Datalog with Negation

Wolfgang Faber

University of Calabria, Italy

2007

Wolfgang Faber Datalog with Negation

ヘロト 人間 とくほとくほとう

Motivation

- Introducing Negation
- Normal Programs
- Semantics
- 2 Stratifiable Programs
 - Dependency Graph
 - Stratification
 - Perfect Models
- 3
- **Recursive Negation**
- Well-founded Models
 - Unfounded Sets
 - Well-founded Operator
- 5 Stable Models
 - Gelfond-Lifschitz Reduct

▲ @ ▶ ▲ ⊇ ▶

ъ

ntroducing Negation Normal Programs Semantics

Nonmonotonic Queries

- Some simple queries cannot be written in positive Datalog.
- Example: $(\pi_1 R) S$
- This query is nonmonotone!
- Adding tuples to *S* may retract result tuples.
- Positive Datalog can express only monotone queries.

くロト (過) (目) (日)

ntroducing Negation Normal Programs Semantics

Nonmonotonic Queries

- In Relational Calculus $(\pi_1 R) S$ is written using negation.
- Introduce negation also for Datalog!
- Problem: Negation through recursion?

イロト 不得 とくほ とくほとう

æ

Introducing Negation Normal Programs Semantics

Outline

- **Motivation** 1 Introducing Negation Normal Programs Stratification Perfect Models Unfounded Sets
 - Well-founded Operator
 - 5 Stable Models
 - Gelfond-Lifschitz Reduct

イロト イポト イヨト イヨト

Introducing Negation Normal Programs Semantics

Closed World Assumption

- Atoms for which it is not necessary to be true should be considered as false.
- Only those items which are known should be true.
- Example: Timetable
- Reason for Minimal Model semantic!

くロト (過) (目) (日)

æ

Introducing Negation Normal Programs Semantics

Closed World Assumption

Definition

For a positive program \mathcal{P} , $CWA(\mathcal{P}) = \{A \mid \mathcal{P} \not\models A\}$. Equivalently: $CWA(\mathcal{P}) = HB(\mathcal{P}) - MM(\mathcal{P})$

Is this as simple if we allow rules with negative body literals?

ヘロア 人間 アメヨア 人口 ア

Introducing Negation Normal Programs Semantics

Outline

Motivation 1 Introducing Negation Normal Programs Stratification Perfect Models Unfounded Sets Well-founded Operator

イロト イポト イヨト イヨト

Introducing Negation Normal Programs Semantics

Normal Programs – Syntax

Definition

A normal rule is

$$h \leftarrow b_1, \ldots, b_m$$
, not b_{m+1}, \ldots , not b_n .
 $1 \le m \le n$

Let

$$B^+(r) = \{b_1, ..., b_m\}$$

 $B^-(r) = \{b_{m+1}, ..., b_m\}$
not. $a = not a, not.not a = a$
not. $L = \{not.I \mid I \in L\}$
 $B(r) = B^+(r) \cup not.B^-(r)$
 $H(r), V(r), C(r)$ as before

・ロト ・回ト ・ヨト ・ヨト

æ

Introducing Negation Normal Programs Semantics

Unsafe Queries

Recall: Using Negation it is easy to violate domain independence!

Example

 $positive(X) \leftarrow not zero(X).$

Definition (Safety)

Each variable in a rule must occur in a positive body atom.

Example

 $answer(X) \leftarrow mynumber(X), not zero(X).$

ヘロト 人間 とくほとくほとう

Introducing Negation Normal Programs Semantics

Unsafe Queries

Recall: Using Negation it is easy to violate domain independence!

Example

 $positive(X) \leftarrow not zero(X).$

Definition (Safety)

Each variable in a rule must occur in a positive body atom.

Example

answer(X)
$$\leftarrow$$
 mynumber(X), not zero(X).

Wolfgang Faber Datalog with Negation

・ロット (雪) () () () ()

Introducing Negation Normal Programs Semantics

Outline

Motivation Introducing Negation

Normal Programs

Semantics

- 2) Stratifiable Programs
 - Dependency Graph
 - Stratification
 - Perfect Models
- Recursive Negation
- Well-founded Models
 - Unfounded Sets
 - Well-founded Operator
- 5 Stable Models
 - Gelfond-Lifschitz Reduct

イロト イポト イヨト イヨト

Introducing Negation Normal Programs Semantics

Normal Programs – Semantics

- Most concepts do not change.
- Satisfaction of a rule *r* with respect to *M*: If $B^+(r) \subseteq M$ and $M \cap B^-(r) = \emptyset$, then $H(r) \in M$
- Question: Minimal Model semantics suitable?

ヘロト ヘ戸ト ヘヨト ヘヨト

Introducing Negation Normal Programs Semantics

Normal Programs

In general there is no unique minimal model.

Example $a \leftarrow \text{not} b.$ There are two models $M_1 = \{a\}$ und $M_2 = \{b\}$.

イロト 不得 とくほ とくほとう

æ

Introducing Negation Normal Programs Semantics

Normal Programs

In general there is no unique minimal model.

Example

$$a \leftarrow \mathsf{not} b.$$

There are two models $M_1 = \{a\}$ und $M_2 = \{b\}$. M_2 is not very intuitive.

イロト イポト イヨト イヨト

Introducing Negation Normal Programs Semantics

Normal Programs

In general there is no unique minimal model.

Example

$$a \leftarrow \text{not} b.$$

There are two models
$$M_1 = \{a\}$$
 und $M_2 = \{b\}$.
 M_2 is not very intuitive.

イロン 不同 とくほう イヨン

3

Introducing Negation Normal Programs Semantics

Normal Programs

Semantics of "negative recursion"?

person(nicola). $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

{*person*(*nicola*), *male*(*nicola*)} and {*person*(*nicola*), *female*(*nicola*)} are minimal models Both are equally intuitive.

くロト (過) (目) (日)

Introducing Negation Normal Programs Semantics

Normal Programs

Semantics of "negative recursion"?

person(nicola). $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

{*person*(*nicola*), *male*(*nicola*)} and {*person*(*nicola*), *female*(*nicola*)} are minimal models Both are equally intuitive.

くロト (過) (目) (日)

Introducing Negation Normal Programs Semantics

Normal Programs

Semantics of "negative recursion"?

person(nicola). $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

{*person*(*nicola*), *male*(*nicola*)} and {*person*(*nicola*), *female*(*nicola*)} are minimal models Both are equally intuitive.

・ロト ・四ト ・ヨト ・ヨト

Introducing Negation Normal Programs Semantics

- Pragmatic: Do not allow "recursion through negation".
- Three-valued: Stay with a unique model, which may leave some atoms undefined.
- Two-valued: Abandon model uniqueness, stay with standard models.

イロト イポト イヨト イヨト

æ

Dependency Graph Stratification Perfect Models

Outline

Introducing Negation Normal Programs 2 Stratifiable Programs Dependency Graph Stratification Perfect Models Unfounded Sets Well-founded Operator

イロト イポト イヨト イヨト

Dependency Graph Stratification Perfect Models

Dependency Graph

Definition

For a negative Datalog program \mathcal{P} , we define a directed graph (V, E), where V are the predicate symbols of \mathcal{P} , and $(p, q) \in E$ if p is in the head and q is in the body of some rule. If q is in the negative body, we mark the arc.

イロト イポト イヨト イヨト

Dependency Graph Stratification Perfect Models

Example

 $a \leftarrow b.$ $c \leftarrow \text{not } b.$ $b \leftarrow a$

Example

$$a \leftarrow b, c.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

ヘロト 人間 とくほとくほとう

₹ 990

Dependency Graph

Example

 $a \leftarrow b$. $c \leftarrow \text{not.} b$. $b \leftarrow a$

Example

a ← *b*, *c*. $c \leftarrow \text{not } b.$

$$b \leftarrow a$$

ヘロト 人間 とくほとくほとう

₹ 990

Dependency Graph Stratification Perfect Models

Outline

イロト イポト イヨト イヨト

Dependency Graph Stratification Perfect Models

Stratification

Main idea: Partition the program along negation.

Definition

A stratification is a function λ , which maps predicate symbols to integers such that for each rule with *p* being the head predicate the following conditions hold:

- For each predicate q in the positive body, $\lambda(p) \ge \lambda(q)$.
- **②** For each predicate *r* in the negative body, $\lambda(p) > \lambda(r)$.

イロン イロン イヨン イヨン

Dependency Graph Stratification Perfect Models

Stratification

λ induces a partition (P₀,..., P_n) of P (assuming that λ maps to integers between 0 and n):

$$P_0 = \{r \mid \lambda(H(r)) = 0$$

...
$$P_n = \{r \mid \lambda(H(r)) = n$$

- λ defines a partial ordering between partitions.
- We can evaluate the program along this ordering.

イロン イロン イヨン イヨン

Dependency Graph Stratification Perfect Models

Examples

Example

$$a \leftarrow b.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Stratifiable: $\lambda(a) = 0, \lambda(b) = 0, \lambda(c) = 1$

Example

$$a \leftarrow b, c.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Dependency Graph Stratification Perfect Models

Examples

Example

$$a \leftarrow b.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Stratifiable: $\lambda(a) = 0, \lambda(b) = 0, \lambda(c) = 1$

Example

$$a \leftarrow b, c.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Dependency Graph Stratification Perfect Models

Examples

Example

$$a \leftarrow b.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Stratifiable: $\lambda(a) = 0, \lambda(b) = 0, \lambda(c) = 1$

Example

$$a \leftarrow b, c.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Dependency Graph Stratification Perfect Models

Examples

Example

$$a \leftarrow b.$$

 $c \leftarrow \text{not } b.$
 $b \leftarrow a$

Stratifiable: $\lambda(a) = 0, \lambda(b) = 0, \lambda(c) = 1$

Example

$$a \leftarrow b, c.$$

 $c \leftarrow not b.$
 $b \leftarrow a$

Dependency Graph Stratification Perfect Models

Stratification

Theorem

A program is stratifiable if and only if its dependency graph contains no cycle with a marked ("negative") edge.

Wolfgang Faber Datalog with Negation

イロト イポト イヨト イヨト

ъ

Dependency Graph Stratification Perfect Models

Outline

Introducing Negation Normal Programs 2 Stratifiable Programs Stratification Perfect Models Unfounded Sets Well-founded Operator

イロト イポト イヨト イヨト

Dependency Graph Stratification Perfect Models

Perfect Models

- Stratification specifies an order for evaluation.
- First fully compute the relations in the lowest stratum.
- Then move one stratum up and evaluate the relations there.
- Negation is evaluated only over fully computed relations.
- Can be treated like negation over EDB predicates.

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Dependency Graph Stratification Perfect Models

Perfect Models und $T_{\mathcal{P}}$

Modify operator $T_{\mathcal{P}}$, as \mathcal{P} may contain negation.

Definition

$$\begin{aligned} \mathbf{T}_{\mathcal{P}}(I) &= \{ h \, | r \in Ground(\mathcal{P}), B^+(r) \subseteq I, h \in H(r), \\ \text{not.} B^-(r) \cap I = \emptyset \} \cup I \end{aligned}$$

イロン 不得 とくほ とくほとう

3

Dependency Graph Stratification Perfect Models

Perfect Models und $T_{\mathcal{P}}$

Definition

Let $\langle P_0, \ldots, P_n \rangle$ be the partitions of a stratifiable program \mathcal{P} , induced by a stratification λ .

The sequence $M_0 = \mathbf{T}_{P_0}^{\infty}(\emptyset), M_1 = \mathbf{T}_{P_1}^{\infty}(M_0), \dots, M_n = \mathbf{T}_{P_n}^{\infty}(M_{n-1})$ defines the Perfect Model M_n of \mathcal{P} .

ヘロト 人間 とくほとくほとう

1
Dependency Graph Stratification Perfect Models

Example – stratifiable

Easy case: Negation only on EDB predicates

Example

color(yellow, k1). color(yellow, k2). color(blue, k3). color(green, k4). color(red, k5).

 $block(K) \leftarrow color(F, K)$. $block(K) \leftarrow form(F, K)$. $diffcolor(K1, K2) \leftarrow color(F, K1)$, block(K2), not color(F, K2).

ヘロト ヘアト ヘビト ヘビト

Dependency Graph Stratification Perfect Models

Example – stratifiable

Example

form(box, k1). form(cone, k2). form(disc, k3). form(box, k4). form(pyramid, k5).

 $block(K) \leftarrow color(F, K)$. $block(K) \leftarrow form(F, K)$. $pointy_top(K) \leftarrow block(K)$, form(cone, K). $pointy_top(K) \leftarrow block(K)$, form(pyramid, K). $fits_on(K1, K2) \leftarrow block(K1)$, block(K2), not $pointy_top(K2)$.

ヘロン 人間 とくほ とくほ とう

Dependency Graph Stratification Perfect Models

Example – stratifiable

Example

form(box, k1). form(cone, k2). form(disc, k3). form(box, k4). form(pyramid, k5).

 $block(K) \leftarrow color(F, K)$. $block(K) \leftarrow form(F, K)$. $flat_top(K) \leftarrow block(K), form(box, K)$. $flat_top(K) \leftarrow block(K), form(disc, K)$. $pointy_top(K) \leftarrow block(K), not flat_top(K)$. $fits_on(K1, K2) \leftarrow block(K1), block(K2), not pointy_top(K2)$.

ヘロト 人間 とくほとくほとう

Dependency Graph Stratification Perfect Models

Example – unstratified

arc(a, b). arc(b, c). arc(b, d). $node(N) \leftarrow arc(N, Y). node(N) \leftarrow arc(X, N).$ $black(Y) \leftarrow arc(X, Y), not black(X).$ $white(X) \leftarrow node(X), not black(X).$

Dependency Graph Stratification Perfect Models

Example – unstratified

Dependency Graph:

イロン 不同 とくほ とくほ とう

Dependency Graph Stratification Perfect Models

Perfect Models

• Note: Perfect Models are defined only on stratifiable programs.

Theorem

For any stratifiable program, there exists a unique Perfect Model.

イロト イポト イヨト イヨト

ъ

Dependency Graph Stratification Perfect Models

Unstratifiable Programs

Example

person(nicola). $alive(X) \leftarrow person(X).$ $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

Perfect Models are not defined. But we would like to conclude at least *alive*(*nicola*).

Dependency Graph Stratification Perfect Models

Unstratifiable Programs

Example

person(nicola). $alive(X) \leftarrow person(X).$ $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

Perfect Models are not defined.

But we would like to conclude at least *alive*(*nicola*).

Dependency Graph Stratification Perfect Models

Unstratifiable Programs

Example

person(nicola). $alive(X) \leftarrow person(X).$ $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

Perfect Models are not defined.

But we would like to conclude at least *alive*(*nicola*).

Recursive Negation

Example

person(nicola). $alive(X) \leftarrow person(X).$ $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

Wolfgang Faber Datalog with Negation

ヘロン 人間 とくほ とくほ とう

Recursive Negation

Example

Using generalized $T_{\mathcal{P}}$:

$$\begin{split} \mathbf{T}_{\mathcal{P}}(\emptyset) &= \{ \text{person}(\text{nicola}) \} \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset)) &= \{ \text{person}(\text{nicola}), \text{alive}(\text{nicola}), \text{male}(\text{nicola}), \text{female}(\text{nicola}) \} \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset))) &= \{ \text{person}(\text{nicola}), \text{alive}(\text{nicola}) \} \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset)))) &= \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\emptyset)) \\ \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}((\Psi(\emptyset)))))) &= \mathbf{T}_{\mathcal{P}}(\emptyset) \\ \cdots \end{split}$$

<ロト <回 > < 注 > < 注 > 、

æ

Recursive Negation

Example

But there are two fixpoints:

$$\begin{split} \mathbf{T}_{\mathcal{P}}(\{person(nicola), alive(nicola), male(nicola)\}) &= \\ \{person(nicola), alive(nicola), male(nicola)\} \\ \mathbf{T}_{\mathcal{P}}(\{person(nicola), alive(nicola), female(nicola)\}) &= \\ \{person(nicola), alive(nicola), female(nicola)\} \end{split}$$

ヘロト 人間 ト ヘヨト ヘヨト

Recursive Negation

Two ways of resolving this:

- Be cautious and do not say anything about *male(nicola)* and *female(nicola)*.
- Consider two scenarios: One in which male(nicola) is true, another in which female(nicola) is true.

Problems to resolve:

- needs another truth value undefined.
- allows more than one model.

(日)

Recursive Negation

Two ways of resolving this:

- Be cautious and do not say anything about *male(nicola)* and *female(nicola)*.
- Consider two scenarios: One in which male(nicola) is true, another in which female(nicola) is true.

Problems to resolve:

- needs another truth value undefined.
- allows more than one model.

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Unfounded Sets Well-founded Operator

Outline

Introducing Negation Normal Programs ۲ Stratification Perfect Models Well-founded Models 4 Unfounded Sets Well-founded Operator

イロト イポト イヨト イヨト

э

Unfounded Sets Well-founded Operator

Three-valued Interpretations

Definition

A three-valued (or partial) interpretation *I* is a set of ground not literals, such that for any ground atom *a* not both $a \in I$ and not $a \in I$.

Example

- $I = \{ not \ a, c \}$
 - *a* is false in *I*
 - *b* is undefined in *I*
 - c is true in I

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Unfounded Sets Well-founded Operator

Three-valued Interpretations

Definition

A three-valued (or partial) interpretation *I* is a set of ground not literals, such that for any ground atom *a* not both $a \in I$ and not $a \in I$.

Example

- $\textit{\textbf{I}} = \{\texttt{not} ~\textit{\textbf{a}}, \textit{\textbf{c}}\}$
 - *a* is false in *I*
 - b is undefined in I
 - c is true in l

ヘロト ヘアト ヘビト ヘ

.≣⇒

Unfounded Sets Well-founded Operator

Three-valued Interpretations

Definition

A three-valued (or partial) interpretation *I* is a set of ground not literals, such that for any ground atom *a* not both $a \in I$ and not $a \in I$.

Example

- $\textit{\textbf{I}} = \{\texttt{not} ~\textit{\textbf{a}}, \textit{\textbf{c}}\}$
 - a is false in I
 - b is undefined in I
 - c is true in I

.≣⇒

Unfounded Sets Well-founded Operator

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

$$a \leftarrow \text{not } b.$$

b does not occur in any head, thus can never become true und should be false. *a* should therefore be true.

ヘロト ヘアト ヘヨト

Unfounded Sets Well-founded Operator

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

$$a \leftarrow b$$
.
 $c \leftarrow \text{not } a$.

Given the interpretation $\{not b\}$, *a* can never become true and should be false. *c* should be true in this case.

Unfounded Sets Well-founded Operator

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

$$a \leftarrow b.$$

 $b \leftarrow a.$
 $c \leftarrow \text{not } a.$

a and *b* occur in some heads, but all bodies of these rules require one of *a* or *b* to become true. Therefore *a* and *b* can become true only via themselves and should be false, hence *c* should be true.

ヘロト ヘアト ヘビト ヘ

.≣⇒

Unfounded Sets Well-founded Operator

Unfounded Sets – Definition

Definition

A set $U \subseteq HB(\mathcal{P})$ is unfounded with respect to a partial interpretation *I* if the following holds: For each $a \in U$ and each rule $r \in Ground(\mathcal{P})$ with $H(r) = \{a\}$ at least one of the the following conditions holds:

$$\exists \ell \in B(r) : \text{not.} \ell \in I$$

$$B^+(r) \cap U \neq \emptyset$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Unfounded Sets Well-founded Operator

Unfounded Sets – Example

Example

$$a \leftarrow \text{not } b.$$

For $I = \emptyset$, $\{b\}$ is an unfounded set.

イロト 不得 とくほと くほとう

Unfounded Sets Well-founded Operator

Unfounded Sets – Example

Example

 $a \leftarrow b$. $c \leftarrow \text{not } a$.

For $I = \{ not b \}, \{a\}$ is an unfounded set.

イロト 不得 とくほと くほとう

Unfounded Sets Well-founded Operator

Unfounded Sets – Example

Example

 $a \leftarrow b$. $b \leftarrow a$. $c \leftarrow \text{not } a$.

For $I = \emptyset$, $\{a, b\}$ is an unfounded set, because condition 2 holds for $a \leftarrow b$. and $b \leftarrow a$..

イロト 不得 とくほ とくほ とう

Unfounded Sets Well-founded Operator

Outline

- Introducing Negation Normal Programs ۲ Stratification Perfect Models Well-founded Models 4 Unfounded Sets Well-founded Operator
 - Gelfond-Lifschitz Reduct

イロト イポト イヨト イヨト

э

Unfounded Sets Well-founded Operator

Unfounded Operator

Theorem

For any program \mathcal{P} and partial interpretation I, the greatest unfounded set $GUS_{\mathcal{P}}(I)$ (which is a superset of all unfounded sets) exists and is unique.

Idea: Use $GUS_{\mathcal{P}}(I)$ to derive negative information.

Definition

Operator $\mathbf{U}_{\mathcal{P}}(I) = \{ \text{not.} a \mid a \in GUS_{\mathcal{P}}(I) \}$

ヘロト ヘアト ヘビト ヘビト

Unfounded Sets Well-founded Operator

Unfounded Operator

Theorem

For any program \mathcal{P} and partial interpretation I, the greatest unfounded set $GUS_{\mathcal{P}}(I)$ (which is a superset of all unfounded sets) exists and is unique.

Idea: Use $GUS_{\mathcal{P}}(I)$ to derive negative information.

Definition

Operator $\mathbf{U}_{\mathcal{P}}(I) = \{ \text{not.} a \mid a \in GUS_{\mathcal{P}}(I) \}$

Unfounded Sets Well-founded Operator

Well-Founded Operator

First generalize $\mathbf{T}_{\mathcal{P}}(I)$ for partial interpretations:

Definition

 $\mathbf{T}_{\mathcal{P}}(I) := \{h \mid r \in Ground(\mathcal{P}), B(r) \subseteq I, h \in H(r)\}$

Define the well-founded operator $W_{\mathcal{P}}(I)$ as a combination of $T_{\mathcal{P}}(I)$ and $U_{\mathcal{P}}(I)$.

Definition

 $\mathsf{W}_{\mathcal{P}}(I) = \mathsf{T}_{\mathcal{P}}(I) \cup \mathsf{U}_{\mathcal{P}}(I)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Unfounded Sets Well-founded Operator

Well-Founded Operator

First generalize $\mathbf{T}_{\mathcal{P}}(I)$ for partial interpretations:

Definition

 $\mathbf{T}_{\mathcal{P}}(I) := \{h \mid r \in Ground(\mathcal{P}), B(r) \subseteq I, h \in H(r)\}$

Define the well-founded operator $W_{\mathcal{P}}(I)$ as a combination of $T_{\mathcal{P}}(I)$ and $U_{\mathcal{P}}(I)$.

Definition

 $\mathsf{W}_{\mathcal{P}}(I) = \mathsf{T}_{\mathcal{P}}(I) \cup \mathsf{U}_{\mathcal{P}}(I)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Unfounded Sets Well-founded Operator

Well-Founded Model

Allen Van Gelder

Kenneth Ross

John Schlipf

イロン イロン イヨン イヨン

ъ

Unfounded Sets Well-founded Operator

Well-Founded Model

Theorem

 $W_{\mathcal{P}}$ is monotone and allows for a least fixpoint.

Definition

The least fixpoint $\mathbf{W}^\infty_\mathcal{P}(\emptyset)$ is the Well-Founded Model of a normal program $\mathcal{P}.$

イロト 不得 とくほと くほとう

Unfounded Sets Well-founded Operator

Well-Founded Model

Theorem

 $W_{\mathcal{P}}$ is monotone and allows for a least fixpoint.

Definition

The least fixpoint $\mathbf{W}_{\mathcal{P}}^{\infty}(\emptyset)$ is the Well-Founded Model of a normal program \mathcal{P} .

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Unfounded Sets Well-founded Operator

Well-Founded Model – Properties

Theorem

Each normal program has a unique Well-Founded Model.

イロト イポト イヨト イヨト

Unfounded Sets Well-founded Operator

Well-Founded Model – Properties

Definition

A partial interpretation *I* is total if $I \cup not.I = HB(\mathcal{P})$ (each ground atom is true or false).

Theorem

The Well-Founded Model for positive programs is total and corresponds to its Minimal Model.

Theorem

The Well-Founded Model for stratifiable programs is total and corresponds to its Perfect Model.

Unfounded Sets Well-founded Operator

Well-Founded Model – Properties

Definition

A partial interpretation *I* is total if $I \cup not.I = HB(\mathcal{P})$ (each ground atom is true or false).

Theorem

The Well-Founded Model for positive programs is total and corresponds to its Minimal Model.

Theorem

The Well-Founded Model for stratifiable programs is total and corresponds to its Perfect Model.
Unfounded Sets Well-founded Operator

Well-Founded Model – Example

Example

person(nicola). $alive(X) \leftarrow person(X).$ $male(X) \leftarrow person(X), not female(X).$ $female(X) \leftarrow person(X), not male(X).$

The Well-Founded Model is {*person*(*nicola*), *alive*(*nicola*)} and it is not total.

くロト (過) (目) (日)

Gelfond-Lifschitz Reduct

Stable Models

- No longer a unique model.
- Use total models.
- Stability criterion instead of fixpoint semantics.

くロト (過) (目) (日)

Gelfond-Lifschitz Reduct

Stable Models

Vladimir Lifschitz

イロン イロン イヨン イヨン

ъ

Gelfond-Lifschitz Reduct

Stable Models

Nicole Bidoit

Christine Froidevaux

◆□ > ◆□ > ◆豆 > ◆豆 > -

Gelfond-Lifschitz Reduct

Outline

- Introducing Negation Normal Programs Stratification Perfect Models Unfounded Sets Well-founded Operator **Stable Models** 5
 - Gelfond-Lifschitz Reduct

イロト イポト イヨト イヨト

э

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Definition

The Gelfond-Lifschitz reduct of a program \mathcal{P}^{I} is defined as follows, starting from $Ground(\mathcal{P})$:

- **1** Delete rules *r*, for which $B^-(r) \cap I \neq \emptyset$.
- 2 Delete the negative bodies of the remaining rules.

くロト (過) (目) (日)

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

$$\mathcal{P} = \{ \textit{male}(g) \leftarrow \texttt{not female}(g). \\ \textit{female}(g) \leftarrow \texttt{not male}(g). \}$$

$$\begin{split} &I_{1} = \emptyset, \, \mathcal{P}^{I_{1}} = \{ male(g). \, female(g). \} \\ &I_{2} = \{ male(g) \}, \, \mathcal{P}^{I_{2}} = \{ male(g). \} \\ &I_{3} = \{ female(g) \}, \, \mathcal{P}^{I_{3}} = \{ female(g). \} \\ &I_{4} = \{ male(g), female(g) \}, \, \mathcal{P}^{I_{4}} = \emptyset \end{split}$$

イロト 不得 とくほ とくほとう

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

$$\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not } \textit{female}(g). \\ \textit{female}(g) \leftarrow \text{not } \textit{male}(g). \}$$

$$\begin{split} I_{1} &= \emptyset, \ \mathcal{P}^{I_{1}} = \{ male(g). \ female(g). \} \\ I_{2} &= \{ male(g) \}, \ \mathcal{P}^{I_{2}} = \{ male(g). \} \\ I_{3} &= \{ female(g) \}, \ \mathcal{P}^{I_{3}} = \{ female(g). \} \\ I_{4} &= \{ male(g), female(g) \}, \ \mathcal{P}^{I_{4}} = \emptyset \end{split}$$

イロト 不得 とくほ とくほとう

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

 $\mathcal{P} = \{ \begin{array}{l} \textit{male}(g) \leftarrow \texttt{not female}(g). \\ \textit{female}(g) \leftarrow \texttt{not male}(g). \\ \end{array} \}$

$I_1 = \emptyset, \mathcal{P}^{I_1} = \{ male(g). female(g). \}$

- $I_2 = \{\text{female}(g)\}, \ \mathcal{P}^{I_3} = \{\text{female}(g)\}, \ \mathcal{P}^$
- $I_4 = \{ male(g), female(g) \}, \mathcal{P}^{I_4} = \emptyset$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

 $\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not } \textit{female}(g). \\ \textit{female}(g) \leftarrow \text{not } \textit{male}(g). \}$

$$I_{1} = \emptyset, \mathcal{P}^{I_{1}} = \{ male(g). female(g). \}$$

$$I_{2} = \{ male(g) \}, \mathcal{P}^{I_{2}} = \{ male(g). \}$$

$$I_{3} = \{ female(g) \}, \mathcal{P}^{I_{3}} = \{ female(g). \}$$

$$I_{4} = \{ male(g), female(g) \}, \mathcal{P}^{I_{4}} = \emptyset$$

イロト イポト イヨト イヨト

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

 $\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not } \textit{female}(g). \\ \textit{female}(g) \leftarrow \text{not } \textit{male}(g). \}$

$$I_{1} = \emptyset, \mathcal{P}^{I_{1}} = \{male(g). female(g).\}$$

$$I_{2} = \{male(g)\}, \mathcal{P}^{I_{2}} = \{male(g).\}$$

$$I_{3} = \{female(g)\}, \mathcal{P}^{I_{3}} = \{female(g).\}$$

$$I_{4} = \{male(g), female(g)\}, \mathcal{P}^{I_{4}} = \emptyset$$

イロト イポト イヨト イヨト

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

 $\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not } \textit{female}(g). \\ \textit{female}(g) \leftarrow \text{not } \textit{male}(g). \}$

$$\begin{split} &I_{1} = \emptyset, \, \mathcal{P}^{I_{1}} = \{ \textit{male}(g). \textit{ female}(g). \} \\ &I_{2} = \{ \textit{male}(g) \}, \, \mathcal{P}^{I_{2}} = \{ \textit{male}(g). \} \\ &I_{3} = \{ \textit{female}(g) \}, \, \mathcal{P}^{I_{3}} = \{ \textit{female}(g). \} \\ &I_{4} = \{ \textit{male}(g), \textit{female}(g) \}, \, \mathcal{P}^{I_{4}} = \emptyset \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

$$\mathcal{P} = \{ \textit{male}(g) \leftarrow \texttt{not female}(g). \ \textit{female}(g) \leftarrow \texttt{not male}(g). \}$$

$$\begin{split} &I_{1} = \emptyset, \, \mathcal{P}^{I_{1}} = \{ male(g). \, female(g). \} \\ &I_{2} = \{ male(g) \}, \, \mathcal{P}^{I_{2}} = \{ male(g). \} \\ &I_{3} = \{ female(g) \}, \, \mathcal{P}^{I_{3}} = \{ female(g). \} \\ &I_{4} = \{ male(g), female(g) \}, \, \mathcal{P}^{I_{4}} = \emptyset \end{split}$$

イロト 不得 とくほ とくほとう

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

$$\mathcal{P} = \{ \textit{male}(g) \leftarrow \texttt{not female}(g). \ \textit{female}(g) \leftarrow \texttt{not male}(g). \}$$

$$I_{1} = \emptyset, \mathcal{P}^{I_{1}} = \{male(g). female(g).\}$$

$$I_{2} = \{male(g)\}, \mathcal{P}^{I_{2}} = \{male(g).\}$$

$$I_{3} = \{female(g)\}, \mathcal{P}^{I_{3}} = \{female(g).\}$$

$$I_{4} = \{male(g), female(g)\}, \mathcal{P}^{I_{4}} = \emptyset$$

イロト 不得 とくほ とくほとう

Gelfond-Lifschitz Reduct

Gelfond-Lifschitz Reduct

Example

$$\mathcal{P} = \{ \textit{male}(g) \leftarrow \texttt{not female}(g). \ \textit{female}(g) \leftarrow \texttt{not male}(g). \}$$

$$\begin{split} &I_{1} = \emptyset, \ \mathcal{P}^{I_{1}} = \{ male(g). \ female(g). \} \\ &I_{2} = \{ male(g) \}, \ \mathcal{P}^{I_{2}} = \{ male(g). \} \\ &I_{3} = \{ female(g) \}, \ \mathcal{P}^{I_{3}} = \{ female(g). \} \\ &I_{4} = \{ male(g), female(g) \}, \ \mathcal{P}^{I_{4}} = \emptyset \end{split}$$

イロト 不得 とくほ とくほとう

Gelfond-Lifschitz Reduct

Stable Models

Fact

Gelfond-Lifschitz reducts are always positive, and have a unique Minimal Model.

Definition

A total interpretation *M* is a Stable Model of \mathcal{P} , if $M = MM(\mathcal{P}^M)$.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} & l_1 = \emptyset, \, \mathcal{P}^{l_1} = \{ \textit{male}(g). \textit{ female}(g). \}, \, \textit{MM}(\mathcal{P}^{l_1}) \neq l_1 \\ & l_2 = \{ \textit{male}(g) \}, \, \mathcal{P}^{l_2} = \{ \textit{male}(g). \}, \, \textit{MM}(\mathcal{P}^{l_2}) = l_2 \\ & l_2 \textit{ is a stable model.} \\ & l_3 = \{ \textit{female}(g) \}, \, \mathcal{P}^{l_3} = \{ \textit{female}(g). \}, \, \textit{MM}(\mathcal{P}^{l_3}) = l_3 \\ & l_3 \textit{ is a stable model.} \\ & l_4 = \{ \textit{male}(g). \textit{ female}(g) \}, \, \mathcal{P}^{l_4} = \emptyset, \, \textit{MM}(\mathcal{P}^{l_4}) \neq l_4 \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not female}(g). \\ \textit{female}(g) \leftarrow \text{not male}(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{I_{1}} = \{ \textit{male}(g). \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ \textit{male}(g) \}, \mathcal{P}^{I_{2}} = \{ \textit{male}(g). \}, \textit{MM}(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \textit{ is a stable model.} \\ I_{3} &= \{ \textit{female}(g) \}, \mathcal{P}^{I_{3}} = \{ \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{3}}) = I_{3} \\ I_{3} \textit{ is a stable model.} \\ I_{4} &= \{ \textit{male}(g). \textit{female}(g) \}, \mathcal{P}^{I_{4}} = \emptyset, \textit{MM}(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{I_{1}} = \{ \textit{male}(g). \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ \textit{male}(g) \}, \mathcal{P}^{I_{2}} = \{ \textit{male}(g). \}, \textit{MM}(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \textit{ is a stable model.} \\ I_{3} &= \{ \textit{female}(g) \}, \mathcal{P}^{I_{3}} = \{ \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{3}}) = I_{3} \\ I_{3} \textit{ is a stable model.} \\ I_{4} &= \{ \textit{male}(g). \textit{female}(g) \}, \mathcal{P}^{I_{4}} = \emptyset, \textit{MM}(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{I_{1}} = \{ \textit{male}(g). \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ \textit{male}(g) \}, \mathcal{P}^{I_{2}} = \{ \textit{male}(g). \}, \textit{MM}(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \textit{ is a stable model.} \\ I_{3} &= \{ \textit{female}(g) \}, \mathcal{P}^{I_{3}} = \{ \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{3}}) = I_{3} \\ I_{3} \textit{ is a stable model.} \\ I_{4} &= \{ \textit{male}(g). \textit{female}(g) \}, \mathcal{P}^{I_{4}} = \emptyset, \textit{MM}(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{I_{1}} = \{ \textit{male}(g). \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ \textit{male}(g) \}, \mathcal{P}^{I_{2}} = \{ \textit{male}(g). \}, \textit{MM}(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \textit{ is a stable model.} \\ I_{3} &= \{ \textit{female}(g) \}, \mathcal{P}^{I_{5}} = \{ \textit{female}(g). \}, \textit{MM}(\mathcal{P}^{I_{5}}) = I_{3} \\ I_{3} \textit{ is a stable model.} \\ I_{4} &= \{ \textit{male}(g). \textit{female}(g) \}, \mathcal{P}^{I_{4}} = \emptyset, \textit{MM}(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

- $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$
- $$\begin{split} I_1 &= \emptyset, \mathcal{P}^{I_1} = \{ male(g). \text{ female}(g). \}, MM(\mathcal{P}^{I_1}) \neq I_1 \\ I_2 &= \{ male(g) \}, \mathcal{P}^{I_2} = \{ male(g). \}, MM(\mathcal{P}^{I_2}) = I_2 \\ I_2 \text{ is a stable model.} \\ I_3 &= \{ female(g) \}, \mathcal{P}^{I_2} = \{ female(g). \}, MM(\mathcal{P}^{I_2}) = I_3 \\ I_3 \text{ is a stable model.} \\ I_4 &= \{ male(g). female(g) \}, \mathcal{P}^{I_4} = \emptyset, MM(\mathcal{P}^{I_4}) \neq I_4 \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not } \textit{female}(g). \ \textit{female}(g) \leftarrow \text{not } \textit{male}(g). \}$

$$\begin{split} I_{1} &= \emptyset, \ \mathcal{P}^{I_{1}} = \{ \textit{male}(g). \textit{ female}(g). \}, \ \textit{MM}(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ \textit{male}(g) \}, \ \mathcal{P}^{I_{2}} = \{ \textit{male}(g). \}, \ \textit{MM}(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \textit{ is a stable model.} \\ I_{3} &= \{ \textit{female}(g) \}, \ \mathcal{P}^{I_{3}} = \{ \textit{female}(g). \}, \ \textit{MM}(\mathcal{P}^{I_{3}}) = I_{3} \\ I_{3} \textit{ is a stable model.} \\ I_{4} &= \{ \textit{male}(g). \textit{female}(g) \}, \ \mathcal{P}^{I_{4}} = \emptyset, \ \textit{MM}(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{I_{1}} = \{ male(g). \ female(g). \}, \ MM(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ male(g) \}, \ \mathcal{P}^{I_{2}} = \{ male(g). \}, \ MM(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \ is \ a \ stable \ model. \\ I_{3} &= \{ female(g) \}, \ \mathcal{P}^{I_{3}} = \{ female(g). \}, \ MM(\mathcal{P}^{I_{3}}) = I_{3} \\ I_{3} \ is \ a \ stable \ model. \\ I_{4} &= \{ male(g). \ female(g) \}, \ \mathcal{P}^{I_{4}} = \emptyset, \ MM(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

- $\mathcal{P} = \{ \textit{male}(g) \leftarrow \text{not female}(g). \\ \textit{female}(g) \leftarrow \text{not male}(g). \}$
- $$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{I_{1}} = \{ male(g). \ female(g). \}, \ MM(\mathcal{P}^{I_{1}}) \neq I_{1} \\ I_{2} &= \{ male(g) \}, \ \mathcal{P}^{I_{2}} = \{ male(g). \}, \ MM(\mathcal{P}^{I_{2}}) = I_{2} \\ I_{2} \ is \ a \ stable \ model. \\ I_{3} &= \{ female(g) \}, \ \mathcal{P}^{I_{3}} = \{ female(g). \}, \ MM(\mathcal{P}^{I_{3}}) = I_{3} \\ I_{3} \ is \ a \ stable \ model. \\ I_{4} &= \{ male(g). \ female(g) \}, \ \mathcal{P}^{I_{4}} = \emptyset, \ MM(\mathcal{P}^{I_{4}}) \neq I_{4} \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{l_{1}} = \{ male(g). \ female(g). \}, \ MM(\mathcal{P}^{l_{1}}) \neq I_{1} \\ I_{2} &= \{ male(g) \}, \ \mathcal{P}^{l_{2}} = \{ male(g). \}, \ MM(\mathcal{P}^{l_{2}}) = I_{2} \\ I_{2} \ \text{is a stable model.} \\ I_{3} &= \{ female(g) \}, \ \mathcal{P}^{l_{3}} = \{ female(g). \}, \ MM(\mathcal{P}^{l_{3}}) = I_{3} \\ I_{3} \ \text{is a stable model.} \\ I_{4} &= \{ male(g). \ female(g) \}, \ \mathcal{P}^{l_{4}} = \emptyset, \ MM(\mathcal{P}^{l_{4}}) \neq I_{4} \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

 $\mathcal{P} = \{ male(g) \leftarrow not female(g). female(g) \leftarrow not male(g). \}$

$$\begin{split} I_{1} &= \emptyset, \mathcal{P}^{l_{1}} = \{ male(g). \ female(g). \}, \ \mathcal{MM}(\mathcal{P}^{l_{1}}) \neq I_{1} \\ I_{2} &= \{ male(g) \}, \ \mathcal{P}^{l_{2}} = \{ male(g). \}, \ \mathcal{MM}(\mathcal{P}^{l_{2}}) = I_{2} \\ I_{2} \ \text{is a stable model.} \\ I_{3} &= \{ female(g) \}, \ \mathcal{P}^{l_{3}} = \{ female(g). \}, \ \mathcal{MM}(\mathcal{P}^{l_{3}}) = I_{3} \\ I_{3} \ \text{is a stable model.} \\ I_{4} &= \{ male(g). \ female(g) \}, \ \mathcal{P}^{l_{4}} = \emptyset, \ \mathcal{MM}(\mathcal{P}^{l_{4}}) \neq I_{4} \end{split}$$

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$\mathcal{P} = \{ \textit{ weird} \leftarrow \texttt{not } \textit{ weird}. \}$

 $I_1 = \emptyset, \mathcal{P}^{I_1} = \{ weird. \}, MM(\mathcal{P}^{I_1}) \neq I_1$ $I_2 = \{ weird \}, \mathcal{P}^{I_2} = \emptyset, MM(\mathcal{P}^{I_2}) \neq I_2$ There is no stable model!

イロト 不得 トイヨト イヨト 二日 二

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$\mathcal{P} = \{ \textit{ weird} \leftarrow \texttt{not } \textit{ weird}. \}$

 $I_{1} = \emptyset, \mathcal{P}^{l_{1}} = \{ weird. \}, MM(\mathcal{P}^{l_{1}}) \neq I_{1}$ $I_{2} = \{ weird \}, \mathcal{P}^{l_{2}} = \emptyset, MM(\mathcal{P}^{l_{2}}) \neq I_{2}$ There is no stable model!

イロト 不得 トイヨト イヨト 二日 二

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$\mathcal{P} = \{ \textit{ weird} \leftarrow \texttt{not } \textit{ weird}. \}$

$$I_{1} = \emptyset, \mathcal{P}^{I_{1}} = \{ weird. \}, MM(\mathcal{P}^{I_{1}}) \neq I_{1}$$
$$I_{2} = \{ weird \}, \mathcal{P}^{I_{2}} = \emptyset, MM(\mathcal{P}^{I_{2}}) \neq I_{2}$$
There is no stable model!

ヘロト 人間 とくほとくほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$$\mathcal{P} = \{ \text{ weird} \leftarrow \text{not weird}. \}$$

$I_1 = \emptyset, \mathcal{P}^{I_1} = \{ weird. \}, MM(\mathcal{P}^{I_1}) \neq I_1$

 $l_2 = \{weird\}, P^{l_2} = \emptyset, MM(P^{l_2}) \neq l_2$ There is no stable model!

イロト 不得 とくほと くほとう

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$$\mathcal{P} = \{ \textit{weird} \leftarrow \texttt{not} \textit{weird}. \}$$

$$I_1 = \emptyset, \mathcal{P}^{I_1} = \{ weird. \}, MM(\mathcal{P}^{I_1}) \neq I_1$$
$$I_2 = \{ weird \}, \mathcal{P}^{I_2} = \emptyset, MM(\mathcal{P}^{I_2}) \neq I_2$$
There is no stable model!

<ロト <回 > < 注 > < 注 > 、

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$$\mathcal{P} = \{ \text{ weird} \leftarrow \texttt{not} \text{ weird}. \}$$

$$I_1 = \emptyset, \mathcal{P}^{I_1} = \{ weird. \}, MM(\mathcal{P}^{I_1}) \neq I_1$$
$$I_2 = \{ weird \}, \mathcal{P}^{I_2} = \emptyset, MM(\mathcal{P}^{I_2}) \neq I_2$$
There is no stable model!

<ロト <回 > < 注 > < 注 > 、

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$$\mathcal{P} = \{ \text{ weird} \leftarrow \text{not } \text{weird}. \}$$

$$I_1 = \emptyset, \mathcal{P}^{I_1} = \{ weird. \}, MM(\mathcal{P}^{I_1}) \neq I_1$$
$$I_2 = \{ weird \}, \mathcal{P}^{I_2} = \emptyset, MM(\mathcal{P}^{I_2}) \neq I_2$$
There is no stable model!

<ロト <回 > < 注 > < 注 > 、

Gelfond-Lifschitz Reduct

Stable Models – Example

Example

$$\mathcal{P} = \{ \text{ weird} \leftarrow \text{not } \text{weird}. \}$$

$$I_1 = \emptyset, \mathcal{P}^{I_1} = \{ weird. \}, MM(\mathcal{P}^{I_1}) \neq I_1$$
$$I_2 = \{ weird \}, \mathcal{P}^{I_2} = \emptyset, MM(\mathcal{P}^{I_2}) \neq I_2$$
There is no stable model!

<ロト <回 > < 注 > < 注 > 、

Gelfond-Lifschitz Reduct

Stable Models

Theorem

For positive programs there is exactly one Stable Model, which is equal to the Minimal Model.

Theorem

For stratifiable programs there is exactly one Stable Model, which is equal to the Perfect Model.

イロト イポト イヨト イヨト

э
Gelfond-Lifschitz Reduct

Stable Models

Theorem

For positive programs there is exactly one Stable Model, which is equal to the Minimal Model.

Theorem

For stratifiable programs there is exactly one Stable Model, which is equal to the Perfect Model.

< ロ > < 同 > < 三 > .

ъ

Gelfond-Lifschitz Reduct

Stable Models

Theorem

If the Well-Founded Model of a program is total, then the program has a corresponding unique Stable Model.

Theorem

The positive part of the Well-Founded Model of a program is contained in each Stable Model of the program.

イロト イポト イヨト イヨト

Gelfond-Lifschitz Reduct

Stable Models

Theorem

If the Well-Founded Model of a program is total, then the program has a corresponding unique Stable Model.

Theorem

The positive part of the Well-Founded Model of a program is contained in each Stable Model of the program.

< ロ > < 同 > < 三 > .

Gelfond-Lifschitz Reduct

Stable Models – Consequences

Definition (Brave/Credulous Reasoning)

 $\mathcal{P} \models_{b} I$, if *I* is true in some Stable Model of \mathcal{P} .

Definition (Cautious/Skeptical Reasoning)

 $\mathcal{P} \models_{c} I$, if *I* is true in all Stable Models of \mathcal{P} .

Note: If \mathcal{P} admits no Stable Model, then all literals are cautious/skeptical consequences!

ヘロト 人間 とくほとく ほとう

1

Gelfond-Lifschitz Reduct

Stable Models – Consequences

Definition (Brave/Credulous Reasoning)

 $\mathcal{P} \models_{b} I$, if *I* is true in some Stable Model of \mathcal{P} .

Definition (Cautious/Skeptical Reasoning)

 $\mathcal{P} \models_{c} I$, if *I* is true in all Stable Models of \mathcal{P} .

Note: If \mathcal{P} admits no Stable Model, then all literals are cautious/skeptical consequences!

ヘロン 人間 とくほ とくほ とう

1

Gelfond-Lifschitz Reduct

Stable Models – Example

Example (Two-Colorability)

Given a graph, can each vertex be assigned one of two colors, such that adjacent vertices do not have the same color?

 $vertex(V) \leftarrow arc(V, Y)$. $vertex(V) \leftarrow arc(X, V)$. $color(V, white) \leftarrow vertex(V)$, not color(V, black). $color(V, black) \leftarrow vertex(V)$, not color(V, white). $bad \leftarrow color(V1, F)$, color(V2, F), arc(V1, V2), not bad.

・ロト ・回 ト ・ヨト ・ヨト