Contents

1	Motivation			
	1.1	Introducing Negation	1	
	1.2	Normal Programs	2	
	1.3	Semantics	2	
2	Stratifiable Programs			
	2.1	Dependency Graph	3	
	2.2	Stratification	3	
	2.3	Perfect Models	4	
3	Rec	ursive Negation	6	
4	Well-founded Models			
	4.1	Unfounded Sets	7	
	4.2	Well-founded Operator	9	
5	Stable Models			
	5.1	Gelfond-Lifschitz Reduct	11	

1 Motivation

Nonmonotonic Queries

- Some simple queries cannot be written in positive Datalog.
- Example: $(\pi_1 R) S$
- This query is *nonmonotone*!
- Adding tuples to S may retract result tuples.
- Positive Datalog can express only monotone queries.

Nonmonotonic Queries

- In Relational Calculus $(\pi_1 R) S$ is written using negation.
- Introduce negation also for Datalog!
- Problem: Negation through recursion?

1.1 Introducing Negation

Closed World Assumption

- Atoms for which it is not necessary to be true should be considered as false.
- Only those items which are known should be true.
- Example: Timetable
- Reason for Minimal Model semantic!

Closed World Assumption

Definition 1. For a positive program \mathcal{P} , $CWA(\mathcal{P}) = \{A \mid \mathcal{P} \not\models A\}$. Equivalently: $CWA(\mathcal{P}) = \mathbf{HB}(\mathcal{P}) - MM(\mathcal{P})$

Is this as simple if we allow rules with negative body literals?

1.2 Normal Programs

Normal Programs – Syntax

Definition 2. A normal rule is

$$\begin{split} h \leftarrow b_1, \dots, b_m, \text{not } b_{m+1}, \dots, \text{not } b_n.\\ 1 \leq m \leq n \end{split}$$

$$\begin{split} B^+(r) &= \{b_1, \dots, b_m\}\\ B^-(r) &= \{b_{m+1}, \dots, b_m\}\\ \text{not.} a &= \text{not } a, \text{not.not } a = a\\ \text{not.} L &= \{\text{not.} l \mid l \in L\}\\ B(r) &= B^+(r) \cup \text{not.} B^-(r)\\ H(r), V(r), C(r) \text{ as before} \end{split}$$

Unsafe Queries

Recall: Using Negation it is easy to violate domain independence!

Example 3.

$$positive(X) \leftarrow not zero(X).$$

Definition 4 (Safety). Each variable in a rule must occur in a positive body atom.

Example 5.

 $answer(X) \leftarrow mynumber(X), \texttt{not } zero(X).$

1.3 Semantics

Normal Programs – Semantics

- Most concepts do not change.
- Satisfaction of a rule r with respect to M: If $B^+(r) \subseteq M$ and $M \cap B^-(r) = \emptyset$, then $H(r) \in M$
- Question: Minimal Model semantics suitable?

Normal Programs

In general there is no unique minimal model.

Example 6.

 $a \leftarrow \texttt{not}b.$

There are two models $M_1 = \{a\}$ und $M_2 = \{b\}$. M_2 is not very intuitive.

Normal Programs

Semantics of "negative recursion"?

person(nicola). $male(X) \leftarrow person(X), \texttt{not} female(X).$ $female(X) \leftarrow person(X), \texttt{not} male(X).$

 $\{person(nicola), male(nicola)\}$ and $\{person(nicola), female(nicola)\}$ are minimal models

Both are equally intuitive.

Possibilities

- 1. Pragmatic: Do not allow "recursion through negation".
- 2. Three-valued: Stay with a unique model, which may leave some atoms undefined.
- 3. Two-valued: Abandon model uniqueness, stay with standard models.

2 Stratifiable Programs

2.1 Dependency Graph

Dependency Graph

Definition 7. For a negative Datalog program \mathcal{P} , we define a directed graph (V, E), where V are the predicate symbols of \mathcal{P} , and $(p,q) \in E$ if p is in the head and q is in the body of some rule. If q is in the negative body, we mark the arc.

Examples

Example 8.

$$\begin{array}{l} a \leftarrow b. \\ c \leftarrow \operatorname{not} b. \\ b \leftarrow a \end{array}$$

Example 9.
$$\begin{array}{l} a \leftarrow b, c. \\ c \leftarrow \operatorname{not} b \\ b \leftarrow a \end{array}$$

2.2 Stratification

Stratification

Main idea: Partition the program along negation.

Definition 10. A stratification is a function λ , which maps predicate symbols to integers such that for each rule with p being the head predicate the following conditions hold:

- 1. For each predicate q in the positive body, $\lambda(p) \ge \lambda(q)$.
- 2. For each predicate r in the negative body, $\lambda(p) > \lambda(r)$.

Stratification

 λ induces a partition (P₀,..., P_n) of P (assuming that λ maps to integers between 0 and n):

$$P_0 = \{r \mid \lambda(H(r)) = 0$$

...
$$P_n = \{r \mid \lambda(H(r)) = n$$

- λ defines a partial ordering between partitions.
- We can evaluate the program along this ordering.

Examples

Example 11.

$$\begin{array}{l} a \leftarrow b.\\ c \leftarrow \operatorname{not} b.\\ b \leftarrow a \end{array}$$

Stratifiable: $\lambda(a) = 0, \lambda(b) = 0, \lambda(c) = 1$
Example 12.
$$\begin{array}{l} a \leftarrow b, c.\\ c \leftarrow \operatorname{not} b.\\ b \leftarrow a \end{array}$$

Not stratifiable: $\lambda(c) > \lambda(b) \geq \lambda(a) \geq \lambda(c)$

Stratification

Theorem 13. A program is stratifiable if and only if its dependency graph contains no cycle with a marked ("negative") edge.

2.3 Perfect Models

Perfect Models

- Stratification specifies an order for evaluation.
- First fully compute the relations in the lowest stratum.
- Then move one stratum up and evaluate the relations there.
- Negation is evaluated only over fully computed relations.
- Can be treated like negation over EDB predicates.

Perfect Models und $T_{\mathcal{P}}$

Modify operator $\mathbf{T}_{\mathcal{P}}$, as \mathcal{P} may contain negation.

Definition 14.

$$\mathbf{T}_{\mathcal{P}}(I) = \{ h \mid r \in Ground(\mathcal{P}), B^+(r) \subseteq I, h \in H(r), \\ \mathtt{not}.B^-(r) \cap I = \emptyset \} \cup I$$

Perfect Models und $\mathbf{T}_{\mathcal{P}}$

Definition 15. Let $\langle P_0, \ldots, P_n \rangle$ be the partitions of a stratifiable program \mathcal{P} , induced by a stratification λ .

The sequence $M_0 = \mathbf{T}_{P_0}^{\infty}(\emptyset), M_1 = \mathbf{T}_{P_1}^{\infty}(M_0), \dots, M_n = \mathbf{T}_{P_n}^{\infty}(M_{n-1})$ defines the *Perfect Model* M_n of \mathcal{P} .

Example – stratifiable

Easy case: Negation only on EDB predicates

Example 16.

color(yellow, k1). color(yellow, k2). color(blue, k3). color(green, k4). color(red, k5).

 $block(K) \leftarrow color(F, K).$ $block(K) \leftarrow form(F, K).$ $diffcolor(K1, K2) \leftarrow color(F, K1), block(K2), \texttt{not} color(F, K2).$

Example – stratifiable

Example 17.

form(box, k1). form(cone, k2). form(disc, k3). form(box, k4). form(pyramid, k5).

 $\begin{array}{ll} block(K) \leftarrow color(F,K). & block(K) \leftarrow form(F,K).\\ pointy_top(K) \leftarrow block(K), form(cone,K).\\ pointy_top(K) \leftarrow block(K), form(pyramid,K).\\ fits_on(K1,K2) \leftarrow block(K1), block(K2), \texttt{not}\ pointy_top(K2). \end{array}$

Example – stratifiable

Example 18.

 $\begin{array}{l} form(box,k1). \ form(cone,k2). \ form(disc,k3). \\ form(box,k4). \ form(pyramid,k5). \end{array}$

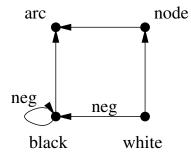
 $\begin{array}{ll} block(K) \leftarrow color(F,K). & block(K) \leftarrow form(F,K).\\ flat_top(K) \leftarrow block(K), form(box,K).\\ flat_top(K) \leftarrow block(K), form(disc,K).\\ pointy_top(K) \leftarrow block(K), \texttt{not} \ flat_top(K).\\ fits_on(K1,K2) \leftarrow block(K1), block(K2), \texttt{not} \ pointy_top(K2). \end{array}$

Example – unstratified

 $\begin{array}{l} arc(a,b).\ arc(b,c).\ arc(b,d).\\ node(N) \leftarrow arc(N,Y).\ node(N) \leftarrow arc(X,N).\\ black(Y) \leftarrow arc(X,Y), \texttt{not}\ black(X).\\ white(X) \leftarrow node(X), \texttt{not}\ black(X). \end{array}$

Example – unstratified

Dependency Graph:



Perfect Models

• Note: Perfect Models are defined only on stratifiable programs.

Theorem 19. For any stratifiable program, there exists a unique Perfect Model.

Unstratifiable Programs

Example 20.

```
\begin{array}{l}person(nicola).\\alive(X) \leftarrow person(X).\\male(X) \leftarrow person(X), \texttt{not}\; female(X).\\female(X) \leftarrow person(X), \texttt{not}\; male(X).\end{array}
```

Perfect Models are not defined. But we would like to conclude at least *alive(nicola)*.

3 Recursive Negation

Recursive Negation

Example 21.

person(nicola). $alive(X) \leftarrow person(X).$ $male(X) \leftarrow person(X), \texttt{not} female(X).$ $female(X) \leftarrow person(X), \texttt{not} male(X).$

Recursive Negation

Example 22. Using generalized $\mathbf{T}_{\mathcal{P}}$:

```
 \begin{split} \mathbf{T}_{\mathcal{P}}(\emptyset) &= \{person(nicola)\} \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset)) &= \{person(nicola), alive(nicola), male(nicola), female(nicola)\} \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset))) &= \{person(nicola), alive(nicola)\} \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset)))) &= \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset)) \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset))))) &= \mathbf{T}_{\mathcal{P}}(\emptyset) \end{split}
```

Recursive Negation

Example 23. But there are two fixpoints:

$$\begin{split} \mathbf{T}_{\mathcal{P}}(\{person(nicola), alive(nicola), male(nicola)\}) &= \\ \{person(nicola), alive(nicola), male(nicola)\} \\ \mathbf{T}_{\mathcal{P}}(\{person(nicola), alive(nicola), female(nicola)\}) &= \\ \{person(nicola), alive(nicola), female(nicola)\} \end{split}$$

Recursive Negation

Two ways of resolving this:

- 1. Be cautious and do not say anything about male(nicola) and female(nicola).
- 2. Consider two scenarios: One in which male(nicola) is true, another in which female(nicola) is true.

Problems to resolve:

- 1. needs another truth value undefined.
- 2. allows more than one model.

4 Well-founded Models

4.1 Unfounded Sets

Three-valued Interpretations

Definition 24. A *three-valued* (or *partial*) interpretation I is a set of ground not literals, such that for any ground atom a not both $a \in I$ and $not a \in I$.

Example 25. $I = \{ \text{not } a, c \}$

- a is false in I
- b is undefined in I
- c is true in I

Unfounded Sets

Goal: Derive as much negative information as possible.

Example 26.

 $a \gets \texttt{not} \ b.$

b does not occur in any head, thus can never become true und should be false. a should therefore be true.

Unfounded Sets

Goal: Derive as much negative information as possible.

Example 27.

$$\begin{array}{l} a \leftarrow b. \\ c \leftarrow \texttt{not} \ a \end{array}$$

Given the interpretation $\{not b\}$, a can never become true and should be false. c should be true in this case.

Unfounded Sets

Goal: Derive as much negative information as possible.

Example 28.

$$a \leftarrow b.$$

 $b \leftarrow a.$
 $c \leftarrow \text{not } a$

a and b occur in some heads, but all bodies of these rules require one of a or b to become true. Therefore a and b can become true only via themselves and should be false, hence c should be true.

Unfounded Sets – Definition

Definition 29. A set $U \subseteq HB(\mathcal{P})$ is *unfounded* with respect to a partial interpretation *I* if the following holds:

For each $a \in U$ and each rule $r \in Ground(\mathcal{P})$ with $H(r) = \{a\}$ at least one of the the following conditions holds:

- 1. $\exists \ell \in B(r) : \texttt{not.} \ell \in I$
- 2. $B^+(r) \cap U \neq \emptyset$

Unfounded Sets – Example

Example 30.

 $a \leftarrow \texttt{not} b.$

For $I = \emptyset$, $\{b\}$ is an unfounded set.

Unfounded Sets – Example

Example 31.

 $\begin{array}{l} a \leftarrow b. \\ c \leftarrow \texttt{not} \ a. \end{array}$

For $I = \{ \text{not } b \}, \{ a \}$ is an unfounded set.

Unfounded Sets – Example

Example 32.

$$\begin{array}{l} a \leftarrow b. \\ b \leftarrow a. \\ c \leftarrow \operatorname{not} a. \end{array}$$

For $I = \emptyset$, $\{a, b\}$ is an unfounded set, because condition 2 holds for $a \leftarrow b$. and $b \leftarrow a$..

4.2 Well-founded Operator

Unfounded Operator

Theorem 33. For any program \mathcal{P} and partial interpretation I, the greatest unfounded set $GUS_{\mathcal{P}}(I)$ (which is a superset of all unfounded sets) exists and is unique.

Idea: Use $GUS_{\mathcal{P}}(I)$ to derive negative information.

Definition 34. Operator $\mathbf{U}_{\mathcal{P}}(I) = \{ \text{not.} a \mid a \in GUS_{\mathcal{P}}(I) \}$

Well-Founded Operator

First generalize $\mathbf{T}_{\mathcal{P}}(I)$ for partial interpretations:

Definition 35. $\mathbf{T}_{\mathcal{P}}(I) := \{h \mid r \in Ground(\mathcal{P}), B(r) \subseteq I, h \in H(r)\}$

Define the *well-founded* operator $\mathbf{W}_{\mathcal{P}}(I)$ as a combination of $\mathbf{T}_{\mathcal{P}}(I)$ and $\mathbf{U}_{\mathcal{P}}(I)$.

Definition 36. $\mathbf{W}_{\mathcal{P}}(I) = \mathbf{T}_{\mathcal{P}}(I) \cup \mathbf{U}_{\mathcal{P}}(I)$

Well-Founded Model

Kenneth Ross John Schlipf

Allen Van Gelder

Well-Founded Model

Theorem 37. $\mathbf{W}_{\mathcal{P}}$ is monotone and allows for a least fixpoint.

Definition 38. The least fixpoint $\mathbf{W}_{\mathcal{P}}^{\infty}(\emptyset)$ is the Well-Founded Model of a normal program \mathcal{P} .

Well-Founded Model – Properties

Theorem 39. Each normal program has a unique Well-Founded Model.

Well-Founded Model – Properties

Definition 40. A partial interpretation I is total if $I \cup not.I = HB(\mathcal{P})$ (each ground atom is true or false).

Theorem 41. The Well-Founded Model for positive programs is total and corresponds to its Minimal Model.

Theorem 42. The Well-Founded Model for stratifiable programs is total and corresponds to its Perfect Model.

Well-Founded Model – Example

Example 43.

 $\begin{array}{l}person(nicola).\\alive(X) \leftarrow person(X).\\male(X) \leftarrow person(X), \texttt{not}\; female(X).\\female(X) \leftarrow person(X), \texttt{not}\; male(X).\end{array}$

The Well-Founded Model is $\{person(nicola), alive(nicola)\}$ and it is not total.

5 Stable Models

Stable Models

- No longer a unique model.
- Use total models.
- Stability criterion instead of fixpoint semantics.

Stable Models

Vladimir Lifschitz

Stable Models

Froidevaux

Christine

5.1 Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Definition 44. The *Gelfond-Lifschitz reduct* of a program \mathcal{P}^{I} is defined as follows, starting from $Ground(\mathcal{P})$:

- 1. Delete rules r, for which $B^-(r) \cap I \neq \emptyset$.
- 2. Delete the negative bodies of the remaining rules.

Gelfond-Lifschitz Reduct

Example 45.

$$\mathcal{P} = \{ male(g) \leftarrow \texttt{not} female(g). \\ female(q) \leftarrow \texttt{not} male(q). \}$$

 $I_{1} = \emptyset, \mathcal{P}^{I_{1}} = \{male(g). female(g).\} I_{2} = \{male(g)\}, \mathcal{P}^{I_{2}} = \{male(g).\} I_{3} = \{female(g)\}, \mathcal{P}^{I_{3}} = \{female(g).\} I_{4} = \{male(g), female(g)\}, \mathcal{P}^{I_{4}} = \emptyset$

Stable Models

Fact 46. Gelfond-Lifschitz reducts are always positive, and have a unique Minimal Model.

Definition 47. A total interpretation M is a Stable Model of \mathcal{P} , if $M = MM(\mathcal{P}^M)$.

Stable Models – Example

Example 48.

$$\mathcal{P} = \{ male(g) \leftarrow \texttt{not} female(g). \\ female(q) \leftarrow \texttt{not} male(q). \}$$

 $I_{1} = \emptyset, \mathcal{P}^{I_{1}} = \{male(g). female(g).\}, MM(\mathcal{P}^{I_{1}}) \neq I_{1} I_{2} = \{male(g)\}, \mathcal{P}^{I_{2}} = \{male(g).\}, MM(\mathcal{P}^{I_{2}}) = I_{2} I_{2} \text{ is a stable model. } I_{3} = \{female(g)\}, \mathcal{P}^{I_{3}} = \{female(g).\}, MM(\mathcal{P}^{I_{3}}) = I_{3} I_{3} \text{ is a stable model. } I_{4} = \{male(g). female(g)\}, \mathcal{P}^{I_{4}} = \emptyset, MM(\mathcal{P}^{I_{4}}) \neq I_{4}$

Stable Models – Example

Example 49.

$$\mathcal{P} = \{ weird \leftarrow \texttt{not} weird. \}$$

 $I_1 = \emptyset, \mathcal{P}^{I_1} = \{weird.\}, MM(\mathcal{P}^{I_1}) \neq I_1 I_2 = \{weird\}, \mathcal{P}^{I_2} = \emptyset, MM(\mathcal{P}^{I_2}) \neq I_2$ There is no stable model!

Stable Models

Theorem 50. For positive programs there is exactly one Stable Model, which is equal to the Minimal Model.

Theorem 51. For stratifiable programs there is exactly one Stable Model, which is equal to the Perfect Model.

Stable Models

Theorem 52. *If the Well-Founded Model of a program is total, then the program has a corresponding unique Stable Model.*

Theorem 53. *The positive part of the Well-Founded Model of a program is contained in each Stable Model of the program.*

Stable Models – Consequences

Definition 54 (Brave/Credulous Reasoning). $\mathcal{P} \models_b l$, if *l* is true in some Stable Model of \mathcal{P} .

Definition 55 (Cautious/Skeptical Reasoning). $\mathcal{P} \models_c l$, if *l* is true in all Stable Models of \mathcal{P} .

Note: If \mathcal{P} admits no Stable Model, then all literals are cautious/skeptical consequences!

Stable Models – Example

Example 56 (Two-Colorability). Given a graph, can each vertex be assigned one of two colors, such that adjacent vertices do not have the same color?

$$\begin{split} vertex(V) &\leftarrow arc(V,Y). \ vertex(V) \leftarrow arc(X,V).\\ color(V,white) \leftarrow vertex(V), \texttt{not} \ color(V,black).\\ color(V,black) \leftarrow vertex(V), \texttt{not} \ color(V,white).\\ bad \leftarrow color(V1,F), color(V2,F),\\ arc(V1,V2), \texttt{not} \ bad. \end{split}$$