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Semantic Notions

Models

@ A structure M = (D, I, v) is a model of a formula f if
pm(f) =1

o If uy(f) =1, then M satisifies f.

o If M satisifes f, we write M = f.
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Semantic Notions

Satisfiability, Validity, Equivalence, Entailment

Aformulafis...
@ satisfiable, if an M exists such that M |= f
@ valid, if M |= f for all M.
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Semantic Notions

Satisfiability, Validity, Equivalence, Entailment

Aformulafis...
@ satisfiable, if an M exists such that M |= f
@ valid, if M |= f for all M.

For two formulas f and g,

@ fis equivalentto g (f = g), if f and g have the same
models,

e fentails g (f = g), if each model of f is also a model of g.
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Semantic Notions

Socrates Example

human(socrates)
VX (human(X) — mortal(X))
mortal(socrates)

human(socrates) N VX(human(X) — mortal(X)) =
mortal(socrates)
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Semantic Notions

Validity, Equivalence, Entailment as (Un)Satisfiability

@ fisvalid if —f is unsatisfiable.

Wolfgang Faber First-Order Logic 2



Semantic Notions

Validity, Equivalence, Entailment as (Un)Satisfiability

@ fisvalid if —f is unsatisfiable.
@ f=gholdsif f < gis valid.
@ f= g holds if =(f < g) is unsatisfiable.
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Semantic Notions

Validity, Equivalence, Entailment as (Un)Satisfiability
]
o
o
o
* ]
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fis valid if —f is unsatisfiable.

f=gholds if f < g is valid.

f = g holds if =(f < g) is unsatisfiable.

f = g holds if f — g is valid (Deduction Theorem).
f = g holds if =(f — g) is unsatisfiable.



Semantic Notions

Substitution Theorem

For wffs f, g, h, where g = h, we obtain f = f[h/g]

Just as in propositional logic.
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Semantic Notions

Useful Equivalences

-(fvg)=-gAn-—f (De Morgan)
-(fAQ)=—-gV —f (De Morgan)

@ fog=gof (Commutativity) for o € {A, V, <}
@ fof=f (Idempotence) for o € {A,V}
e fVT=T

e fal=1

e fvl=f (Neutrality)

@ fANT=F (Neutrality)

@ fv—-f=T

@ fA-f=1

e —~f=f

ef—-g=-fvg

°

°
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Semantic Notions

Useful Equivalences 2

fv(gvh)y=(fvg)vh  (Associativity)
fAa(gnh)=(fAg)ANh  (Associativity)
fA(gvh)=(fAg)V(fAD) (Distributivity)
fv(gnh)y=(fvg)n(fvh) (Distributivity)
fA(fvg)=f
fv(frg)=f

(Absorption)
(Absorption)

)
)
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Semantic Notions

Useful Equivalences 2
o
o
o
o
o
o
o
o
o
o
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fv(gvh)y=(fvg)vh  (Associativity)
fAa(gnh)=(fAg)ANh  (Associativity)
fA(gvh)=(fAg)V(fAD) (Distributivity)
fv(gnh)y=(fvg)A(fVvh) (Distributivity)
fA(fvg)=f (Absorption)

fv(frg)=f (Absorption)
BXHng=3IX(fAQ) (only if X is not freeing
(IXflvg=3X(fvg) (only if X is not freeing
(VXH)ANg=VX(fAQ) (only if X is not free in g
(VX )vg=VvX(fVvg) (only if X is not free in g

~— ~— ~— ~—



Semantic Notions

Useful Equivalences 3

@ AIXHN(EXg)=3X(fAQ)
e AXFVv(EXg)=3X(fVvg)
o (VXIHNKVXg)=VX(fAQ)
e (VXf)Vv(VXg)=VX(fVvg)
@ WX f=3X~f (v De Morgan)
@ IX F=VX —f (v De Morgan)
o VX f=VY flY/X] (Renaming
e IX f=3Y flY/X] (Renaming
@ VX VY f=VY VXf (Exchange
@ IX JY f=3Y IXf (Exchange

)
)
)
)
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Intuition

Herbrand Structures VD Setmie

Outline

@ Herbrand Structures
@ Intuition
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Intuition

Herbrand Structures VD Setmie

So Many Models!

Even for a simple formula like

p(c)

there are infinitely many structures and models.
Let us look at some of them.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 1: My = (D4, h,¢€)
® Dy ={a}
@ /i(c)=a
® h(p)(a)=0
@ e: empty variable valuation
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 1: My = (D4, h,¢€)
® Dy ={a}
@ /i(c)=a
° h(p)(a)=0
@ ¢: empty variable valuation
M is not a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 2: Mo = (Da, b, ¢€)
° D, ={a}
@ h(c)=a
°® h(p)(a) =1
@ e: empty variable valuation

Wolfgang Faber First-Order Logic 2



Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 2: Mo = (Da, b, ¢€)
° D, ={a}
@ h(c)=a
° h(p)(a)=1
@ e: empty variable valuation
M is a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 3: M3 = (D3, ks, €)
® D3 = {b}
@ k(c)=0>b

o K(p)(b) =0
@ ¢: empty variable valuation
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 3: M3 = (D3, ks, €)
® D3 = {b}
@ k(c)=0>b
o K(p)(b) =0
@ ¢: empty variable valuation
M;5 is not a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 4: My = (Dgy, Iy, €)
® Dy = {b}
@ I4(c)=0>b
® l4(p)(b) =1
@ e: empty variable valuation
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 4: My = (Dgy, Iy, €)
® Dy = {b}
@ I4(c)=0>b
® L(p)(b) =1
@ e: empty variable valuation
M, is a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 5: Ms = (Ds, Is, €)
@ Ds = {b,c}
@ 5(c)=0>b
@ I5(p)(b) =0
@ I5(p)(c)canbe 0 or 1
@ ¢: empty variable valuation

Wolfgang Faber First-Order Logic 2



Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)

Structure 5: Ms = (Ds, Is, €)

@ Ds = {b,c}

@ 5(c)=0>b

@ I5(p)(b) =0

@ I5(p)(c)canbe 0 or 1

@ ¢: empty variable valuation
Ms is not a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 6: Mg = (De, Is, €)
@ Dg ={b,c}
@ s(c)=0>b
o ls(p)(b) =1
@ Is(p)(c) can be 0 or 1
@ ¢: empty variable valuation
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)

Structure 6: Mg = (De, Is, €)

@ Dg ={b,c}

@ lg(c)=0>b

® ls(p)(b) =1

@ Is(p)(c)canbe 0 or 1

@ ¢: empty variable valuation
Mg is a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 7: M7 = (D7, k,€)
@ D; = {b, C}
@ I7(c)=c
@ I7(p)(b) can be 0 or 1

°® h(p)(c)=0
@ ¢: empty variable valuation
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)

Structure 7: M7 = (D7, k,€)

@ D; = {b, C}

@ I7(c)=c

@ I7(p)(b) can be 0 or 1

® h(p)(c) =0

@ ¢: empty variable valuation
M is not a model of this formula.
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)
Structure 8: Mg = (Dg, Ig, €)
@ Dg ={b,c}
@ lg(c)=c
@ Ig(p)(b) can be 0 or 1
° lg(p)(c) =1
@ ¢: empty variable valuation
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Intuition

Herbrand Structures VD Setmie

So Many Models!

p(c)

Structure 8: Mg = (Dg, Ig, €)

@ Dg ={b,c}

@ lg(c)=c

@ Ig(p)(b) can be 0 or 1

® lg(p)(c) =1

@ ¢: empty variable valuation
Mg is a model of this formula.

Wolfgang Faber First-Order Logic 2



Intuition

Herbrand Structures VD Setmie

So Many Models!

@ All structures are quite similar!
@ Changing domains does not seem to change much.
@ The interpretation of predicates appears crucial.

@ The interpretation of functions appears to be “isomorphic”
for different domains.
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Intuition

Herbrand Structures VD Setmie

Cardinality of Domain

p(c) A =p(d)

Model: (D, I, ¢)

° D={y,z}

° lc)=y

@ /(d)==z

° I(p)(y) =1

° I(p)(z) =0

But no model exists for any D with |D| < 2!
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Intuition

Herbrand Structures VD Setmie

Cardinality of Domain

p(c) A —p(d)

Model: (D, I, ¢)

e D={y,z}

° lc)=y

@ /(d)==z

° I(p)(y) =1

° /(p)(2) =0
But no model exists for any D with |D| < 2!
= Cardinality of the domain is important.
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Intuition

Herbrand Structures Main Statement

Outline

@ Herbrand Structures

@ Main Statement

Wolfgang Faber First-Order Logic 2



Intuition

Herbrand Structures Main Statement

Jacques Herbrand

‘F =
Jacques Herbrand (1908—-1931)
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Intuition

Herbrand Structures Main Statement

Herbrand Universe

@ |dea: Use the set of ground terms of the formula as
domain!

@ This domain is called Herbrand Universe.
@ = Interpret function symbols as “themselves.”
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Intuition

Herbrand Structures Main Statement

Herbrand Universe

@ |dea: Use the set of ground terms of the formula as
domain!

@ This domain is called Herbrand Universe.
@ = Interpret function symbols as “themselves.”
@ /y(c) = c for constants

(*] /H(f)(t1,...,tn):f(t1,...,tn)
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Intuition

Herbrand Structures Main Statement

Herbrand Universe — Example

n(z)

VX (n(X) — n(s(X)))

VX VY (—(e(X,Y)) — =(e(s(X),s(Y))))
VX —e(s(X),z)

® Dy = {z,5(2), 5(s(2)), s(s(s(2))), - - -}
o Iy(z)==z
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Intuition

Herbrand Structures Main Statement

Herbrand Base

@ What about interpretations of predicate symbols?
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Intuition

Herbrand Structures Main Statement

Herbrand Base

@ What about interpretations of predicate symbols?
@ These are not fixed.
@ Each predicate is a function from term tuples to {0, 1}.
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Intuition

Herbrand Structures Main Statement

Herbrand Base

@ What about interpretations of predicate symbols?

@ These are not fixed.

@ Each predicate is a function from term tuples to {0, 1}.
@ Write this as a set {p(t1,...,t) | In(pP)(t,...,th) =1}
@ = The set of true ground atoms in this interpretation.
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Intuition

Herbrand Structures Main Statement

Herbrand Base

@ What about interpretations of predicate symbols?

@ These are not fixed.

@ Each predicate is a function from term tuples to {0, 1}.
@ Write this as a set {p(t1,...,t) | In(pP)(t,...,th) =1}
@ = The set of true ground atoms in this interpretation.

@ Largest set
{p(t,...,ts) | p apredicate of arity n, ty,...,t, terms} is
called Herbrand Base.

@ Denote Herbrand interpretations as subsets of the
Herbrand Base.
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Intuition

Herbrand Structures Main Statement

Herbrand Base — Example

n(z)

VX (n(X) — n(s(X)))

VX VY (=(e(X, Y)) — —(e(s(X),s(Y))))
VX —e(s(X), 2)

o Iy(n)(2) =1, lu(n)(s(2)) = 1,...
® Iy(e)(z,z) =1,In(e)(z,s(2)) =0,...

° I(e)(s(2),z) =0,lu(e)(s(2),s(2)) =1..

° In(e)(s(s(2)),2) =0, lu(e)(s(s(2)),s(2)) =0
° ...
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Intuition

Herbrand Structures Main Statement

Herbrand Base — Example

n(z)

VX (n(X) — n(s(X)))

VX VY (=(e(X, Y)) — —(e(s(X),s(Y))))
VX —e(s(X), 2)

o Iy(n)(2) =1, lu(n)(s(2)) = 1,...
® Iy(e)(z,z) =1,In(e)(z,s(2)) =0,...

° I(e)(s(2),z) =0,lu(e)(s(2),s(2)) =1..

° In(e)(s(s(2)),2) =0, lu(e)(s(s(2)),s(2)) =0
° ...

Iy = {n(z),n(s(2)),...} U
{&(z,2), (s(2), s(2)), &(s(s(2)), s(s(2))), - - -}
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Intuition

Herbrand Structures Main Statement

Herbrand Structures — Theorem

A structure for a formula with Herbrand domain (universe) and
an Herbrand interpretation is an Herbrand structure.

If an Herbrand structure for a formula is a model, it is an
Herbrand model.
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Intuition
Main Statement

Herbrand Structures — Theorem

Herbrand Structures

A structure for a formula with Herbrand domain (universe) and
an Herbrand interpretation is an Herbrand structure.

If an Herbrand structure for a formula is a model, it is an
Herbrand model.

A formula has a model if and only if it has an Herbrand model.

A formula is satisfiable if and only if it has an Herbrand model.
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Outline

Q Normal Forms
@ Prenex Normal Form




Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Prenex Normal Form

Formulas of the following type are in Prenex Normal Form:
Q1X1 oo QnXn f

where
Q@ Q c{v,I}for1<i<nand
@ fis a quantifier-free formula.
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Prenex Normal Form

Formulas of the following type are in Prenex Normal Form:
Q1X1 oo QnXn f

where
Q@ Q c{v,I}for1<i<nand
@ fis a quantifier-free formula.

@ Qq ... Qpisthe quantifier prefix,
@ fis the matrix.
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Prenex Normal Form

@ Move quantifiers outside (“up”).
@ Use the following rewritings:
o VX f=pIX~f
—3X f=p VX —~f
fog=p(f—g)A(g—T)
OX fog=p QZ1 (f[Z1/X]og)  Z1fresh,o e {A,V}
IX f— g=pVZ1 (f[Z1/X] — g) Z1 fresh
VX f—g=p3Z1(f[Z1/X] — g) Z1 fresh
foQX g=pQZ1(fog[Z1/X]) Z1 fresh,
o€ {A,V,—}
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Outline

Q Normal Forms

@ Negation Normal Form




Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Negation Normal Form

@ — only in front of atomic formulas.
@ At most one — in front of atomic formulas.
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms
Skolemization

Negation Normal Form

@ Move negation inside (“down”).
@ Use the following rewritings:

o fog=n(f—9)n(g—1)
f— g =nN —-fV g
VX f =y 3IX f
—3IX f =5 VX —f
-(fvg)=n—gA-f
=(fAQ) =N gV ~f
———f=f
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Skolemization

Q Normal Forms

@ Conjunctive Normal Form
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Conjunctive Normal Form

Skolemization

Formulas of the following type are in Conjunctive Normal Form:

Q1X1 ... QnXnp /\(\/ /)

i=1 j=1

where
Q@ Q c{v,I}for1<i<nand
Q /is aliteral.
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Conjunctive Normal Form

Skolemization

Formulas of the following type are in Conjunctive Normal Form:
n m;
Q1X1 ... QnXnp /\(\/ /)
i=1 j=1

where
Q@ Q c{v,I}for1<i<nand
Q /is aliteral.

@ Special case of Prenex and Negation Normal Forms.
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Conjunctive Normal Form

Skolemization

@ Apply =p and =y

@ Then use distributivity and T, L rules:
o AT =c f

fAL=c L

VT =T

fvLl=cf

fvignh)y=c(fvg)A(fVvh)
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Conjunctive Normal Form

Skolemization

@ Note: T occurs only if it is the only clause.
@ Also L occurs only if it is the only clause!
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms R
Skolemization

Outline

Q Normal Forms

@ Skolemization




Normal Forms

Thoralf Skolem

Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form
Skolemization

Thoralf Skolem (1 8871 963)

Wolfgang Faber
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms R
Skolemization

Skolemization

@ Problem: Alternating quantifiers in CNF.
@ Notation as set of clauses not directly possible.

@ Introduce Skolem functions to eliminate one type of
quantifiers!

@ Here: Eliminate 3.
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms R
Skolemization

Skolemization

Q1X1 .. QnXnp /\(\/ /)

i=1 j=1

@ Work from left to right.
@ Read VX; ... VX,3YF:

@ For any combination of terms X ... VX, there exists a
term Y such that f holds.
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms R
Skolemization

Skolemization

Q1X1 .. QnXnp /\(\/ /)

i=1 j=1
@ Work from left to right.

@ Read VX; ... VX,3YF:

@ For any combination of terms X ... VX, there exists a
term Y such that f holds.

@ Use a new function symbol to represent that:
@ Replace Y by s(Xj,...,Xp)!

Wolfgang Faber First-Order Logic 2



Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms R
Skolemization

Skolemization

@ Work from left to right (no arbitrary replacements)!
@ VXi ... VX, 3Yf =g VXy ... VXpf[s(Xi,...,Xn)/ Y],
@ s must be a fresh symbol
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Prenex Normal Form
Negation Normal Form
Conjunctive Normal Form

Normal Forms R
Skolemization

Skolemization

@ Work from left to right (no arbitrary replacements)!
@ VXi ... VX, 3Yf =g VXy ... VXpf[s(Xi,...,Xn)/ Y],
@ s must be a fresh symbol

Skolemized CNF:

VXi ... VXn /n\({n/i/)

i=1 j=1

Can be written as sets of clauses, clauses as sets of literals.
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Skolemization Is Different

Skolemization

o f= PNF(f) (PNF(f) Prenex Normal Form of f)
o f = NNF(f) (NNF(f) Negation Normal Form of f)
e f= CNF(f) (CNF(f) Conjunctive Normal Form of f)
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Skolemization Is Different

Skolemization

o f= PNF(f) (PNF(f) Prenex Normal Form of f)
o f = NNF(f) (NNF(f) Negation Normal Form of f)
e f= CNF(f) (CNF(f) Conjunctive Normal Form of f)

o f # SCNF(f) SCNF (f) Skolemized Conjunctive
Normal Form of f

~
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Skolemization Is Different

Skolemization

e f = PNF(f) (PNF(f) Prenex Normal Form of f)

o f = NNF(f) (NNF(f) Negation Normal Form of f)

e f= CNF(f) (CNF(f) Conjunctive Normal Form of f)

o f # SCNF(f) (SCNF(f) Skolemized Conjunctive
Normal Form of f)

@ Because Skolem functions can be interpreted in whatever

way in models of f, which may not be a model of SCNF(f)
because of this.
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Normal Forms

Skolemization Is Different

Skolemization

e f = PNF(f) (PNF(f) Prenex Normal Form of f)

o f = NNF(f) (NNF(f) Negation Normal Form of f)

e f= CNF(f) (CNF(f) Conjunctive Normal Form of f)

o f # SCNF(f) (SCNF(f) Skolemized Conjunctive
Normal Form of f)

@ Because Skolem functions can be interpreted in whatever

way in models of f, which may not be a model of SCNF(f)
because of this.

e But: SCNF(f) = f!
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Prenex Normal Form
Negation Normal Form

Conjunctive Normal Form
Skolemization

Skolemized CNF — Theorem

Normal Forms

For any formula f, f is satisfiable if and only if SCNF(f) is
satisfiable.

For any formula f, f is unsatisfiable if and only if SCNF(f) is
unsatisfiable.
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