Contents

1 Resolution Exercises 1
2 Translation to CNF 2
3 DPLL

1 Resolution Exercises

SAT via Resolution

```
function sat_resolution( }\phi\mathrm{ : formula)
    {
    cnf F:= transform_to_cnf( }\phi\mathrm{ );
    cnf Fold;
    while( C}\mp@subsup{C}{1}{}\mathrm{ and }\mp@subsup{C}{2}{}\mathrm{ resolveable on }A\mathrm{ exist in }
        and have not been resolved yet)
        {
        F:= resolve( }F,\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},A)
        if(}\square\inF
            return false;
        }
    return true;
    }
```


Resolution in propositional logic: Examples

Example 1. 1 Is $(A \vee B) \wedge(A \vee \neg B) \wedge(\neg A \vee B) \wedge(\neg A \vee \neg B)$ satisfiable?
Example 2. 2 Does A follow from $(A \vee B \vee C) \wedge(\neg C \vee B) \wedge(A \vee \neg B)$?
Example 3. 3 Does $\neg A$ follow from $(A \vee B \vee C) \wedge(\neg C \vee B) \wedge(A \vee \neg B)$?
Example 4. 4 Does $P=A \wedge B$ follow from $(\neg A \rightarrow B) \wedge(A \rightarrow B) \wedge(\neg A \rightarrow \neg B)$?

Optimizations to resolution algorithm

Problem

The algorithm can generate many irrelevant or redundant clauses
Example 5. $\mathrm{S}=\{\{A, B\},\{\neg A, B\},\{A, \neg B\},\{\neg A, \neg B\}\}$

Solution

At each step

- Delete tautological clauses
- Delete clauses already generated
- Delete "subsumed" clauses ($\{B\}$ vs $\{A, B\}$)

Linear resolution

Definition

A resolution proof for R from a set S of clauses is linear if it is a sequence C_{1}, \ldots, C_{n} s.t. $C_{1} \in S, C_{n}=R$ and for each $i=2, \ldots, n, C_{i}$ is the resolvent of C_{i-1} and B_{i-1}, with $B_{i-1} \in S$ or $B_{i-1}=C_{j}$, with $j<i$.

Intuition...

In a proof for linear resolution, at each step the resolvent obtained in the previous step is used.
Example 6. $\mathrm{S}=\{A \vee B, A \vee \neg B, \neg A \vee B, \neg A \vee \neg B\}$

2 Translation to CNF

Problems with Distributivity

Example:

$$
\begin{aligned}
& \left(A_{1} \wedge B_{1}\right) \vee\left(A_{2} \wedge B_{2}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right) \equiv \\
& \left(A_{1} \vee\left[\left(A_{2} \wedge B_{2}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right)\right]\right) \wedge \\
& \left(B_{1} \vee\left[\left(A_{2} \wedge B_{2}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right)\right]\right) \equiv \\
& \left(A_{1} \vee A_{2} \vee\left[\left(A_{3} \wedge B_{3}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right)\right]\right) \wedge \\
& \left(A_{1} \vee B_{2} \vee\left[\left(A_{3} \wedge B_{3}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right)\right]\right) \wedge \\
& \left(B_{1} \vee A_{2} \vee\left[\left(A_{3} \wedge B_{3}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right)\right]\right) \wedge \\
& \left(B_{1} \vee B_{2} \vee\left[\left(A_{3} \wedge B_{3}\right) \vee \cdots \vee\left(A_{n} \wedge B_{n}\right)\right]\right) \equiv \\
& \cdots \equiv \\
& \left(A_{1} \vee \cdots \vee A_{n}\right) \wedge\left(A_{1} \vee \cdots \vee A_{n-1} \vee B_{n}\right) \wedge \cdots \wedge\left(B_{1} \vee \cdots \vee B_{n}\right)
\end{aligned}
$$

Problems with Distributivity

In the example, we went from a formula with $2 \times n$ variable occurrences and $2 \times n-1$ connectives to a formula with 2^{n} variable occurrences and $2^{n}-1$ connectives!

Theorem 7. Transforming a formula into an equivalent formula in CNF may cause an exponential enlargement.
But one can do better.

Structure-Preserving Transformation (S-PT)

Algorithm

1. Replace each "sub-formula" with a newly introduced variable
2. Convert into CNF all the resulting formulas

Pros

- linear time transformation
- no exponential blow up in space

Cons

- add new variables (even if linear in the size of the input)

Structure-Preserving Transformation (S-PT)

Example:

The CNF contains $8 \times n$ variable occurrences and $12 \times n-1$ connectives. In general, this transformation is more involved.

3 DPLL

Davis, Putnam, Logemann, Loveland

Martin Davis, Hilary Putnam "A Computing Proce-
dure for Quantification Theory" Journal of the ACM, 1960

Davis, Putnam, Logemann, Loveland

Martin Davis, George Logemann, Donald Loveland "A Machine Program for Theorem-Proving" Communications of the ACM, 1962

DPLL algorithm

- Γ is a set of clauses (CNF formula)
- U is the set of literals representing a partial truth assignment (initialized with \emptyset)

$$
\begin{aligned}
& \operatorname{DPLL}(\Gamma, U) \\
& 1 \text { if }\{l\} \in \Gamma \text { then } \operatorname{SimPLIFY}(\Gamma, l) \\
& 2 \text { if } \Gamma=\emptyset \text { then return TRUE } \\
& 3 \text { if } \emptyset \in \Gamma \text { then return FALSE } \\
& 4 l \leftarrow \operatorname{CHOOSE}-\operatorname{LITERAL}(\Gamma) \\
& 5 \text { return } \operatorname{DPLL}(\Gamma \cup\{l\}, U) \text { or } \\
& \quad \operatorname{DPLL}(\Gamma \cup\{\neg l\}, U)
\end{aligned}
$$

Simplify

```
\(\operatorname{Simplify}(\Gamma, U)\)
    while \(\{l\} \in \Gamma\) do
    \(U \leftarrow U \cup\{l\}\)
    foreach \(c \in \Gamma\) do
        if \(l \in c\) then
            \(\Gamma \leftarrow \Gamma \backslash\{c\}\)
        else if \(\neg l \in c\) then
            \(\Gamma \leftarrow(\Gamma \backslash\{c\}) \cup\{c \backslash \neg l\}\)
```


DPLL properties

1. $\operatorname{DPLL}(\Gamma, U)$ returns TRUE iff Γ is satisfiable, and False otherwise
2. $\operatorname{DPLL}(\Gamma, U)$ can be (easily) modified in order to compute all the solutions of Γ (DPLL is correct and complete)
3. $\operatorname{DPLL}(\Gamma, U)$ works in polynomial-space

Features in the DPLL method

- Simplification: the input set of clauses is simplified at each branch using (at least) unit clause propagation
- Branching: when no further simplification is possible, a literal is selected using some heuristic criterion and assumed as a unit clause in the current set of clauses
- Backtracking: when a contradiction (empty clause) arises, then the search resumes from some previous assumption l by assuming $\neg l$ instead

Examples with DPLL (I)

Example 8. $\Gamma=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{3}\right)$

1. x_{2} is assigned to $0, \Gamma$ is simplified and results in $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{3}\right), U=\left\{\neg x_{2}\right\}$
2. we choose $\neg x_{3}$ for branching, the formula is SAT, $\Gamma=\emptyset, U=\left\{\neg x_{2}, \neg x_{3}\right\}$

Example 9. $\Gamma=\left(x_{1} \vee x_{2} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{3}\right)$

1. x_{2} is assigned to $0, \Gamma$ is simplied and results in $\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{4} \vee \neg x_{3}\right), U=\left\{\neg x_{2}\right\}$
2. if we choose now $\neg x_{3}$ for branching, the process is the same as before; otherwise, if x_{1} is chosen, another choice has to be made

Branching matters!

Examples with DPLL (II)

Example 10. $\left\{x_{1} \vee x_{2} \vee x_{3}, x_{1} \vee x_{2} \vee \neg x_{3}, x_{1} \vee \neg x_{2} \vee x_{3}, x_{1} \vee \neg x_{2} \vee \neg x_{3}, \neg x_{1} \vee x_{4}, x_{1} \vee \neg x_{4} \vee \neg x_{5} \vee x_{6}, \neg x_{1} \vee x_{7}\right\}$
(Some of) The major players (I)

Before 2K

Böhm, Tableau Inspired early work on SAT solvers and started gaining popularity for applications
POSIT, SATZ Effective proof-of-concept implementations
Grasp, SATO, RelSAT First application-targeted solvers

- Intelligent backtracking techniques
- Efficient data structures (SATO)
- Learning techniques (Grasp, RelSAT)
(Stålmarck) Patented method, first industrial SAT solver

(Some of) The major players (II)

After 2K

Chaff (mChaff, zChaff) turning point in the applicability of SAT

- borrows from the tradition of SATO and Grasp
- very effective on "structured" instances
- first SAT solver to conquer "hard" instances from model checking and planning domains
- winner of the SAT 2002 competition (industrial category)

SatEliteGTI/MiniSAT (winner of SAT2005, industrial category)

- mostly "Chaff-based" ...

Key technologies in today's DPLL implementations (II)

Current state-of-the-art (SOTA) solvers can be divided in two categories:

- "look-ahead" solvers, with a powerful simplification procedure, a simple look-back (essentially backtracking) and a heuristic based on the information gleaned during the look-ahead phase. Best for "small but relatively difficult" instances, typically randomly generated.
- "look-back" solvers, with a simple but efficient look-ahead, a sophisticated look-back based on "learning", and a constant time heuristic based on the information gleaned during the look-back phase. Best for "large but relatively easy" instances, typically encoding real-world problems.

SAT-solvers input DIMACS format

"Official" input format for SAT-solvers. Each solver has to comply with it for enter in the competition. Ex:
$\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{3}\right)$

Example 11.

c This is a CNF in DIMACS
c
pcnf 43
12-30
-2 0
4-3 0

DIMACS format in BNF grammar

BNF grammar

$$
\begin{aligned}
& <\text { input }>::=<\text { preamble }><\text { formula }>\text { EOF } \\
& <\text { preamble }>::=[<\text { commentlines }>]<\text { problemline }> \\
& <\text { commentlines }>::=<\text { commentline }><\text { commentlines }>\mid<\text { commentline }> \\
& <\text { commentline }>:=c<\text { text }>E O L \\
& <\text { problemline }>:=p \text { cnf }<\text { pnum }><\text { pnum }>E O L \\
& <\text { formula }>::=<\text { clauselist }> \\
& <\text { clauselist }>::=<\text { clause }><\text { clauselist }>\mid<\text { clause }> \\
& <\text { clause }>::=<\text { literal }><\text { clause }>\mid<\text { literal }>0 \\
& <\text { literal }>:=<\text { num }> \\
& <\text { text }>::=\text { A sequence of non }- \text { special ASCII characters } \\
& <\text { pnum }>::=\text { A signed integer greater than } 0 \\
& <\text { num }>::=\text { A signed integer different from } 0
\end{aligned}
$$

Challenges and ongoing work

Hot topics

- Incremental SAT
- Non clausal SAT
- SAT-based decision procedures

More on:

- http://www.satlive.org/
- http://www.satisfiability.org/

In preparazione all'esercitazione...

1. Scrivere su google "Minisat solver"
2. Cliccare sul primo link
3. Sulla barra di sinistra cliccare su "MiniSat"
4. Scaricare "MiniSat_v1.14_linux" in fondo alla pagina (frame principale)
5. Provare ad eseguire "./MiniSat_v1.14_linux - h"(ove necessario, modificare i diritti sul file, e.g., "chmod 755 MiniSat_v1.14
