Contents

1 Computation 1
2 Sequent Calculus 1
3 First-Order Resolution 4
3.1 Unification 5
3.2 Resolution and Factorization 7
3.3 Refutations 8
3.4 Restrictions 8

1 Computation

Methods

- Propositional Logic
- Truth tables
- DLL
- Resolution
- Quantified Boolean Formulas
- DLL Extensions
- First-Order Logic
- Sequent Calculus
- Resolution

2 Sequent Calculus

Gerhard Gentzen

Sequent Calculus

- Idea: Define inference rules for sequents $\Gamma \vdash \Delta$.
- Γ and Δ are sequences of formulas
- Intuition: Read $\Gamma \vdash \Delta$ like $(\bigwedge \Gamma) \rightarrow(\bigvee \Gamma)$.
- Goal 1: $\Gamma \vdash \Delta$ holds if $\Gamma \models \Delta$ (completeness)
- Goal 2: If $\Gamma \vdash \Delta$ holds, then $\Gamma \models \Delta$ (soundness)
- Notation: $\frac{S_{1} \quad \ldots \quad S_{n}}{S}$ means: From sequents $S_{1} \ldots S_{n}$ we conclude sequent S.
- System considered here: $L K$

Sequent Calculus - Axioms

- Begin with axioms (true statements)
- $\overline{f \vdash f}$
- ...for any formula f

Sequent Calculus - Structural

- weakening left: $\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta}$
- weakening right: $\frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}$
- contraction left: $\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta}$
- contraction right: $\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta}$
- permutation left: $\frac{\Gamma, A, B \vdash \Delta}{\Gamma, B, A \vdash \Delta}$
- permutation left: $\frac{\Gamma \vdash \Delta_{1}, A, B, \Delta_{2}}{\Gamma \vdash \Delta_{1}, B, A, \Delta_{2}}$

Sequent Calculus - Conjunction

- \wedge left 1: $\frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}$
- \wedge left 2: $\frac{\Gamma, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}$
- \wedge right: $\frac{\Gamma \vdash A, \Delta \quad \Sigma \vdash B, \Pi}{\Gamma, \Sigma \vdash A \wedge B, \Delta, \Pi}$

Sequent Calculus - Disjunction

$-\vee$ right $1: \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \vee B, \Delta}$

- \vee right $2: \frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \vee B, \Delta}$
- \vee left: $\frac{\Gamma, A \vdash \Delta \quad \Sigma, B \vdash \Pi}{\Gamma, \Sigma, A \vee B \vdash \Delta, \Pi}$

Sequent Calculus - Negation

- \neg right: $\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta}$
- \neg left: $\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta}$

Sequent Calculus - Implication

- \rightarrow right: $\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta}$
\rightarrow left: $\frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$

Sequent Calculus - Quantifiers

- $A[t]$ means that a term t occurs in A.
- $A[Y]$ means that a variable Y occurs in A, which is not free elsewhere (i.e. neither in Γ nor in Δ).
- \forall right: $\frac{\Gamma \vdash A[Y], \Delta}{\Gamma \vdash \forall X A[X / Y], \Delta}$
- \forall left: $\frac{\Gamma, A[t] \vdash \Delta}{\Gamma, \forall X A[X / t] \vdash \Delta}$
- \exists right: $\frac{\Gamma \vdash A[t], \Delta}{\Gamma \vdash \exists X A[t / X], \Delta}$
- \exists left: $\frac{\Gamma, A[Y] \vdash \Delta}{\Gamma, \exists X A[X / Y] \vdash \Delta}$

Sequent Calculus - Cut

- Cut - a special structural inference
- $\frac{\Gamma \vdash A, \Delta \quad \Sigma, A \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}$

Sequent Calculus

- Use these inference rules consecutively.
- Example: $\frac{\overline{A \vdash A}}{\vdash \neg A, A}$
- If on top there are only axioms, then it is a derivation of the bottom sequent.

Sequent Calculus - Theorem

Theorem 1. Sequent Calculus is sound and complete. I.e. if we can derive $\Gamma \vdash \Delta$, then $\Gamma \vDash \Delta$, and if $\Gamma \models \Delta$ then there is a derivation for $\Gamma \vdash \Delta$.

3 First-Order Resolution

Reminder - Propositional Resolution

- Input: Formulas in CNF \rightarrow set of clauses
- Resolvents of two clauses
- Factorization of a clause (automatic for set representation)
- Derivations
- Refutations (derivations of empty clause \square)

Relationship

- Similar to DLL procedure!
- Similar to cut!
- Works on CNFs!

First Order Resolution

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X:(h(X) \rightarrow m(X)) \wedge h($ socrates $)$
- $\{\{\neg h(X) \vee m(X)\},\{h($ socrates $)\}\}$
- $h(X) \neq h($ socrates $)$!
- For the special case $\{\{\neg h($ socrates $) \vee m($ socrates $)\},\{h($ socrates $)\}\}$ it works.
- Formalize this idea!

3.1 Unification

Substitution

Definition 2. A substitution is a set of the form $\left\{t_{1} / X_{1}, \ldots, t_{n} / X_{n}\right\}$ where each X_{i} is a distinct (object) variable, and $X_{i} \neq t_{i}(1 \leq i \leq n)$.

Usually denoted by lowercase greek letters (σ, ϑ, ρ).
Usually $\epsilon=\{ \}$ is the empty substitution.

Application of Substitutions

Definition 3. Let E be an atomic first-order formula (or other syntactic first-order structure) and $\sigma=\left\{t_{1} / X_{1}, \ldots, t_{n} / X_{n}\right\}$ be a substitution. Then $E \sigma$ is the application of σ on E, obtained by simultaneously replacing each variable X_{i} by t_{i}.

Composition of Substitutions

Definition 4. Let $\sigma=\left\{t_{1} / X_{1}, \ldots, t_{n} / X_{n}\right\} \vartheta=\left\{u_{1} / Y_{1}, \ldots, u_{m} / Y_{m}\right\}$ be substitutions. The composition $\sigma \circ \vartheta$ (or simply $\sigma \vartheta$) is derived from $\left\{t_{1} \vartheta / X_{1}, \ldots, t_{n} \vartheta / X_{n}, u_{1} / Y_{1}, \ldots, u_{m} / Y_{m}\right\}$, where u_{j} / Y_{j} is omitted if $Y_{j} \in\left\{X_{1}, \ldots, X_{n}\right\}$, and $t_{k} \vartheta / X_{k}$ is omitted if $X_{k}=t_{k} \vartheta$.

Properties of Substitutions

- $\sigma \circ \epsilon=\epsilon \circ \sigma=\sigma$
- $(\sigma \circ \vartheta) \circ \rho=\sigma \circ(\vartheta \circ \rho)$
- $(E \sigma) \vartheta=E(\sigma \circ \vartheta)=E \sigma \vartheta$
- $\sigma \circ \vartheta \neq \vartheta \circ \sigma$

Unification

Definition 5. Let E_{1}, E_{2} be atomic first-order formulas (or other syntactic first-order structures). A substitution σ is a unifier if $E_{1} \sigma=E_{2} \sigma$.

Most General Unifier

Definition 6. Let E_{1}, E_{2} be atomic first-order formulas (or other syntactic first-order structures). A unifier σ is a most general unifier (mgu) if for any unifier ϑ of E_{1}, E_{2} it holds that $\vartheta=\sigma \circ \rho$ for some substitution ρ.

Most General Unifier - Properties

- If E_{1}, E_{2} are unifiable, an mgu exists.
- If E_{1}, E_{2} are unifiable, the mgu is unique modulo variable renamings.

Algorithm: Disagreement Set

- $\mathrm{D}(E)$
- Input: E set of formulas or terms
- Output: set of disagreeing terms
- return the set of terms (or formulas) at leftmost subexpressions on which expressions in E differ

Example: Disagreement Set

- $\mathrm{D}(\{p(X, f(a)), p(g(b), Y)\})=\{X, g(b)\}$
- $\mathrm{D}(\{p(X, f(a)), q(g(b), Y)\})=\{p(X, f(a)), q(g(b), Y)\}$
- $\mathrm{D}(\{p(g(b), f(a)), p(g(b), f(Y))\})=\{a, Y\}$
- $\mathrm{D}(\{p(g(b), f(a, c)), p(g(b), f(Y, d))\})=\{a, Y\}$

Algorithm: Unification

- unify (E)
- Input: E set of formulas or terms
- Output: MGU or \perp

1. $k:=0 ; \sigma_{k}:=\epsilon$;
2. if $\left|E \sigma_{k}\right|=1$ then return σ_{k}; else $D:=\mathrm{D}\left(E \sigma_{k}\right)$;
3. if a variable X and term t exist in D such that X does not occur in t

$$
-\sigma_{k+1}=\sigma_{k} \circ\{t / X\} ; k++; \text { goto } 2
$$

4. return \perp

Example: Unification

- unify $(\{p(X, f(X)), p(Y, f(g(b)))\})$
- $\sigma_{0}=\epsilon$
- $E \sigma_{0}=\{p(X, f(X)), p(Y, f(g(b)))\}$
- $\mathrm{D}(\{p(X, f(X)), p(Y, f(g(b)))\})=\{X, Y\}$
- $\sigma_{1}=\sigma_{0} \circ\{Y / X\}=\{Y / X\}$
- $E \sigma_{1}=\{p(Y, f(Y)), p(Y, f(g(b)))\}$
- $\mathrm{D}(\{p(Y, f(Y)), p(Y, f(g(b)))\})=\{Y, g(b)\}$
- $\sigma_{2}=\sigma_{1} \circ\{g(b) / Y\}=\{Y\{g(b) / Y\} / X, g(b) / Y\}=\{g(b) / X, g(b) / Y\}$
- $E \sigma_{2}=\{p(g(b), f(g(b))\}$
- mgu is $\{g(b) / X, g(b) / Y\}$

3.2 Resolution and Factorization

First-Order Resolution: Resolvent

Definition 7. - Given two clauses C_{1} and C_{2}, assume two variable renaming substitutions σ_{1} and σ_{2}, such that $C_{1} \sigma_{1}$ and $C_{2} \sigma_{2}$ do not share variables.

- If $a \in C_{1} \sigma_{1}$ and $\neg b \in C_{2} \sigma_{2}$ such that a and b are unifiable with mgu ϑ, then $\left(\left(C_{1} \sigma_{1} \backslash\{a\}\right) \cup\left(C_{2} \sigma_{2} \backslash\{\neg b\}\right)\right) \vartheta$ is a resolvent of C_{1} and C_{2}.

First-Order Resolution: Factorization

Definition 8. Given a clause C, and two literals a, b of C, such that a and b are unifiable with mgu ϑ, then $C \vartheta$ is a factor of C.

3.3 Refutations

Derivation

Definition 9. Given a set of clauses S, a derivation by resolution of a clause C from S is a sequence C_{1}, \ldots, C_{n}, such that $C_{n}=C$ and for each $C_{i}(0 \leq i \leq n)$ we have

1. $C_{i} \in S$ or
2. C_{i} is a resolvent of C_{j} and C_{k}, where $j<i$ and $k<i$ or
3. C_{i} is a factor of C_{j}, where $j<i$.

If a derivation by resolution of C from S exists, we write $S \vdash_{R} C$.

Refutation

Definition 10. A derivation by resolution of \square from S is called a refutation of S.

Resolution

Theorem 11. $S \vdash_{R} \square$ if and only if S is unsatisfiable.
Proof. Soundness by showing $S \models \square$.
Completeness using Herbrand's theorem.

3.4 Restrictions

Linear Resolution

- Linear Resolution: Any intermediate derivation uses a clause obtained in the previous step.

Theorem 12. Linear resolution is refutation complete; i.e. if a formula is unsatisfiable, a refutation by linear resolution exists.

Horn and Goal Clauses, SLD Resolution

- A Horn clause is a clause containing at most one positive literal.
- A Goal clause is a clause containing no positive literal.
- SLD Resolution: Linear resolution, where at each step only goal clauses and (instances of) input clauses are used.

Theorem 13. $S L D$ resolution is refutation complete for Horn clauses.

Prolog

- Prolog: Programmation en Logique
- Allow only Horn clauses and one goal clause.
- SLD resolution is the basis of Prolog.
- Additional procedural semantics.

