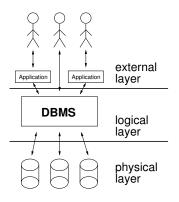
Contents

1	Relational Databases		
	1.1	Relational Model	1
	1.2	Relational Algebra	3
	1.3	Relational Model – Logical View	4
2	Rela	ational Calculus	4
3	Don	nain Independence	5
	3.1	Domain Dependent Queries	5
	3.2	Domain Independent Queries	6
	3.3	Safe Range Queries	7
	3.4	SQL	8
4	Datalog 9		
	4.1	Motivation	9
	4.2	Syntax	10
	4.3	Semantics	11
		4.3.1 Model Theory	11
		4.3.2 Fixpoint Theory	13
		4.3.3 Proof Theory	14
	4.4	Computation	16

1 Relational Databases

1.1 Relational Model

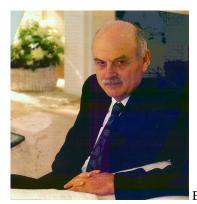
Three Layer Model



Three Layer Model

- External Layer How external users view the database.
- Logical/Conceptual Layer Logical, holistic view of the database.
- Physical/Internal Layer Organisation on the physical media.

Relational Model – Codd 1970



Edgar Frank Codd (1923–2003)

Relations

- Schema:
 - Domain (denumerable set)
 - Attributes (denumerable set)
 - Relations (subset of attributes)
- Instances:
 - Relation instances: Sets of tuples.
 - Each tuple is a function from the relation's attributes to domain elements.
 - Database instance: Collection of relation instances.

Relations: Example

$$\begin{split} &A = \{X,Y\}, D = \{a,b,c,d\} \\ &R = \{X,Y\}, S = \{Y\} \\ &I(R) = \{t_1,t_2\} \\ &t_1(X) = a, t_1(Y) = b, t_2(X) = c, t_2(Y) = d \\ &I(S) = \{t_3\}, t_3(Y) = b \\ &I(R) = \{\langle a,b \rangle, \langle c,d \rangle\}, I(S) = \{\langle b \rangle\} \end{split}$$

Relations: Example

$$\begin{array}{c|c|c} R & X & Y \\ \hline & a & b \\ c & d \\ \hline \\ \hline S & Y \\ \hline & d \\ \hline \end{array}$$

1.2 Relational Algebra

Relational Algebra

Basic Operators:

- σ Selection
- π Projection
- \bullet × Cartesian Product
- \cup Union
- – Difference

Definable using Basic Operators:

- \bowtie Join [$R \bowtie S = \sigma_F(R \times S)$]
- \ltimes Semijoin [$R \bowtie S = \pi_{Schema(R)}(R \bowtie S)$]
- $\bullet \cap$ Intersection

Relational Algebra Example

1.3 Relational Model – Logical View

Relations – Logical View

- Schema:
 - Domain Constant symbols (denumerable set)
 - Relations Predicate symbols (attributes are not explicitly named)
 - Attributes implicit by predicate arity
- Instances:
 - Relation instances: Subset of ground instances for relation predicate.
 - Database instance: Subset of Herbrand Base.

Relations: Example

$$\begin{split} D &= \{a, b, c, d\} \\ R/2, S/1 \\ I(R) &= \{R(a, b), R(c, d)\}, I(S) = \{S(d)\} \\ I &= \{R(a, b), R(c, d), S(d)\} \end{split}$$

2 Relational Calculus

Relational Calculus

- Based on First-Order Logic
- Atomic formulas $r(X_1, \ldots, X_n)$
- Comparison formulas X = 2 or X = Y (pre-interpreted predicate)
- Composed formulas using \neg , \land , \exists
- \rightarrow , \leftrightarrow , \lor , \forall added as "syntactic sugar"

Relational Calculus

- Relational Algebra expressions represent relation instances
- In Relational Calculus: $\{e_1, \ldots, e_n \mid \phi\}$
 - ϕ is a Relational Calculus formula
 - e_1, \ldots, e_n : terms containing exactly the free variables of ϕ
- Collect all substitutions for free variables such that ϕ is true in the interpretation formed by the database.
- The defined relation is obtained by applying all of these substitutions to e_1, \ldots, e_n .

Relational Calculus Examples

$$\{X, Y, Z \mid R(X, Y) \land S(Z)\} = \{T(a, b, d), T(c, d, d)\} = R \times S$$
$$\{X, Y, Y \mid R(X, Y) \land S(Y)\} = \{T(c, d, d)\} = \sigma_{2=3}(R \times S)$$
$$\{X, Y \mid R(X, Y) \land S(Y)\} = \{T(c, d)\} = \pi_{1,2}(\sigma_{2=3}(R \times S))$$

Algebra as Calculus

- σ_S r $\{X_1,\ldots,X_n \mid r(X_1,\ldots,X_n) \land S\}$
- π_i r $\{X_i \mid \exists X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n : r(X_1, \dots, X_n)\}$
- $\mathbf{r} \times \mathbf{s} = \{X_1, \ldots, X_n, Y_1, \ldots, Y_m \mid r(X_1, \ldots, X_n) \land s(Y_1, \ldots, Y_m)\}$
- $\mathbf{r} \cup \mathbf{s} = \{X_1, \dots, X_n \mid r(X_1, \dots, X_n) \lor s(X_1, \dots, X_n)\}$
- $\mathbf{r} \mathbf{s} \quad \{X_1, \dots, X_n \mid r(X_1, \dots, X_n) \land \neg s(X_1, \dots, X_n)\}$

3 Domain Independence

3.1 Domain Dependent Queries

Calculus: More then Algebra

Problematic expressions:

$$\begin{array}{l} \{X \mid \neg R(a, X)\} \\ \{X, Y \mid R(a, X) \lor R(Y, b)\} \\ \{X \mid \forall Y : R(X, Y)\} \end{array}$$

Calculus: More then Algebra

Using the *domain* of the database:

- $\{X \mid \neg R(a, X)\}$
 - all constants c of the domain such that (a, c) is no tuple in R
 - will be infinite if the domain is infinite
- $\{X, Y \mid R(a, X) \lor R(Y, b)\}$
 - if R contains some tuple (a, b), (b, c) for all constants c in the domain
 - will be infinite if the domain is infinite
- $\{X \mid \forall Y : R(X,Y)\}$
 - this will be always empty if the domain is infinite, because relations are finite

Calculus: More then Algebra

Using the *active domain* of the database (only constants appearing in the database and the query):

- $\{X \mid \neg R(a, X)\}$
 - all constants c in the database such that (a, c) is no tuple in R
 - will change if some unrelated constant is added
- $\{X, Y \mid R(a, X) \lor R(Y, b)\}$
 - if R contains some tuple (a, b), (b, c) for all constants c in the database
 - will change if some unrelated constant is added
- $\{X \mid \forall Y : R(X,Y)\}$
 - will unintuitively become empty if an unrelated constant is added

Natural versus Active Domain Semantics

- 1. Natural Semantics: Interpretations from Database Domain
 - pro: Classical First-Order theory
 - contra: Produces infinite relations
 - contra: Quantification over infinite sets
- 2. Active Domain Semantics: Interpretations from Active Domain
 - pro: Always finite
 - contra: Frequently gives unintuitive results
 - contra: Active Domain not always available

3.2 Domain Independent Queries

Domain Independent Queries

Idea: Consider only those queries for which Natural and Active Domain Semantics coincide.

Definition 1. A query in the relational calculus is *domain independent*, if it yields the same answer using the natural (full) domain and the active domain.

Domain Independent Queries

Theorem 2. Any query of the Relational Algebra can be written as a domain independent query of Relational Calculus, and vice versa.

Great, let's use only domain independent queries of Relational Calculus.

Domain Independent Queries

Theorem 3. Deciding whether a query of Relational Calculus is domain independent, is undecidable.

3.3 Safe Range Queries

Safe Range Queries

Define a syntactically restricted fragment of Relational Calculus queries, which is guaranteed to be domain independent.

- 1. Transform formula into a normal form (SRNF).
- 2. Determine range restricted variables of the SRNF formula.
- 3. Check whether the range restricted variables are exactly the free variables.

SRNF

- Normalize variables: Rename variables, so that each quantifier binds a distinct variable and free and bound variables are different.
- Remove $\forall: \forall X : \phi \Rightarrow \neg \exists X : \neg \phi$
- Remove $\rightarrow: \phi \rightarrow \psi \Rightarrow \neg \phi \lor \psi$
- Remove $\neg \neg$: $\neg \neg \phi \Rightarrow \phi$
- Push $\neg: \neg(\phi \land \psi) \Rightarrow (\neg \phi \lor \neg \psi)$
- Push $\neg: \neg(\phi \lor \psi) \Rightarrow (\neg \phi \land \neg \psi)$

Apply these rules as until none is applicable.

Range Restricted Variables

Intuition: Variables, for which the value is determined by the database.

- Variables in relational atoms are range restricted.
- Variables in equality comparisons with a constant are range restricted.
- Variables in conjunctions are range restricted if they are range restricted in the subformulas.
- Variables in disjunctions are only range restricted if they occur range restricted in both subformulas.
- · Variables in negated formulas are never range restricted.
- Variables in existentially quantified subformulas (without the quantified variable) are range restricted if the quantified variable is range restricted in the subformula.

Range Restriction Algorithm

Function rrInput: Formula ϕ in SRNF Output: Subset of free variables of ϕ or \perp case ϕ of

- $R(t_1, \ldots, t_n)$: $rr(\phi)$ = all variables in t_1, \ldots, t_n ;
- X = a or a = X: $rr(\phi) = \{X\};$
- $\phi_1 \wedge \phi_2$: $rr(\phi) = rr(\phi_1) \cup rr(\phi_2)$;

•
$$\phi_1 \wedge X = Y : rr(\phi) = \begin{cases} rr(\phi_1) & \text{if } \{X,Y\} \cap rr(\phi_1) = \\ rr(\phi_1) \cup \{X,Y\} & \text{otherwise;} \end{cases}$$

Ø;

- $\phi_1 \lor \phi_2$: $rr(\phi) = rr(\phi_1) \cap rr(\phi_2)$;
- $\neg \phi_1$: $rr(\phi) = \emptyset$;
- $\exists X : \psi$: if $X \in rr(\psi)$ then $rr(\phi) = rr(\psi) \setminus \{X\}$ else return \bot ;

Assumption: Set operations with \perp always result in \perp .

Safe Range Queries

Definition 4. A Relational Calculus query $\{e_1, \ldots, e_n \mid \phi\}$ is *safe range*, if $rr(SRNF(\phi))$ is equal to the free variables in ϕ .

Theorem 5. Each safe range query is domain independent.

Theorem 6. Any safe range query can be written as query of Relational Algebra, and vice versa.

3.4 SQL

SQL

- Exists since 1974 (developed by IBM).
- ISO/ANSI standardization 1986/87.
- First extension 1989.
- Second extension 1992 (SQL-92/SQL-2).
- Last (up to now) extension 1999/2000 (SQL-99/SQL-3)
- SQL combines query and manipulation languages.

SQL

SELECT P FROM C WHERE S

- P Projections
- C Cartesian Product
- S Selections

SQL

```
Union:
SELECT ... UNION SELECT ...
Nesting:
SELECT P FROM C WHERE A [NOT] IN (SELECT ...)
```

SQL

Theorem 7. The query portion of SQL-92 basically corresponds to Relational Algebra, and hence to safe range Relational Calculus.

4 Datalog

4.1 Motivation

Recursion

- Some simple problems cannot be represented in relational calculus.
- Example: Reachability on deterministic graphs.
- Prototypical for LOGSPACE!
- Holds also for relational algebra, SQL-92 etc.

Transitive Closure

Key notion: Transitive Closure

Definition 8. Given graph $G = \langle V, E \rangle$, $E \subseteq V \times V$, and $a, b \in V$, the *transitive closure* $TC(G) \subseteq V \times V$ is:

$$TC(G) = \{(x, y) \mid (x, y) \in E\} \\ \cup \{(x, y) \mid (x, z) \in TC(G) \land (z, y) \in TC(G)\}$$

Note: TC(G) appears in its own definition. In relational calculus we cannot refer to what we define.

- Idea: Use Horn clauses for named definitions.
- It is then possible to write definitions using the concept being defined.
- Positive Datalog

4.2 Syntax

Language Elements

- Set of extensional predicate symbols $\mathbf{PS}_{\mathbf{EDB}}$
- Set of intensional predicate symbols $\mathbf{PS_{IDB}}$
- $\mathbf{PS_{EDB}} \cap \mathbf{PS_{IDB}} = \emptyset$
- Each predicate symbol has an associated arity $ar : \mathbf{PS_{EDB}} \cup \mathbf{PS_{IDB}} \rightarrow N_0$
- Set of constant symbols CS
- Set of variable symbols VS

Syntax

A Datalog rule is of the form:

$$r_1(t_{1_1},\ldots,t_{n_1}) \leftarrow r_2(t_{1_2},\ldots,t_{n_2}),\ldots,r_m(t_{1_m},\ldots,t_{n_m}).$$

- $\bullet \ m \geq 1$
- $r_1 \in \mathbf{PS_{IDB}}$
- $r_2, \ldots, r_m \in \mathbf{PS_{EDB}} \cup \mathbf{PS_{IDB}}$
- $t_{1_1},\ldots,t_{n_m}\in\mathbf{CS}\cup\mathbf{VS}$
- $\forall i \ 1 \leq i \leq m : ar(r_i) = n_i$
- $((t_{1_1}\cup\ldots\cup t_{n_1})\cap \mathbf{VS})\subseteq ((t_{1_2}\cup\ldots\cup t_{n_m})\cap \mathbf{VS})$

Syntax

$$r_1(t_{1_1},\ldots,t_{n_1}) \leftarrow r_2(t_{1_2},\ldots,t_{n_2}),\ldots,r_m(t_{1_m},\ldots,t_{n_m}).$$

- $H(r) = \{r_1(t_{1_1}, \dots, t_{n_1})\}$
- $B(r) = \{r_2(t_{1_2}, \dots, t_{n_2}), \dots, r_m(t_{1_m}, \dots, t_{n_m})\}$
- $V(r) = \{t_{1_1}, \dots, t_{n_m}\} \cap \mathbf{VS}$
- $C(r) = \{t_{1_1}, \dots, t_{n_m}\} \cap \mathbf{CS}$

- H(r) is the *head* of r.
- B(r) is the *body* of r.
- A Datalog program is a set of rules.

4.3 Semantics

Semantics

Intuitively: For each rule r, whenever B(r) is true, H(r) should also be true. $B(r) = \emptyset$ is considered to be true.

Different ways for defining the semantics:

- model theory
- fixpoint theory
- proof theory

4.3.1 Model Theory

Model Theory

Definition 9 (Herbrand Universe).

$$\mathbf{HU}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} C(r)$$

Definition 10 (Herbrand Base).

$$\mathbf{HB}(\mathcal{P}) = \{ r(t_1, \dots, t_n) \mid r \in \mathbf{PS_{EDB}} \cup \mathbf{PS_{IDB}}, \\ t_1, \dots, t_n \in \mathbf{HU}(\mathcal{P}), ar(r) = n \}$$

- $HU(\mathcal{P})$: Constants of the program (active domain!)
- $HB(\mathcal{P})$: Ground atoms constructible from $HU(\mathcal{P})$

Example: Herbrand Base

$$\begin{array}{lll} \mathcal{P}_r = \{ & \operatorname{arc}(\mathtt{a}, \mathtt{b}). \\ & \operatorname{arc}(\mathtt{b}, \mathtt{c}). \\ & \operatorname{reachable}(\mathtt{a}). \\ & \operatorname{reachable}(\mathtt{Y}) \leftarrow \operatorname{arc}(\mathtt{X}, \mathtt{Y}), \operatorname{reachable}(\mathtt{X}). \} \\ & \mathbf{HU}(\mathcal{P}_r) = & \{\mathtt{a}, \mathtt{b}, \mathtt{c}\} \\ & \mathbf{HB}(\mathcal{P}_r) = & \{ \operatorname{arc}(\mathtt{a}, \mathtt{a}), \operatorname{arc}(\mathtt{a}, \mathtt{b}), \operatorname{arc}(\mathtt{a}, \mathtt{c}), \\ & \operatorname{arc}(\mathtt{b}, \mathtt{a}), \operatorname{arc}(\mathtt{b}, \mathtt{b}), \operatorname{arc}(\mathtt{b}, \mathtt{c}), \\ & \operatorname{arc}(\mathtt{c}, \mathtt{a}), \operatorname{arc}(\mathtt{c}, \mathtt{b}), \operatorname{arc}(\mathtt{c}, \mathtt{c}), \\ & \operatorname{reachable}(\mathtt{a}), \operatorname{reachable}(\mathtt{b}), \operatorname{reachable}(\mathtt{c}) \} \end{array}$$

Instantiation

Definition 12. Valuation $v_{\mathcal{P}}(r)$ of a rule r: Set of all substitutions $V(r) \to \mathbf{HU}(\mathcal{P})$ **Definition 13** (Instantiation of a rule r). $Ground_{\mathcal{P}}(r) = \bigcup_{v \in v_{\mathcal{P}}(r)} v(r)$ **Definition 14** (Instantiation of a program \mathcal{P}). $Ground(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} Ground_{\mathcal{P}}(r)$

Example: Instantiation

Herbrand Models

Definition 16 ((Herbrand-) Interpretations *I* for \mathcal{P}). $I \subseteq \mathbf{HB}(\mathcal{P})$

Definition 17 ((Herbrand-) Models for \mathcal{P}). $M \subseteq HB(\mathcal{P})$ such that $\forall r \in Ground(\mathcal{P}) : (H(r) \subseteq M) \lor (B(r) \not\subseteq M)$

"If the body is true, the head must be true."

Definition 18 ((Herbrand-) Models for \mathcal{P}). $M \subseteq HB(\mathcal{P})$ such that $\forall r \in Ground(\mathcal{P}) : (B(r) \subseteq M) \rightarrow (H(r) \subseteq M)$

Example: Herbrand Models

Minimal Models

Theorem 20. $HB(\mathcal{P})$ is always a model for any Datalog program \mathcal{P} .

Theorem 21. Each Datalog program \mathcal{P} has a unique subset minimal model $MM(\mathcal{P})$.

Definition 22. The semantics of a Datalog program \mathcal{P} is given by $MM(\mathcal{P})$

Note: Each element of $MM(\mathcal{P})$ is a logical consequence of \mathcal{P} .

4.3.2 Fixpoint Theory

Concept: Operator

"If we assume that all atoms in I are true, which other atoms must be true in order to satisfy the program?"

- Start with $I = \emptyset$ (nothing is true).
- Define operator $T_{\mathcal{P}}$.
- Apply $\mathbf{T}_{\mathcal{P}}$, until there are no further additions.
- The obtained result (fixpoint) defines the semantics.

Immediate Consequences

Definition 23 (Operator $\mathbf{T}_{\mathcal{P}}$ for Datalog program \mathcal{P}). Given an interpretation I,

 $\mathbf{T}_{\mathcal{P}}(I) = \{h \mid r \in Ground(\mathcal{P}), B(r) \subseteq I, h \in H(r)\}$

- $\mathbf{T}_{\mathcal{P}}(I)$ extends *I*, such that unsatisfied rules (w.r.t. *I*) become satisfied.
- Other rules may become unsatisfied w.r.t. $\mathbf{T}_{\mathcal{P}}(I)$.
- \Rightarrow Iterative application.

Example: Immediate Consequences

 $\begin{array}{ll} \textit{Example 24.} \quad \mathcal{P}_r = \{ & \texttt{arc}(\texttt{a},\texttt{b}).\,\texttt{arc}(\texttt{b},\texttt{c}).\,\texttt{reachable}(\texttt{a}). \\ & \texttt{reachable}(\texttt{Y}) \leftarrow \texttt{arc}(\texttt{X},\texttt{Y}),\texttt{reachable}(\texttt{X}). \; \} \end{array}$

- 1. $\mathbf{T}_{\mathcal{P}_r}(\emptyset) = \{ \mathtt{arc}(\mathtt{a}, \mathtt{b}), \, \mathtt{arc}(\mathtt{b}, \mathtt{c}), \, \mathtt{reachable}(\mathtt{a}) \}$
- 2. $\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\emptyset)) = \mathbf{T}_{\mathcal{P}_r}(\emptyset) \cup \{\texttt{reachable}(b)\}$
- 3. $\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\emptyset))) = \mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\emptyset)) \cup \{\texttt{reachable}(c)\}$
- 4. $\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\emptyset)))) = \mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\mathbf{T}_{\mathcal{P}_r}(\emptyset)))$
- 5. $\{arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)\}$

Properties of $T_{\mathcal{P}}$

Lattice: $V = (P(\mathbf{HB}(\mathcal{P})), \subseteq)[0.5\text{cm}]$ $\forall X \subseteq V : \exists inf(X) \land \exists sup(X)[0.5\text{cm}]$ $inf(V) = \emptyset, sup(V) = \mathbf{HB}(\mathcal{P})[0.5\text{cm}]$ Monotony: $X \subseteq Y \rightarrow \mathbf{T}_{\mathcal{P}}(X) \subseteq \mathbf{T}_{\mathcal{P}}(Y)[0.5\text{cm}]$ Continuity: $\forall X \subseteq V : \mathbf{T}_{\mathcal{P}}(sup(X)) = sup(\mathbf{T}_{\mathcal{P}}(X))$ Tarski, Kleene

Existence of Fixpoints

Theorem 25. $\mathbf{T}_{\mathcal{P}}$ is monotone und continuous on the lattice of interpretations and subset relations.

Theorem 26 (Knaster-Tarski). For monotone operators on lattices a least fixpoint exists, and it is $inf(\{X \mid \mathbf{T}_{\mathcal{P}}(X) \subseteq X\})$

Construction of Fixpoints

Theorem 27 (Kleene). For continuous operators on lattices the least fixpoint can be computed by iteration starting from the infimum. $\mathbf{T}_{\mathcal{P}}^{\omega} = sup(\{\mathbf{T}_{\mathcal{P}}^{i} \mid i \geq 0\}), \mathbf{T}_{\mathcal{P}}^{0} = inf(V), \mathbf{T}_{\mathcal{P}}^{i} = \mathbf{T}_{\mathcal{P}}(\mathbf{T}_{\mathcal{P}}^{i-1})$

Corollary 28. *Our lattice is finite, therefore the least fixpoint of* $\mathbf{T}_{\mathcal{P}}$ *can be computed by a finite number of itrations starting from* \emptyset *.*

$\mathbf{T}_{\mathcal{P}}^{\omega}$ – Minimal Model

Theorem 29. For all Datalog programs \mathcal{P} , we can show $\mathbf{T}_{\mathcal{P}}^{\omega} = MM(\mathcal{P})$.

Note: All consequences of a program can be computed by iteration over the immediate consequences.

4.3.3 Proof Theory

Reminder: Horn and Goal Clauses, SLD Resolution

- A Horn clause is a clause containing at most one positive literal.
- A Goal clause is a clause containing no positive literal.
- *SLD Resolution*: Linear resolution, where at each step only goal clauses and (instances of) input clauses are used.

Theorem 30. SLD resolution is refutation complete for Horn clauses.

SLD Resolution for Datalog

- We can view each rule as a Horn clause.
- So SLD Resolution can be applied.
- Unification is simpler for Datalog because of absence of function symbols.

Definition 31 (SLD Resolution Semantics). Let $SLD(\mathcal{P})$ denote the set of ground atoms, for which an SLD refutation w.r.t. \mathcal{P} exists.

Equivalence

Theorem 32. For all Datalog programs \mathcal{P} , we can show $SLD(\mathcal{P}) = \mathbf{T}_{\mathcal{P}}^{\omega} = MM(\mathcal{P})$.

SLD Tree

Top-down and bottom-up views:[0.5cm]

- 1. Top-down: Start at the root.
- 2. Bottom-up: Start at leaves.

 $\mathbf{T}_{\mathcal{P}}^{\omega}$: Is like SLD bottom-up (on finite branches).

SLD Resolution – Termination

 $\begin{array}{l} \mbox{child_of(charles,francis).} \\ \mbox{child_of(francis,frida).} \\ \mbox{successor_of(X,Y)} \leftarrow \mbox{child_of(X,Y).} \\ \mbox{successor_of(X,Y)} \leftarrow \mbox{child_of(X,Z),successor_of(Z,Y).} \\ \leftarrow \mbox{successor_of(charles,X).} \end{array}$

SLD Resolution – Termination

 $\begin{array}{l} \texttt{child_of(charles, francis).} \\ \texttt{child_of(francis, frida).} \\ \texttt{successor_of}(\mathtt{X}, \mathtt{Y}) \leftarrow \texttt{child_of}(\mathtt{X}, \mathtt{Y}). \\ \texttt{successor_of}(\mathtt{X}, \mathtt{Y}) \leftarrow \texttt{successor_of}(\mathtt{X}, \mathtt{Z}), \texttt{child_of}(\mathtt{Z}, \mathtt{Y}). \\ \leftarrow \texttt{successor_of}(\texttt{charles}, \mathtt{X}). \end{array}$

SLD Resolution – Termination

```
\begin{array}{l} \texttt{child_of(charles, francis).} \\ \texttt{child_of(francis, frida).} \\ \texttt{successor_of}(\mathtt{X}, \mathtt{Y}) \leftarrow \texttt{child_of}(\mathtt{X}, \mathtt{Y}). \\ \texttt{successor_of}(\mathtt{X}, \mathtt{Y}) \leftarrow \texttt{successor_of}(\mathtt{X}, \mathtt{Z}), \texttt{successor_of}(\mathtt{Z}, \mathtt{Y}). \\ \leftarrow \texttt{successor_of}(\texttt{charles}, \mathtt{X}). \end{array}
```

4.4 Computation

Simple Algorithms

From the semantic definitions, we can produce simple algorithms:

- *Model Theory*: Enumerate all subsets of $HB(\mathcal{P})$, test whether they are models and take the minimal one.
- Fixpoint Theory: Extend \emptyset by applying $\mathbf{T}_{\mathcal{P}}$ until a fixpoint is reached.
- Proof Theory: Use SLD Resolution bottom-up.

Simple Algorithms 2

Also for query answering we can find simple algorithms:

- Straightforward: Compute model and test whether query is true.
- Better: Use SLD resolution top-down.

Termination?