Logica del Primo Ordine 2 First-Order Logic 2

Wolfgang Faber

University of Calabria, Italy

2007

- Semantic Notions
- 2 Herbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Models

- A structure $M = (\mathcal{D}, I, v)$ is a model of a formula f if $\mu_M(f) = 1$
- If $\mu_M(f) = 1$, then M satisifies f.
- If M satisifes f, we write $M \models f$.

Satisfiability, Validity, Equivalence, Entailment

A formula f is ...

- satisfiable, if an M exists such that $M \models f$
- valid, if $M \models f$ for all M.

For two formulas f and g,

- f is equivalent to g ($f \equiv g$), if f and g have the same models,
- f entails g ($f \models g$), if each model of f is also a model of g.

Satisfiability, Validity, Equivalence, Entailment

A formula f is ...

- satisfiable, if an M exists such that $M \models f$
- valid, if $M \models f$ for all M.

For two formulas f and g,

- f is equivalent to g ($f \equiv g$), if f and g have the same models,
- f entails g ($f \models g$), if each model of f is also a model of g.

Socrates Example

```
human(socrates)
\forall X(human(X) \rightarrow mortal(X))
mortal(socrates)
```

```
human(socrates) \land \forall X(human(X) \rightarrow mortal(X)) \models mortal(socrates)
```

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg (f \leftrightarrow g)$ is unsatisfiable.
- $f \models g$ holds if $f \rightarrow g$ is valid (Deduction Theorem).
- $f \models g$ holds if $\neg (f \rightarrow g)$ is unsatisfiable.

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg (f \leftrightarrow g)$ is unsatisfiable.
- $f \models g$ holds if $f \rightarrow g$ is valid (Deduction Theorem).
- $f \models g$ holds if $\neg (f \rightarrow g)$ is unsatisfiable.

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg (f \leftrightarrow g)$ is unsatisfiable.
- $f \models g$ holds if $f \rightarrow g$ is valid (Deduction Theorem).
- $f \models g$ holds if $\neg (f \rightarrow g)$ is unsatisfiable.

Substitution Theorem

Theorem

For wffs f, g, h, where $g \equiv h$, we obtain $f \equiv f[h/g]$

Just as in propositional logic.

• $\neg (f \lor g) \equiv \neg g \land \neg f$

 $\neg (f \land q) \equiv \neg q \lor \neg f$

```
• f \circ g \equiv g \circ f
                                 (Commutativity) for \circ \in \{\land, \lor, \leftrightarrow\}
• f \circ f \equiv f
                          (Idempotence) for \circ \in \{\land, \lor\}
• f \lor \top \equiv \top
• f \wedge \bot \equiv \bot
\bullet f \lor \bot \equiv f
                            (Neutrality)
\bullet f \wedge \top \equiv f
                            (Neutrality)
f \lor \neg f = \top
\bullet f \land \neg f = \bot
 \neg \neg f = f 
• f \rightarrow q \equiv \neg f \lor q
```

(De Morgan)

(De Morgan)

```
• f \lor (g \lor h) \equiv (f \lor g) \lor h
                                                   (Associativity)
• f \wedge (g \wedge h) \equiv (f \wedge g) \wedge h (Associativity)
• f \wedge (g \vee h) \equiv (f \wedge g) \vee (f \wedge h)
                                                            (Distributivity)
• f \lor (g \land h) \equiv (f \lor g) \land (f \lor h) (Distributivity)
• f \wedge (f \vee g) \equiv f (Absorption)
• f \lor (f \land g) \equiv f (Absorption)
\bullet (\exists X \ f) \land g \equiv \exists X \ (f \land g)
\bullet (\exists X \ f) \lor g \equiv \exists X \ (f \lor g)
(\forall X \ f) \land g \equiv \forall X \ (f \land g)
• (\forall X \ f) \lor g \equiv \forall X \ (f \lor g)
```

```
• f \lor (g \lor h) \equiv (f \lor g) \lor h (Associativity)
• f \wedge (g \wedge h) \equiv (f \wedge g) \wedge h (Associativity)
• f \wedge (g \vee h) \equiv (f \wedge g) \vee (f \wedge h)
                                                      (Distributivity)
• f \lor (g \land h) \equiv (f \lor g) \land (f \lor h) (Distributivity)
• f \wedge (f \vee g) \equiv f (Absorption)
• f \lor (f \land g) \equiv f (Absorption)
\bullet (\exists X \ f) \land g \equiv \exists X \ (f \land g)
                                              (only if X is not free in a)
• (\exists X \ f) \lor g \equiv \exists X \ (f \lor g)
                                              (only if X is not free in g)
• (\forall X f) \land g \equiv \forall X (f \land g)
                                              (only if X is not free in g)
• (\forall X f) \lor g \equiv \forall X (f \lor g)
                                              (only if X is not free in g)
```

- $(\exists X \ f) \land (\exists X \ g) \equiv \exists X \ (f \land g)$
- $(\exists X \ f) \lor (\exists X \ g) \equiv \exists X \ (f \lor g)$
- $\bullet \ (\forall X \ f) \land (\forall X \ g) \equiv \forall X \ (f \land g)$
- $\bullet \ (\forall X \ f) \lor (\forall X \ g) \equiv \forall X \ (f \lor g)$
- $\neg \forall X \ f \equiv \exists X \ \neg f$ ($\forall \ De \ Morgan$)
- $\neg \exists X \ f \equiv \forall X \ \neg f$ ($\forall \ \mathsf{De} \ \mathsf{Morgan}$)
- $\forall X f \equiv \forall Y f[Y/X]$ (Renaming)
- $\exists X \ f \equiv \exists Y \ f[Y/X]$ (Renaming)
- $\forall X \ \forall Y \ f \equiv \forall Y \ \forall Xf$ (Exchange)
- $\exists X \exists Y f \equiv \exists Y \exists Xf$ (Exchange)

Outline

- Semantic Notions
- 2 Herbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Even for a simple formula like

there are infinitely many structures and models. Let us look at some of them.

Structure 1: $M_1 = (\mathcal{D}_1, I_1, \epsilon)$

- $\mathcal{D}_1 = \{a\}$
- $I_1(c) = a$
- $I_1(p)(a) = 0$
- ϵ : empty variable valuation

 M_1 is not a model of this formula

Structure 1: $M_1 = (\mathcal{D}_1, I_1, \epsilon)$

- $\mathcal{D}_1 = \{a\}$
- $I_1(c) = a$
- $I_1(p)(a) = 0$
- \bullet ϵ : empty variable valuation

 M_1 is not a model of this formula.

Structure 2: $M_2 = (\mathcal{D}_2, I_2, \epsilon)$

- $\mathcal{D}_2 = \{a\}$
- $I_2(c) = a$
- $I_2(p)(a) = 1$
- \bullet ϵ : empty variable valuation

 M_2 is a model of this formula.

Structure 2: $M_2 = (\mathcal{D}_2, I_2, \epsilon)$

- $\mathcal{D}_2 = \{a\}$
- $I_2(c) = a$
- $I_2(p)(a) = 1$
- \bullet ϵ : empty variable valuation

 M_2 is a model of this formula.

Structure 3: $M_3 = (\mathcal{D}_3, I_3, \epsilon)$

- $\mathcal{D}_3 = \{b\}$
- $I_3(c) = b$
- $I_3(p)(b) = 0$
- \bullet ϵ : empty variable valuation

 M_3 is not a model of this formula

Structure 3: $M_3 = (\mathcal{D}_3, I_3, \epsilon)$

- $\mathcal{D}_3 = \{b\}$
- $I_3(c) = b$
- $I_3(p)(b) = 0$
- \bullet ϵ : empty variable valuation

 M_3 is not a model of this formula.

Structure 4: $M_4 = (\mathcal{D}_4, I_4, \epsilon)$

- $\mathcal{D}_4 = \{b\}$
- $I_4(c) = b$
- $I_4(p)(b) = 1$
- ϵ : empty variable valuation

 M_4 is a model of this formula.

Structure 4: $M_4 = (\mathcal{D}_4, I_4, \epsilon)$

- $\mathcal{D}_4 = \{b\}$
- $I_4(c) = b$
- $I_4(p)(b) = 1$
- \bullet ϵ : empty variable valuation

 M_4 is a model of this formula.

Structure 5: $M_5 = (\mathcal{D}_5, I_5, \epsilon)$

- $\mathcal{D}_5 = \{b, c\}$
- $I_5(c) = b$
- $I_5(p)(b) = 0$
- I₅(p)(c) can be 0 or 1
- \bullet ϵ : empty variable valuation

 M_5 is not a model of this formula

Structure 5: $M_5 = (\mathcal{D}_5, I_5, \epsilon)$

- $\mathcal{D}_5 = \{b, c\}$
- $I_5(c) = b$
- $I_5(p)(b) = 0$
- $I_5(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation

 M_5 is not a model of this formula.

Structure 6: $M_6 = (\mathcal{D}_6, I_6, \epsilon)$

- $\mathcal{D}_6 = \{b, c\}$
- $I_6(c) = b$
- $I_6(p)(b) = 1$
- I₆(p)(c) can be 0 or 1
- \bullet ϵ : empty variable valuation

 M_6 is a model of this formula.

Structure 6: $M_6 = (\mathcal{D}_6, I_6, \epsilon)$

- $\mathcal{D}_6 = \{b, c\}$
- $I_6(c) = b$
- $I_6(p)(b) = 1$
- $I_6(p)(c)$ can be 0 or 1
- \bullet ϵ : empty variable valuation

 M_6 is a model of this formula.

Structure 7: $M_7 = (\mathcal{D}_7, I_7, \epsilon)$

- $\mathcal{D}_7 = \{b, c\}$
- $I_7(c) = c$
- I₇(p)(b) can be 0 or 1
- $I_7(p)(c) = 0$
- \bullet ϵ : empty variable valuation

 M_7 is not a model of this formula

Structure 7: $M_7 = (\mathcal{D}_7, I_7, \epsilon)$

- $\mathcal{D}_7 = \{b, c\}$
- $I_7(c) = c$
- I₇(p)(b) can be 0 or 1
- $I_7(p)(c) = 0$
- \bullet ϵ : empty variable valuation

 M_7 is not a model of this formula.

Structure 8: $M_8 = (\mathcal{D}_8, I_8, \epsilon)$

- $\mathcal{D}_8 = \{b, c\}$
- $I_8(c) = c$
- I₈(p)(b) can be 0 or 1
- $I_8(p)(c) = 1$
- \bullet ϵ : empty variable valuation

 M_8 is a model of this formula.

Structure 8: $M_8 = (\mathcal{D}_8, I_8, \epsilon)$

- $\mathcal{D}_8 = \{b, c\}$
- $I_8(c) = c$
- I₈(p)(b) can be 0 or 1
- $I_8(p)(c) = 1$
- \bullet ϵ : empty variable valuation

 M_8 is a model of this formula.

- All structures are quite similar!
- Changing domains does not seem to change much.
- The interpretation of predicates appears crucial.
- The interpretation of functions appears to be "isomorphic" for different domains.

Cardinality of Domain

$$p(c) \land \neg p(d)$$

Model: $(\mathcal{D}, I, \epsilon)$

•
$$\mathcal{D} = \{y, z\}$$

•
$$I(c) = y$$

•
$$I(d) = z$$

•
$$I(p)(y) = 1$$

•
$$I(p)(z) = 0$$

But no model exists for any \mathcal{D} with $|\mathcal{D}| < 2!$

⇒ Cardinality of the domain is important

Cardinality of Domain

$$p(c) \land \neg p(d)$$

Model: $(\mathcal{D}, I, \epsilon)$

- $\mathcal{D} = \{y, z\}$
- I(c) = y
- I(d) = z
- I(p)(y) = 1
- I(p)(z) = 0

But no model exists for any ${\cal D}$ with $|{\cal D}|<2!$

⇒ Cardinality of the domain is important.

Outline

- Semantic Notions
- 2 Herbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Jacques Herbrand

Jacques Herbrand (1908–1931)

Herbrand Universe

- Idea: Use the set of ground terms of the formula as domain!
- This domain is called Herbrand Universe.
- ⇒ Interpret function symbols as "themselves."
- $I_H(c) = c$ for constants
- $I_H(f)(t_1,...,t_n) = f(t_1,...,t_n)$

Herbrand Universe

- Idea: Use the set of ground terms of the formula as domain!
- This domain is called Herbrand Universe.
- ⇒ Interpret function symbols as "themselves."
- $I_H(c) = c$ for constants
- $I_H(f)(t_1,...,t_n) = f(t_1,...,t_n)$

Herbrand Universe – Example

$$n(z)$$

 $\forall X (n(X) \rightarrow n(s(X)))$
 $\forall X \forall Y (\neg(e(X, Y)) \rightarrow \neg(e(s(X), s(Y))))$
 $\forall X \neg e(s(X), z)$

- $\mathcal{D}_H = \{z, s(z), s(s(z)), s(s(s(z))), \ldots\}$
- $I_H(z) = z$
- $I_H(s)(z) = s(z)$
- $I_H(s)(s(z)) = s(s(z))$
- $I_H(s)(s(s(z))) = s(s(s(z)))$
- . . .

- What about interpretations of predicate symbols?
- These are not fixed
- Each predicate is a function from term tuples to {0, 1}.
- Write this as a set $\{p(t_1, ..., t_n) \mid I_H(p)(t_1, ..., t_n) = 1\}$
- ⇒ The set of true ground atoms in this interpretation.
- Largest set $\{p(t_1,\ldots,t_n)\mid p \text{ a predicate of arity } n,t_1,\ldots,t_n \text{ terms}\}$ is called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to {0, 1}.
- Write this as a set $\{p(t_1, ..., t_n) \mid I_H(p)(t_1, ..., t_n) = 1\}$
- ⇒ The set of true ground atoms in this interpretation.
- Largest set $\{p(t_1,\ldots,t_n)\mid p \text{ a predicate of arity } n,t_1,\ldots,t_n \text{ terms}\}$ is called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to {0, 1}.
- Write this as a set $\{p(t_1, ..., t_n) \mid I_H(p)(t_1, ..., t_n) = 1\}$
- ⇒ The set of true ground atoms in this interpretation.
- Largest set $\{p(t_1,\ldots,t_n)\mid p \text{ a predicate of arity } n,t_1,\ldots,t_n \text{ terms}\}$ is called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to {0, 1}.
- Write this as a set $\{p(t_1, ..., t_n) \mid I_H(p)(t_1, ..., t_n) = 1\}$
- ⇒ The set of true ground atoms in this interpretation.
- Largest set $\{p(t_1,\ldots,t_n)\mid p \text{ a predicate of arity } n,t_1,\ldots,t_n \text{ terms}\}$ is called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base – Example

$$egin{aligned} n(z) \ orall X \ (n(X) &
ightarrow n(s(X))) \ orall X \ orall Y \ (\lnot(e(X,Y)) &
ightarrow \lnot(e(s(X),s(Y)))) \ orall X \ \lnot e(s(X),z) \end{aligned}$$

- $I_H(n)(z) = 1, I_H(n)(s(z)) = 1,...$
- $I_H(e)(z,z) = 1$, $I_H(e)(z,s(z)) = 0$,...
- $I_H(e)(s(z), z) = 0, I_H(e)(s(z), s(z)) = 1, ...$
- $I_H(e)(s(s(z)), z) = 0, I_H(e)(s(s(z)), s(z)) = 0, ...$
- ...

$$I_H = \{n(z), n(s(z)), \ldots\} \cup \{e(z, z), e(s(z), s(z)), e(s(s(z)), s(s(z))), \ldots\}$$

Herbrand Base – Example

$$egin{aligned} n(z) \ orall X \ (n(X) &
ightarrow n(s(X))) \ orall X \ orall Y \ (\lnot(e(X,Y)) &
ightarrow \lnot(e(s(X),s(Y)))) \ orall X \ \lnot e(s(X),z) \end{aligned}$$

- $I_H(n)(z) = 1, I_H(n)(s(z)) = 1, ...$
- $I_H(e)(z,z) = 1$, $I_H(e)(z,s(z)) = 0$,...
- $I_H(e)(s(z), z) = 0, I_H(e)(s(z), s(z)) = 1, ...$
- $I_H(e)(s(s(z)), z) = 0, I_H(e)(s(s(z)), s(z)) = 0, ...$
- ...

$$I_{H} = \{ n(z), n(s(z)), \ldots \} \cup \{ e(z, z), e(s(z), s(z)), e(s(s(z)), s(s(z))), \ldots \}$$

Herbrand Structures – Theorem

A structure for a formula with Herbrand domain (universe) and an Herbrand interpretation is an Herbrand structure. If an Herbrand structure for a formula is a model, it is an Herbrand model.

Theorem

A formula has a model if and only if it has an Herbrand model.

Corollary

A formula is satisfiable if and only if it has an Herbrand model.

Herbrand Structures - Theorem

A structure for a formula with Herbrand domain (universe) and an Herbrand interpretation is an Herbrand structure. If an Herbrand structure for a formula is a model, it is an Herbrand model.

Theorem

A formula has a model if and only if it has an Herbrand model.

Corollary

A formula is satisfiable if and only if it has an Herbrand model.

Outline

- Semantic Notions
- Perbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Prenex Normal Form

Formulas of the following type are in Prenex Normal Form:

$$Q_1X_1 \ldots Q_nX_n f$$

where

- \bigcirc $Q_i \in \{ \forall, \exists \} \text{ for } 1 \leq i \leq n \text{ and }$
- f is a quantifier-free formula.
 - $Q_1 \dots Q_n$ is the quantifier prefix,
 - f is the matrix.

Prenex Normal Form

Formulas of the following type are in Prenex Normal Form:

$$Q_1X_1 \ldots Q_nX_n f$$

where

- \bigcirc $Q_i \in \{ \forall, \exists \}$ for $1 \leq i \leq n$ and
- f is a quantifier-free formula.
 - $Q_1 \ldots Q_n$ is the quantifier prefix,
 - f is the matrix.

Prenex Normal Form

- Move quantifiers outside ("up").
- Use the following rewritings:

 $\circ \in \{\land, \lor, \rightarrow\}$

```
 \begin{array}{l} \bullet \ \neg \forall X \ f \Rightarrow_P \exists X \ \neg f \\ \bullet \ \neg \exists X \ f \Rightarrow_P \forall X \ \neg f \\ \bullet \ f \leftrightarrow g \Rightarrow_P (f \rightarrow g) \land (g \rightarrow f) \\ \bullet \ QX \ f \circ g \Rightarrow_P QZ1 \ (f[Z1/X] \circ g) \\ \bullet \ \exists X \ f \rightarrow g \Rightarrow_P \forall Z1 \ (f[Z1/X] \rightarrow g) \\ \bullet \ \forall X \ f \rightarrow g \Rightarrow_P \exists Z1 \ (f[Z1/X] \rightarrow g) \\ \bullet \ f \circ QX \ g \Rightarrow_P QZ1 \ (f \circ g[Z1/X]) \end{array} \qquad \begin{array}{l} Z1 \ \text{fresh}, \\ Z
```

Outline

- Semantic Notions
- 2 Herbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Negation Normal Form

- \bullet ¬ only in front of atomic formulas.
- At most one ¬ in front of atomic formulas.

Negation Normal Form

- Move negation inside ("down").
- Use the following rewritings:

•
$$f \leftrightarrow g \Rightarrow_N (f \rightarrow g) \land (g \rightarrow f)$$

•
$$f \rightarrow g \Rightarrow_N \neg f \lor g$$

•
$$\neg \forall X \ f \Rightarrow_N \exists X \ \neg f$$

$$\bullet \ \neg \exists X \ f \Rightarrow_{N} \forall X \ \neg f$$

•
$$\neg (f \lor g) \Rightarrow_{N} \neg g \land \neg f$$

$$\bullet \neg (f \land g) \Rightarrow_{\mathsf{N}} \neg g \lor \neg f$$

$$\bullet \neg \neg f \Rightarrow f$$

Outline

- Semantic Notions
- 2 Herbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Formulas of the following type are in Conjunctive Normal Form:

$$Q_1X_1 \ldots Q_nX_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} I)$$

where

- \bigcirc $Q_i \in \{ \forall, \exists \}$ for $1 \le i \le n$ and
- I is a literal.
 - Special case of Prenex and Negation Normal Forms.

Formulas of the following type are in Conjunctive Normal Form:

$$Q_1X_1 \ldots Q_nX_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} I)$$

where

- \bigcirc $Q_i \in \{ \forall, \exists \}$ for $1 \le i \le n$ and
- I is a literal.
 - Special case of Prenex and Negation Normal Forms.

- Apply \Rightarrow_P and \Rightarrow_N
- Then use distributivity and \top , \bot rules:
 - $f \wedge \top \Rightarrow_C f$
 - $f \land \bot \Rightarrow_C \bot$
 - $f \lor \top \Rightarrow_C \top$
 - $f \lor \bot \Rightarrow_C f$
 - $f \lor (g \land h) \Rightarrow_{\mathcal{C}} (f \lor g) \land (f \lor h)$

- Note: ⊤ occurs only if it is the only clause.
- Also \(\perp \) occurs only if it is the only clause!

Outline

- Semantic Notions
- 2 Herbrand Structures
 - Intuition
 - Main Statement
- Normal Forms
 - Prenex Normal Form
 - Negation Normal Form
 - Conjunctive Normal Form
 - Skolemization

Thoralf Skolem

Thoralf Skolem (1887–1963)

- Problem: Alternating quantifiers in CNF.
- Notation as set of clauses not directly possible.
- Introduce Skolem functions to eliminate one type of quantifiers!
- Here: Eliminate ∃.

$$Q_1X_1 \ldots Q_nX_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} I)$$

- Work from left to right.
- Read $\forall X_1 \ldots \forall X_n \exists Y_f$:
- For any combination of terms $X_1 \ldots \forall X_n$ there exists a term Y such that f holds.
- Use a new function symbol to represent that:
- Replace Y by $s(X_1, \ldots, X_n)!$

$$Q_1X_1 \ldots Q_nX_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} I)$$

- Work from left to right.
- Read $\forall X_1 \ldots \forall X_n \exists Y_f$:
- For any combination of terms $X_1 \ldots \forall X_n$ there exists a term Y such that f holds.
- Use a new function symbol to represent that:
- Replace Y by $s(X_1, \ldots, X_n)!$

- Work from left to right (no arbitrary replacements)!
- $\forall X_1 \ldots \forall X_n \exists Yf \Rightarrow_S \forall X_1 \ldots \forall X_n f[s(X_1, \ldots, X_n)/Y],$
- s must be a fresh symbol

Skolemized CNF:

$$\forall X_1 \ldots \forall X_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} I)$$

Can be written as sets of clauses, clauses as sets of literals.

- Work from left to right (no arbitrary replacements)!
- $\forall X_1 \ldots \forall X_n \exists Y f \Rightarrow_S \forall X_1 \ldots \forall X_n f[s(X_1, \ldots, X_n)/Y],$
- s must be a fresh symbol

Skolemized CNF:

$$\forall X_1 \ldots \forall X_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} I)$$

Can be written as sets of clauses, clauses as sets of literals.

```
• f \equiv PNF(f) (PNF(f) Prenex Normal Form of f)
```

- $f \equiv NNF(f)$ (NNF(f) Negation Normal Form of f)
- $f \equiv CNF(f)$ (CNF(f) Conjunctive Normal Form of f)
- f ≠ SCNF(f) (SCNF(f) Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of SCNF(f) because of this.
- But: $SCNF(f) \models f!$


```
• f \equiv PNF(f) (PNF(f) Prenex Normal Form of f)
```

- $f \equiv NNF(f)$ (NNF(f) Negation Normal Form of f)
- $f \equiv CNF(f)$ (CNF(f) Conjunctive Normal Form of f)
- $f \neq SCNF(f)$ (SCNF(f) Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of SCNF(f) because of this.
- But: $SCNF(f) \models f!$

- $f \equiv PNF(f)$ (PNF(f) Prenex Normal Form of f)
- $f \equiv NNF(f)$ (NNF(f) Negation Normal Form of f)
- $f \equiv CNF(f)$ (CNF(f) Conjunctive Normal Form of f)
- $f \not\equiv SCNF(f)$ (SCNF(f) Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of SCNF(f) because of this.
- But: $SCNF(f) \models f!$

- $f \equiv PNF(f)$ (PNF(f) Prenex Normal Form of f)
- $f \equiv NNF(f)$ (NNF(f) Negation Normal Form of f)
- $f \equiv CNF(f)$ (CNF(f) Conjunctive Normal Form of f)
- $f \not\equiv SCNF(f)$ (SCNF(f) Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of SCNF(f) because of this.
- But: $SCNF(f) \models f!$

Prenex Normal Form Negation Normal Form Conjunctive Normal Form Skolemization

Skolemized CNF – Theorem

Theorem

For any formula f, f is satisfiable if and only if SCNF(f) is satisfiable.

Corollary

For any formula f, f is unsatisfiable if and only if SCNF(f) is unsatisfiable.