Logica del Primo Ordine 2 First-Order Logic 2

Wolfgang Faber

University of Calabria, Italy

2007
(1) Semantic Notions
(2) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

Models

- A structure $M=(\mathcal{D}, I, v)$ is a model of a formula f if $\mu_{M}(f)=1$
- If $\mu_{M}(f)=1$, then M satisifies f.
- If M satisifes f, we write $M \models f$.

Satisfiability, Validity, Equivalence, Entailment

A formula f is ...

- satisfiable, if an M exists such that $M \models f$
- valid, if $M \models f$ for all M.

For two formulas f and g,

- f is equivalent to $g(f \equiv g)$, if f and g have the same models,
- f entails $g(f \mid=g)$, if each model of f is also a model of g.

Satisfiability, Validity, Equivalence, Entailment

A formula f is ...

- satisfiable, if an M exists such that $M \models f$
- valid, if $M \models f$ for all M.

For two formulas f and g,

- f is equivalent to $g(f \equiv g)$, if f and g have the same models,
- f entails $g(f \models g)$, if each model of f is also a model of g.

Socrates Example

> human(socrates)
> $\forall X(\operatorname{human}(X) \rightarrow$ mortal $(X))$
> mortal(socrates)

human(socrates) $\wedge \forall X($ human $(X) \rightarrow \operatorname{mortal}(X)) \models$ mortal(socrates)

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg(f \leftrightarrow g)$ is unsatisfiable.
- $f \models g$ holds if $f \rightarrow g$ is valid (Deduction Theorem).
- $f=g$ holds if $\neg(f \rightarrow g)$ is unsatisfiable.

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg(f \leftrightarrow g)$ is unsatisfiable.
- $f=g$ holds if $f \rightarrow g$ is valid (Deduction Theorem).
- $f \vDash g$ holds if $\neg(f \rightarrow g)$ is unsatisfiable.

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg(f \leftrightarrow g)$ is unsatisfiable.
- $f \models g$ holds if $f \rightarrow g$ is valid (Deduction Theorem).
- $f \vDash g$ holds if $\neg(f \rightarrow g)$ is unsatisfiable.

Substitution Theorem

Theorem

For wffs f, g, h, where $g \equiv h$, we obtain $f \equiv f[h / g]$
Just as in propositional logic.

Useful Equivalences

- $f \circ g \equiv g \circ f \quad$ (Commutativity) for $\circ \in\{\wedge, \vee, \leftrightarrow\}$
- $f \circ f \equiv f \quad$ (Idempotence) for $\circ \in\{\wedge, \vee\}$
- $f \vee \top \equiv \top$
- $f \wedge \perp \equiv \perp$
- $f \vee \perp \equiv f \quad$ (Neutrality)
- $f \wedge T \equiv f \quad$ (Neutrality)
- $f \vee \neg f \equiv \top$
- $f \wedge \neg f \equiv \perp$
- $\neg \neg f \equiv f$
- $f \rightarrow g \equiv \neg f \vee g$
- $\neg(f \vee g) \equiv \neg g \wedge \neg f$
(De Morgan)
- $\neg(f \wedge g) \equiv \neg g \vee \neg f$
(De Morgan)

Useful Equivalences 2

- $f \vee(g \vee h) \equiv(f \vee g) \vee h \quad$ (Associativity)
- $f \wedge(g \wedge h) \equiv(f \wedge g) \wedge h \quad$ (Associativity)
- $f \wedge(g \vee h) \equiv(f \wedge g) \vee(f \wedge h)$
- $f \vee(g \wedge h) \equiv(f \vee g) \wedge(f \vee h)$
(Distributivity)
- $f \wedge(f \vee g) \equiv f \quad$ (Absorption)
(Distributivity)
- $f \vee(f \wedge g) \equiv f \quad$ (Absorption)
(only if X is not free in g)
- $(\exists X f) \vee g \equiv \exists X(f \vee g)$
(only if X is not free in g)
- $(\forall X f) \wedge g \equiv \forall X(f \wedge g)$
(only if X is not free in g)
- $(\forall X f) \vee g \equiv \forall X(f \vee g)$
(only if X is not free in g)

Useful Equivalences 2

- $f \vee(g \vee h) \equiv(f \vee g) \vee h$
- $f \wedge(g \wedge h) \equiv(f \wedge g) \wedge h$
- $f \wedge(g \vee h) \equiv(f \wedge g) \vee(f \wedge h)$
- $f \vee(g \wedge h) \equiv(f \vee g) \wedge(f \vee h)$
- $f \wedge(f \vee g) \equiv f \quad$ (Absorption)
- $f \vee(f \wedge g) \equiv f \quad$ (Absorption)
- $(\exists X f) \wedge g=\exists X(f \wedge g) \quad$ (only
(only if X is not free ing)
- $(\exists X f) \vee g \equiv \exists X(f \vee g) \quad$ (only if X is not free in g)
- $(\forall X f) \wedge g \equiv \forall X(f \wedge g) \quad$ (only if X is not free in g)
- $(\forall X f) \vee g \equiv \forall X(f \vee g) \quad$ (only if X is not free in g)

Useful Equivalences 3

- $(\exists X f) \wedge(\exists X g) \equiv \exists X(f \wedge g)$
- $(\exists X f) \vee(\exists X g) \equiv \exists X(f \vee g)$
- $(\forall X f) \wedge(\forall X g) \equiv \forall X(f \wedge g)$
- $(\forall X f) \vee(\forall X g) \equiv \forall X(f \vee g)$
- $\neg \forall X f \equiv \exists X \neg f \quad(\forall$ De Morgan)
- $\neg \exists X f \equiv \forall X \neg f \quad$ (\forall De Morgan)
- $\forall X f \equiv \forall Y f[Y / X] \quad$ (Renaming)
- $\exists X f \equiv \exists Y f[Y / X] \quad$ (Renaming)
- $\forall X \forall Y f \equiv \forall Y \forall X f \quad$ (Exchange)
- $\exists X \exists Y f \equiv \exists Y \exists X f \quad$ (Exchange)

Outline

(1) Semantic Notions

(2) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

So Many Models!

Even for a simple formula like

$$
p(c)
$$

there are infinitely many structures and models.
Let us look at some of them.

So Many Models!

$$
p(c)
$$

Structure 1: $M_{1}=\left(\mathcal{D}_{1}, I_{1}, \epsilon\right)$

- $\mathcal{D}_{1}=\{a\}$
- $l_{1}(c)=a$
- $I_{1}(p)(a)=0$
- ϵ : empty variable valuation
M_{1} is not a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 1: $M_{1}=\left(\mathcal{D}_{1}, I_{1}, \epsilon\right)$

- $\mathcal{D}_{1}=\{a\}$
- $l_{1}(c)=a$
- $I_{1}(p)(a)=0$
- ϵ : empty variable valuation
M_{1} is not a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 2: $M_{2}=\left(\mathcal{D}_{2}, l_{2}, \epsilon\right)$

- $\mathcal{D}_{2}=\{a\}$
- $I_{2}(c)=a$
- $I_{2}(p)(a)=1$
- ϵ : empty variable valuation
M_{2} is a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 2: $M_{2}=\left(\mathcal{D}_{2}, l_{2}, \epsilon\right)$

- $\mathcal{D}_{2}=\{a\}$
- $I_{2}(c)=a$
- $I_{2}(p)(a)=1$
- ϵ : empty variable valuation
M_{2} is a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 3: $M_{3}=\left(\mathcal{D}_{3}, l_{3}, \epsilon\right)$

- $\mathcal{D}_{3}=\{b\}$
- $I_{3}(c)=b$
- $I_{3}(p)(b)=0$
- ϵ : empty variable valuation
M_{3} is not a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 3: $M_{3}=\left(\mathcal{D}_{3}, I_{3}, \epsilon\right)$

- $\mathcal{D}_{3}=\{b\}$
- $I_{3}(c)=b$
- $I_{3}(p)(b)=0$
- ϵ : empty variable valuation
M_{3} is not a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 4: $M_{4}=\left(\mathcal{D}_{4}, I_{4}, \epsilon\right)$

- $\mathcal{D}_{4}=\{b\}$
- $I_{4}(c)=b$
- $I_{4}(p)(b)=1$
- ϵ : empty variable valuation
M_{4} is a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 4: $M_{4}=\left(\mathcal{D}_{4}, I_{4}, \epsilon\right)$

- $\mathcal{D}_{4}=\{b\}$
- $I_{4}(c)=b$
- $I_{4}(p)(b)=1$
- ϵ : empty variable valuation
M_{4} is a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 5: $M_{5}=\left(\mathcal{D}_{5}, I_{5}, \epsilon\right)$

- $\mathcal{D}_{5}=\{b, c\}$
- $I_{5}(c)=b$
- $I_{5}(p)(b)=0$
- $I_{5}(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation

So Many Models!

$$
p(c)
$$

Structure 5: $M_{5}=\left(\mathcal{D}_{5}, I_{5}, \epsilon\right)$

- $\mathcal{D}_{5}=\{b, c\}$
- $I_{5}(c)=b$
- $I_{5}(p)(b)=0$
- $I_{5}(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation
M_{5} is not a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 6: $M_{6}=\left(\mathcal{D}_{6}, I_{6}, \epsilon\right)$

- $\mathcal{D}_{6}=\{b, c\}$
- $I_{6}(c)=b$
- $I_{6}(p)(b)=1$
- $I_{6}(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation

So Many Models!

$$
p(c)
$$

Structure 6: $M_{6}=\left(\mathcal{D}_{6}, I_{6}, \epsilon\right)$

- $\mathcal{D}_{6}=\{b, c\}$
- $I_{6}(c)=b$
- $I_{6}(p)(b)=1$
- $I_{6}(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation
M_{6} is a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 7: $M_{7}=\left(\mathcal{D}_{7}, l_{7}, \epsilon\right)$

- $\mathcal{D}_{7}=\{b, c\}$
- $h_{7}(c)=c$
- $h_{7}(p)(b)$ can be 0 or 1
- $h_{7}(p)(c)=0$
- ϵ : empty variable valuation

So Many Models!

$$
p(c)
$$

Structure 7: $M_{7}=\left(\mathcal{D}_{7}, l_{7}, \epsilon\right)$

- $\mathcal{D}_{7}=\{b, c\}$
- $h_{7}(c)=c$
- $I_{7}(p)(b)$ can be 0 or 1
- $h_{7}(p)(c)=0$
- ϵ : empty variable valuation
M_{7} is not a model of this formula.

So Many Models!

$$
p(c)
$$

Structure 8: $M_{8}=\left(\mathcal{D}_{8}, I_{8}, \epsilon\right)$

- $\mathcal{D}_{8}=\{b, c\}$
- $I_{8}(c)=c$
- $I_{8}(p)(b)$ can be 0 or 1
- $l_{8}(p)(c)=1$
- ϵ : empty variable valuation

So Many Models!

$$
p(c)
$$

Structure 8: $M_{8}=\left(\mathcal{D}_{8}, I_{8}, \epsilon\right)$

- $\mathcal{D}_{8}=\{b, c\}$
- $I_{8}(c)=c$
- $I_{8}(p)(b)$ can be 0 or 1
- $l_{8}(p)(c)=1$
- ϵ : empty variable valuation
M_{8} is a model of this formula.

So Many Models!

- All structures are quite similar!
- Changing domains does not seem to change much.
- The interpretation of predicates appears crucial.
- The interpretation of functions appears to be "isomorphic" for different domains.

Cardinality of Domain

$$
p(c) \wedge \neg p(d)
$$

Model: $(\mathcal{D}, I, \epsilon)$

- $\mathcal{D}=\{y, z\}$
- I(c) $=y$
- $I(d)=z$
- $I(p)(y)=1$
- $I(p)(z)=0$

But no model exists for any \mathcal{D} with $|\mathcal{D}|<2$!

Cardinality of Domain

$$
p(c) \wedge \neg p(d)
$$

Model: $(\mathcal{D}, I, \epsilon)$

- $\mathcal{D}=\{y, z\}$
- $I(c)=y$
- $l(d)=z$
- $I(p)(y)=1$
- $I(p)(z)=0$

But no model exists for any \mathcal{D} with $|\mathcal{D}|<2$!
\Rightarrow Cardinality of the domain is important.

Outline

(1) Semantic Notions

(2) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

Jacques Herbrand

Jacques Herbrand (1908-1931)

Herbrand Universe

- Idea: Use the set of ground terms of the formula as domain!
- This domain is called Herbrand Universe.
- \Rightarrow Interpret function symbols as "themselves."
- $I_{H}(c)=c$ for constants

Herbrand Universe

- Idea: Use the set of ground terms of the formula as domain!
- This domain is called Herbrand Universe.
- \Rightarrow Interpret function symbols as "themselves."
- $I_{H}(c)=c$ for constants
- $I_{H}(f)\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$

Herbrand Universe - Example

$$
\begin{aligned}
& n(z) \\
& \forall X(n(X) \rightarrow n(s(X))) \\
& \forall X \forall Y(\neg(e(X, Y)) \rightarrow \neg(e(s(X), s(Y)))) \\
& \forall X \neg e(s(X), z)
\end{aligned}
$$

- $\mathcal{D}_{H}=\{z, s(z), s(s(z)), s(s(s(z))), \ldots\}$
- $I_{H}(z)=z$
- $I_{H}(s)(z)=s(z)$
- $I_{H}(s)(s(z))=s(s(z))$
- $I_{H}(s)(s(s(z)))=s(s(s(z)))$
- ...

Herbrand Base

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to $\{0,1\}$.
- Write this as a set $\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid I_{H}(p)\left(t_{1}, \ldots, t_{n}\right)=1\right\}$
- \Rightarrow The set of true ground atoms in this interpretation.
- Largest set
$\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid p\right.$ a predicate of arity n, t_{1}, \ldots, t_{n} terms $\}$ is
called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to $\{0,1\}$.

- \Rightarrow The set of true ground atoms in this interpretation.
- Largest set
$\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid p\right.$ a predicate of arity n, t_{1}, \ldots, t_{n} terms $\}$ is
called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to $\{0,1\}$.
- Write this as a set $\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid I_{H}(p)\left(t_{1}, \ldots, t_{n}\right)=1\right\}$
- \Rightarrow The set of true ground atoms in this interpretation.
- Largest set
$\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid p\right.$ a predicate of arity n, t_{1}, \ldots, t_{n} terms $\}$ is
called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to $\{0,1\}$.
- Write this as a set $\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid I_{H}(p)\left(t_{1}, \ldots, t_{n}\right)=1\right\}$
- \Rightarrow The set of true ground atoms in this interpretation.
- Largest set
$\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid p\right.$ a predicate of arity n, t_{1}, \ldots, t_{n} terms $\}$ is called Herbrand Base.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base - Example

$$
\begin{aligned}
& n(z) \\
& \forall X(n(X) \rightarrow n(s(X))) \\
& \forall X \forall Y(\neg(e(X, Y)) \rightarrow \neg(e(s(X), s(Y)))) \\
& \forall X \neg e(s(X), z)
\end{aligned}
$$

- $I_{H}(n)(z)=1, I_{H}(n)(s(z))=1, \ldots$
- $I_{H}(e)(z, z)=1, I_{H}(e)(z, s(z))=0, \ldots$
- $I_{H}(e)(s(z), z)=0, I_{H}(e)(s(z), s(z))=1, \ldots$
- $I_{H}(e)(s(s(z)), z)=0, I_{H}(e)(s(s(z)), s(z))=0, \ldots$
- ...
$I_{H}=\{n(z), n(s(z)), \ldots\} \cup$
$\{e(z, z), e(s(z), s(z)), e(s(s(z)), s(s(z)))$,

Herbrand Base - Example

$$
\begin{aligned}
& n(z) \\
& \forall X(n(X) \rightarrow n(s(X))) \\
& \forall X \forall Y(\neg(e(X, Y)) \rightarrow \neg(e(s(X), s(Y)))) \\
& \forall X \neg e(s(X), z)
\end{aligned}
$$

- $I_{H}(n)(z)=1, I_{H}(n)(s(z))=1, \ldots$
- $I_{H}(e)(z, z)=1, I_{H}(e)(z, s(z))=0, \ldots$
- $I_{H}(e)(s(z), z)=0, I_{H}(e)(s(z), s(z))=1, \ldots$
- $I_{H}(e)(s(s(z)), z)=0, I_{H}(e)(s(s(z)), s(z))=0, \ldots$
- ...
$I_{H}=\{n(z), n(s(z)), \ldots\} \cup$
$\{e(z, z), e(s(z), s(z)), e(s(s(z)), s(s(z))), \ldots\}$

Herbrand Structures - Theorem

A structure for a formula with Herbrand domain (universe) and an Herbrand interpretation is an Herbrand structure.
If an Herbrand structure for a formula is a model, it is an Herbrand model.

Theorem

A formula has a model if and only if it has an Herbrand model.

Corollary
 A formula is satisfiable if and only if it has an Herbrand model.

Herbrand Structures - Theorem

A structure for a formula with Herbrand domain (universe) and an Herbrand interpretation is an Herbrand structure.
If an Herbrand structure for a formula is a model, it is an Herbrand model.

Theorem

A formula has a model if and only if it has an Herbrand model.

Corollary

A formula is satisfiable if and only if it has an Herbrand model.

Outline

(1) Semantic Notions

(2) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

Semantic Notions Herbrand Structures Normal Forms

Prenex Normal Form

Formulas of the following type are in Prenex Normal Form:

$$
\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{n} X_{n} f
$$

where
(1) $\mathcal{Q}_{i} \in\{\forall, \exists\}$ for $1 \leq i \leq n$ and
(2) f is a quantifier-free formula.

- $\mathcal{Q}_{1} \ldots \mathcal{Q}_{n}$ is the quantifier prefix,
- f is the matrix.

Prenex Normal Form

Formulas of the following type are in Prenex Normal Form:

$$
\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{n} X_{n} f
$$

where
(1) $\mathcal{Q}_{i} \in\{\forall, \exists\}$ for $1 \leq i \leq n$ and
(2) f is a quantifier-free formula.

- $\mathcal{Q}_{1} \ldots \mathcal{Q}_{n}$ is the quantifier prefix,
- f is the matrix.

Semantic Notions Herbrand Structures Normal Forms

Prenex Normal Form

- Move quantifiers outside ("up").
- Use the following rewritings:
- $\neg \forall X f \Rightarrow P \exists X \neg f$
- $\neg \exists X f \Rightarrow_{P} \forall X \neg f$
- $f \leftrightarrow g \Rightarrow_{P}(f \rightarrow g) \wedge(g \rightarrow f)$
- $\mathcal{Q X} f \circ g \Rightarrow_{p} \mathcal{Q} Z 1(f[Z 1 / X] \circ g)$
- $\exists X f \rightarrow g \Rightarrow_{p} \forall Z 1(f[Z 1 / X] \rightarrow g)$
$Z 1$ fresh, $\circ \in\{\wedge, \vee\}$
- $\forall X f \rightarrow g \Rightarrow_{p} \exists Z 1(f[Z 1 / X] \rightarrow g)$ Z1 fresh
- $f \circ \mathcal{Q} X g \Rightarrow_{p} \mathcal{Q} Z 1(f \circ g[Z 1 / X]) \quad Z 1$ fresh, $\circ \in\{\wedge, \vee, \rightarrow\}$

Outline

(1) Semantic Notions
(3) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

Negation Normal Form

- \neg only in front of atomic formulas.
- At most one \neg in front of atomic formulas.

Negation Normal Form

- Move negation inside ("down").
- Use the following rewritings:
- $f \leftrightarrow g \Rightarrow_{N}(f \rightarrow g) \wedge(g \rightarrow f)$
- $f \rightarrow g \Rightarrow_{N} \neg f \vee g$
- $\neg \forall X f \Rightarrow N \exists X \neg f$
- $\neg \exists X f \Rightarrow_{N} \forall X \neg f$
- $\neg(f \vee g) \Rightarrow_{N} \neg g \wedge \neg f$
- $\neg(f \wedge g) \Rightarrow_{N} \neg g \vee \neg f$
- $\neg \neg f \Rightarrow f$

Outline

Semantic Notions

(2) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

Conjunctive Normal Form

Formulas of the following type are in Conjunctive Normal Form:

$$
\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{n} X_{n} \bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} I\right)
$$

where
(1) $\mathcal{Q}_{i} \in\{\forall, \exists\}$ for $1 \leq i \leq n$ and
(2) I is a literal.

- Special case of Prenex and Negation Normal Forms.

Conjunctive Normal Form

Formulas of the following type are in Conjunctive Normal Form:

$$
\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{n} X_{n} \bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} I\right)
$$

where
(1) $\mathcal{Q}_{i} \in\{\forall, \exists\}$ for $1 \leq i \leq n$ and
(2) I is a literal.

- Special case of Prenex and Negation Normal Forms.

Semantic Notions Herbrand Structures Normal Forms

Conjunctive Normal Form

- Apply \Rightarrow_{P} and \Rightarrow_{N}
- Then use distributivity and \top, \perp rules:
- $f \wedge T \Rightarrow_{c} f$
- $f \wedge \perp \Rightarrow_{c} \perp$
- $f \vee \top \Rightarrow_{c} \top$
- $f \vee \perp \Rightarrow_{C} f$
- $f \vee(g \wedge h) \Rightarrow_{c}(f \vee g) \wedge(f \vee h)$

Semantic Notions Herbrand Structures

Normal Forms

Conjunctive Normal Form

- Note: T occurs only if it is the only clause.
- Also \perp occurs only if it is the only clause!

Outline

(1) Semantic Notions
(2) Herbrand Structures

- Intuition
- Main Statement
(3) Normal Forms
- Prenex Normal Form
- Negation Normal Form
- Conjunctive Normal Form
- Skolemization

Thoralf Skolem

Thoralf Skolem (1887-1963)

Skolemization

- Problem: Alternating quantifiers in CNF.
- Notation as set of clauses not directly possible.
- Introduce Skolem functions to eliminate one type of quantifiers!
- Here: Eliminate \exists.

Skolemization

$$
\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{n} X_{n} \bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} I\right)
$$

- Work from left to right.
- Read $\forall X_{1} \ldots \forall X_{n} \exists Y f$:
- For any combination of terms $X_{1} \ldots \forall X_{n}$ there exists a term Y such that f holds.
- Use a new function symbol to represent that:
- Replace Y by $s\left(X_{1}, \ldots, X_{n}\right)$!

Skolemization

$$
\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{n} X_{n} \bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} I\right)
$$

- Work from left to right.
- Read $\forall X_{1} \ldots \forall X_{n} \exists Y f$:
- For any combination of terms $X_{1} \ldots \forall X_{n}$ there exists a term Y such that f holds.
- Use a new function symbol to represent that:
- Replace Y by $s\left(X_{1}, \ldots, X_{n}\right)$!

Skolemization

- Work from left to right (no arbitrary replacements)!
- $\forall X_{1} \ldots \forall X_{n} \exists Y f \Rightarrow_{s} \forall X_{1} \ldots \forall X_{n} f\left[s\left(X_{1}, \ldots, X_{n}\right) / Y\right]$,
- s must be a fresh symbol

Skolemized CNF:

Can be written as sets of clauses, clauses as sets of literals.

Skolemization

- Work from left to right (no arbitrary replacements)!
- $\forall X_{1} \ldots \forall X_{n} \exists Y f \Rightarrow_{s} \forall X_{1} \ldots \forall X_{n} f\left[s\left(X_{1}, \ldots, X_{n}\right) / Y\right]$,
- s must be a fresh symbol

Skolemized CNF:

$$
\forall X_{1} \ldots \forall X_{n} \bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} I\right)
$$

Can be written as sets of clauses, clauses as sets of literals.

Skolemization Is Different

- $f \equiv P N F(f) \quad(P N F(f)$ Prenex Normal Form of $f)$
- $f \equiv \operatorname{NNF}(f) \quad(N N F(f)$ Negation Normal Form of $f)$
- $f \equiv \operatorname{CNF}(f) \quad(C N F(f)$ Conjunctive Normal Form of $f)$
- $f \not \equiv \operatorname{SCNF}(f) \quad(S C N F(f)$ Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of $\operatorname{SCNF}(f)$ because of this.
- But: $\operatorname{SCNF}(f) \models f$!

Semantic Notions Herbrand Structures Normal Forms

Skolemization Is Different

- $f \equiv P N F(f) \quad(P N F(f)$ Prenex Normal Form of $f)$
- $f \equiv \operatorname{NNF}(f) \quad(N N F(f)$ Negation Normal Form of $f)$
- $f \equiv \operatorname{CNF}(f) \quad(C N F(f)$ Conjunctive Normal Form of $f)$
- $f \not \equiv \operatorname{SCNF}(f) \quad(S C N F(f)$ Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of SCNF (f) because of this.
- But: SCNF $(f)=f$!

Semantic Notions

Skolemization Is Different

- $f \equiv P N F(f) \quad(P N F(f)$ Prenex Normal Form of $f)$
- $f \equiv \operatorname{NNF}(f) \quad(N N F(f)$ Negation Normal Form of $f)$
- $f \equiv \operatorname{CNF}(f) \quad(C N F(f)$ Conjunctive Normal Form of $f)$
- $f \not \equiv \operatorname{SCNF}(f) \quad(S C N F(f)$ Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of $\operatorname{SCNF}(f)$ because of this.
- But: $\operatorname{SCNF}(f)=f$!

Semantic Notions

Skolemization Is Different

- $f \equiv \operatorname{PNF}(f) \quad(P N F(f)$ Prenex Normal Form of $f)$
- $f \equiv \operatorname{NNF}(f) \quad(\operatorname{NNF}(f)$ Negation Normal Form of $f)$
- $f \equiv \operatorname{CNF}(f) \quad(C N F(f)$ Conjunctive Normal Form of $f)$
- $f \not \equiv \operatorname{SCNF}(f) \quad(S C N F(f)$ Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of $\operatorname{SCNF}(f)$ because of this.
- But: $\operatorname{SCNF}(f) \models f$!

Semantic Notions Herbrand Structures Normal Forms

Skolemized CNF - Theorem

Theorem

For any formula f, f is satisfiable if and only if $\operatorname{SCNF}(f)$ is satisfiable.

Corollary

For any formula f, f is unsatisfiable if and only if $\operatorname{SCNF}(f)$ is unsatisfiable.

