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1 Semantic Notions
Models

e Astructure M = (D, 1,v) is a model of a formula f if pp (f) =1
o If up(f) = 1, then M satisifies f.
o If M satisifes f, we write M |= f.
Satisfiability, Validity, Equivalence, Entailment
A formula fis ...
e satisfiable, if an M exists such that M = f
e valid, if M = f for all M.
For two formulas f and g,
e fisequivalentto g (f = g), if f and g have the same models,

e fentails g (f |= g), if each model of f is also a model of g.

Socrates Example

human(socrates)
VX (human(X) — mortal (X))
mortal(socrates)

human(socrates) AVX (human(X) — mortal(X)) = mortal(socrates)



Validity, Equivalence, Entailment as (Un)Satisfiability
e fisvalid if —f is unsatisfiable.
e f=gholdsif f < gis valid.
e f = gholdsif —~(f < g) is unsatisfiable.
e fE gholdsif f — g is valid (Deduction Theorem).

e f | gholdsif —=(f — g) is unsatisfiable.

Substitution Theorem
Theorem 1. For wffs f, g, h, where g = h, we obtain f = f[h/g]

Just as in propositional logic.

Useful Equivalences
o fog=gof (Commutativity) for o € {A,V, <}
o fof=f (Idempotence) for o € {A, V}
o fVT =T
o fAL=1
o fVI=f (Neutrality)
e fAT=Sf (Neutrality)

o fVf=T
o fA-f=1
.ﬁﬁfEf

o f—g=-fVyg

~(fVg) =-gn-f (De Morgan)

—(fAg)=—gVf (De Morgan)



Useful Equivalences 2

e fV(gVh)=(fVg Vh (Associativity)

e fA(GAR)=(fAg) AR (Associativity)

e fA(gVh)=(fAg)V(fAR) (Distributivity)

e fV(gARh)=(fVg A(fVh) (Distributivity)

e fA(fVg =S (Absorption)

e fV(fAg) =T (Absorption)

e AX flAg=3X(fAg) (only if X is not free in g)
e AX f)vg=3X(fVy) (only if X is not free in g)
e (VX fng=VX (fAg) (only if X is not free in g)
o VX f)vg=VX (fVyg) (only if X is not free in g)

Useful Equivalences 3

e AX f)A(3IX g)=3X
. (EIXf)\/(HXg)_EIX
o (VX f)A(VX g) =

o (VX f)V (VX g) =VX
o WX f=3X-f (¥
o IX f=VXf (¥

VX f =YY f[Y/X]
3X f =3y f]YV/X]
VX VY f=VY VXS
3X 3y f =3y IXS
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2 Herbrand Structures

2.1 Intuition
So Many Models!

Even for a simple formula like

p(c)

there are infinitely many structures and models.
Let us look at some of them.



So Many Models!

Structure 1: My = (D1, 11, ¢€)
e D; ={a}

e I1(c)=ua

 Li(p)(a) =0

e c: empty variable valuation

My is not a model of this formula.

So Many Models!

Structure 2: My = (Do, Iz, €)
e Dy ={a}

o Ir(c)=ua

o I(p)(a) =1

e c: empty variable valuation

M is a model of this formula.

So Many Models!

Structure 3: M3 = (D3, I5, €)
e Dy = {b}

o I5(c)=b

o L(p)(b) = 0

e ¢: empty variable valuation

M3 is not a model of this formula.



So Many Models!

Structure 4: My = (Dy, 14, €)
o Dy ={b}

o Iy(c)=0b

o Ii(p)(b) =1

e ¢: empty variable valuation

M, is a model of this formula.

So Many Models!

Structure 5: M5 = (D5, I5, €)
e D5 ={b,c}

o Is5(c)=5b

o I5(p)(b) =0

e I5(p)(c)canbe O or 1

e ¢: empty variable valuation

My is not a model of this formula.

So Many Models!

Structure 6: Mg = (Dg, Is, €)
e Dg = {b,c}

o Is(c)=0b

o Io(p)(b) =1

e Is(p)(c)canbeOorl

e ¢: empty variable valuation

Mg is a model of this formula.



So Many Models!

p(c)
Structure 7: M7 = (D7, I7,¢€)
e D; ={b,c}
o I7(c) =c
e I7(p)(b) canbe 0 or 1
o Ir(p)(c) =0
e ¢: empty variable valuation
M~ is not a model of this formula.
So Many Models!
p(c)

Structure 8: Mg = (Ds, Is, €)

Ds = {b, C}

Is(c) =c¢

Is(p)(b) canbe 0 or 1
o Ig(p)(c) =1
e ¢: empty variable valuation

My is a model of this formula.

So Many Models!

o All structures are quite similar!
e Changing domains does not seem to change much.
e The interpretation of predicates appears crucial.

e The interpretation of functions appears to be “isomorphic” for different domains.



Cardinality of Domain

p(c) A —p(d)
Model: (D, I,¢)
e D={y,z}
o ]
o ]
o ]
o ]
But no model exists for any D with |D| < 2!

= Cardinality of the domain is important.

2.2 Main Statement

Jacques Herbrand

- Jacques Herbrand (1908-1931)

Herbrand Universe

Idea: Use the set of ground terms of the formula as domain!

This domain is called Herbrand Universe.

= Interpret function symbols as “themselves.”

Iy (c) = c for constants

Ta(f)(trs - otn) = [t tn)



Herbrand Universe — Example

VX (n(X) — n(s(X)))
VX VY (=(e(X,Y)) — —(e(s(X),s(Y))))
VX —e(s(X), z)

o Dy ={z,5(2),s(s(2)),s(s(s(2))),...}

Herbrand Base
e What about interpretations of predicate symbols?
e These are not fixed.
e Each predicate is a function from term tuples to {0, 1}.
e Write this as a set {p(t1,...,t,) | Iz (p)(t1,..., t,) =1}
e = The set of true ground atoms in this interpretation.

e Largest set {p(t1,...,t,) | papredicate of arity n,ty,...,¢t, terms} is called
Herbrand Base.

e Denote Herbrand interpretations as subsets of the Herbrand Base.

Herbrand Base — Example

n(z)

VX (n(X) — n(s(X)))

VX VY (—(e(X,Y)) — —(e(s(X),s(Y))))
VX —e(s(X), z)

o Iy(n)(z) =1,Ig(n)(s(z)) =1,...

o Ip(e)(z,2)=1,In(e)(zs(2)) =0,...

o In(e)(s(2),z) = 0,1n(e)(s(2),5(2)) = 1,...

o I(e)(s(s(2)), z) = 0,1m(e)(s(s(2)), 5(2)) = 0,...

Iy = {n(2),n(s(2)),...} U{e(z, 2),e(s(z), s(2)), e(s(s(2)), s(s(2))), ...}
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Herbrand Structures — Theorem

A structure for a formula with Herbrand domain (universe) and an Herbrand inter-
pretation is an Herbrand structure.

If an Herbrand structure for a formula is a model, it is an Herbrand model.

Theorem 2. A formula has a model if and only if it has an Herbrand model.

Corollary 3. A formula is satisfiable if and only if it has an Herbrand model.

3 Normal Forms

3.1 Prenex Normal Form

Prenex Normal Form
Formulas of the following type are in Prenex Normal Form:

Xy ... X, f
where
1. Q;e{Vv,3}forl <i<nand
2. fis a quantifier-free formula.
e Qi ... Q, is the quantifier prefix,

o f is the matrix.

Prenex Normal Form
e Move quantifiers outside (“up”).
e Use the following rewritings:

- VX f=p3IXf

- -3X f=p VX —f

-feg=p(f—9NGg—f)
]

- OX fog=p QZ1 (f[Z1/X]0g) Z1 fresh, o € {A,V}

-3IX f—-g=pVZ1(f[Z1/X] — g) Z1 fresh

-VX f—g=p3Z1 (f]Z1/X] — g) Z1 fresh

— foQX g=p OZl (foglZ1/X])  Zlfresh, o€ {A,V,—}

3.2 Negation Normal Form
Negation Normal Form
e — only in front of atomic formulas.

e At most one — in front of atomic formulas.



Negation Normal Form

e Move negation inside (“down”).

e Use the following rewritings:
- fegan(f—9ng— )
-f—=g9=Nn"fVyg
- VX f=y3X f
- 3dX f=n VX f
- (fVg) =N gA~f
- (fAg) =N gV f
- —\—|f = f

3.3 Conjunctive Normal Form

Conjunctive Normal Form
Formulas of the following type are in Conjunctive Normal Form:

n o m;

QX1 ... QX AV D)

i=1 j=1
where
1. Q; e{Vv,3}for1 <i<nand
2. lis aliteral.

e Special case of Prenex and Negation Normal Forms.

Conjunctive Normal Form
o Apply =p and =y
e Then use distributivity and T, L rules:
- fANT=cf
- fALl=¢cl
- f VT =C T
- fVl=cf
- fV(gAR)=c (fVg) A(fVh)
Conjunctive Normal Form

e Note: T occurs only if it is the only clause.

e Also L occurs only if it is the only clause!
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3.4 Skolemization
Thoralf Skolem

Thoralf Skolem (1887-1963)

Skolemization
e Problem: Alternating quantifiers in CNF.
e Notation as set of clauses not directly possible.
e Introduce Skolem functions to eliminate one type of quantifiers!

e Here: Eliminate 3.

Skolemization
n my
QX ... QX AV D)
i=1 j=1
e Work from left to right.
e Read VX, ... VX, ,3Y f:
e For any combination of terms X; ... VX, there exists a term Y such that f

holds.

Use a new function symbol to represent that:

Replace Y by s(X1,...,X,)!
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Skolemization

e Work from left to right (no arbitrary replacements)!
o VX, ... VX, AY f =g VX ... VX, f[s(X1,..., Xn)/Y],
e s must be a fresh symbol

Skolemized CNF:

m;

VX, ... VX, /n\(\/z)

Jj=1

Can be written as sets of clauses, clauses as sets of literals.

Skolemization Is Different

e f=PNF(f) (PNF(f) Prenex Normal Form of f)

e f=NNF(f) (NNF(f) Negation Normal Form of f)

o f=CNF(f) (CNF(f) Conjunctive Normal Form of f)

o f#£SCNF(f) (SCNF(f) Skolemized Conjunctive Normal Form of f)

e Because Skolem functions can be interpreted in whatever way in models of f,
which may not be a model of SCN F(f) because of this.

e But: SCNF(f) k= f!

Skolemized CNF — Theorem
Theorem 4. For any formula f, f is satisfiable if and only if SCN F(f) is satisfiable.

Corollary 5. For any formula f, f is unsatisfiable if and only if SCNF(f) is unsat-
isfiable.
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