Contents

1	Sem	antic Notions	1
2	Herbrand Structures		3
	2.1	Intuition	3
	2.2	Main Statement	7
3	Normal Forms		
	3.1	Prenex Normal Form	9
	3.2	Negation Normal Form	9
	3.3	Conjunctive Normal Form	10
	3.4	Skolemization	11

1 Semantic Notions

Models

- $\bullet \,$ A structure $M=(\mathcal{D},I,v)$ is a model of a formula f if $\mu_M(f)=1$
- If $\mu_M(f) = 1$, then M satisfies f.
- If M satisfies f, we write $M \models f$.

Satisfiability, Validity, Equivalence, Entailment

A formula f is ...

- ullet satisfiable, if an M exists such that $M \models f$
- *valid*, if $M \models f$ for all M.

For two formulas f and g,

- ullet f is equivalent to g ($f\equiv g$), if f and g have the same models,
- f entails g ($f \models g$), if each model of f is also a model of g.

Socrates Example

```
\begin{array}{l} human(socrates) \\ \forall X (human(X) \rightarrow mortal(X)) \\ mortal(socrates) \end{array}
```

 $human(socrates) \land \forall X(human(X) \rightarrow mortal(X)) \models mortal(socrates)$

Validity, Equivalence, Entailment as (Un)Satisfiability

- f is valid if $\neg f$ is unsatisfiable.
- $f \equiv g$ holds if $f \leftrightarrow g$ is valid.
- $f \equiv g$ holds if $\neg (f \leftrightarrow g)$ is unsatisfiable.
- $\bullet \ \, f \models g \text{ holds if } f \to g \text{ is valid (Deduction Theorem)}.$
- $f \models g$ holds if $\neg(f \rightarrow g)$ is unsatisfiable.

Substitution Theorem

Theorem 1. For wffs f, g, h, where $g \equiv h$, we obtain $f \equiv f[h/g]$ Just as in propositional logic.

Useful Equivalences

- $\bullet \ \ f\circ g\equiv g\circ f \qquad \text{(Commutativity) for }\circ\in\{\wedge,\vee,\leftrightarrow\}$
- $f \circ f \equiv f$ (Idempotence) for $\circ \in \{\land, \lor\}$
- $f \lor \top \equiv \top$
- $f \land \bot \equiv \bot$
- $f \lor \bot \equiv f$ (Neutrality)
- $f \wedge \top \equiv f$ (Neutrality)
- $f \vee \neg f \equiv \top$
- $f \land \neg f \equiv \bot$
- $\neg \neg f \equiv f$
- $f \rightarrow g \equiv \neg f \lor g$
- $\neg (f \lor g) \equiv \neg g \land \neg f$ (De Morgan)
- $\neg (f \land g) \equiv \neg g \lor \neg f$ (De Morgan)

Useful Equivalences 2

- $f \lor (g \lor h) \equiv (f \lor g) \lor h$ (Associativity)
- $f \wedge (g \wedge h) \equiv (f \wedge g) \wedge h$ (Associativity)
- $f \wedge (g \vee h) \equiv (f \wedge g) \vee (f \wedge h)$ (Distributivity)
- $f \lor (g \land h) \equiv (f \lor g) \land (f \lor h)$ (Distributivity)
- $f \wedge (f \vee g) \equiv f$ (Absorption)
- $f \lor (f \land g) \equiv f$ (Absorption)
- $(\exists X \ f) \land g \equiv \exists X \ (f \land g)$ (only if X is not free in g)
- $(\exists X \ f) \lor g \equiv \exists X \ (f \lor g)$ (only if X is not free in g)
- $(\forall X \ f) \land g \equiv \forall X \ (f \land g)$ (only if X is not free in g)
- $(\forall X \ f) \lor g \equiv \forall X \ (f \lor g)$ (only if X is not free in g)

Useful Equivalences 3

- $(\exists X \ f) \land (\exists X \ g) \equiv \exists X \ (f \land g)$
- $(\exists X \ f) \lor (\exists X \ q) \equiv \exists X \ (f \lor q)$
- $(\forall X \ f) \land (\forall X \ g) \equiv \forall X \ (f \land g)$
- $(\forall X \ f) \lor (\forall X \ g) \equiv \forall X \ (f \lor g)$
- $\neg \forall X \ f \equiv \exists X \ \neg f$ ($\forall \ \text{De Morgan}$)
- $\neg \exists X \ f \equiv \forall X \neg f$ (\forall De Morgan)
- $\forall X \ f \equiv \forall Y \ f[Y/X]$ (Renaming)
- $\exists X \ f \equiv \exists Y \ f[Y/X]$ (Renaming)
- $\forall X \ \forall Y \ f \equiv \forall Y \ \forall X f$ (Exchange)
- $\exists X \ \exists Y \ f \equiv \exists Y \ \exists X f$ (Exchange)

2 Herbrand Structures

2.1 Intuition

So Many Models!

Even for a simple formula like

p(c)

there are infinitely many structures and models. Let us look at some of them.

So Many Models!

p(c)

Structure 1: $M_1 = (\mathcal{D}_1, I_1, \epsilon)$

- $\mathcal{D}_1 = \{a\}$
- $I_1(c) = a$
- $I_1(p)(a) = 0$
- ϵ : empty variable valuation

 M_1 is not a model of this formula.

So Many Models!

p(c)

Structure 2: $M_2 = (\mathcal{D}_2, I_2, \epsilon)$

- $\bullet \ \mathcal{D}_2 = \{a\}$
- $I_2(c) = a$
- $I_2(p)(a) = 1$
- ϵ : empty variable valuation

 M_2 is a model of this formula.

So Many Models!

p(c)

Structure 3: $M_3 = (\mathcal{D}_3, I_3, \epsilon)$

- $\mathcal{D}_3 = \{b\}$
- $I_3(c) = b$
- $I_3(p)(b) = 0$
- ϵ : empty variable valuation

 ${\cal M}_3$ is not a model of this formula.

So Many Models!

p(c)

Structure 4: $M_4 = (\mathcal{D}_4, I_4, \epsilon)$

- $\mathcal{D}_4 = \{b\}$
- $I_4(c) = b$
- $I_4(p)(b) = 1$
- ϵ : empty variable valuation

 M_4 is a model of this formula.

So Many Models!

p(c)

Structure 5: $M_5 = (\mathcal{D}_5, I_5, \epsilon)$

- $\mathcal{D}_5 = \{b, c\}$
- $I_5(c) = b$
- $I_5(p)(b) = 0$
- $I_5(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation

 M_5 is not a model of this formula.

So Many Models!

p(c)

Structure 6: $M_6 = (\mathcal{D}_6, I_6, \epsilon)$

- $\mathcal{D}_6 = \{b, c\}$
- $I_6(c) = b$
- $I_6(p)(b) = 1$
- $I_6(p)(c)$ can be 0 or 1
- ϵ : empty variable valuation

 M_6 is a model of this formula.

So Many Models!

p(c)

Structure 7: $M_7 = (\mathcal{D}_7, I_7, \epsilon)$

- $\mathcal{D}_7 = \{b, c\}$
- $I_7(c) = c$
- $I_7(p)(b)$ can be 0 or 1
- $I_7(p)(c) = 0$
- ϵ : empty variable valuation

 M_7 is not a model of this formula.

So Many Models!

p(c)

Structure 8: $M_8 = (\mathcal{D}_8, I_8, \epsilon)$

- $\mathcal{D}_8 = \{b, c\}$
- $I_8(c) = c$
- $I_8(p)(b)$ can be 0 or 1
- $I_8(p)(c) = 1$
- ϵ : empty variable valuation

 M_8 is a model of this formula.

So Many Models!

- All structures are quite similar!
- Changing domains does not seem to change much.
- The interpretation of predicates appears crucial.
- The interpretation of functions appears to be "isomorphic" for different domains.

Cardinality of Domain

$$p(c) \land \neg p(d)$$

Model: $(\mathcal{D}, I, \epsilon)$

- $\bullet \ \mathcal{D} = \{y, z\}$
- I(c) = y
- I(d) = z
- I(p)(y) = 1
- I(p)(z) = 0

But no model exists for any $\mathcal D$ with $|\mathcal D| < 2!$ \Rightarrow Cardinality of the domain is important.

2.2 Main Statement

Jacques Herbrand

Jacques Herbrand (1908–1931)

Herbrand Universe

- Idea: Use the set of ground terms of the formula as domain!
- This domain is called Herbrand Universe.
- ullet \Rightarrow Interpret function symbols as "themselves."
- $I_H(c) = c$ for constants
- $I_H(f)(t_1, ..., t_n) = f(t_1, ..., t_n)$

Herbrand Universe - Example

$$\begin{array}{l} n(z) \\ \forall X \; (n(X) \rightarrow n(s(X))) \\ \forall X \; \forall Y \; (\neg(e(X,Y)) \rightarrow \neg(e(s(X),s(Y)))) \\ \forall X \; \neg e(s(X),z) \end{array}$$

- $\mathcal{D}_H = \{z, s(z), s(s(z)), s(s(s(z))), \ldots\}$
- $I_H(z) = z$
- $I_H(s)(z) = s(z)$
- $I_H(s)(s(z)) = s(s(z))$
- $I_H(s)(s(s(z))) = s(s(s(z)))$
- ...

Herbrand Base

- What about interpretations of predicate symbols?
- These are not fixed.
- Each predicate is a function from term tuples to $\{0, 1\}$.
- Write this as a set $\{p(t_1, ..., t_n) \mid I_H(p)(t_1, ..., t_n) = 1\}$
- \bullet \Rightarrow The set of true ground atoms in this interpretation.
- Largest set $\{p(t_1, \ldots, t_n) \mid p \text{ a predicate of arity } n, t_1, \ldots, t_n \text{ terms} \}$ is called *Herbrand Base*.
- Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base – Example

$$\begin{array}{l} n(z) \\ \forall X \; (n(X) \rightarrow n(s(X))) \\ \forall X \; \forall Y \; (\neg(e(X,Y)) \rightarrow \neg(e(s(X),s(Y)))) \\ \forall X \; \neg e(s(X),z) \end{array}$$

- $I_H(n)(z) = 1, I_H(n)(s(z)) = 1, ...$
- $I_H(e)(z,z) = 1, I_H(e)(z,s(z)) = 0,...$
- $I_H(e)(s(z), z) = 0, I_H(e)(s(z), s(z)) = 1, ...$
- $I_H(e)(s(s(z)), z) = 0, I_H(e)(s(s(z)), s(z)) = 0, ...$
- ...

$$I_H = \{n(z), n(s(z)), \ldots\} \cup \{e(z, z), e(s(z), s(z)), e(s(s(z)), s(s(z))), \ldots\}$$

Herbrand Structures - Theorem

A structure for a formula with Herbrand domain (universe) and an Herbrand interpretation is an Herbrand structure.

If an Herbrand structure for a formula is a model, it is an Herbrand model.

Theorem 2. A formula has a model if and only if it has an Herbrand model.

Corollary 3. A formula is satisfiable if and only if it has an Herbrand model.

3 Normal Forms

3.1 Prenex Normal Form

Prenex Normal Form

Formulas of the following type are in *Prenex Normal Form*:

$$Q_1X_1 \ldots Q_nX_n f$$

where

- 1. $Q_i \in \{ \forall, \exists \} \text{ for } 1 \leq i \leq n \text{ and }$
- 2. f is a quantifier-free formula.
- $Q_1 \ldots Q_n$ is the quantifier prefix,
- f is the matrix.

Prenex Normal Form

- Move quantifiers outside ("up").
- Use the following rewritings:
 - $\neg \forall X \ f \Rightarrow_P \exists X \neg f$
 - $\neg \exists X \ f \Rightarrow_P \forall X \neg f$
 - $-f \leftrightarrow g \Rightarrow_P (f \to g) \land (g \to f)$
 - $QX \ f \circ g \Rightarrow_P QZ1 \ (f[Z1/X] \circ g)$ $Z1 \ \text{fresh}, \circ \in \{\land, \lor\}$
 - $\exists X \ f \rightarrow g \Rightarrow_P \forall Z1 \ (f[Z1/X] \rightarrow g)$ Z1 fresh
 - $\forall X \ f \rightarrow g \Rightarrow_P \exists Z1 \ (f[Z1/X] \rightarrow g)$ Z1 fresh
 - $f \circ QX \ g \Rightarrow_P QZ1 \ (f \circ g[Z1/X])$ Z1 fresh, $\circ \in \{\land, \lor, \rightarrow\}$

3.2 Negation Normal Form

Negation Normal Form

- ¬ only in front of atomic formulas.
- At most one ¬ in front of atomic formulas.

Negation Normal Form

- Move negation inside ("down").
- Use the following rewritings:

-
$$f \leftrightarrow g \Rightarrow_N (f \to g) \land (g \to f)$$

$$-f \rightarrow g \Rightarrow_N \neg f \lor g$$

$$- \neg \forall X \ f \Rightarrow_N \exists X \neg f$$

$$- \neg \exists X \ f \Rightarrow_N \forall X \neg f$$

$$-\neg (f \lor g) \Rightarrow_N \neg g \land \neg f$$

$$-\neg (f \land g) \Rightarrow_N \neg g \lor \neg f$$

$$- \neg \neg f \Rightarrow f$$

3.3 Conjunctive Normal Form

Conjunctive Normal Form

Formulas of the following type are in *Conjunctive Normal Form*:

$$Q_1X_1 \ldots Q_nX_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} l)$$

where

- 1. $Q_i \in \{ \forall, \exists \} \text{ for } 1 \leq i \leq n \text{ and }$
- 2. *l* is a literal.
- Special case of Prenex and Negation Normal Forms.

Conjunctive Normal Form

- Apply \Rightarrow_P and \Rightarrow_N
- Then use distributivity and \top , \bot rules:

$$-f \wedge \top \Rightarrow_C f$$

$$-f \land \bot \Rightarrow_C \bot$$

$$-f \lor \top \Rightarrow_C \top$$

$$-f \lor \bot \Rightarrow_C f$$

$$-f \lor (g \land h) \Rightarrow_C (f \lor g) \land (f \lor h)$$

Conjunctive Normal Form

- Note: \top occurs only if it is the only clause.
- Also ⊥ occurs only if it is the only clause!

3.4 Skolemization

Thoralf Skolem

Thoralf Skolem (1887–1963)

Skolemization

- Problem: Alternating quantifiers in CNF.
- Notation as set of clauses not directly possible.
- Introduce *Skolem functions* to eliminate one type of quantifiers!
- Here: Eliminate \exists .

Skolemization

$$Q_1X_1 \ldots Q_nX_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} l)$$

- Work from left to right.
- Read $\forall X_1 \ldots \forall X_n \exists Y f$:
- For any combination of terms $X_1 \ldots \forall X_n$ there exists a term Y such that f holds.
- Use a new function symbol to represent that:
- Replace Y by $s(X_1, \ldots, X_n)!$

Skolemization

- Work from left to right (no arbitrary replacements)!
- $\forall X_1 \ldots \forall X_n \exists Y f \Rightarrow_S \forall X_1 \ldots \forall X_n f [s(X_1, \ldots, X_n)/Y],$
- s must be a fresh symbol

Skolemized CNF:

$$\forall X_1 \ldots \forall X_n \bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} l)$$

Can be written as sets of clauses, clauses as sets of literals.

Skolemization Is Different

- $f \equiv PNF(f)$ (PNF(f) Prenex Normal Form of f)
- $f \equiv NNF(f)$ (NNF(f) Negation Normal Form of f)
- $f \equiv CNF(f)$ (CNF(f) Conjunctive Normal Form of f)
- $f \not\equiv SCNF(f)$ (SCNF(f) Skolemized Conjunctive Normal Form of f)
- Because Skolem functions can be interpreted in whatever way in models of f, which may not be a model of SCNF(f) because of this.
- But: $SCNF(f) \models f!$

Skolemized CNF - Theorem

Theorem 4. For any formula f, f is satisfiable if and only if SCNF(f) is satisfiable.

Corollary 5. For any formula f, f is unsatisfiable if and only if SCNF(f) is unsatisfiable.