Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-Order Logic

Wolfgang Faber

University of Calabria, Italy

2007

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

イロト イポト イヨト イヨト

æ

- First-Order Resolution
 - Unification
 - Resolution and Factorization
 - Refutations
 - Restrictions

ヘロト 人間 ト ヘヨト ヘヨト

Outline

2 Sequent Calculus

- 3 First-Order Resolution
 - Unification
 - Resolution and Factorization
 - Refutations
 - Restrictions

ヘロト ヘワト ヘビト ヘビト

Methods

- Propositional Logic
 - Truth tables
 - OLL
 - Resolution
- Quantified Boolean Formulas
 - DLL Extensions
- First-Order Logic
 - Sequent Calculus
 - Resolution

イロト イポト イヨト イヨト

Methods

- Propositional Logic
 - Truth tables
 - DLL
 - Resolution
- Quantified Boolean Formulas
 - DLL Extensions
- First-Order Logic
 - Sequent Calculus
 - Resolution

ヘロト 人間 ト ヘヨト ヘヨト

Methods

- Propositional Logic
 - Truth tables
 - DLL
 - Resolution
- Quantified Boolean Formulas
 - DLL Extensions
- First-Order Logic
 - Sequent Calculus
 - Resolution

イロト イポト イヨト イヨト

Outline

- 3 First-Order Resolutio
 - Unification
 - Resolution and Factorization
 - Refutations
 - Restrictions

イロト イポト イヨト イヨト

Gerhard Gentzen

Gerhard Gentzen (1909-1945)

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-Or

・ロット (雪) () () () ()

Sequent Calculus

- Idea: Define inference rules for sequents $\Gamma \vdash \Delta$.
- Γ and Δ are sequences of formulas
- Intuition: Read $\Gamma \vdash \Delta$ like $(\bigwedge \Gamma) \rightarrow (\bigvee \Gamma)$.
- Goal 1: $\Gamma \vdash \Delta$ holds if $\Gamma \models \Delta$ (completeness)
- Goal 2: If $\Gamma \vdash \Delta$ holds, then $\Gamma \models \Delta$ (soundness)
- Notation: $\frac{S_1 \dots S_n}{S}$ means: From sequents $S_1 \dots S_n$ we conclude sequent *S*.
- System considered here: LK

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Sequent Calculus – Axioms

• Begin with axioms (true statements)

•
$$\overline{f \vdash f}$$

• ... for any formula f

イロン 不得 とくほ とくほとう

Sequent Calculus – Structural

• weakening left:
$$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta}$$

• weakening right:
$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}$$

• contraction left:
$$\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta}$$

• contraction right:
$$\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta}$$

• permutation left:
$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, B, A \vdash \Delta}$$

• permutation left:
$$\frac{\Gamma \vdash \Delta_1, A, B, \Delta_2}{\Gamma \vdash \Delta_1, B, A, \Delta_2}$$

◆□ > ◆□ > ◆豆 > ◆豆 > →

ъ

Sequent Calculus – Conjunction

•
$$\land$$
 left 1: $\frac{\Gamma, A \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$
• \land left 2: $\frac{\Gamma, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$
• \land right: $\frac{\Gamma \vdash A, \Delta \qquad \Sigma \vdash B, \Pi}{\Gamma, \Sigma \vdash A \land B, \Delta, \Pi}$

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

・ロト ・回ト ・ヨト ・ヨト

Sequent Calculus – Disjunction

•
$$\lor$$
 right 1: $\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \lor B, \Delta}$
• \lor right 2: $\frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta}$
• \lor left: $\frac{\Gamma, A \vdash \Delta \qquad \Sigma, B \vdash \Pi}{\Gamma, \Sigma, A \lor B \vdash \Delta, \Pi}$

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

・ロト ・四ト ・ヨト ・ヨト

Sequent Calculus – Negation

•
$$\neg$$
 right: $\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta}$
• \neg left: $\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta}$

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

ヘロト 人間 とくほとく ほとう

Sequent Calculus – Implication

•
$$\rightarrow$$
 right: $\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta}$
• \rightarrow left: $\frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

<ロト <回 > < 注 > < 注 > 、

Sequent Calculus – Quantifiers

- *A*[*t*] means that a term *t* occurs in *A*.
- A[Y] means that a variable Y occurs in A, which is not free elsewhere (i.e. neither in Γ nor in Δ).

•
$$\forall$$
 right: $\frac{\Gamma \vdash A[Y], \Delta}{\Gamma \vdash \forall X \ A[X/Y], \Delta}$
• \forall left: $\frac{\Gamma, A[t] \vdash \Delta}{\Gamma, \forall X \ A[X/t] \vdash \Delta}$
• \exists right: $\frac{\Gamma \vdash A[t], \Delta}{\Gamma \vdash \exists X \ A[t/X], \Delta}$
• \exists left: $\frac{\Gamma, A[Y] \vdash \Delta}{\Gamma, \exists X \ A[X/Y] \vdash \Delta}$

ヘロン 人間 とくほ とくほ とう

1

Sequent Calculus – Cut

ヘロト 人間 とくほとく ほとう

Sequent Calculus

• Use these inference rules consecutively.

• Example:
$$\frac{\overline{A \vdash A}}{\vdash \neg A, A}$$

 If on top there are only axioms, then it is a derivation of the bottom sequent.

イロト イポト イヨト イヨト

Sequent Calculus – Theorem

Theorem

Sequent Calculus is sound and complete. I.e. if we can derive $\Gamma \vdash \Delta$, then $\Gamma \models \Delta$, and if $\Gamma \models \Delta$ then there is a derivation for $\Gamma \vdash \Delta$.

イロト イポト イヨト イヨト 一臣

Inification Resolution and Factorization Refutations Restrictions

Outline

2 Sequent Calculus

First-Order Resolution

- Onification
- Resolution and Factorization
- Refutations
- Restrictions

ヘロト ヘワト ヘビト ヘビト

Inification Resolution and Factorization Refutations Restrictions

Reminder — Propositional Resolution

- Input: Formulas in CNF \rightarrow set of clauses
- Resolvents of two clauses
- Factorization of a clause (automatic for set representation)
- Derivations
- Refutations (derivations of empty clause □)

(日)

Inification Resolution and Factorization Refutations Restrictions

Relationship

- Similar to DLL procedure!
- Similar to cut!
- Works on CNFs!

イロト イポト イヨト イヨト

Jnification Resolution and Factorization Refutations Restrictions

First Order Resolution

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X : (h(X) \rightarrow m(X)) \land h(socrates)$
- {{¬*h*(*X*) ∨ *m*(*X*)}, {*h*(*socrates*)}}
- $h(X) \neq h(socrates)!$
- For the special case
 {{¬*h*(socrates) ∨ *m*(socrates)}, {*h*(socrates)}} it we
- Formalize this idea!

イロン 不得 とくほど 不良 とうほう

Jnification Resolution and Factorization Refutations Restrictions

First Order Resolution

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X : (h(X) \rightarrow m(X)) \land h(socrates)$
- $\{\{\neg h(X) \lor m(X)\}, \{h(socrates)\}\}$
- $h(X) \neq h(socrates)!$
- For the special case
 - $\{\{\neg h(socrates) \lor m(socrates)\}, \{h(socrates)\}\}$ it works.
- Formalize this idea!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Jnification Resolution and Factorization Refutations Restrictions

First Order Resolution

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X : (h(X) \rightarrow m(X)) \land h(socrates)$
- $\{\{\neg h(X) \lor m(X)\}, \{h(socrates)\}\}$
- $h(X) \neq h(socrates)!$
- For the special case
 - $\{\{\neg h(socrates) \lor m(socrates)\}, \{h(socrates)\}\}$ it works.
- Formalize this idea!

(ロ) (同) (目) (日) (日) (の)

Jnification Resolution and Factorization Refutations Restrictions

First Order Resolution

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X : (h(X) \rightarrow m(X)) \land h(socrates)$
- {{¬*h*(*X*) ∨ *m*(*X*)}, {*h*(*socrates*)}}
- $h(X) \neq h(socrates)!$
- For the special case
 {{¬*h*(socrates) ∨ *m*(socrates)}, {*h*(socrates)}} it works.
- Formalize this idea!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Jnification Resolution and Factorization Refutations Restrictions

First Order Resolution

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X : (h(X) \rightarrow m(X)) \land h(socrates)$
- {{¬*h*(*X*) ∨ *m*(*X*)}, {*h*(*socrates*)}}
- $h(X) \neq h(socrates)!$
- For the special case
 {{¬*h*(socrates) ∨ *m*(socrates)}, {*h*(socrates)}} it works.
- Formalize this idea!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Unification Resolution and Factorization Refutations Restrictions

Substitution

Definition

A substitution is a set of the form $\{t_1/X_1, \ldots, t_n/X_n\}$ where each X_i is a distinct (object) variable, and $X_i \neq t_i$ ($1 \le i \le n$).

Usually denoted by lowercase greek letters $(\sigma, \vartheta, \rho)$. Usually $\epsilon = \{\}$ is the empty substitution.

Unification Resolution and Factorization Refutations Restrictions

Substitution

Definition

A substitution is a set of the form $\{t_1/X_1, \ldots, t_n/X_n\}$ where each X_i is a distinct (object) variable, and $X_i \neq t_i$ ($1 \le i \le n$).

Usually denoted by lowercase greek letters (σ , ϑ , ρ). Usually $\epsilon = \{\}$ is the empty substitution.

Unification Resolution and Factorization Refutations Restrictions

Substitution

Definition

A substitution is a set of the form $\{t_1/X_1, \ldots, t_n/X_n\}$ where each X_i is a distinct (object) variable, and $X_i \neq t_i$ ($1 \le i \le n$).

Usually denoted by lowercase greek letters (σ , ϑ , ρ). Usually $\epsilon = \{\}$ is the empty substitution.

Unification Resolution and Factorization Refutations Restrictions

Application of Substitutions

Definition

Let *E* be an atomic first-order formula (or other syntactic first-order structure) and $\sigma = \{t_1/X_1, \ldots, t_n/X_n\}$ be a substitution. Then $E\sigma$ is the application of σ on *E*, obtained by simultaneously replacing each variable X_i by t_i .

Unification Resolution and Factorization Refutations Restrictions

Composition of Substitutions

Definition

Let $\sigma = \{t_1/X_1, \ldots, t_n/X_n\} \ \vartheta = \{u_1/Y_1, \ldots, u_m/Y_m\}$ be substitutions. The composition $\sigma \circ \vartheta$ (or simply $\sigma \vartheta$) is derived from $\{t_1 \vartheta/X_1, \ldots, t_n \vartheta/X_n, u_1/Y_1, \ldots, u_m/Y_m\}$, where u_j/Y_j is omitted if $Y_j \in \{X_1, \ldots, X_n\}$, and $t_k \vartheta/X_k$ is omitted if $X_k = t_k \vartheta$.

(日)

Unification Resolution and Factorization Refutations Restrictions

Properties of Substitutions

•
$$\sigma \circ \epsilon = \epsilon \circ \sigma = \sigma$$

•
$$(\sigma \circ \vartheta) \circ \rho = \sigma \circ (\vartheta \circ \rho)$$

•
$$(E\sigma)\vartheta = E(\sigma \circ \vartheta) = E\sigma\vartheta$$

•
$$\sigma \circ \vartheta \neq \vartheta \circ \sigma$$

ヘロト 人間 とくほとくほとう

3

Unification Resolution and Factorization Refutations Restrictions

Unification

Definition

Let E_1, E_2 be atomic first-order formulas (or other syntactic first-order structures). A substitution σ is a unifier if $E_1\sigma = E_2\sigma$.

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

イロト イポト イヨト イヨト

3

Unification Resolution and Factorization Refutations Restrictions

Most General Unifier

Definition

Let E_1, E_2 be atomic first-order formulas (or other syntactic first-order structures). A unifier σ is a most general unifier (mgu) if for any unifier ϑ of E_1 , E_2 it holds that $\vartheta = \sigma \circ \rho$ for some substitution ρ .

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Unification Resolution and Factorization Refutations Restrictions

Most General Unifier – Properties

- If E_1, E_2 are unifiable, an mgu exists.
- If *E*₁, *E*₂ are unifiable, the mgu is unique modulo variable renamings.

イロト イポト イヨト イヨト

3

Unification Resolution and Factorization Refutations Restrictions

Algorithm: Disagreement Set

D(E)

- Input: *E* set of formulas or terms
- Output: set of disagreeing terms
- return the set of terms (or formulas) at leftmost subexpressions on which expressions in E differ

ヘロト 人間 ト ヘヨト ヘヨト

æ

Unification Resolution and Factorization Refutations Restrictions

Example: Disagreement Set

- $D(\{p(X, f(a)), p(g(b), Y)\}) = \{X, g(b)\}$
- $D(\{p(X, f(a)), q(g(b), Y)\}) = \{p(X, f(a)), q(g(b), Y)\}$
- $D(\{p(g(b), f(a)), p(g(b), f(Y))\}) = \{a, Y\}$
- $D(\{p(g(b), f(a, c)), p(g(b), f(Y, d))\}) = \{a, Y\}$

◆□ > ◆□ > ◆豆 > ◆豆 > □ ● の < ()

Unification Resolution and Factorization Refutations Restrictions

Algorithm: Unification

- unify(E)
- Input: E set of formulas or terms
- Output: MGU or ⊥

- 2 if $|E\sigma_k| = 1$ then return σ_k ; else $D := D(E\sigma_k)$;
- If a variable X and term t exist in D such that X does not occur in t

•
$$\sigma_{k+1} = \sigma_k \circ \{t/X\}; k++; \text{goto 2};$$

🗿 return ⊥

ヘロト ヘアト ヘビト ヘビト

э.

Unification Resolution and Factorization Refutations Restrictions

Example: Unification

- unify({p(X, f(X)), p(Y, f(g(b)))})
- $\sigma_0 = \epsilon$
- $E\sigma_0 = \{p(X, f(X)), p(Y, f(g(b)))\}$
- $D(\{p(X, f(X)), p(Y, f(g(b)))\}) = \{X, Y\}$

•
$$\sigma_1 = \sigma_0 \circ \{Y/X\} = \{Y/X\}$$

•
$$E\sigma_1 = \{p(Y, f(Y)), p(Y, f(g(b)))\}$$

- $D(\{p(Y, f(Y)), p(Y, f(g(b)))\}) = \{Y, g(b)\}$
- $\sigma_2 = \sigma_1 \circ \{g(b)/Y\} = \{Y\{g(b)/Y\}/X, g(b)/Y\} = \{g(b)/X, g(b)/Y\}$
- $E\sigma_2 = \{p(g(b), f(g(b)))\}$
- mgu is {*g*(*b*)/*X*, *g*(*b*)/*Y*}

(ロ) (同) (三) (三) (三) (○)

Unification Resolution and Factorization Refutations Restrictions

First-Order Resolution: Resolvent

Definition

- Given two clauses C_1 and C_2 , assume two variable renaming substitutions σ_1 and σ_2 , such that $C_1\sigma_1$ and $C_2\sigma_2$ do not share variables.
- If a ∈ C₁σ₁ and ¬b ∈ C₂σ₂ such that a and b are unifiable with mgu ϑ, then ((C₁σ₁ \ {a}) ∪ (C₂σ₂ \ {¬b}))ϑ is a resolvent of C₁ and C₂.

Unification Resolution and Factorization Refutations Restrictions

First-Order Resolution: Resolvent

Definition

- Given two clauses C_1 and C_2 , assume two variable renaming substitutions σ_1 and σ_2 , such that $C_1\sigma_1$ and $C_2\sigma_2$ do not share variables.
- If $a \in C_1 \sigma_1$ and $\neg b \in C_2 \sigma_2$ such that a and b are unifiable with mgu ϑ , then $((C_1 \sigma_1 \setminus \{a\}) \cup (C_2 \sigma_2 \setminus \{\neg b\}))\vartheta$ is a resolvent of C_1 and C_2 .

Unification Resolution and Factorization Refutations Restrictions

First-Order Resolution: Factorization

Definition

Given a clause *C*, and two literals *a*, *b* of *C*, such that *a* and *b* are unifiable with mgu ϑ , then $C\vartheta$ is a factor of *C*.

◆□ > ◆□ > ◆豆 > ◆豆 > □ ● の < @

Unification Resolution and Factorization Refutations Restrictions

Derivation

Definition

Given a set of clauses *S*, a derivation by resolution of a clause *C* from *S* is a sequence C_1, \ldots, C_n , such that $C_n = C$ and for each C_i ($0 \le i \le n$) we have

- $C_i \in S$ or
- 2 C_i is a resolvent of C_j and C_k , where j < i and k < i or
- **③** C_i is a factor of C_j , where j < i.

If a derivation by resolution of C from S exists, we write $S \vdash_R C$.

Unification Resolution and Factorization Refutations Restrictions

Derivation

Definition

Given a set of clauses *S*, a derivation by resolution of a clause *C* from *S* is a sequence C_1, \ldots, C_n , such that $C_n = C$ and for each C_i ($0 \le i \le n$) we have

- $C_i \in S$ or
- 2 C_i is a resolvent of C_j and C_k , where j < i and k < i or
- **③** C_i is a factor of C_j , where j < i.

If a derivation by resolution of *C* from *S* exists, we write $S \vdash_R C$.

Unification Resolution and Factorization Refutations Restrictions

Refutation

Definition

A derivation by resolution of \Box from *S* is called a refutation of *S*.

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

イロト イポト イヨト イヨト

ъ

Unification Resolution and Factorization Refutations Restrictions

Resolution

Theorem

 $S \vdash_R \Box$ if and only if S is unsatisfiable.

Proof.

Soundness by showing $S \models \Box$. Completeness using Herbrand's theorem.

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

Unification Resolution and Factorization Refutations Restrictions

Resolution

Theorem

 $S \vdash_R \Box$ if and only if S is unsatisfiable.

Proof.

Soundness by showing $S \models \Box$. Completeness using Herbrand's theorem.

Wolfgang Faber Sistemi di Calcolo per Logica del Primo Ordine Calculi for First-O

Unification Resolution and Factorization Refutations Restrictions

Linear Resolution

• Linear Resolution: Any intermediate derivation uses a clause obtained in the previous step.

Theorem

Linear resolution is refutation complete; i.e. if a formula is unsatisfiable, a refutation by linear resolution exists.

イロト イポト イヨト イヨト

1

Unification Resolution and Factorization Refutations Restrictions

Horn and Goal Clauses, SLD Resolution

- A Horn clause is a clause containing at most one positive literal.
- A Goal clause is a clause containing no positive literal.
- SLD Resolution: Linear resolution, where at each step only goal clauses and (instances of) input clauses are used.

Theorem

SLD resolution is refutation complete for Horn clauses.

ヘロト 人間 ト ヘヨト ヘヨト

Unification Resolution and Factorization Refutations Restrictions

- Prolog: Programmation en Logique
- Allow only Horn clauses and one goal clause.
- SLD resolution is the basis of Prolog.
- Additional procedural semantics.

イロト イポト イヨト イヨト

æ