Contents
1 Resolution Exercises
2 Translation to CNF

3 DPLL

1 Resolution Exercises
SAT via Resolution

function sat_resolution(¢: formula)

{

cnf F' := transform_to_cnf(¢);

cnf Fold,

while(C7 and C resolveable on A exist in F’
and have not been resolved yet)

{
F :=resolve(F,C1,05,A);
if(O0eF)

return false;

}

return true;

}

Resolution in propositional logic: Examples

Example 1. 11s (AV B) A (AV —B) A (mAV B) A (mA V —B) satisfiable?
Example 2. 2 Does A follow from (AV BV C) A (=C'V B) A (AV =B)?

Example 3. 3 Does —A follow from (AV BV C) A (-C Vv B) A (AV —B)?
Example 4. 4 Does P = A A B follow from (w4 — B) A (A — B) A (mA — =B)?

Optimizations to resolution algorithm

Problem
The algorithm can generate many irrelevant or redundant clauses

Example 5. S ={{A, B},{-A,B},{A,-B},{—A,-B}}

Solution
At each step

e Delete tautological clauses
e Delete clauses already generated

e Delete “subsumed” clauses ({ B} vs {A, B})

Linear resolution

Definition
A resolution proof for R from a set S of clauses is linear if it is a sequence C,...,C, s.t. C; € S,C,, = R and for
eachi = 2,...,n, C; is the resolvent of C;_; and B;_1, with B,_y € Sor B;_; = C}, with j < 1.

Intuition...
In a proof for linear resolution, at each step the resolvent obtained in the previous step is used.

Example 6. S={AV B,AV -B,-AV B,-AV -B}

2 Translation to CNF

Problems with Distributivity

BV By V

As A\ Bs

Example:

(Al/\Bl) (AQ/\BQ)\/ (A /\B)E
(A1 V[(A2 ABg) V.-V (A A Bp)])A
(B1V[(A2 A Bs) V---V (A A By)]) =

(4 \/Ag\/[Ag/\Bg VeV (A A BR)DA
(Al\/Bg\/ A3z A B3)V A
(v

(\%

()
[()
BV Ag V [(Ag A Bg)
[()
(A1 VeV A A (AL VeV Ay 1V Ba) A A (B V-V By)

Problems with Distributivity
In the example, we went from a formula with 2 X n variable occurrences and 2 X n — 1 connectives to a formula
with 2" variable occurrences and 2" — 1 connectives!

Theorem 7. Transforming a formula into an equivalent formula in CNF may cause an exponential enlargement.

But one can do better.

Structure-Preserving Transformation (S-PT)

Algorithm
1. Replace each “sub-formula” with a newly introduced variable

2. Convert into CNF all the resulting formulas

Pros
e linear time transformation

e no exponential blow up in space

Cons

e add new variables (even if linear in the size of the input)

Structure-Preserving Transformation (S-PT)
Example:
Cy Co Ch
——— —_——
A1 ABy)V (A3 ABy) V.-V (A, A B,,) satisfiable iff
VO) AN(C1 = (AL AB))A--- AN (Cp = (A ABp)) =

NN S

(A1 A B1)) A(—C1 V (A1 A By))

V =(An ABp)) A(-Cr V (A, A By)) =
(CLV -V Cp)A
C1V—A; VB A (=CLV A A (=Cy V By)
(Cp V—A, V=B A (=C, VAR A (-CL V By)
The CNF contains 8 X n variable occurrences and 12 x n — 1 connectives. In general, this transformation is more
involved.

3 DPLL

Davis, Putnam, Logemann, Loveland

il

== R 7 Martin Davis, Hilary Putnam “A Computing Proce-
dure for Quantification Theory” Journal of the ACM, 1960

Davis, Putnam, Logemann, Loveland

Martin Davis, George Logemann, Donald Loveland “A Machine Program for Theorem-Proving” Communications
of the ACM, 1962

DPLL algorithm
e I'is a set of clauses (CNF formula)

e U is the set of literals representing a partial truth assignment (initialized with)

DPLL(T, U)
1if {{} € T then StMPLIFY(T,])
2if T' = () then return TRUE
3if) € T then return FALSE
4] «+ CHOOSE-LITERAL(I")
5return DPLL(T" U {l}, U) or
DPLL(I U {~1}, U)

SIMPLIFY

SiMPLIFY(T', U)
1 while {/} € T do

2 U«—UU{l}

3 foreachc € I"do

4 if [€ c then

5 L—T\{c}

6 else if =/ € c then

7 T\ {eh)Ufc\ 1)

DPLL properties
1. DPLL(,U) returns TRUE iff I' is satisfiable, and False otherwise
2. DPLL(I',U) can be (easily) modified in order to compute all the solutions of I' (DPLL is correct and complete)
3. DPLL(I',U) works in polynomial-space

Features in the DPLL method
e Simplification: the input set of clauses is simplified at each branch using (at least) unit clause propagation

e Branching: when no further simplification is possible, a literal is selected using some heuristic criterion and
assumed as a unit clause in the current set of clauses

e Backtracking: when a contradiction (empty clause) arises, then the search resumes from some previous assump-
tion [by assuming —! instead

Examples with DPLL (I)
Example 8. T' = (x1 V z2 V —x3) A (mx2) A (24 V —3)
1. z2 is assigned to 0, I is simplified and results in (z1 V —z3) A (x4 V ~z3), U = {22}
2. we choose —z3 for branching, the formula is SAT, I' = 0, U = {—x2, ~z3}
Example9. T' = (z1 V x2 V —x3 V —x4) A (m22) A (T4 V —23)
1. g is assigned to 0, I is simplied and results in (z1 V —z3 V =x4) A (24 V —x3), U = {—z2}

2. if we choose now —z3 for branching, the process is the same as before; otherwise, if 2 is chosen, another choice has to be made

Branching matters!

Examples with DPLL (I)

Example 10. {x1VzoV 3,11 VIV w3, o1V Ty Vs, x1V xeVxs, 7@ Vg, x1V oz V-xsVae, ooy V ey}

(Some of) The major players (I)
Before 2K

Bohm, Tableau Inspired early work on SAT solvers and started gaining popularity for applications
POSIT, SATZ Effective proof-of-concept implementations
Grasp, SATO, RelSAT First application-targeted solvers

o Intelligent backtracking techniques
e Efficient data structures (SATO)
e Learning techniques (Grasp, RelSAT)

(Stalmarck) Patented method, first industrial SAT solver

(Some of) The major players (II)
After 2K

Chaff (mChaff, zChaff) turning point in the applicability of SAT

e borrows from the tradition of SATO and Grasp
e very effective on “structured” instances
o first SAT solver to conquer “hard” instances from model checking and planning domains

e winner of the SAT 2002 competition (industrial category)
SatEliteGTI/MiniSAT (winner of SAT2005, industrial category)
e mostly “Chaff-based” ...

Key technologies in today’s DPLL implementations (II)
Current state-of-the-art (SOTA) solvers can be divided in two categories:

e “look-ahead” solvers, with a powerful simplification procedure, a simple look-back (essentially backtracking)
and a heuristic based on the information gleaned during the look-ahead phase. Best for “small but relatively
difficult” instances, typically randomly generated.

e “look-back” solvers, with a simple but efficient look-ahead, a sophisticated look-back based on “learning”, and
a constant time heuristic based on the information gleaned during the look-back phase. Best for “large but
relatively easy” instances, typically encoding real-world problems.

SAT-solvers input DIMACS format
“Official” input format for SAT-solvers. Each solver has to comply with it for enter in the competition. Ex:

(.131 VoV _‘1‘3) A (_\.132) A\ (334 \ —\.%‘3)

Example 11.
cThisisa CNF in DIMACS
c
penf 43
12-30
-20
4-30

DIMACS format in BNF grammar

BNF grammar
< input > ::= < preamble > < formula > EOF

< preamble > ::= [< commentlines >] < problemline >

< commentlines > ::= < commentline > < commentlines > | < commentline >
< commentline > ::= ¢ < text > EOL

< problemline > ::= penf < pnum > < pnum > EOL

< formula > ::= < clauselist >

< clauselist > ::= < clause > < clauselist > | < clause >
< clause > = < literal > < clause > | < literal > 0

< literal > = < num >

< text > ::= A sequence of non — special ASCII characters
< pnum > = A signed integer greater than 0
< num > = A signedinteger dif ferent from 0

Challenges and ongoing work

Hot topics
e Incremental SAT
e Non clausal SAT

e SAT-based decision procedures

More on:
e http://www.satlive.org/

e http://www.satisfiability.org/

In preparazione all’esercitazione...

1. Scrivere su google “Minisat solver”

2. Cliccare sul primo link

3. Sulla barra di sinistra cliccare su “MiniSat”

4. Scaricare “MiniSat_v1.14_linuz” in fondo alla pagina (frame principale)

5. Provare ad eseguire “./MiniSat_v1.14_linux —h”(ove necessario, modificare i diritti sul file, e.g., “chmod 755 MiniSat_v1.14.

