
Contents
1 Resolution Exercises 1

2 Translation to CNF 2

3 DPLL 3

1 Resolution Exercises
SAT via Resolution

function sat_resolution(φ: formula)
{
cnf F := transform_to_cnf(φ);
cnf Fold;
while(C1 and C2 resolveable on A exist in F

and have not been resolved yet)
{
F := resolve(F ,C1,C2,A);
if(2 ∈ F)

return false;
}

return true;
}

Resolution in propositional logic: Examples
Example 1. 1 Is (A ∨B) ∧ (A ∨ ¬B) ∧ (¬A ∨B) ∧ (¬A ∨ ¬B) satisfiable?

Example 2. 2 Does A follow from (A ∨B ∨ C) ∧ (¬C ∨B) ∧ (A ∨ ¬B)?

Example 3. 3 Does ¬A follow from (A ∨B ∨ C) ∧ (¬C ∨B) ∧ (A ∨ ¬B)?

Example 4. 4 Does P = A ∧B follow from (¬A→ B) ∧ (A→ B) ∧ (¬A→ ¬B)?

Optimizations to resolution algorithm

Problem
The algorithm can generate many irrelevant or redundant clauses

Example 5. S = {{A,B}, {¬A,B}, {A,¬B}, {¬A,¬B}}

Solution
At each step

• Delete tautological clauses

• Delete clauses already generated

• Delete “subsumed” clauses ({B} vs {A,B})

Linear resolution

Definition
A resolution proof for R from a set S of clauses is linear if it is a sequence C1, . . . , Cn s.t. C1 ∈ S,Cn = R and for
each i = 2, . . . , n, Ci is the resolvent of Ci−1 and Bi−1, with Bi−1 ∈ S or Bi−1 = Cj , with j < i.

Intuition...
In a proof for linear resolution, at each step the resolvent obtained in the previous step is used.

Example 6. S = {A ∨B,A ∨ ¬B,¬A ∨B,¬A ∨ ¬B}

2 Translation to CNF
Problems with Distributivity

Example:
(A1 ∧B1) ∨ (A2 ∧B2) ∨ · · · ∨ (An ∧Bn) ≡
(A1 ∨ [(A2 ∧B2) ∨ · · · ∨ (An ∧Bn)])∧
(B1 ∨ [(A2 ∧B2) ∨ · · · ∨ (An ∧Bn)]) ≡
(A1 ∨A2 ∨ [(A3 ∧B3) ∨ · · · ∨ (An ∧Bn)])∧
(A1 ∨B2 ∨ [(A3 ∧B3) ∨ · · · ∨ (An ∧Bn)])∧
(B1 ∨A2 ∨ [(A3 ∧B3) ∨ · · · ∨ (An ∧Bn)])∧
(B1 ∨B2 ∨ [(A3 ∧B3) ∨ · · · ∨ (An ∧Bn)]) ≡
. . . ≡
(A1 ∨ · · · ∨An) ∧ (A1 ∨ · · · ∨An−1 ∨Bn) ∧ · · · ∧ (B1 ∨ · · · ∨Bn)

Problems with Distributivity
In the example, we went from a formula with 2× n variable occurrences and 2× n− 1 connectives to a formula

with 2n variable occurrences and 2n − 1 connectives!

Theorem 7. Transforming a formula into an equivalent formula in CNF may cause an exponential enlargement.

But one can do better.

Structure-Preserving Transformation (S-PT)

Algorithm

1. Replace each “sub-formula” with a newly introduced variable

2. Convert into CNF all the resulting formulas

Pros

• linear time transformation

• no exponential blow up in space

Cons

• add new variables (even if linear in the size of the input)

2

Structure-Preserving Transformation (S-PT)
Example:

C1︷ ︸︸ ︷
(A1 ∧B1)∨

C2︷ ︸︸ ︷
(A2 ∧B2)∨ · · · ∨

Cn︷ ︸︸ ︷
(An ∧Bn) satisfiable iff

(C1 ∨ · · · ∨ Cn) ∧ (C1 ↔ (A1 ∧B1)) ∧ · · · ∧ (Cn ↔ (An ∧Bn)) ≡
(C1 ∨ · · · ∨ Cn)∧
(C1 ∨ ¬(A1 ∧B1)) ∧ (¬C1 ∨ (A1 ∧B1))
∧ · · · ∧
(Cn ∨ ¬(An ∧Bn)) ∧ (¬Cn ∨ (An ∧Bn)) ≡
(C1 ∨ · · · ∨ Cn)∧
(C1 ∨ ¬A1 ∨ ¬B1) ∧ (¬C1 ∨A1) ∧ (¬C1 ∨B1)
∧ · · · ∧
(Cn ∨ ¬An ∨ ¬Bn) ∧ (¬Cn ∨An) ∧ (¬Cn ∨Bn)

The CNF contains 8 × n variable occurrences and 12 × n − 1 connectives. In general, this transformation is more
involved.

3 DPLL
Davis, Putnam, Logemann, Loveland

Martin Davis, Hilary Putnam “A Computing Proce-
dure for Quantification Theory” Journal of the ACM, 1960

Davis, Putnam, Logemann, Loveland
Martin Davis, George Logemann, Donald Loveland “A Machine Program for Theorem-Proving” Communications

of the ACM, 1962

DPLL algorithm

• Γ is a set of clauses (CNF formula)

• U is the set of literals representing a partial truth assignment (initialized with ∅)

DPLL(Γ, U)
1 if {l} ∈ Γ then SIMPLIFY(Γ,l)
2 if Γ = ∅ then return TRUE
3 if ∅ ∈ Γ then return FALSE
4 l← CHOOSE-LITERAL(Γ)
5 return DPLL(Γ ∪ {l}, U) or

DPLL(Γ ∪ {¬l}, U)

3

SIMPLIFY

SIMPLIFY(Γ, U)
1 while {l} ∈ Γ do
2 U ← U ∪ {l}
3 foreach c ∈ Γ do
4 if l ∈ c then
5 Γ← Γ \ {c}
6 else if ¬l ∈ c then
7 Γ← (Γ \ {c}) ∪ {c \ ¬l}

DPLL properties

1. DPLL(Γ,U) returns TRUE iff Γ is satisfiable, and False otherwise

2. DPLL(Γ,U) can be (easily) modified in order to compute all the solutions of Γ (DPLL is correct and complete)

3. DPLL(Γ,U) works in polynomial-space

Features in the DPLL method

• Simplification: the input set of clauses is simplified at each branch using (at least) unit clause propagation

• Branching: when no further simplification is possible, a literal is selected using some heuristic criterion and
assumed as a unit clause in the current set of clauses

• Backtracking: when a contradiction (empty clause) arises, then the search resumes from some previous assump-
tion l by assuming ¬l instead

Examples with DPLL (I)
Example 8. Γ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2) ∧ (x4 ∨ ¬x3)

1. x2 is assigned to 0, Γ is simplified and results in (x1 ∨ ¬x3) ∧ (x4 ∨ ¬x3), U = {¬x2}
2. we choose ¬x3 for branching, the formula is SAT, Γ = ∅, U = {¬x2,¬x3}

Example 9. Γ = (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2) ∧ (x4 ∨ ¬x3)

1. x2 is assigned to 0, Γ is simplied and results in (x1 ∨ ¬x3 ∨ ¬x4) ∧ (x4 ∨ ¬x3), U = {¬x2}
2. if we choose now ¬x3 for branching, the process is the same as before; otherwise, if x1 is chosen, another choice has to be made

Branching matters!

Examples with DPLL (II)
Example 10. {x1∨x2∨x3, x1∨x2∨¬x3, x1∨¬x2∨x3, x1∨¬x2∨¬x3,¬x1∨x4, x1∨¬x4∨¬x5∨x6,¬x1∨x7}

(Some of) The major players (I)

Before 2K

Böhm, Tableau Inspired early work on SAT solvers and started gaining popularity for applications

POSIT, SATZ Effective proof-of-concept implementations

Grasp, SATO, RelSAT First application-targeted solvers

• Intelligent backtracking techniques
• Efficient data structures (SATO)
• Learning techniques (Grasp, RelSAT)

(Stålmarck) Patented method, first industrial SAT solver

4

(Some of) The major players (II)

After 2K

Chaff (mChaff, zChaff) turning point in the applicability of SAT

• borrows from the tradition of SATO and Grasp

• very effective on “structured” instances

• first SAT solver to conquer “hard” instances from model checking and planning domains

• winner of the SAT 2002 competition (industrial category)

SatEliteGTI/MiniSAT (winner of SAT2005, industrial category)

• mostly “Chaff-based” ...

Key technologies in today’s DPLL implementations (II)
Current state-of-the-art (SOTA) solvers can be divided in two categories:

• “look-ahead” solvers, with a powerful simplification procedure, a simple look-back (essentially backtracking)
and a heuristic based on the information gleaned during the look-ahead phase. Best for “small but relatively
difficult” instances, typically randomly generated.

• “look-back” solvers, with a simple but efficient look-ahead, a sophisticated look-back based on “learning”, and
a constant time heuristic based on the information gleaned during the look-back phase. Best for “large but
relatively easy” instances, typically encoding real-world problems.

SAT-solvers input DIMACS format
“Official” input format for SAT-solvers. Each solver has to comply with it for enter in the competition. Ex:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2) ∧ (x4 ∨ ¬x3)

Example 11.
c This is a CNF in DIMACS
c
p cnf 4 3
1 2 -3 0
-2 0
4 -3 0

DIMACS format in BNF grammar
BNF grammar

< input > ::= < preamble > < formula > EOF

< preamble > ::= [< commentlines >] < problemline >
< commentlines > ::= < commentline > < commentlines > | < commentline >
< commentline > ::= c < text > EOL
< problemline > ::= p cnf < pnum > < pnum > EOL

< formula > ::= < clauselist >
< clauselist > ::= < clause > < clauselist > | < clause >
< clause > ::= < literal > < clause > | < literal > 0
< literal > ::= < num >

< text > ::= A sequence of non− special ASCII characters
< pnum > ::= A signed integer greater than 0
< num > ::= A signed integer different from 0

5

Challenges and ongoing work

Hot topics

• Incremental SAT

• Non clausal SAT

• SAT-based decision procedures

More on:

• http://www.satlive.org/

• http://www.satisfiability.org/

In preparazione all’esercitazione...

1. Scrivere su google “Minisat solver”

2. Cliccare sul primo link

3. Sulla barra di sinistra cliccare su “MiniSat”

4. Scaricare “MiniSat_v1.14_linux” in fondo alla pagina (frame principale)

5. Provare ad eseguire “./MiniSat_v1.14_linux−h”(ove necessario, modificare i diritti sul file, e.g., “chmod 755MiniSat_v1.14_linux”)

6

