
Contents
1 Relational Databases 1

1.1 Relational Model . 1
1.2 Relational Algebra . 3
1.3 Relational Model – Logical View . 4

2 Relational Calculus 4

3 Domain Independence 5
3.1 Domain Dependent Queries . 5
3.2 Domain Independent Queries . 6
3.3 Safe Range Queries . 7
3.4 SQL . 8

4 Datalog 9
4.1 Motivation . 9
4.2 Syntax . 10
4.3 Semantics . 11

4.3.1 Model Theory . 11
4.3.2 Fixpoint Theory . 13
4.3.3 Proof Theory . 14

4.4 Computation . 16

1 Relational Databases

1.1 Relational Model
Three Layer Model

Application Application

DBMS

external
layer

logical
layer

physical
layer

Three Layer Model

• External Layer How external users view the database.

• Logical/Conceptual Layer Logical, holistic view of the database.

• Physical/Internal Layer Organisation on the physical media.

Relational Model – Codd 1970

Edgar Frank Codd (1923–2003)

Relations

• Schema:

– Domain (denumerable set)

– Attributes (denumerable set)

– Relations (subset of attributes)

• Instances:

– Relation instances: Sets of tuples.

– Each tuple is a function from the relation’s attributes to domain elements.

– Database instance: Collection of relation instances.

Relations: Example

A = {X,Y }, D = {a, b, c, d}
R = {X,Y }, S = {Y }

I(R) = {t1, t2}
t1(X) = a, t1(Y) = b, t2(X) = c, t2(Y) = d
I(S) = {t3}, t3(Y) = b

I(R) = {〈a, b〉, 〈c, d〉}, I(S) = {〈b〉}

2

Relations: Example

R X Y
a b
c d

S Y
d

1.2 Relational Algebra
Relational Algebra

Basic Operators:

• σ Selection

• π Projection

• × Cartesian Product

• ∪ Union

• − Difference

Definable using Basic Operators:

• ./ Join [R ./ S = σF (R× S)]

• n Semijoin [R ./ S = πSchema(R)(R ./ S)]

• ∩ Intersection

Relational Algebra Example

R× S XR YR YS

a b d
c d d

σ2=3(R× S) XR YR YS

c d d

π1,2(σ2=3(R× S)) X Y
c d

3

1.3 Relational Model – Logical View
Relations – Logical View

• Schema:

– Domain – Constant symbols (denumerable set)
– Relations – Predicate symbols (attributes are not explicitly named)
– Attributes – implicit by predicate arity

• Instances:

– Relation instances: Subset of ground instances for relation predicate.
– Database instance: Subset of Herbrand Base.

Relations: Example

D = {a, b, c, d}
R/2, S/1

I(R) = {R(a, b), R(c, d)}, I(S) = {S(d)}

I = {R(a, b), R(c, d), S(d)}

2 Relational Calculus
Relational Calculus

• Based on First-Order Logic

• Atomic formulas r(X1, . . . , Xn)

• Comparison formulas X = 2 or X = Y (pre-interpreted predicate)

• Composed formulas using ¬, ∧, ∃

• →,↔, ∨, ∀ added as “syntactic sugar”

Relational Calculus

• Relational Algebra expressions represent relation instances

• In Relational Calculus: {e1, . . . , en | φ}

– φ is a Relational Calculus formula
– e1, . . . , en: terms containing exactly the free variables of φ

• Collect all substitutions for free variables such that φ is true in the interpretation
formed by the database.

• The defined relation is obtained by applying all of these substitutions to e1, . . . , en.

4

Relational Calculus Examples

{X,Y, Z | R(X,Y) ∧ S(Z)} = {T (a, b, d), T (c, d, d)} = R× S

{X,Y, Y | R(X,Y) ∧ S(Y)} = {T (c, d, d)} = σ2=3(R× S)

{X,Y | R(X,Y) ∧ S(Y)} = {T (c, d)} = π1,2(σ2=3(R× S))

Algebra as Calculus

• σS r {X1, . . . , Xn | r(X1, . . . , Xn) ∧ S}

• πi r {Xi | ∃X1, . . . , Xi−1, Xi+1, . . . , Xn : r(X1, . . . , Xn)}

• r × s {X1, . . . , Xn, Y1, . . . , Ym | r(X1, . . . , Xn) ∧ s(Y1, . . . , Ym)}

• r ∪ s {X1, . . . , Xn | r(X1, . . . , Xn) ∨ s(X1, . . . , Xn)}

• r − s {X1, . . . , Xn | r(X1, . . . , Xn) ∧ ¬s(X1, . . . , Xn)}

3 Domain Independence

3.1 Domain Dependent Queries
Calculus: More then Algebra

Problematic expressions:

{X | ¬R(a,X)}
{X,Y | R(a,X) ∨R(Y, b)}
{X | ∀Y : R(X,Y)}

Calculus: More then Algebra
Using the domain of the database:

• {X | ¬R(a,X)}

– all constants c of the domain such that (a, c) is no tuple in R
– will be infinite if the domain is infinite

• {X,Y | R(a,X) ∨R(Y, b)}

– if R contains some tuple (a, b), (b, c) for all constants c in the domain
– will be infinite if the domain is infinite

• {X | ∀Y : R(X,Y)}

– this will be always empty if the domain is infinite, because relations are
finite

5

Calculus: More then Algebra
Using the active domain of the database (only constants appearing in the database

and the query):

• {X | ¬R(a,X)}

– all constants c in the database such that (a, c) is no tuple in R

– will change if some unrelated constant is added

• {X,Y | R(a,X) ∨R(Y, b)}

– if R contains some tuple (a, b), (b, c) for all constants c in the database

– will change if some unrelated constant is added

• {X | ∀Y : R(X,Y)}

– will unintuitively become empty if an unrelated constant is added

Natural versus Active Domain Semantics

1. Natural Semantics: Interpretations from Database Domain

• pro: Classical First-Order theory

• contra: Produces infinite relations

• contra: Quantification over infinite sets

2. Active Domain Semantics: Interpretations from Active Domain

• pro: Always finite

• contra: Frequently gives unintuitive results

• contra: Active Domain not always available

3.2 Domain Independent Queries
Domain Independent Queries

Idea: Consider only those queries for which Natural and Active Domain Semantics
coincide.

Definition 1. A query in the relational calculus is domain independent, if it yields the
same answer using the natural (full) domain and the active domain.

Domain Independent Queries

Theorem 2. Any query of the Relational Algebra can be written as a domain indepen-
dent query of Relational Calculus, and vice versa.

Great, let’s use only domain independent queries of Relational Calculus.

6

Domain Independent Queries

Theorem 3. Deciding whether a query of Relational Calculus is domain independent,
is undecidable.

3.3 Safe Range Queries
Safe Range Queries

Define a syntactically restricted fragment of Relational Calculus queries, which is
guaranteed to be domain independent.

1. Transform formula into a normal form (SRNF).

2. Determine range restricted variables of the SRNF formula.

3. Check whether the range restricted variables are exactly the free variables.

SRNF

• Normalize variables: Rename variables, so that each quantifier binds a distinct
variable and free and bound variables are different.

• Remove ∀: ∀X : φ⇒ ¬∃X : ¬φ

• Remove→: φ→ ψ ⇒ ¬φ ∨ ψ

• Remove ¬¬: ¬¬φ⇒ φ

• Push ¬: ¬(φ ∧ ψ)⇒ (¬φ ∨ ¬ψ)

• Push ¬: ¬(φ ∨ ψ)⇒ (¬φ ∧ ¬ψ)

Apply these rules as until none is applicable.

Range Restricted Variables
Intuition: Variables, for which the value is determined by the database.

• Variables in relational atoms are range restricted.

• Variables in equality comparisons with a constant are range restricted.

• Variables in conjunctions are range restricted if they are range restricted in the
subformulas.

• Variables in disjunctions are only range restricted if they occur range restricted
in both subformulas.

• Variables in negated formulas are never range restricted.

• Variables in existentially quantified subformulas (without the quantified variable)
are range restricted if the quantified variable is range restricted in the subformula.

7

Range Restriction Algorithm
Funtion rr
Input: Formula φ in SRNF
Output: Subset of free variables of φ or ⊥
case φ of

• R(t1, . . . , tn): rr(φ) = all variables in t1, . . . , tn;

• X = a or a = X: rr(φ) = {X};

• φ1 ∧ φ2: rr(φ) = rr(φ1) ∪ rr(φ2);

• φ1 ∧X = Y : rr(φ) =
{
rr(φ1) if {X,Y } ∩ rr(φ1) = ∅;
rr(φ1) ∪ {X,Y } otherwise;

• φ1 ∨ φ2: rr(φ) = rr(φ1) ∩ rr(φ2);

• ¬φ1: rr(φ) = ∅;

• ∃X : ψ: if X ∈ rr(ψ) then rr(φ) = rr(ψ) \ {X} else return⊥;

Assumption: Set operations with ⊥ always result in ⊥.

Safe Range Queries

Definition 4. A Relational Calculus query {e1, . . . , en | φ} is safe range, if rr(SRNF (φ))
is equal to the free variables in φ.

Theorem 5. Each safe range query is domain independent.

Theorem 6. Any safe range query can be written as query of Relational Algebra, and
vice versa.

3.4 SQL
SQL

• Exists since 1974 (developed by IBM).

• ISO/ANSI standardization 1986/87.

• First extension 1989.

• Second extension 1992 (SQL-92/SQL-2).

• Last (up to now) extension 1999/2000 (SQL-99/SQL-3)

• SQL combines query and manipulation languages.

8

SQL
SELECT P FROM C WHERE S

• P — Projections

• C — Cartesian Product

• S — Selections

SQL
Union:
SELECT . . . UNION SELECT . . .
Nesting:
SELECT P FROM C WHERE A [NOT] IN (SELECT . . .)

SQL

Theorem 7. The query portion of SQL-92 basically corresponds to Relational Algebra,
and hence to safe range Relational Calculus.

4 Datalog

4.1 Motivation
Recursion

• Some simple problems cannot be represented in relational calculus.

• Example: Reachability on deterministic graphs.

• Prototypical for LOGSPACE!

• Holds also for relational algebra, SQL-92 etc.

Transitive Closure
Key notion: Transitive Closure

Definition 8. Given graph G = 〈V,E〉, E ⊆ V × V , and a, b ∈ V , the transitive
closure TC(G) ⊆ V × V is:

TC(G) = {(x, y) | (x, y) ∈ E}
∪{(x, y) | (x, z) ∈ TC(G) ∧ (z, y) ∈ TC(G)}

Note: TC(G) appears in its own definition.
In relational calculus we cannot refer to what we define.

9

• Idea: Use Horn clauses for named definitions.

• It is then possible to write definitions using the concept being defined.

• Positive Datalog

4.2 Syntax
Language Elements

• Set of extensional predicate symbols PSEDB

• Set of intensional predicate symbols PSIDB

• PSEDB ∩PSIDB = ∅

• Each predicate symbol has an associated arity ar : PSEDB ∪PSIDB → N0

• Set of constant symbols CS

• Set of variable symbols VS

Syntax
A Datalog rule is of the form:

r1(t11 , . . . , tn1)← r2(t12 , . . . , tn2), . . . , rm(t1m , . . . , tnm).

• m ≥ 1

• r1 ∈ PSIDB

• r2, . . . , rm ∈ PSEDB ∪PSIDB

• t11 , . . . , tnm ∈ CS ∪VS

• ∀i 1 ≤ i ≤ m : ar(ri) = ni

• ((t11 ∪ . . . ∪ tn1) ∩VS) ⊆ ((t12 ∪ . . . ∪ tnm
) ∩VS)

Syntax

r1(t11 , . . . , tn1)← r2(t12 , . . . , tn2), . . . , rm(t1m
, . . . , tnm

).

• H(r) = {r1(t11 , . . . , tn1)}

• B(r) = {r2(t12 , . . . , tn2), . . . , rm(t1m
, . . . , tnm

)}

• V (r) = {t11 , . . . , tnm
} ∩VS

• C(r) = {t11 , . . . , tnm} ∩CS

10

• H(r) is the head of r.

• B(r) is the body of r.

• A Datalog program is a set of rules.

4.3 Semantics
Semantics

Intuitively: For each rule r, whenever B(r) is true, H(r) should also be true.
B(r) = ∅ is considered to be true.

Different ways for defining the semantics:

• model theory

• fixpoint theory

• proof theory

4.3.1 Model Theory

Model Theory

Definition 9 (Herbrand Universe).

HU(P) =
⋃
r∈P

C(r)

Definition 10 (Herbrand Base).

HB(P) = {r(t1, . . . , tn) | r ∈ PSEDB ∪PSIDB,
t1, . . . , tn ∈ HU(P), ar(r) = n}

• HU(P): Constants of the program (active domain!)

• HB(P): Ground atoms constructible from HU(P)

Example: Herbrand Base

Example 11.

Pr = { arc(a, b).
arc(b, c).
reachable(a).
reachable(Y)← arc(X, Y), reachable(X). }

HU(Pr) = {a, b, c}
HB(Pr) = {arc(a, a), arc(a, b), arc(a, c),

arc(b, a), arc(b, b), arc(b, c),
arc(c, a), arc(c, b), arc(c, c),
reachable(a), reachable(b), reachable(c)}

11

Instantiation

Definition 12. Valuation vP(r) of a rule r: Set of all substitutions V (r)→ HU(P)

Definition 13 (Instantiation of a rule r). GroundP(r) =
⋃

v∈vP(r) v(r)

Definition 14 (Instantiation of a program P). Ground(P) =
⋃

r∈P GroundP(r)

Example: Instantiation

Example 15.
Pr = { arc(a, b). arc(b, c). reachable(a).

reachable(Y)← arc(X, Y), reachable(X). }
Ground(Pr) = {arc(a, b). arc(b, c). reachable(a).

reachable(a)← arc(a, a), reachable(a).
reachable(b)← arc(a, b), reachable(a).
reachable(c)← arc(a, c), reachable(a).
reachable(a)← arc(b, a), reachable(b).
reachable(b)← arc(b, b), reachable(b).
reachable(c)← arc(b, c), reachable(b).
reachable(a)← arc(c, a), reachable(c).
reachable(b)← arc(c, b), reachable(c).
reachable(c)← arc(c, c), reachable(c). }

Herbrand Models

Definition 16 ((Herbrand-) Interpretations I for P). I ⊆ HB(P)

Definition 17 ((Herbrand-) Models forP). M ⊆ HB(P) such that ∀r ∈ Ground(P) :
(H(r) ⊆M) ∨ (B(r) 6⊆M)

“If the body is true, the head must be true.”

Definition 18 ((Herbrand-) Models forP). M ⊆ HB(P) such that ∀r ∈ Ground(P) :
(B(r) ⊆M)→ (H(r) ⊆M)

Example: Herbrand Models

Example 19.
Pr = { arc(a, b). arc(b, c). reachable(a).

reachable(Y)← arc(X, Y), reachable(X). }
M1 = { arc(a, b), arc(b, c),

reachable(a), reachable(b), reachable(c)}
M2 = HB(Pr)

All M : M1 ⊆M ⊆M2 are models and only these.

Minimal Models

Theorem 20. HB(P) is always a model for any Datalog program P .

Theorem 21. Each Datalog program P has a unique subset minimal model MM(P).

Definition 22. The semantics of a Datalog program P is given by MM(P)

Note: Each element of MM(P) is a logical consequence of P .

12

4.3.2 Fixpoint Theory

Concept: Operator
“If we assume that all atoms in I are true, which other atoms must be true in order

to satisfy the program?”

• Start with I = ∅ (nothing is true).

• Define operator TP .

• Apply TP , until there are no further additions.

• The obtained result (fixpoint) defines the semantics.

Immediate Consequences

Definition 23 (Operator TP for Datalog program P). Given an interpretation I ,

TP(I) = {h | r ∈ Ground(P), B(r) ⊆ I, h ∈ H(r)}

• TP(I) extends I , such that unsatisfied rules (w.r.t. I) become satisfied.

• Other rules may become unsatisfied w.r.t. TP(I).

• ⇒ Iterative application.

Example: Immediate Consequences

Example 24.
Pr = { arc(a, b). arc(b, c). reachable(a).

reachable(Y)← arc(X, Y), reachable(X). }

1. TPr
(∅) = {arc(a, b), arc(b, c), reachable(a)}

2. TPr
(TPr

(∅)) = TPr
(∅) ∪ {reachable(b)}

3. TPr
(TPr

(TPr
(∅))) = TPr

(TPr
(∅))∪{reachable(c)}

4. TPr (TPr (TPr (TPr (∅)))) = TPr (TPr (TPr (∅)))

5. {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

Properties of TP
Lattice: V = (P (HB(P)),⊆)[0.5cm]
∀X ⊆ V : ∃inf(X) ∧ ∃sup(X)[0.5cm]
inf(V) = ∅, sup(V) = HB(P)[0.5cm]
Monotony: X ⊆ Y → TP(X) ⊆ TP(Y)[0.5cm]
Continuity: ∀X ⊆ V : TP(sup(X)) = sup(TP(X))

13

Tarski, Kleene

Bronisław Knaster Alfred Tarski Stephen Kleene (1893–1990)
(1902–1983) (1909–1994)

Existence of Fixpoints

Theorem 25. TP is monotone und continuous on the lattice of interpretations and
subset relations.

Theorem 26 (Knaster-Tarski). For monotone operators on lattices a least fixpoint ex-
ists, and it is inf({X | TP(X) ⊆ X})

Construction of Fixpoints

Theorem 27 (Kleene). For continuous operators on lattices the least fixpoint can be
computed by iteration starting from the infimum. Tω

P = sup({Ti
P | i ≥ 0}), T0

P =
inf(V), Ti

P = TP(Ti−1
P)

Corollary 28. Our lattice is finite, therefore the least fixpoint of TP can be computed
by a finite number of itrations starting from ∅.

Tω
P – Minimal Model

Theorem 29. For all Datalog programs P , we can show Tω
P = MM(P).

Note: All consequences of a program can be computed by iteration over the imme-
diate consequences.

4.3.3 Proof Theory

Reminder: Horn and Goal Clauses, SLD Resolution

• A Horn clause is a clause containing at most one positive literal.

• A Goal clause is a clause containing no positive literal.

• SLD Resolution: Linear resolution, where at each step only goal clauses and
(instances of) input clauses are used.

Theorem 30. SLD resolution is refutation complete for Horn clauses.

14

SLD Resolution for Datalog

• We can view each rule as a Horn clause.

• So SLD Resolution can be applied.

• Unification is simpler for Datalog because of absence of function symbols.

Definition 31 (SLD Resolution Semantics). Let SLD(P) denote the set of ground
atoms, for which an SLD refutation w.r.t. P exists.

Equivalence

Theorem 32. For all Datalog programs P , we can show SLD(P) = Tω
P = MM(P).

SLD Tree
Top-down and bottom-up views:[0.5cm]

1. Top-down: Start at the root.

2. Bottom-up: Start at leaves.

Tω
P : Is like SLD bottom-up (on finite branches).

SLD Resolution – Termination

child_of(charles, francis).
child_of(francis, frida).
successor_of(X, Y)← child_of(X, Y).
successor_of(X, Y)← child_of(X, Z), successor_of(Z, Y).
← successor_of(charles, X).

SLD Resolution – Termination

child_of(charles, francis).
child_of(francis, frida).
successor_of(X, Y)← child_of(X, Y).
successor_of(X, Y)← successor_of(X, Z), child_of(Z, Y).
← successor_of(charles, X).

SLD Resolution – Termination

child_of(charles, francis).
child_of(francis, frida).
successor_of(X, Y)← child_of(X, Y).
successor_of(X, Y)← successor_of(X, Z), successor_of(Z, Y).
← successor_of(charles, X).

15

4.4 Computation
Simple Algorithms

From the semantic definitions, we can produce simple algorithms:

• Model Theory: Enumerate all subsets of HB(P), test whether they are models
and take the minimal one.

• Fixpoint Theory: Extend ∅ by applying TP until a fixpoint is reached.

• Proof Theory: Use SLD Resolution bottom-up.

Simple Algorithms 2
Also for query answering we can find simple algorithms:

• Straightforward: Compute model and test whether query is true.

• Better: Use SLD resolution top-down.

Termination?

16

