Contents

1	Motivation 1.1 Why "more than" Propositional Logic?			
	Syntax			
	2.1	Terms	3	
	2.2	Formulas	4	
3	Semantics			
	3.1	Structures	7	
	3.2	Valuation	8	

1 Motivation

1.1 Why "more than" Propositional Logic?

Propositional Logic \Rightarrow Done?

We want to represent:

- Socrates is a human.
- Humans are mortal.

From this, we want to draw the conclusion:

• Socrates is mortal.

Propositional Logic \Rightarrow Done?

In propositional logic:

- variable SH (Socrates is a human.)
- variable HM (Humans are mortal.)
- variable SM (Socrates is mortal.)
- formula $F: SH \land$ ("Socrates is a human" and ...)
- $SH \rightarrow SM$ ("Socrates is a human" implies "Socrates is mortal.")

From this, we can draw the conclusion:

- $F \models SM$ ("Socrates is mortal.")
- ... and where is HM??
- This is not what we wanted to express!

Propositional Logic \Rightarrow Done?

"Humans are mortal" is not an atom!

- Marco is a human.
- Humans are mortal.
- Marco is mortal.
- We talk about "objects," not about propositions!
- *But:* There are no objects in propositional logic.

1.2 Intuition

Towards First-Order Logic

- "Start" from Propositional Logic.
- "Atoms" are no longer indivisible.
- Compose "atoms" from:
 - terms (representing objects) and
 - predicates (statements about terms).
- Socrates ⇒ term
- Mortal ⇒ predicate

Functions

- "Socrates' father"
- ...represents exactly one "object,"
- but we refer to it from another "object."
- Function symbols map some "objects" to another "object".
- "Objects" are constant function symbols!

Variable

- "Humans are mortal"
- ...if some "object" is human, it is mortal.
- ... We need a variable ranging over "objects."
- Note: Such variables are completely different from propositional variables!
- Think about them as *object variables*.

Quantifiers

- "Humans are mortal"
- ... actually wants to express "all humans are mortal,"
- ... and not "some humans are mortal,"
- ... and certainly not "no humans are mortal."
- Quantifiers express
 - 1. "for all objects" or
 - 2. "some object exists."

2 Syntax

2.1 Terms

Function Symbols, Constants

- ullet Countable set F of function symbols.
- An arity (nonnegative integer) is associated with each function symbol.
- Function symbols with arity 0 are *constants* ("objects").
- Examples:
 - socrates (arity 0)
 - father (arity 1)
 - son (arity 2)
 - supercalifragilistichespiralidoso287 (arity 6)

Variables

- Countable set V of (object) variables.
- V and F are disjoint!
- Examples:
 - Human
 - Xiknve
 - -A,B,C,D

Terms

Build *terms* from function symbols and variables,respecting arities. Again: Inductive definition.

- If v is a variable symbol, v is a term.
- If f is a function symbol of arity 0, f is a term.
- If f is a function symbol of arity n > 0, and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Ground term: Term not containing any variable.

Terms - Examples

Example terms:

- \bullet socrates
- Xiknve
- father(socrates)
- father(father(socrates))
- father(father(father(socrates)))
- son(father(socrates), Xiknve)
- supercalifragilistichespiralidoso287(A, B, C, socrates, Xiknve, D)

Note that each term will represent an "object."

2.2 Formulas

Predicate Symbols

- Countable set P of predicate symbols.
- An arity is associated with each predicate symbol.
- Examples:
 - human (arity 1)
 - mortal (arity 1)
 - married (arity 2)
 - yggdrasil (arity 18)

Atoms

- If p is a predicate symbol of arity n, and
- t_1, \ldots, t_n are terms, then
- $p(t_1, \ldots, t_n)$ is an atomic formula or atom.
- Examples:
 - human(socrates)
 - mortal(father(Xiknve))
 - married(socrates, A)

Predicates with arity 0 are like propositional atoms.

Formulas

Similar to propositional logic with different atoms. x is a formula if and only if

- x is an atomic formula, or
- $x = \top$, or
- $x = \bot$, or
- $x = (\neg y)$ where y is a formula, or
- $x = (y \land z)$ where y, z are formulas, or
- $x = (y \lor z)$ where y, z are formulas, or
- $x = (y \rightarrow z)$ where y, z are formulas, or
- $x = (y \leftrightarrow z)$ where y, z are formulas, or
- $x = (\forall V \ y)$ where V is a variable and y is a formula, or
- $x = (\exists V \ y)$ where V is a variable and y is a formula.

Quantified Variables

- \forall is the *universal quantifier*.
- \exists is the *existential quantifier*.
- In $\forall V \ y$ and $\exists V \ y, y$ is the *scope* of V.
- In $\forall V \ y$ and $\exists V \ y, V$ is bound in y.
- Variables which are not bound in a formula are free.
- Formulas without free variables are *closed* or *sentences*.

Formulas: Examples

As for propositional logic, we minimize parentheses.

- human(socrates)
- mortal(socrates)
- $\forall A (human(A) \rightarrow mortal(A))$
- $\forall A \ (human(son(socrates, A)) \rightarrow married(socrates, A))$
- $\forall A ((\exists B \ human(son(A, B))) \rightarrow (\exists C \ married(A, C)))$
- $((\exists B \ human(son(A, B))) \rightarrow (\exists C \ married(A, C)))$

Practical Example 1

$$\begin{array}{l} n(z) \\ \forall X \; (n(X) \rightarrow n(s(X))) \\ \forall X \; \forall Y \; (\neg(e(X,Y)) \rightarrow \neg(e(s(X),s(Y)))) \\ \forall X \; \neg e(s(X),z) \end{array}$$

Practical Example 2

$$\begin{array}{l} \forall X \ \neg e(s(X),z) \\ \forall X \ \forall Y (e(s(X),s(Y)) \rightarrow e(X,Y)) \\ \forall X \ e(a(X,z),X) \\ \forall X \ \forall Y \ e(a(X,s(Y)),s(a(X,Y))) \\ \forall X \ e(m(X,z),z) \\ \forall X \ \forall Y \ e(m(X,s(Y)),a(m(X,Y),X)) \end{array}$$

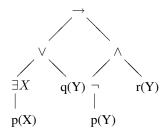
Definition of Free Variables

- Given a term t, the set of its free variables free(t) is defined as:
 - $free(t) = \{X\}$ if t is a variable X,
 - $free(t) = \{\}$ if t is a constant,
 - $free(t) = \bigcup_{i=1}^{n} free(t_i)$ if t is $f(t_1, \dots, t_n)$.
- Given a formula f, the set of its free variables free(f) is defined as:
 - $free(f) = \bigcup_{i=1}^{n} free(t_i)$ if f is an atom $p(t_1, \dots, t_n)$,
 - $free(f) = \{\}$ if f is \top or \bot ,
 - free(f) = free(g) if f is $\neg g$,
 - $free(f) = free(g) \cup free(h)$ if f is $g \circ h$ for $o \in \{\land, \lor, \rightarrow, \leftrightarrow\}$,
 - $free(f) = free(g) \setminus X$ if f is $\forall X$ g or $\exists X$ g

Formulas as Trees

Every formula can be written as a formula tree:

$$\exists X \ p(X) \lor q(Y) \rightarrow \neg p(Y) \land r(Y)$$



Term Substitution

• Substitute term x by y in term t, denoted t[y/x]:

-
$$t[y/x] = y$$
 if $t = x$,

-
$$t[y/x] = t$$
 if $t \neq x$,

-
$$t[y/x] = f(t_1[y/x], \dots, t_n[y/x])$$
 if $t \neq x$ and $t = f(t_1, \dots, t_n)$.

• Substitute term x by y in a formula f, denoted f[y/x]:

-
$$f[y/x] = f$$
 if f is \top or \bot

–
$$f[y/x] = p(t_1[y/x], \dots, t_n[y/x])$$
 if f is an atom $p(t_1, \dots, t_n)$

-
$$f[y/x] = \neg g[y/x]$$
 if $f = \neg g$

-
$$f[y/x] = g[y/x] \circ h[y/x]$$
 if $f = g \circ h$ for $o \in \{\land, \lor, \rightarrow, \leftrightarrow\}$,

-
$$f[y/x] = \mathcal{Q}V \ g[y/x] \ \text{if} \ f = \mathcal{Q}V \ g \ \text{for} \ \mathcal{Q} \in \{\forall, \exists\} \ \text{and} \ V \neq x,$$

-
$$f[y/x] = QV$$
 g if $f = QV$ g for $Q \in \{\forall, \exists\}$ and $V = x$.

Formula Substitution

- Substitute a formula g by h in a formula f, denoted f[h/g]:
- \Rightarrow As for propositional logic.

3 Semantics

3.1 Structures

Semantics - Requirements

Give meaning to

• function symbols (including constants),

- variable symbols
- predicate symbols
- formulas

Domain

- We want to speak about "objects."
- Each term represents an "object."
- Domain D: A set of "objects."

Interpretation Function

- Interpretation *I*: Associate terms with objects.
- For each constant symbol $c, I(c) \in \mathcal{D}$
- For each function symbol f of arity n, I(f) is a function $\mathcal{D}^n \mapsto \mathcal{D}$
- ullet For any n-tuple of objects, I(f) defines a unique object.

Interpretation Function

- Interpretation *I*: Also associate predicates with truth functions.
- For each constant predicate p of arity n, I(p) is a function $\mathcal{D}^n \mapsto \{0, 1\}$
- ullet For any n-tuple of objects, I(p) defines a truth value.

Free Variables?

- There are two ways to handle *free variables* in formulas:
 - 1. Define variable assignments, associating a domain object with a variable.
 - 2. Consider *universal closure*: $\forall X_1 \dots \forall X_n f$ where $free(f) = \{X_1, \dots, X_n\}$.
- We will consider variable assignments:
- A variable assignment v is a function $V \mapsto \mathcal{D}$.

3.2 Valuation

Valuation

- A valuation μ_M of a term t with respect to a first order structure $M=(\mathcal{D},I,v)$ is:
 - $\mu_M(t) = v(t)$ if t is a variable
 - $\mu_M(t) = I(t)$ if t is a constant
 - $\mu_M(t) = I(f)(\mu_M(t_1), \dots, \mu_M(t_n))$ if t is $f(t_1, \dots, t_n)$
- A valuation μ_M for a formula f with respect to a first order structure $M=(\mathcal{D},I,v)$ is:
 - $μ_M(T) = 1$
 - $\mu_M(\perp) = 0$
 - $\mu_M(p(t_1,\ldots,t_n)) = I(p)(\mu_M(t_1),\ldots,\mu_M(t_n))$
 - continuing on next slide

Valuation

A valuation μ_M for a formula f with respect to a first order structure $M=(\mathcal{D},I,v)$ is:

- $\mu_M(\neg g) = \neg \mu_M(g)$ using propositional logic
- $\mu_M(g \circ h) = \mu_M(g) \circ \mu_M(h)$ using propositional logic for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- $\mu_M(\forall V \ g) = 1 \text{ if } \mu_M(g[d/V]) = 1 \text{ for all } d \in \mathcal{D}$
- $\mu_M(\forall V \ g) = 0 \text{ if } \mu_M(g[d/V]) = 0 \text{ for some } d \in \mathcal{D}$
- $\mu_M(\exists V \ g) = 1 \text{ if } \mu_M(g[d/V]) = 1 \text{ for some } d \in \mathcal{D}$
- $\mu_M(\exists V \ g) = 0 \text{ if } \mu_M(g[d/V]) = 0 \text{ for all } d \in \mathcal{D}$

Practical Example 1

$$\begin{array}{l} n(z) \\ \forall X \ (n(X) \rightarrow n(s(X))) \\ \forall X \ \forall Y \ (\neg(e(X,Y)) \rightarrow \neg(e(s(X),s(Y)))) \\ \forall X \ \neg e(s(X),z) \end{array}$$

- \mathcal{D} : Natural numbers (including 0)
- I(z) = 0
- I(s): Successor of a number

- \bullet I(n): True for natural numbers
- \bullet I(e): True for equal numbers
- no free variables

Peano

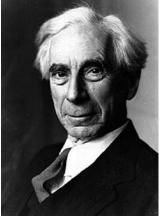
Giuseppe Peano (1858–1932)

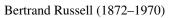
Practical Example 2

$$\begin{array}{l} \forall X \ \neg e(s(X),z) \\ \forall X \ \forall Y (e(s(X),s(Y)) \rightarrow e(X,Y)) \\ \forall X \ e(a(X,z),X) \\ \forall X \ \forall Y \ e(a(X,s(Y)),s(a(X,Y))) \\ \forall X \ e(m(X,z),z) \\ \forall X \ \forall Y \ e(m(X,s(Y)),a(m(X,Y),X)) \end{array}$$

- \mathcal{D} : Natural numbers (including 0)
- I(z) = 0
- I(s): Successor of a number
- I(a): Sum of two numbers
- I(m): Product of two numbers
- I(e): True for equal numbers
- no free variables

Russell and Whitehead





Alfred Whitehead (1861–1947)

Socrates Example

 $\begin{array}{l} human(socrates) \\ \forall X (human(X) \rightarrow mortal(X)) \\ mortal(socrates) \end{array}$