum

2.2 Print "Enter
first integer"

 2.2.1 Get input

2.3 Print "Enter
second integer"

 2.3.1 Get input

2.4 Add variables and
put result into sum

2.5 Print "Sum is"
 2.5.1 Output sum

2.6 exit (return 0)

Program Output

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program

3 #include <iostream>

4

5 int main()

6 {

7 int integer1, integer2, sum; // declaration

8

9 std::cout << "Enter first integer\n"; // prompt

10 std::cin >> integer1; // read an integer

11 std::cout << "Enter second integer\n"; // prompt

12 std::cin >> integer2; // read an integer

13 sum = integer1 + integer2; // assignment of sum

14 std::cout << "Sum is " << sum << std::endl; // print sum

15

16 return 0; // indicate that program ended successfully

17 }

Enter first integer
45
Enter second integer
72
Sum is 117

30

 2000 Prentice Hall, Inc. All rights reserved.

1.21 Memory Concepts

• Variable names
– Correspond to locations in the computer's memory

– Every variable has a name, a type, a size and a value

– Whenever a new value is placed into a variable, it replaces
the previous value - it is destroyed

– Reading variables from memory does not change them

• A visual representation

integer1 45

16

31

 2000 Prentice Hall, Inc. All rights reserved.

1.22 Arithmetic

• Arithmetic calculations
– Use * for multiplication and / for division

– Integer division truncates remainder
• 7 / 5 evaluates to 1

– Modulus operator returns the remainder
• 7 % 5 evaluates to 2

• Operator precedence
– Some arithmetic operators act before others (i.e.,

multiplication before addition)
• Be sure to use parenthesis when needed

– Example: Find the average of three variables a, b and c
• Do not use: a + b + c / 3
• Use: (a + b + c) / 3

32

 2000 Prentice Hall, Inc. All rights reserved.

1.22 Arithmetic

• Arithmetic operators:

• Rules of operator precedence:

C++ operation Arithmetic
operator

Algebraic
expression

C++ expression

Addition + f + 7 f + 7
Subtraction - p – c p - c
Multiplication * bm b * m
Division / x / y x / y

Modulus % r mod s r % s

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division
Modulus

Evaluated second. If there are several, they re
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

17

33

 2000 Prentice Hall, Inc. All rights reserved.

1.23 Decision Making: Equality and
Relational Operators

• if structure
– Test conditions truth or falsity. If condition met execute,

otherwise ignore

• Equality and relational operators
– Lower precedence than arithmetic operators

• Table of relational operators on next slide

34

 2000 Prentice Hall, Inc. All rights reserved.

1.23 Decision Making: Equality and
Relational Operators

Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y
< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

18

35

 2000 Prentice Hall, Inc. All rights reserved.

1.23 Decision Making: Equality and
Relational Operators

• using statements
– Eliminate the need to use the std:: prefix

– Allow us to write cout instead of std::cout
– To use the following functions without the std:: prefix,

write the following at the top of the program
using std::cout;
using std::cin;
using std::endl;

 2000 Prentice Hall, Inc. All rights reserved.

Outline
36

1. Load <iostream>

2. main

2.1 Initialize num1 and
num2

2.1.1 Input data

2.2 if statements

1 // Fig. 1.14: fig01_14.cpp
2 // Using if statements, relational
3 // operators, and equality operators
4 #include <iostream>
5
6 using std::cout; // program uses cout
7 using std::cin; // program uses cin
8 using std::endl; // program uses endl
9
10 int main()
11 {
12 int num1, num2;
13
14 cout << "Enter two integers, and I will tell you\n"
15 << "the relationships they satisfy: ";
16 cin >> num1 >> num2; // read two integers
17
18 if (num1 == num2)
19 cout << num1 << " is equal to " << num2 << endl;
20
21 if (num1 != num2)
22 cout << num1 << " is not equal to " << num2 << endl;
23
24 if (num1 < num2)
25 cout << num1 << " is less than " << num2 << endl;
26
27 if (num1 > num2)
28 cout << num1 << " is greater than " << num2 << endl;
29
30 if (num1 <= num2)
31 cout << num1 << " is less than or equal to "
32 << num2 << endl;
33

19

 2000 Prentice Hall, Inc. All rights reserved.

Outline
37

2.3 exit (return 0)

Program Output

34 if (num1 >= num2)

35 cout << num1 << " is greater than or equal to "

36 << num2 << endl;

37

38 return 0; // indicate that program ended successfully

39 }

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

38

 2000 Prentice Hall, Inc. All rights reserved.

1.24 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling

Language

• Object orientation
– Natural way to think about the world and to write computer

programs

– Attributes - properties of objects
• Size, shape, color, weight, etc.

– Behaviors - actions
• A ball rolls, bounces, inflates and deflates

• Objects can perform actions as well

– Inheritance
• New classes of objects absorb characteristics from existing classes

– Information hiding
• Objects usually do not know how other objects are implemented

20

39

 2000 Prentice Hall, Inc. All rights reserved.

1.24 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling

Language

• Abstraction - view the big picture
– See a photograph rather than a group of colored dots
– Think in terms of houses, not bricks

• Class - unit of programming
– Classes serve as a “Blueprint" of objects

• Objects are created from a class
– Classes contain functions

• Used to implement behaviors

– Classes contain data
• Used to implement attributes

– Classes are reusable

40

 2000 Prentice Hall, Inc. All rights reserved.

1.24 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling

Language

• Unified Modeling Language (UML)
– Used to model object-oriented systems and aid with their

design

– Complex, feature-rich graphical language

