1 Basics

Understanding Implication

 $P \to Q$

What can we say when P is false?

Understanding Implication

 $P \to Q$

Assume P represents "has libretto" and Q represents "is student". "If one has a libretto, (s)he is a student."

Understanding Implication

 $P \rightarrow Q$

Р	Q	$P \rightarrow Q$
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	OK!
"has libretto"	"is student"	OK!

Understanding Implication

Exercise: Which formula represents "Students are exactly those who have a libretto?"

Р	Q	P?Q
"doesn't have libretto"	"is no student"	OK!
"has libretto"	"is no student"	NO!
"doesn't have libretto"	"is student"	NO!
"has libretto"	"is student"	OK!

Eliminate Parentheses

Ex. 1.1 from "Logica a Informatica":

1.
$$((A \land B) \to (\neg C))$$

2.
$$(A \to (B \to (\neg C)))$$

3.
$$((A \land B) \lor (C \to C))$$

- 4. $(\neg (A \lor ((\neg B) \to C)))$
- 5. $(A \to (B \lor (C \to D)))$

6.
$$(\neg((\neg(\neg(\neg A))) \land \bot))$$

7. $(A \to (B \land ((\neg C) \lor D)))$

2 Tautologies, Contradictions, Satisfiability, etc.

Tautologies, Contradictions

Ex. 1.3 from "Logica a Informatica": Decide whether the following formulas are tautologies or contradictions:

1. $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ 2. $\neg (A \to \neg A)$ 3. $A \lor \neg A$ 4. $\bot \to A$ 5. $\neg A \to (A \to B)$ 6. $(A \land B) \land (\neg B \lor C)$ 7. $A \lor B \to A \land B$ 8. $(A \to C) \to ((B \to C) \to (A \lor B \to C))$ 9. $(A \to B) \to ((B \to \neg C) \to \neg A)$

Which of these formulas are satisfiable?

Tautologies, Contradictions

Similar to Ex. 1.4 from "Logica a Informatica": Decide whether the following formula is satisfiable

 $(A_1 \lor A_2) \land (\neg A_2 \lor \neg A_3) \land (A_3 \lor A_4) \land (\neg A_4 \lor A_5)$

Equivalence, Consequence

Ex. 1.8 from "Logica a Informatica": Prove that

- 1. $\perp \lor B \equiv B$
- 2. $\neg \bot \land B \equiv B$
- 3. $A \models A$
- 4. $A \models B$ and $B \models C$ implies $A \models C$
- 5. $\models A \rightarrow B$ implies $A \land B \equiv A$ and $A \lor B \equiv B$
- 6. $\models A \text{ implies } A \land B \equiv B$
- 7. $\models A \text{ implies } \neg A \lor B \equiv B$
- 8. If $A \models B$ and $A \models \neg B$ then $\models \neg A$
- 9. If $A \models C$ and $B \models C$ then $A \lor B \models C$

What are A, B and C?

Equivalence, Consequence

Ex. 1.9 from "Logica a Informatica": Check whether

- 1. If $A \models B$ then $\neg A \models \neg B$
- 2. If $A \models B$ and $A \land B \models C$ then $A \models C$
- 3. If $A \lor B \models A \land B$ then $A \equiv B$

3 Normal Forms

Transform to equivalent formula in CNF

Ex. 1.13 from "Logica a Informatica": Find equivalent formulas in CNF for

1.
$$(A \to B) \to (B \to \neg C)$$

2. $\neg (A \to (B \to \neg C)) \land D$
3. $\neg (A \land B \land (C \to D))$

4.
$$\neg(A \leftrightarrow B)$$

Transform to equivalent formula in DNF

Ex. 1.13 from "Logica a Informatica": Find equivalent formulas in DNF for

1.
$$(A \to B) \to (B \to \neg C)$$

2. $\neg (A \to (B \to \neg C)) \land D$
3. $\neg (A \land B \land (C \to D))$
4. $\neg (A \leftrightarrow B)$

4 Modelling

Find the Formula!

Similar to Ex. 1.10 from "Logica a Informatica": Find f such that

A	B	f
0	0	1
0	1	1
1	0	0
1	1	0

Using only \rightarrow and \perp ?

Find the Formula!

Similar to Ex. 1.13 from "Logica a Informatica": Find f such that

A	B	f
0	0	1
0	1	0
1	0	0
1	1	0

Using only \lor and \neg ?

Find the Formula in CNF and DNF!

Ex. 1.17 from "Logica a Informatica": Find an f (one in CNF, one in DNF) such that

A	B	C	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Modelling Dinner

Model the following dinner constraints:

- Available dishes:
 - Farfalle al salmone
 - Risotto agli asparagi
 - Tagliatelle ai funghi
 - Filetto di manzo
 - Spigola grigliata
 - Trancia di pesce spada
- We can choose white or red wine.
- We must choose exactly one primo and one secondo.
- Do not eat fish after mushrooms.
- Choose white wine if fish is involved.

Write a formula such that its models correspond to admissible dinner choices.

5 Reduction to Satisfiability

Reduction to SAT

Reformulate the following questions such that they can be decided using a SAT algorithm:

- 1. Is $(P \lor (\neg P \to Q)) \leftrightarrow (P \lor Q)$ valid?
- 2. Does $P \to Q$ follow from $\neg Q \to \neg P$?
- 3. Is $P \leftrightarrow Q \wedge P$ a contradiction?
- 4. Is $P \leftrightarrow P \lor \bot$ a tautology?