Logica del Primo Ordine 1 First-Order Logic 1

Wolfgang Faber

University of Calabria, Italy
2007
(1) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Outline

(1) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Propositional Logic \Rightarrow Done?

We want to represent:

- Socrates is a human.
- Humans are mortal.

From this, we want to draw the conclusion:

- Socrates is mortal.

Propositional Logic \Rightarrow Done?

We want to represent:

- Socrates is a human.
- Humans are mortal.

From this, we want to draw the conclusion:

- Socrates is mortal.

Propositional Logic \Rightarrow Done?

In propositional logic:

- variable SH (Socrates is a human.)
- variable HM (Humans are mortal.)
- variable SM (Socrates is mortal.)
- formula F: SH^ ("Socrates is a human" and ...)
- $S H \rightarrow S M$ ("Socrates is a human" implies "Socrates is mortal.")

From this, we can draw the conclusion:

- $F \models S M$ ("Socrates is mortal.")
- ... and where is HM??
- This is not what we wanted to express!

Propositional Logic \Rightarrow Done?

In propositional logic:

- variable SH (Socrates is a human.)
- variable HM (Humans are mortal.)
- variable SM (Socrates is mortal.)
- formula $F: S H \wedge$ ("Socrates is a human" and ...)
- $S H \rightarrow S M$ ("Socrates is a human" implies "Socrates is mortal.")

From this, we can draw the conclusion:

- $F \models S M$ ("Socrates is mortal.")
- ... and where is HM??
- This is not what we wanted to express!

Propositional Logic \Rightarrow Done?

In propositional logic:

- variable SH (Socrates is a human.)
- variable HM (Humans are mortal.)
- variable SM (Socrates is mortal.)
- formula $F: S H \wedge$ ("Socrates is a human" and ...)
- $S H \rightarrow S M$ ("Socrates is a human" implies "Socrates is mortal.")
From this, we can draw the conclusion:
- $F \models S M$ ("Socrates is mortal.")
- ... and where is HM??
- This is not what we wanted to express!

Propositional Logic \Rightarrow Done?

In propositional logic:

- variable SH (Socrates is a human.)
- variable HM (Humans are mortal.)
- variable SM (Socrates is mortal.)
- formula $F: S H \wedge$ ("Socrates is a human" and ...)
- $S H \rightarrow S M$ ("Socrates is a human" implies "Socrates is mortal.")
From this, we can draw the conclusion:
- $F \models S M$ ("Socrates is mortal.")
- ... and where is HM??
- This is not what we wanted to express!

Propositional Logic \Rightarrow Done?

"Humans are mortal" is not an atom!

- Marco is a human.
- Humans are mortal.
- Marco is mortal.
- We talk about "objects," not about propositions!
- But: There are no objects in propositional logic.

Propositional Logic \Rightarrow Done?

"Humans are mortal" is not an atom!

- Marco is a human.
- Humans are mortal.
- Marco is mortal.
- We talk about "objects," not about propositions!
- But: There are no objects in propositional logic.

Propositional Logic \Rightarrow Done?

"Humans are mortal" is not an atom!

- Marco is a human.
- Humans are mortal.
- Marco is mortal.
- We talk about "objects," not about propositions!
- But: There are no objects in propositional logic.

Propositional Logic \Rightarrow Done?

"Humans are mortal" is not an atom!

- Marco is a human.
- Humans are mortal.
- Marco is mortal.
- We talk about "objects," not about propositions!
- But: There are no objects in propositional logic.

Outline

(9) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Towards First-Order Logic

- "Start" from Propositional Logic.
- "Atoms" are no longer indivisible.
- Compose "atoms" from:
- terms (representing objects) and
- predicates (statements about terms).
- Socrates \Rightarrow term
- Mortal \Rightarrow predicate

Towards First-Order Logic

- "Start" from Propositional Logic.
- "Atoms" are no longer indivisible.
- Compose "atoms" from:
- terms (representing objects) and
- predicates (statements about terms)
- Socrates \Rightarrow term
- Mortal \Rightarrow predicate

Towards First-Order Logic

- "Start" from Propositional Logic.
- "Atoms" are no longer indivisible.
- Compose "atoms" from:
- terms (representing objects) and
- predicates (statements about terms).
- Socrates \Rightarrow term
- Mortal \Rightarrow predicate

Towards First-Order Logic

- "Start" from Propositional Logic.
- "Atoms" are no longer indivisible.
- Compose "atoms" from:
- terms (representing objects) and
- predicates (statements about terms).
- Socrates \Rightarrow term
- Mortal \Rightarrow predicate

Functions

- "Socrates' father"
- ... represents exactly one "object,"
- but we refer to it from another "object."
- Function symbols map some "objects" to another "object".
- "Objects" are constant function symbols!

Functions

- "Socrates' father"
- ... represents exactly one "object,"
- but we refer to it from another "object."
- Function symbols map some "objects" to another "object".
- "Objects" are constant function symbols!

Functions

- "Socrates' father"
- ... represents exactly one "object,"
- but we refer to it from another "object."
- Function symbols map some "objects" to another "object". "Objects" are constant function symbols!

Functions

- "Socrates' father"
- ... represents exactly one "object,"
- but we refer to it from another "object."
- Function symbols map some "objects" to another "object".
- "Objects" are constant function symbols!

Variable

- "Humans are mortal"
- .. . if some "object" is human, it is mortal.
- ... We need a variable ranging over "objects."
- Note: Such variables are completely different from propositional variables!
- Think about them as object variables.

Variable

- "Humans are mortal"
- ... if some "object" is human, it is mortal.
- ... We need a variable ranging over "objects."
- Note: Such variables are completely different from propositional variables!
- Think about them as object variables.

Variable

- "Humans are mortal"
- ... if some "object" is human, it is mortal.
- ... We need a variable ranging over "objects."
- Note: Such variables are completely different from propositional variables!
- Think about them as object variables.

Variable

- "Humans are mortal"
- ... if some "object" is human, it is mortal.
- ... We need a variable ranging over "objects."
- Note: Such variables are completely different from propositional variables!
- Think about them as object variables.

Quantifiers

- "Humans are mortal"
- ... actually wants to express "all humans are mortal,"
- ... and not "some humans are mortal,"
- ... and certainly not "no humans are mortal."
- Quantifiers express
(1) "for all objects" or
(2) "some object exists."

Quantifiers

- "Humans are mortal"
- ... actually wants to express "all humans are mortal,"
- ... and not "some humans are mortal,"
- ... and certainly not "no humans are mortal."
- Quantifiers express
- "for all objects" or
(2) "some object exists."

Quantifiers

- "Humans are mortal"
- ... actually wants to express "all humans are mortal,"
- ... and not "some humans are mortal," and certainly not "no humans are mortal."
- Quantifiers express
© "for all objects" or
(ㄹ) "some object exists.'

Quantifiers

- "Humans are mortal"
- ... actually wants to express "all humans are mortal,"
- ... and not "some humans are mortal,"
- ... and certainly not "no humans are mortal."
- Quantifiers express
(1) "for all objects" or
(2) "some object exists."

Quantifiers

- "Humans are mortal"
- ... actually wants to express "all humans are mortal,"
- ... and not "some humans are mortal,"
- ... and certainly not "no humans are mortal."
- Quantifiers express
(1) "for all objects" or
(2) "some object exists."

Outline

(9) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Function Symbols, Constants

- Countable set F of function symbols.
- An arity (nonnegative integer) is associated with each function symbol.
- Function symbols with arity 0 are constants ("objects").
- Examples:
- socrates (arity 0)
- father (arity 1)
- son (arity 2)
- supercalifragilistichespiralidoso287 (arity 6)

Function Symbols, Constants

- Countable set F of function symbols.
- An arity (nonnegative integer) is associated with each function symbol.
- Function symbols with arity 0 are constants ("objects").
- Examples:
- socrates (arity 0)
- father (arity 1)
- son (arity 2)
- supercalifragilistichespiralidoso287 (arity 6)

Function Symbols, Constants

- Countable set F of function symbols.
- An arity (nonnegative integer) is associated with each function symbol.
- Function symbols with arity 0 are constants ("objects").
- Examples:
- socrates (arity 0)
- father (arity 1)
- son (arity 2)
- supercalifragilistichespiralidoso287 (arity 6)

Function Symbols, Constants

- Countable set F of function symbols.
- An arity (nonnegative integer) is associated with each function symbol.
- Function symbols with arity 0 are constants ("objects").
- Examples:
- socrates (arity 0)
- father (arity 1)
- son (arity 2)
- supercalifragilistichespiralidoso287 (arity 6)

Function Symbols, Constants

- Countable set F of function symbols.
- An arity (nonnegative integer) is associated with each function symbol.
- Function symbols with arity 0 are constants ("objects").
- Examples:
- socrates (arity 0)
- father (arity 1)
- son (arity 2)
- supercalifragilistichespiralidoso287 (arity 6)

Variables

- Countable set V of (object) variables.
- V and F are disjoint!

Variables

- Countable set V of (object) variables.
- V and F are disjoint!
- Examples:
- Human
- Xiknve
- A, B, C, D

Terms

Build terms from function symbols and variables,respecting arities.
Again: Inductive definition.

- If v is a variable symbol, v is a term.
- If f is a function symbol of arity $0, f$ is a term.
- If f is a function symbol of arity $n>0$, and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
Ground term: Term not containing any variable.

Terms

Build terms from function symbols and variables,respecting arities.
Again: Inductive definition.

- If v is a variable symbol, v is a term.
- If f is a function symbol of arity $0, f$ is a term.
- If f is a function symbol of arity $n>0$, and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
Ground term: Term not containing any variable.

Terms

Build terms from function symbols and variables,respecting arities.
Again: Inductive definition.

- If v is a variable symbol, v is a term.
- If f is a function symbol of arity $0, f$ is a term.
- If f is a function symbol of arity $n>0$, and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
Ground term: Term not containing any variable.

Terms

Build terms from function symbols and variables,respecting arities.
Again: Inductive definition.

- If v is a variable symbol, v is a term.
- If f is a function symbol of arity $0, f$ is a term.
- If f is a function symbol of arity $n>0$, and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
Ground term: Term not containing any variable.

Terms

Build terms from function symbols and variables,respecting arities.
Again: Inductive definition.

- If v is a variable symbol, v is a term.
- If f is a function symbol of arity $0, f$ is a term.
- If f is a function symbol of arity $n>0$, and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
Ground term: Term not containing any variable.

Terms - Examples

Example terms:

- socrates
- Xiknve
- father(socrates)
- father(father(socrates))
- father(father(father(socrates)))
- son(father(socrates), Xiknve)
supercalifragilistichespiralidoso287(A, B, C, socrates, Xiknve, D)
Note that each term will represent an "object.'

Terms - Examples

Example terms:

- socrates
- Xiknve
- father(socrates)
- father(father(socrates))
- father(father(father(socrates)))
- son(father(socrates), Xiknve)
supercalifragilistichespiralidoso287(A, B, C, socrates, Xiknve, D)
Note that each term will represent an "object."

Outline

(1) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Predicate Symbols

- Countable set P of predicate symbols.
- An arity is associated with each predicate symbol.
- Examples:
- human (arity 1)
- mortal (arity 1)
- married (arity 2)
- yggdrasil (arity 18)

Predicate Symbols

- Countable set P of predicate symbols.
- An arity is associated with each predicate symbol.
- Examples:
- human (arity 1)
- mortal (arity 1)
- married (arity 2)
- yggdrasil (arity 18)

Predicate Symbols

- Countable set P of predicate symbols.
- An arity is associated with each predicate symbol.
- Examples:
- human (arity 1)
- mortal (arity 1)
- married (arity 2)
- yggdrasil (arity 18)

Atoms

- If p is a predicate symbol of arity n, and
- t_{1}, \ldots, t_{n} are terms, then
- $p\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula or atom.
- Examples:
- human(socrates)
- mortal(father(Xiknve))
- married'(socrates, A)

Predicates with arity 0 are like propositional atoms.

Atoms

- If p is a predicate symbol of arity n, and
- t_{1}, \ldots, t_{n} are terms, then
- $p\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula or atom.
- Examples:
- human(socrates)
- mortal(father(Xiknve))
- married(socrates, A)

Predicates with arity 0 are like propositional atoms.

Atoms

- If p is a predicate symbol of arity n, and
- t_{1}, \ldots, t_{n} are terms, then
- $p\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula or atom.
- Examples:
- human(socrates)
- mortal(father(Xiknve))
- married(socrates, A)

Predicates with arity 0 are like propositional atoms.

Formulas

Similar to propositional logic with different atoms.

```
    s a formula if and only if
    - x is an atomic formula, or
    - }x=T\mathrm{ , or
    0 }x=\perp\mathrm{ , or
    - }x=(\negy)\mathrm{ where }y\mathrm{ is a formula, or
    - }x=(y\wedgez)\mathrm{ where }y,z\mathrm{ are formulas, or
    - }x=(y\veez)\mathrm{ where }y,z\mathrm{ are formulas, or
    - }x=(y->z) where y,z are formulas, or
    - }x=(y\leftrightarrowz) where y,z are formulas, or
    0 }x=(\forallVy)\mathrm{ where V is a variable and y is a formula, or
0 }x=(\existsVy)\mathrm{ where V is a variable and y is a formula.
```


Formulas

Similar to propositional logic with different atoms. x is a formula if and only if

- x is an atomic formula, or
- $x=\top$, or
- $x=\perp$, or
- $x=(\neg y)$ where y is a formula, or
- $x=(y \wedge z)$ where y, z are formulas, or
- $x=(y \vee z)$ where y, z are formulas, or
- $x=(y \rightarrow z)$ where y, z are formulas, or
- $x=(y \leftrightarrow z)$ where y, z are formulas, or
- $x=(\forall V y)$ where V is a variable and y is a formula, or
- $x=(\exists V y)$ where V is a variable and y is a formula.

Quantified Variables

- \forall is the universal quantifier.
- \exists is the existential quantifier.
- In $\forall V y$ and $\exists V y, y$ is the scope of V.
- In $\forall V y$ and $\exists V y, V$ is bound in y.
- Variables which are not bound in a formula are free.
- Formulas without free variables are closed or sentences.

Formulas: Examples

As for propositional logic, we minimize parentheses.

- human(socrates)
- mortal(socrates)
- $\forall A$ (human $(A) \rightarrow \operatorname{mortal}(A))$
- $\forall A($ human $(\operatorname{son}($ socrates, $A)) \rightarrow$ married $($ socrates, $A))$
- $\forall A((\exists B \operatorname{human}(\operatorname{son}(A, B))) \rightarrow(\exists C$ married $(A, C)))$
- $((\exists B \operatorname{human}(\operatorname{son}(A, B))) \rightarrow(\exists C \operatorname{married}(A, C)))$

Practical Example 1

$$
\begin{aligned}
& n(z) \\
& \forall X(n(X) \rightarrow n(s(X))) \\
& \forall X \forall Y(\neg(e(X, Y)) \rightarrow \neg(e(s(X), s(Y)))) \\
& \forall X \neg e(s(X), z)
\end{aligned}
$$

Practical Example 2

```
\(\forall X \neg e(s(X), z)\)
\(\forall X \forall Y(e(s(X), s(Y)) \rightarrow e(X, Y))\)
\(\forall X e(a(X, z), X)\)
\(\forall X \forall Y e(a(X, s(Y)), s(a(X, Y)))\)
\(\forall X e(m(X, z), z)\)
\(\forall X \forall Y e(m(X, s(Y)), a(m(X, Y), X))\)
```


Definition of Free Variables

- Given a term t, the set of its free variables free (t) is defined as:
- $\operatorname{free}(t)=\{X\}$ if t is a variable X,
- $\operatorname{free}(t)=\{ \}$ if t is a constant,
- free $(t)=\bigcup_{i=1}^{n}$ free $\left(t_{i}\right)$ if t is $f\left(t_{1}, \ldots, t_{n}\right)$.
- Given a formula f, the set of its free variables free(f) is defined as:
- $\operatorname{free}(f)=\bigcup_{i=1}^{n}$ free $\left(t_{i}\right)$ if f is an atom $p\left(t_{1}, \ldots, t_{n}\right)$
- free $(f)=\{ \}$ if f is T or \perp,
- free $(f)=$ free (g) if f is $\neg g$,
- $\begin{aligned} \text { free }(f) & =\text { free }(g) \cup \text { free }(h) \text { if } f \text { is } g \circ h \text { for } \\ \text { - } \operatorname{free}(f) & =\operatorname{free}(g) \backslash X \text { if } f \text { is } \forall X g \text { or } \exists X g\end{aligned}$

Definition of Free Variables

- Given a term t, the set of its free variables free (t) is defined as:
- $\operatorname{free}(t)=\{X\}$ if t is a variable X,
- $\operatorname{free}(t)=\{ \}$ if t is a constant,
- free $(t)=\bigcup_{i=1}^{n}$ free $\left(t_{i}\right)$ if t is $f\left(t_{1}, \ldots, t_{n}\right)$.
- Given a formula f, the set of its free variables free (f) is defined as:
- $\operatorname{free}(f)=\bigcup_{i=1}^{n}$ free $\left(t_{i}\right)$ if f is an atom $p\left(t_{1}, \ldots, t_{n}\right)$,
- $\operatorname{free}(f)=\{ \}$ if f is T or \perp,
- $\operatorname{free}(f)=\operatorname{free}(g)$ if f is $\neg g$,
- $\operatorname{free}(f)=\operatorname{free}(g) \cup$ free (h) if f is $g \circ h$ for $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$,
- $\operatorname{free}(f)=\operatorname{free}(g) \backslash X$ if f is $\forall X g$ or $\exists X g$

Formulas as Trees

Every formula can be written as a formula tree: $\exists X p(X) \vee q(Y) \rightarrow \neg p(Y) \wedge r(Y)$

Formulas as Trees

Every formula can be written as a formula tree: $\exists X p(X) \vee q(Y) \rightarrow \neg p(Y) \wedge r(Y)$

Term Substitution

- Substitute term x by y in term t, denoted $t[y / x]$:
- $t[y / x]=y$ if $t=x$,
- $t[y / x]=t$ if $t \neq x$,
- $t[y / x]=f\left(t_{1}[y / x], \ldots, t_{n}[y / x]\right)$ if $t \neq x$ and $t=f\left(t_{1}, \ldots, t_{n}\right)$.
- Substitute term x by y in a formula f, denoted $f[y / x]$:

Term Substitution

- Substitute term x by y in term t, denoted $t[y / x]$:
- $t[y / x]=y$ if $t=x$,
- $t[y / x]=t$ if $t \neq x$,
- $t[y / x]=f\left(t_{1}[y / x], \ldots, t_{n}[y / x]\right)$ if $t \neq x$ and $t=f\left(t_{1}, \ldots, t_{n}\right)$.
- Substitute term x by y in a formula f, denoted $f[y / x]$:
- $f[y / x]=f$ if f is T or \perp
- $f[y / x]=p\left(t_{1}[y / x], \ldots, t_{n}[y / x]\right)$ if f is an atom $p\left(t_{1}, \ldots, t_{n}\right)$
- $f[y / x]=\neg g[y / x]$ if $f=\neg g$
- $f[y / x]=g[y / x] \circ h[y / x]$ if $f=g \circ h$ for $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$,
- $f[y / x]=\mathcal{Q} V g[y / x]$ if $f=\mathcal{Q} V g$ for $\mathcal{Q} \in\{\forall, \exists\}$ and $V \neq x$,
- $f[y / x]=\mathcal{Q} V g$ if $f=\mathcal{Q} V g$ for $\mathcal{Q} \in\{\forall, \exists\}$ and $V=x$.

Formula Substitution

- Substitute a formula g by h in a formula f, denoted $f[h / g]$:
- \Rightarrow As for propositional logic.

Outline

(9) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Semantics - Requirements

Give meaning to

- function symbols (including constants),
- variable symbols
- predicate symbols
- formulas

Domain

- We want to speak about "objects."
- Each term represents an "object."
- Domain \mathcal{D} : A set of "objects."

Interpretation Function

- Interpretation I: Associate terms with objects.
- For each constant symbol $c, I(c) \in \mathcal{D}$
- For each function symbol f of arity $n, I(f)$ is a function $\mathcal{D}^{n} \mapsto \mathcal{D}$
- For any n-tuple of objects, $I(f)$ defines a unique object.

Interpretation Function

- Interpretation I: Also associate predicates with truth functions.
- For each constant predicate p of arity $n, I(p)$ is a function $\mathcal{D}^{n} \mapsto\{0,1\}$
- For any n-tuple of objects, $I(p)$ defines a truth value.

Free Variables?

- There are two ways to handle free variables in formulas:
(1) Define variable assignments, associating a domain object with a variable.
(2) Consider universal closure: $\forall X_{1} \ldots \forall X_{n} f$ where $\operatorname{free}(f)=\left\{X_{1}, \ldots, X_{n}\right\}$.
- We will consider variable assignments:
- A variable assignment v is a function $V \mapsto \mathcal{D}$.

Free Variables?

- There are two ways to handle free variables in formulas:
(1) Define variable assignments, associating a domain object with a variable.
(2) Consider universal closure: $\forall X_{1} \ldots \forall X_{n} f$ where $\operatorname{free}(f)=\left\{X_{1}, \ldots, X_{n}\right\}$.
- We will consider variable assignments:
- A variable assignment v is a function $V \mapsto \mathcal{D}$.

Outline

(9) Motivation

- Why "more than" Propositional Logic?
- Intuition
(2) Syntax
- Terms
- Formulas
(3) Semantics
- Structures
- Valuation

Valuation

- A valuation μ_{M} of a term t with respect to a first order structure $M=(\mathcal{D}, I, v)$ is:
- $\mu_{M}(t)=v(t)$ if t is a variable
- $\mu_{M}(t)=I(t)$ if t is a constant
- $\mu_{M}(t)=I(f)\left(\mu_{M}\left(t_{1}\right), \ldots, \mu_{M}\left(t_{n}\right)\right)$ if t is $f\left(t_{1}, \ldots, t_{n}\right)$
- A valuation μ_{M} for a formula f with respect to a first order structure $M=(\mathcal{D}, I, v)$ is:

- $\mu_{M}\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=I(p)\left(\mu_{M}\left(t_{1}\right), \ldots, \mu_{M}\left(t_{n}\right)\right)$
- continuing on next slide

Valuation

- A valuation μ_{M} of a term t with respect to a first order structure $M=(\mathcal{D}, I, v)$ is:
- $\mu_{M}(t)=v(t)$ if t is a variable
- $\mu_{M}(t)=I(t)$ if t is a constant
- $\mu_{M}(t)=I(f)\left(\mu_{M}\left(t_{1}\right), \ldots, \mu_{M}\left(t_{n}\right)\right)$ if t is $f\left(t_{1}, \ldots, t_{n}\right)$
- A valuation μ_{M} for a formula f with respect to a first order structure $M=(\mathcal{D}, I, v)$ is:
- $\mu_{M}(T)=1$
- $\mu_{M}(\perp)=0$
- $\mu_{M}\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=I(p)\left(\mu_{M}\left(t_{1}\right), \ldots, \mu_{M}\left(t_{n}\right)\right)$
- continuing on next slide

Valuation

A valuation μ_{M} for a formula f with respect to a first order structure $M=(\mathcal{D}, I, v)$ is:

- $\mu_{M}(\neg g)=\neg \mu_{M}(g)$ using propositional logic
- $\mu_{M}(g \circ h)=\mu_{M}(g) \circ \mu_{M}(h)$ using propositional logic for $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$
- $\mu_{M}(\forall V g)=1$ if $\mu_{M}(g[d / V])=1$ for all $d \in \mathcal{D}$
- $\mu_{M}(\forall V g)=0$ if $\mu_{M}(g[d / V])=0$ for some $d \in \mathcal{D}$
- $\mu_{M}(\exists V g)=1$ if $\mu_{M}(g[d / V])=1$ for some $d \in \mathcal{D}$
- $\mu_{M}(\exists V g)=0$ if $\mu_{M}(g[d / V])=0$ for all $d \in \mathcal{D}$

Practical Example 1

$$
\begin{aligned}
& n(z) \\
& \forall X(n(X) \rightarrow n(s(X))) \\
& \forall X \forall Y(\neg(e(X, Y)) \rightarrow \neg(e(s(X), s(Y)))) \\
& \forall X \neg e(s(X), z)
\end{aligned}
$$

- \mathcal{D} : Natural numbers (including 0)
- $I(z)=0$
- $I(s)$: Successor of a number
- I(n): True for natural numbers
- I(e): True for equal numbers
- no free variables

Peano

Giuseppe Peano (1858-1932)

Practical Example 2

$$
\begin{aligned}
& \forall X \neg e(s(X), z) \\
& \forall X \forall Y(e(s(X), s(Y)) \rightarrow e(X, Y)) \\
& \forall X e(a(X, z), X) \\
& \forall X \forall Y e(a(X, s(Y)), s(a(X, Y))) \\
& \forall X e(m(X, z), z) \\
& \forall X \forall Y e(m(X, s(Y)), a(m(X, Y), X))
\end{aligned}
$$

- \mathcal{D} : Natural numbers (including 0)
- $I(z)=0$
- $I(s)$: Successor of a number
- I(a): Sum of two numbers
- $I(m)$: Product of two numbers
- $I(e)$: True for equal numbers
- no free variables

Russell and Whitehead

Bertrand Russell (1872-1970) Alfred Whitehead (1861-1947)

Socrates Example

human(socrates)
 $\forall X(\operatorname{human}(X) \rightarrow \operatorname{mortal}(X))$ mortal(socrates)

