Esercizi Logica Proposizionale

Wolfgang Faber

University of Calabria, Italy

2007

Wolfgang Faber Exercises Propositional Logic

イロト 不得 とくほ とくほとう

æ

Understanding Implication

P ightarrow Q

What can we say when P is false?

Wolfgang Faber Exercises Propositional Logic

イロト 不得 とくほ とくほとう

Understanding Implication

P ightarrow Q

Assume *P* represents "has libretto" and *Q* represents "is student".

"If one has a libretto, (s)he is a student."

イロト 不得 とくほ とくほとう

э

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Wolfgang Faber Exercises Propositional Logic

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Wolfgang Faber Exercises Propositional Logic

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

ヘロト 人間 とくほとくほとう

Understanding Implication

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

ヘロト 人間 とくほとくほとう

Understanding Implication

Exercise: Which formula represents "Students are exactly those who have a libretto?"

Р	Q	P?Q
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	NO!
"has libretto"	"is student"	OK!

ヘロト 人間 ト ヘヨト ヘヨト

э

Understanding Implication

Exercise: Which formula represents "Students are exactly those who have a libretto?"

Р	Q	<i>P</i> ? <i>Q</i>
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	NO!
"has libretto"	"is student"	OK!

くロト (過) (目) (日)

Eliminate Parentheses

- Ex. 1.1 from "Logica a Informatica":
 - $\bigcirc ((A \land B) \to (\neg C))$
 - $(A \rightarrow (B \rightarrow (\neg C)))$
 - $((A \land B) \lor (C \to C))$
 - $(\neg (A \lor ((\neg B) \to C)))$
 - $(A \to (B \lor (C \to D)))$

 - $(A \to (B \land ((\neg C) \lor D)))$

ヘロン 人間 とくほ とくほ とう

э.

Tautologies, Contradictions

Ex. 1.3 from "Logica a Informatica": Decide whether the following formulas are tautologies or contradictions:

1
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

2 $\neg (A \rightarrow \neg A)$
3 $A \lor \neg A$
4 $\bot \rightarrow A$
5 $\neg A \rightarrow (A \rightarrow B)$
5 $(A \land B) \land (\neg B \lor C)$
7 $A \lor B \rightarrow A \land B$
8 $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C))$
9 $(A \rightarrow B) \rightarrow ((B \rightarrow \neg C) \rightarrow \neg A)$

Which of these formulas are satisfiable?

イロト イポト イヨト イヨト

Tautologies, Contradictions

Ex. 1.3 from "Logica a Informatica": Decide whether the following formulas are tautologies or contradictions:

$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A \rightarrow \neg A)$$

$$(A \rightarrow \neg A)$$

$$(A \rightarrow \neg A)$$

$$(A \rightarrow A)$$

$$(A \rightarrow A)$$

$$(A \rightarrow B) \rightarrow (A \rightarrow B)$$

$$(A \wedge B) \wedge (\neg B \lor C)$$

$$(A \wedge B) \wedge (\neg B \lor C)$$

$$(A \rightarrow B \rightarrow A \land B)$$

$$(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C))$$

$$(A \rightarrow B) \rightarrow ((B \rightarrow \neg C) \rightarrow \neg A)$$
Which of these formulas are satisfiable?

Wolfgang Faber **Exercises Propositional Logic**

A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(4 프) (프)

Tautologies, Contradictions

Similar to Ex. 1.4 from "Logica a Informatica": Decide whether the following formula is satisfiable

$$(A_1 \lor A_2) \land (\neg A_2 \lor \neg A_3) \land (A_3 \lor A_4) \land (\neg A_4 \lor A_5)$$

イロト イポト イヨト イヨト

э

Equivalence, Consequence

- Ex. 1.8 from "Logica a Informatica": Prove that
 - $\bigcirc \bot \lor B \equiv B$
 - **2** $\neg \bot \land B \equiv B$
 - ③ A ⊨ A
 - $A \models B$ and $B \models C$ implies $A \models C$

 - **(**) \models *A* implies $A \land B \equiv B$
 - $\bigcirc \models A \text{ implies } \neg A \lor B \equiv B$
 - **1** If $A \models B$ and $A \models \neg B$ then $\models \neg A$
 - **(a)** If $A \models C$ and $B \models C$ then $A \lor B \models C$

What are A, B and C?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Equivalence, Consequence

Ex. 1.9 from "Logica a Informatica": Check whether

1 If
$$A \models B$$
 then $\neg A \models \neg B$

3 If
$$A \models B$$
 and $A \land B \models C$ then $A \models C$

If
$$A \lor B \models A \land B$$
 then $A \equiv B$

ヘロン ヘアン ヘビン ヘビン

э

Transform to equivalent formula in CNF

Ex. 1.13 from "Logica a Informatica": Find equivalent formulas in CNF for

 $(A \rightarrow B) \rightarrow (B \rightarrow \neg C)$ $\neg (A \rightarrow (B \rightarrow \neg C)) \land D$ $\neg (A \land B \land (C \rightarrow D))$ $\neg (A \leftrightarrow B)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Transform to equivalent formula in DNF

Ex. 1.13 from "Logica a Informatica": Find equivalent formulas in DNF for

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Find the Formula!

Similar to Ex. 1.10 from "Logica a Informatica": Find f such that

A	В	f
0	0	1
0	1	1
1	0	0
1	1	0

Using only \rightarrow and \perp ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Find the Formula!

Similar to Ex. 1.10 from "Logica a Informatica": Find f such that

A	В	f
0	0	1
0	1	1
1	0	0
1	1	0

Using only \rightarrow and \perp ?

イロト イポト イヨト イヨト

Similar to Ex. 1.13 from "Logica a Informatica": Find f such that

Using only \lor and \neg ?

ヘロト ヘアト ヘビト ヘビト

Find the Formula!

Similar to Ex. 1.13 from "Logica a Informatica": Find f such that

A	В	f
0	0	1
0	1	0
1	0	0
1	1	0

Using only \lor and \neg ?

ヘロン 人間 とくほ とくほ とう

Find the Formula in CNF and DNF!

Ex. 1.17 from "Logica a Informatica": Find an f (one in CNF, one in DNF) such that

Α	В	C	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Modelling Dinner

Model the following dinner constraints:

- Available dishes:
 - Farfalle al salmone
 - Risotto agli asparagi
 - Tagliatelle ai funghi
 - Filetto di manzo
 - Spigola grigliata
 - Trancia di pesce spada
- We can choose white or red wine.
- We must choose exactly one primo and one secondo.
- Do not eat fish after mushrooms.
- Choose white wine if fish is involved.

Write a formula such that its models correspond to admissible dinner choices.

Reduction to SAT

Reformulate the following questions such that they can be decided using a SAT algorithm:

- Is $(P \lor (\neg P \to Q)) \leftrightarrow (P \lor Q)$ valid?
- 2 Does $P \rightarrow Q$ follow from $\neg Q \rightarrow \neg P$?
- **3** Is $P \leftrightarrow Q \land P$ a contradiction?
- Is $P \leftrightarrow P \lor \bot$ a tautology?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの