Esercizi
 Logica Proposizionale

Wolfgang Faber

University of Calabria, Italy
2007

Understanding Implication

$$
P \rightarrow Q
$$

What can we say when P is false?

Understanding Implication

$$
P \rightarrow Q
$$

Assume P represents "has libretto" and Q represents "is student".
"If one has a libretto, (s)he is a student."

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto""	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto""	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto""	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Understanding Implication

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Understanding Implication

Exercise: Which formula represents "Students are exactly those who have a libretto?"

Understanding Implication

Exercise: Which formula represents "Students are exactly those who have a libretto?"

P	Q	P ? Q
"doesn't have libretto"	"is no student""	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	NO!
"has libretto"	"is student"	OK!

Eliminate Parentheses

Ex. 1.1 from "Logica a Informatica":
(1) $((A \wedge B) \rightarrow(\neg C))$
© $(A \rightarrow(B \rightarrow(\neg C)))$
(3) $((A \wedge B) \vee(C \rightarrow C))$

- $(\neg(A \vee((\neg B) \rightarrow C)))$
© $(A \rightarrow(B \vee(C \rightarrow D)))$
(0) $(\neg((\neg(\neg(\neg A))) \wedge \perp))$
© $(A \rightarrow(B \wedge((\neg C) \vee D)))$

Tautologies, Contradictions

Ex. 1.3 from "Logica a Informatica": Decide whether the following formulas are tautologies or contradictions:
(1) $(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$
(2) $\neg(A \rightarrow \neg A)$
(3) $A \vee \neg A$
(4) $\perp \rightarrow A$
(5) $\neg A \rightarrow(A \rightarrow B)$
(6) $(A \wedge B) \wedge(\neg B \vee C)$
(7) $A \vee B \rightarrow A \wedge B$
(8) $(A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow(A \vee B \rightarrow C))$
(9) $(A \rightarrow B) \rightarrow((B \rightarrow \neg C) \rightarrow \neg A)$

Tautologies, Contradictions

Ex. 1.3 from "Logica a Informatica": Decide whether the following formulas are tautologies or contradictions:
(1) $(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$
(2) $\neg(A \rightarrow \neg A)$
(3) $A \vee \neg A$
(4) $\perp \rightarrow A$
(5) $\neg A \rightarrow(A \rightarrow B)$
(6) $(A \wedge B) \wedge(\neg B \vee C)$
(7) $A \vee B \rightarrow A \wedge B$
(8) $(A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow(A \vee B \rightarrow C))$
(9) $(A \rightarrow B) \rightarrow((B \rightarrow \neg C) \rightarrow \neg A)$

Which of these formulas are satisfiable?

Tautologies, Contradictions

Similar to Ex. 1.4 from "Logica a Informatica": Decide whether the following formula is satisfiable

$$
\left(A_{1} \vee A_{2}\right) \wedge\left(\neg A_{2} \vee \neg A_{3}\right) \wedge\left(A_{3} \vee A_{4}\right) \wedge\left(\neg A_{4} \vee A_{5}\right)
$$

Equivalence, Consequence

Ex. 1.8 from "Logica a Informatica": Prove that
(1) $\perp \vee B \equiv B$
(2) $\neg \perp \wedge B \equiv B$
(3) $A \models A$
(4) $A \models B$ and $B \models C$ implies $A \models C$
(5) $\models A \rightarrow B$ implies $A \wedge B \equiv A$ and $A \vee B \equiv B$
(6) $\models A$ implies $A \wedge B \equiv B$
(7) $\models A$ implies $\neg A \vee B \equiv B$
(8) If $A \models B$ and $A \models \neg B$ then $\models \neg A$
(9) If $A \models C$ and $B \models C$ then $A \vee B \models C$

What are A, B and C ?

Equivalence, Consequence

Ex. 1.9 from "Logica a Informatica": Check whether
(1) If $A \models B$ then $\neg A \models \neg B$
(2) If $A \models B$ and $A \wedge B \models C$ then $A \models C$
(3) If $A \vee B \models A \wedge B$ then $A \equiv B$

Transform to equivalent formula in CNF

Ex. 1.13 from "Logica a Informatica": Find equivalent formulas in CNF for
(1) $(A \rightarrow B) \rightarrow(B \rightarrow \neg C)$
(2) $\neg(A \rightarrow(B \rightarrow \neg C)) \wedge D$
(3) $\neg(A \wedge B \wedge(C \rightarrow D))$
(1) $\neg(A \leftrightarrow B)$

Transform to equivalent formula in DNF

Ex. 1.13 from "Logica a Informatica": Find equivalent formulas in DNF for
(1) $(A \rightarrow B) \rightarrow(B \rightarrow \neg C)$
(2) $\neg(A \rightarrow(B \rightarrow \neg C)) \wedge D$
(3) $\neg(A \wedge B \wedge(C \rightarrow D))$
(4) $\neg(A \leftrightarrow B)$

Find the Formula!

Similar to Ex. 1.10 from "Logica a Informatica": Find f such that

A	B	f
0	0	1
0	1	1
1	0	0
1	1	0

Using only \rightarrow and \perp ?

Find the Formula!

Similar to Ex. 1.10 from "Logica a Informatica": Find f such that

A	B	f
0	0	1
0	1	1
1	0	0
1	1	0

Using only \rightarrow and \perp ?

Find the Formula!

Similar to Ex. 1.13 from "Logica a Informatica": Find f such that

A	B	f
0	0	1
0	1	0
1	0	0
1	1	0

Using only \vee and \neg ?

Find the Formula!

Similar to Ex. 1.13 from "Logica a Informatica": Find f such that

A	B	f
0	0	1
0	1	0
1	0	0
1	1	0

Using only \vee and \neg ?

Find the Formula in CNF and DNF!

Ex. 1.17 from "Logica a Informatica": Find an f (one in CNF, one in DNF) such that

A	B	C	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Modelling Dinner

Model the following dinner constraints:

- Available dishes:
- Farfalle al salmone
- Risotto agli asparagi
- Tagliatelle ai funghi
- Filetto di manzo
- Spigola grigliata
- Trancia di pesce spada
- We can choose white or red wine.
- We must choose exactly one primo and one secondo.
- Do not eat fish after mushrooms.
- Choose white wine if fish is involved.

Write a formula such that its models correspond to admissible dinner choices.

Reduction to SAT

Reformulate the following questions such that they can be decided using a SAT algorithm:
(1) Is $(P \vee(\neg P \rightarrow Q)) \leftrightarrow(P \vee Q)$ valid?
(2) Does $P \rightarrow Q$ follow from $\neg Q \rightarrow \neg P$?
(3) Is $P \leftrightarrow Q \wedge P$ a contradiction?
(4) Is $P \leftrightarrow P \vee \perp$ a tautology?

