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Basics
Tautologies, Contradictions, Satisfiability, etc.

Normal Forms
Modelling

Reduction to Satisfiability

Understanding Implication

P → Q

What can we say when P is false?
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Basics
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Understanding Implication

P → Q

Assume P represents “has libretto” and Q represents “is
student”.
“If one has a libretto, (s)he is a student.”
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“has libretto” “is student” OK!
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Exercise: Which formula represents “Students are exactly
those who have a libretto?”

P Q P ? Q
“doesn’t have libretto” “is no student” OK!

“has libretto” “is no student” NO!
“doesn’t have libretto” “is student” NO!

“has libretto” “is student” OK!
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Eliminate Parentheses

Ex. 1.1 from “Logica a Informatica”:
1 ((A ∧ B)→ (¬C))

2 (A→ (B → (¬C)))

3 ((A ∧ B) ∨ (C → C))

4 (¬(A ∨ ((¬B)→ C)))

5 (A→ (B ∨ (C → D)))

6 (¬((¬(¬(¬A))) ∧ ⊥))

7 (A→ (B ∧ ((¬C) ∨ D)))
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Tautologies, Contradictions

Ex. 1.3 from “Logica a Informatica”: Decide whether the
following formulas are tautologies or contradictions:

1 (A→ (B → C))→ ((A→ B)→ (A→ C))

2 ¬(A→ ¬A)

3 A ∨ ¬A
4 ⊥ → A
5 ¬A→ (A→ B)

6 (A ∧ B) ∧ (¬B ∨ C)

7 A ∨ B → A ∧ B
8 (A→ C)→ ((B → C)→ (A ∨ B → C))

9 (A→ B)→ ((B → ¬C)→ ¬A)

Which of these formulas are satisfiable?
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Tautologies, Contradictions

Similar to Ex. 1.4 from “Logica a Informatica”: Decide whether
the following formula is satisfiable

(A1 ∨ A2) ∧ (¬A2 ∨ ¬A3) ∧ (A3 ∨ A4) ∧ (¬A4 ∨ A5)
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Equivalence, Consequence

Ex. 1.8 from “Logica a Informatica”: Prove that
1 ⊥ ∨ B ≡ B
2 ¬⊥ ∧ B ≡ B
3 A |= A
4 A |= B and B |= C implies A |= C
5 |= A→ B implies A ∧ B ≡ A and A ∨ B ≡ B
6 |= A implies A ∧ B ≡ B
7 |= A implies ¬A ∨ B ≡ B
8 If A |= B and A |= ¬B then |= ¬A
9 If A |= C and B |= C then A ∨ B |= C

What are A, B and C?
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Tautologies, Contradictions, Satisfiability, etc.

Normal Forms
Modelling

Reduction to Satisfiability

Equivalence, Consequence

Ex. 1.9 from “Logica a Informatica”: Check whether
1 If A |= B then ¬A |= ¬B
2 If A |= B and A ∧ B |= C then A |= C
3 If A ∨ B |= A ∧ B then A ≡ B
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Transform to equivalent formula in CNF

Ex. 1.13 from “Logica a Informatica”: Find equivalent formulas
in CNF for

1 (A→ B)→ (B → ¬C)

2 ¬(A→ (B → ¬C)) ∧ D
3 ¬(A ∧ B ∧ (C → D))

4 ¬(A↔ B)
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Find the Formula!

Similar to Ex. 1.10 from “Logica a Informatica”: Find f such that

A B f
0 0 1
0 1 1
1 0 0
1 1 0

Using only→ and ⊥?
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Find the Formula in CNF and DNF!

Ex. 1.17 from “Logica a Informatica”: Find an f (one in CNF,
one in DNF) such that

A B C f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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Modelling Dinner

Model the following dinner constraints:
Available dishes:

Farfalle al salmone
Risotto agli asparagi
Tagliatelle ai funghi
Filetto di manzo
Spigola grigliata
Trancia di pesce spada

We can choose white or red wine.
We must choose exactly one primo and one secondo.
Do not eat fish after mushrooms.
Choose white wine if fish is involved.

Write a formula such that its models correspond to admissible
dinner choices.
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Reduction to SAT

Reformulate the following questions such that they can be
decided using a SAT algorithm:

1 Is (P ∨ (¬P → Q))↔ (P ∨Q) valid?
2 Does P → Q follow from ¬Q → ¬P?
3 Is P ↔ Q ∧ P a contradiction?
4 Is P ↔ P ∨ ⊥ a tautology?
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