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Nonmonotonic Queries

Some simple queries cannot be written in positive Datalog.
Example: (π1 R)− S
This query is nonmonotone!
Adding tuples to S may retract result tuples.
Positive Datalog can express only monotone queries.
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Nonmonotonic Queries

In Relational Calculus (π1 R)− S is written using negation.
Introduce negation also for Datalog!
Problem: Negation through recursion?
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Closed World Assumption

Atoms for which it is not necessary to be true should be
considered as false.
Only those items which are known should be true.
Example: Timetable
Reason for Minimal Model semantic!
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Closed World Assumption

Definition
For a positive program P, CWA(P) = {A | P 6|= A}.
Equivalently: CWA(P) = HB(P)−MM(P)

Is this as simple if we allow rules with negative body literals?
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Normal Programs – Syntax

Definition
A normal rule is

h← b1, . . . ,bm,not bm+1, . . . ,not bn.
1 ≤ m ≤ n

Let
B+(r) = {b1, . . . ,bm}
B−(r) = {bm+1, . . . ,bm}
not.a = not a,not.not a = a
not.L = {not.l | l ∈ L}
B(r) = B+(r) ∪ not.B−(r)
H(r),V (r),C(r) as before

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Introducing Negation
Normal Programs
Semantics

Unsafe Queries

Recall: Using Negation it is easy to violate domain
independence!

Example

positive(X )← not zero(X ).

Definition (Safety)
Each variable in a rule must occur in a positive body atom.

Example

answer(X )← mynumber(X ),not zero(X ).
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Normal Programs – Semantics

Most concepts do not change.
Satisfaction of a rule r with respect to M:
If B+(r) ⊆ M and M ∩ B−(r) = ∅, then H(r) ∈ M
Question: Minimal Model semantics suitable?
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Normal Programs

In general there is no unique minimal model.

Example

a← notb.

There are two models M1 = {a} und M2 = {b}.
M2 is not very intuitive.
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Normal Programs

Semantics of “negative recursion”?

person(nicola).
male(X )← person(X ),not female(X ).
female(X )← person(X ),not male(X ).

{person(nicola),male(nicola)} and
{person(nicola), female(nicola)} are minimal models
Both are equally intuitive.
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Possibilities

1 Pragmatic: Do not allow “recursion through negation”.
2 Three-valued: Stay with a unique model, which may leave

some atoms undefined.
3 Two-valued: Abandon model uniqueness, stay with

standard models.
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Dependency Graph

Definition
For a negative Datalog program P, we define a directed graph
(V ,E), where V are the predicate symbols of P, and (p,q) ∈ E
if p is in the head and q is in the body of some rule. If q is in the
negative body, we mark the arc.
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Examples

Example

a← b.
c ← not b.
b ← a

Example

a← b, c.
c ← not b.
b ← a
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Stratification

Main idea: Partition the program along negation.

Definition
A stratification is a function λ, which maps predicate symbols to
integers such that for each rule with p being the head predicate
the following conditions hold:

1 For each predicate q in the positive body, λ(p) ≥ λ(q).
2 For each predicate r in the negative body, λ(p) > λ(r).
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Stratification

λ induces a partition 〈P0, . . . ,Pn〉 of P (assuming that λ
maps to integers between 0 and n):

P0 = {r | λ(H(r)) = 0
. . .
Pn = {r | λ(H(r)) = n

λ defines a partial ordering between partitions.
We can evaluate the program along this ordering.
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Example

a← b.
c ← not b.
b ← a

Stratifiable: λ(a) = 0, λ(b) = 0, λ(c) = 1

Example

a← b, c.
c ← not b.
b ← a

Not stratifiable: λ(c) > λ(b) ≥ λ(a) ≥ λ(c)
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Stratification

Theorem
A program is stratifiable if and only if its dependency graph
contains no cycle with a marked (“negative”) edge.
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Perfect Models

Stratification specifies an order for evaluation.
First fully compute the relations in the lowest stratum.
Then move one stratum up and evaluate the relations
there.
Negation is evaluated only over fully computed relations.
Can be treated like negation over EDB predicates.
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Perfect Models und TP

Modify operator TP , as P may contain negation.

Definition

TP(I) = {h |r ∈ Ground(P),B+(r) ⊆ I,h ∈ H(r),
not.B−(r) ∩ I = ∅} ∪ I
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Perfect Models und TP

Definition
Let 〈P0, . . . ,Pn〉 be the partitions of a stratifiable program P,
induced by a stratification λ.
The sequence M0 = T∞P0

(∅), M1 = T∞P1
(M0), . . .,

Mn = T∞Pn
(Mn−1) defines the Perfect Model Mn of P.

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Dependency Graph
Stratification
Perfect Models

Example – stratifiable

Easy case: Negation only on EDB predicates

Example

color(yellow , k1). color(yellow , k2). color(blue, k3).
color(green, k4). color(red , k5).

block(K )← color(F ,K ). block(K )← form(F ,K ).
diffcolor(K 1,K 2)←

color(F ,K 1),block(K 2),not color(F ,K 2).
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Example – stratifiable

Example

form(box , k1). form(cone, k2). form(disc, k3).
form(box , k4). form(pyramid , k5).

block(K )← color(F ,K ). block(K )← form(F ,K ).
pointy_top(K )← block(K ), form(cone,K ).
pointy_top(K )← block(K ), form(pyramid ,K ).
fits_on(K 1,K 2)← block(K 1),block(K 2),not pointy_top(K 2).
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Example – stratifiable

Example

form(box , k1). form(cone, k2). form(disc, k3).
form(box , k4). form(pyramid , k5).

block(K )← color(F ,K ). block(K )← form(F ,K ).
flat_top(K )← block(K ), form(box ,K ).
flat_top(K )← block(K ), form(disc,K ).
pointy_top(K )← block(K ),not flat_top(K ).
fits_on(K 1,K 2)← block(K 1),block(K 2),not pointy_top(K 2).
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Example – unstratified

arc(a,b). arc(b, c). arc(b,d).
node(N)← arc(N,Y ). node(N)← arc(X ,N).
black(Y )← arc(X ,Y ),not black(X ).
white(X )← node(X ),not black(X ).
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Example – unstratified

Dependency Graph:

arc node

neg
neg

black white
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Perfect Models

Note: Perfect Models are defined only on stratifiable
programs.

Theorem
For any stratifiable program, there exists a unique Perfect
Model.
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Unstratifiable Programs

Example

person(nicola).
alive(X )← person(X ).
male(X )← person(X ),not female(X ).
female(X )← person(X ),not male(X ).

Perfect Models are not defined.
But we would like to conclude at least alive(nicola).
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Example

person(nicola).
alive(X )← person(X ).
male(X )← person(X ),not female(X ).
female(X )← person(X ),not male(X ).
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Example
Using generalized TP :

TP (∅) = {person(nicola)}
TP (TP (∅)) = {person(nicola), alive(nicola), male(nicola), female(nicola)}
TP (TP (TP (∅))) = {person(nicola), alive(nicola)}
TP (TP (TP (TP (∅)))) = TP (TP (∅))
TP (TP (TP (TP (TP (∅))))) = TP (∅)
· · ·
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Example
But there are two fixpoints:

TP({person(nicola),alive(nicola),male(nicola)}) =
{person(nicola),alive(nicola),male(nicola)}

TP({person(nicola),alive(nicola), female(nicola)}) =
{person(nicola),alive(nicola), female(nicola)}
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Recursive Negation

Two ways of resolving this:

1 Be cautious and do not say anything about male(nicola)
and female(nicola).

2 Consider two scenarios: One in which male(nicola) is true,
another in which female(nicola) is true.

Problems to resolve:

1 needs another truth value undefined.
2 allows more than one model.
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Three-valued Interpretations

Definition
A three-valued (or partial) interpretation I is a set of ground not
literals, such that for any ground atom a not both a ∈ I and
nota ∈ I.

Example

I = {not a, c}

a is false in I
b is undefined in I
c is true in I
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Definition
A three-valued (or partial) interpretation I is a set of ground not
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Unfounded Sets

Goal: Derive as much negative information as possible.

Example

a← not b.

b does not occur in any head, thus can never become true und
should be false. a should therefore be true.
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Unfounded Sets

Goal: Derive as much negative information as possible.

Example

a← b.
c ← not a.

Given the interpretation {not b}, a can never become true and
should be false. c should be true in this case.

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Unfounded Sets
Well-founded Operator

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

a← b.
b ← a.
c ← not a.

a and b occur in some heads, but all bodies of these rules
require one of a or b to become true. Therefore a and b can
become true only via themselves and should be false, hence c
should be true.
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Unfounded Sets – Definition

Definition
A set U ⊆ HB(P) is unfounded with respect to a partial
interpretation I if the following holds:
For each a ∈ U and each rule r ∈ Ground(P) with H(r) = {a}
at least one of the the following conditions holds:

1 ∃` ∈ B(r) : not.` ∈ I
2 B+(r) ∩ U 6= ∅
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Unfounded Sets – Example

Example

a← not b.

For I = ∅, {b} is an unfounded set.
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Unfounded Sets – Example

Example

a← b.
c ← not a.

For I = {not b}, {a} is an unfounded set.
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Unfounded Sets – Example

Example

a← b.
b ← a.
c ← not a.

For I = ∅, {a,b} is an unfounded set, because condition 2 holds
for a← b. and b ← a..
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Unfounded Operator

Theorem
For any program P and partial interpretation I, the greatest
unfounded set GUSP(I) (which is a superset of all unfounded
sets) exists and is unique.

Idea: Use GUSP(I) to derive negative information.

Definition
Operator UP(I) = {not.a | a ∈ GUSP(I)}
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Unfounded Operator

Theorem
For any program P and partial interpretation I, the greatest
unfounded set GUSP(I) (which is a superset of all unfounded
sets) exists and is unique.

Idea: Use GUSP(I) to derive negative information.

Definition
Operator UP(I) = {not.a | a ∈ GUSP(I)}
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Well-Founded Operator

First generalize TP(I) for partial interpretations:

Definition
TP(I) := {h | r ∈ Ground(P),B(r) ⊆ I,h ∈ H(r)}

Define the well-founded operator WP(I) as a combination of
TP(I) and UP(I).

Definition
WP(I) = TP(I) ∪ UP(I)
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Definition
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Theorem
WP is monotone and allows for a least fixpoint.

Definition
The least fixpoint W∞P (∅) is the Well-Founded Model of a
normal program P.
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Theorem
WP is monotone and allows for a least fixpoint.

Definition
The least fixpoint W∞P (∅) is the Well-Founded Model of a
normal program P.
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Well-Founded Model – Properties

Theorem
Each normal program has a unique Well-Founded Model.
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Well-Founded Model – Properties

Definition
A partial interpretation I is total if I ∪ not.I = HB(P) (each
ground atom is true or false).

Theorem
The Well-Founded Model for positive programs is total and
corresponds to its Minimal Model.

Theorem
The Well-Founded Model for stratifiable programs is total and
corresponds to its Perfect Model.
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Well-Founded Model – Example

Example

person(nicola).
alive(X )← person(X ).
male(X )← person(X ),not female(X ).
female(X )← person(X ),not male(X ).

The Well-Founded Model is {person(nicola),alive(nicola)} and
it is not total.
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Stable Models

No longer a unique model.
Use total models.
Stability criterion instead of fixpoint semantics.
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Stable Models
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1 Motivation

Introducing Negation
Normal Programs
Semantics

2 Stratifiable Programs
Dependency Graph
Stratification
Perfect Models

3 Recursive Negation
4 Well-founded Models

Unfounded Sets
Well-founded Operator

5 Stable Models
Gelfond-Lifschitz Reduct
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Gelfond-Lifschitz Reduct

Definition

The Gelfond-Lifschitz reduct of a program P I is defined as
follows, starting from Ground(P):

1 Delete rules r , for which B−(r) ∩ I 6= ∅.
2 Delete the negative bodies of the remaining rules.
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Gelfond-Lifschitz Reduct

Example

P = { male(g)← not female(g).
female(g)← not male(g).}

I1 = ∅, P I1 = {male(g). female(g).}
I2 = {male(g)}, P I2 = {male(g).}
I3 = {female(g)}, P I3 = {female(g).}
I4 = {male(g), female(g)}, P I4 = ∅
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Stable Models

Fact
Gelfond-Lifschitz reducts are always positive, and have a
unique Minimal Model.

Definition

A total interpretation M is a Stable Model of P, if M = MM(PM).
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Stable Models – Example

Example

P = { male(g)← not female(g).
female(g)← not male(g).}

I1 = ∅, P I1 = {male(g). female(g).} , MM(P I1) 6= I1
I2 = {male(g)}, P I2 = {male(g).}, MM(P I2) = I2
I2 is a stable model.
I3 = {female(g)}, P I3 = {female(g).}, MM(P I3) = I3
I3 is a stable model.
I4 = {male(g). female(g)}, P I4 = ∅, MM(P I4) 6= I4
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Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

P = { weird ← not weird .}

I1 = ∅, P I1 = {weird .}, MM(P I1) 6= I1
I2 = {weird}, P I2 = ∅, MM(P I2) 6= I2
There is no stable model!

Wolfgang Faber Datalog with Negation



Motivation
Stratifiable Programs

Recursive Negation
Well-founded Models

Stable Models

Gelfond-Lifschitz Reduct

Stable Models

Theorem
For positive programs there is exactly one Stable Model, which
is equal to the Minimal Model.

Theorem
For stratifiable programs there is exactly one Stable Model,
which is equal to the Perfect Model.
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Stable Models

Theorem
If the Well-Founded Model of a program is total, then the
program has a corresponding unique Stable Model.

Theorem
The positive part of the Well-Founded Model of a program is
contained in each Stable Model of the program.
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Stable Models – Consequences

Definition (Brave/Credulous Reasoning)

P |=b l , if l is true in some Stable Model of P.

Definition (Cautious/Skeptical Reasoning)

P |=c l , if l is true in all Stable Models of P.

Note: If P admits no Stable Model, then all literals are
cautious/skeptical consequences!
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Stable Models – Example

Example (Two-Colorability)
Given a graph, can each vertex be assigned one of two colors,
such that adjacent vertices do not have the same color?

vertex(V )← arc(V ,Y ). vertex(V )← arc(X ,V ).
color(V ,white)← vertex(V ),not color(V ,black).
color(V ,black)← vertex(V ),not color(V ,white).
bad ← color(V1,F ), color(V2,F ),

arc(V1,V2),not bad .
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