# Contents

| 1 | Computation                      | 1 |
|---|----------------------------------|---|
| 2 | Sequent Calculus                 | 1 |
| 3 | First-Order Resolution           | 4 |
|   | 3.1 Unification                  | 5 |
|   | 3.2 Resolution and Factorization | 7 |
|   | 3.3 Refutations                  | 8 |
|   | 3.4 Restrictions                 | 8 |

# 1 Computation

## Methods

- Propositional Logic
  - Truth tables
  - DLL
  - Resolution
- Quantified Boolean Formulas
  - DLL Extensions
- First-Order Logic
  - Sequent Calculus
  - Resolution

# 2 Sequent Calculus

**Gerhard Gentzen** 



Gerhard Gentzen (1909-1945)

#### **Sequent Calculus**

- Idea: Define *inference rules* for sequents  $\Gamma \vdash \Delta$ .
- $\Gamma$  and  $\Delta$  are sequences of formulas
- Intuition: Read  $\Gamma \vdash \Delta$  like  $(\bigwedge \Gamma) \rightarrow (\bigvee \Gamma)$ .
- Goal 1:  $\Gamma \vdash \Delta$  holds if  $\Gamma \models \Delta$  (completeness)
- Goal 2: If  $\Gamma \vdash \Delta$  holds, then  $\Gamma \models \Delta$  (soundness)
- Notation:  $\frac{S_1 \dots S_n}{S}$  means: From sequents  $S_1 \dots S_n$  we conclude sequent  $S_1$ .
- System considered here: LK

#### Sequent Calculus – Axioms

- Begin with axioms (true statements)
- $\overline{f \vdash f}$
- ... for any formula f

### Sequent Calculus – Structural

• weakening left:  $\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta}$ 

• weakening right: 
$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}$$

• contraction left: 
$$\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta}$$

• contraction right: 
$$\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta}$$

• permutation left: 
$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, B, A \vdash \Delta}$$

• permutation left: 
$$\frac{\Gamma \vdash \Delta_1, A, B, \Delta_2}{\Gamma \vdash \Delta_1, B, A, \Delta_2}$$

# Sequent Calculus – Conjunction

• 
$$\wedge$$
 left 1:  $\frac{\Gamma, A \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$   
•  $\wedge$  left 2:  $\frac{\Gamma, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$ 

• 
$$\land$$
 right:  $\frac{\Gamma \vdash A, \Delta \qquad \Sigma \vdash B, \Pi}{\Gamma, \Sigma \vdash A \land B, \Delta, \Pi}$ 

# Sequent Calculus – Disjunction

• 
$$\lor$$
 right 1:  $\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \lor B, \Delta}$ 

• 
$$\lor$$
 right 2:  $\frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta}$ 

• 
$$\lor$$
 left:  $\frac{\Gamma, A \vdash \Delta}{\Gamma, \Sigma, A \lor B \vdash \Delta, \Pi}$ 

# Sequent Calculus – Negation

• 
$$\neg$$
 right:  $\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta}$   
•  $\neg$  left:  $\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta}$ 

# **Sequent Calculus – Implication**

• 
$$\rightarrow$$
 right:  $\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta}$   
•  $\rightarrow$  left:  $\frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta}$ 

## Sequent Calculus - Quantifiers

- A[t] means that a term t occurs in A.
- A[Y] means that a variable Y occurs in A, which is not free elsewhere (i.e. neither in  $\Gamma$  nor in  $\Delta$ ).

• 
$$\forall$$
 right:  $\frac{\Gamma \vdash A[Y], \Delta}{\Gamma \vdash \forall X \ A[X/Y], \Delta}$ 

• 
$$\forall$$
 left:  $\frac{\Gamma, A[t] \vdash \Delta}{\Gamma, \forall X \; A[X/t] \vdash \Delta}$ 

• 
$$\exists$$
 right:  $\frac{\Gamma \vdash A[t], \Delta}{\Gamma \vdash \exists X \ A[t/X], \Delta}$ 

• 
$$\exists$$
 left:  $\frac{\Gamma, A[Y] \vdash \Delta}{\Gamma, \exists X \; A[X/Y] \vdash \Delta}$ 

# Sequent Calculus - Cut

• *Cut* – a special structural inference

• 
$$\frac{\Gamma \vdash A, \Delta \qquad \Sigma, A \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}$$

# **Sequent Calculus**

• Use these inference rules consecutively.

• Example: 
$$\frac{\overline{A \vdash A}}{\vdash \neg A, A}$$

• If on top there are only axioms, then it is a derivation of the bottom sequent.

#### Sequent Calculus - Theorem

**Theorem 1.** Sequent Calculus is sound and complete. I.e. if we can derive  $\Gamma \vdash \Delta$ , then  $\Gamma \models \Delta$ , and if  $\Gamma \models \Delta$  then there is a derivation for  $\Gamma \vdash \Delta$ .

# **3** First-Order Resolution

## **Reminder** — Propositional Resolution

- Input: Formulas in  $CNF \rightarrow set of clauses$
- Resolvents of two clauses

- Factorization of a clause (automatic for set representation)
- Derivations
- Refutations (derivations of empty clause □)

#### Relationship

- Similar to DLL procedure!
- Similar to cut!
- Works on CNFs!

#### **First Order Resolution**

- Can we generalize propositional resolution to first-order formulas?
- Biggest obstacle: "Equality" of atoms to be resolved.
- $\forall X : (h(X) \to m(X)) \land h(socrates)$
- $\{\{\neg h(X) \lor m(X)\}, \{h(socrates)\}\}$
- $h(X) \neq h(socrates)!$
- For the special case  $\{\{\neg h(socrates) \lor m(socrates)\}, \{h(socrates)\}\}$  it works.
- · Formalize this idea!

# 3.1 Unification

# Substitution

**Definition 2.** A substitution is a set of the form  $\{t_1/X_1, \ldots, t_n/X_n\}$  where each  $X_i$  is a distinct (object) variable, and  $X_i \neq t_i$   $(1 \le i \le n)$ .

Usually denoted by lowercase greek letters  $(\sigma, \vartheta, \rho)$ . Usually  $\epsilon = \{\}$  is the empty substitution.

## **Application of Substitutions**

**Definition 3.** Let *E* be an atomic first-order formula (or other syntactic first-order structure) and  $\sigma = \{t_1/X_1, \ldots, t_n/X_n\}$  be a substitution. Then  $E\sigma$  is the application of  $\sigma$  on *E*, obtained by simultaneously replacing each variable  $X_i$  by  $t_i$ .

#### **Composition of Substitutions**

**Definition 4.** Let  $\sigma = \{t_1/X_1, \ldots, t_n/X_n\}$   $\vartheta = \{u_1/Y_1, \ldots, u_m/Y_m\}$  be substitutions. The composition  $\sigma \circ \vartheta$  (or simply  $\sigma \vartheta$ ) is derived from  $\{t_1 \vartheta/X_1, \ldots, t_n \vartheta/X_n, u_1/Y_1, \ldots, u_m/Y_m\}$ , where  $u_j/Y_j$  is omitted if  $Y_j \in \{X_1, \ldots, X_n\}$ , and  $t_k \vartheta/X_k$  is omitted if  $X_k = t_k \vartheta$ .

### **Properties of Substitutions**

- $\sigma \circ \epsilon = \epsilon \circ \sigma = \sigma$
- $(\sigma \circ \vartheta) \circ \rho = \sigma \circ (\vartheta \circ \rho)$
- $(E\sigma)\vartheta = E(\sigma \circ \vartheta) = E\sigma\vartheta$
- $\sigma \circ \vartheta \neq \vartheta \circ \sigma$

#### Unification

**Definition 5.** Let  $E_1, E_2$  be atomic first-order formulas (or other syntactic first-order structures). A substitution  $\sigma$  is a *unifier* if  $E_1\sigma = E_2\sigma$ .

#### **Most General Unifier**

**Definition 6.** Let  $E_1, E_2$  be atomic first-order formulas (or other syntactic first-order structures). A unifier  $\sigma$  is a *most general unifier (mgu)* if for any unifier  $\vartheta$  of  $E_1, E_2$  it holds that  $\vartheta = \sigma \circ \rho$  for some substitution  $\rho$ .

### **Most General Unifier – Properties**

- If  $E_1, E_2$  are unifiable, an mgu exists.
- If  $E_1, E_2$  are unifiable, the mgu is unique modulo variable renamings.

#### Algorithm: Disagreement Set

- D(*E*)
- Input: E set of formulas or terms
- Output: set of disagreeing terms
- return the set of terms (or formulas) at leftmost subexpressions on which expressions in *E* differ

#### **Example: Disagreement Set**

- $D({p(X, f(a)), p(g(b), Y)}) = {X, g(b)}$
- $D(\{p(X, f(a)), q(g(b), Y)\}) = \{p(X, f(a)), q(g(b), Y)\}$
- $D(\{p(g(b), f(a)), p(g(b), f(Y))\}) = \{a, Y\}$
- $D({p(g(b), f(a, c)), p(g(b), f(Y, d))}) = {a, Y}$

# **Algorithm: Unification**

- unify(E)
- Input: E set of formulas or terms
- Output: MGU or  $\perp$ 
  - 1.  $k := 0; \sigma_k := \epsilon;$
  - 2. if  $|E\sigma_k| = 1$  then return  $\sigma_k$ ; else  $D := D(E\sigma_k)$ ;
  - 3. if a variable X and term t exist in D such that X does not occur in t
    σ<sub>k+1</sub> = σ<sub>k</sub> ∘ {t/X}; k++; goto 2;
  - 4. return  $\perp$

### **Example: Unification**

- $unify(\{p(X, f(X)), p(Y, f(g(b)))\})$
- $\sigma_0 = \epsilon$
- $E\sigma_0 = \{p(X, f(X)), p(Y, f(g(b)))\}$
- $D(\{p(X, f(X)), p(Y, f(g(b)))\}) = \{X, Y\}$
- $\sigma_1 = \sigma_0 \circ \{Y/X\} = \{Y/X\}$
- $E\sigma_1 = \{p(Y, f(Y)), p(Y, f(g(b)))\}$
- $D({p(Y, f(Y)), p(Y, f(g(b)))}) = {Y, g(b)}$
- $\sigma_2 = \sigma_1 \circ \{g(b)/Y\} = \{Y\{g(b)/Y\}/X, g(b)/Y\} = \{g(b)/X, g(b)/Y\}$
- $E\sigma_2 = \{p(g(b), f(g(b)))\}$
- mgu is  $\{g(b)/X, g(b)/Y\}$

## 3.2 Resolution and Factorization

#### **First-Order Resolution: Resolvent**

- **Definition 7.** Given two clauses  $C_1$  and  $C_2$ , assume two variable renaming substitutions  $\sigma_1$  and  $\sigma_2$ , such that  $C_1\sigma_1$  and  $C_2\sigma_2$  do not share variables.
  - If  $a \in C_1 \sigma_1$  and  $\neg b \in C_2 \sigma_2$  such that a and b are unifiable with mgu  $\vartheta$ , then  $((C_1 \sigma_1 \setminus \{a\}) \cup (C_2 \sigma_2 \setminus \{\neg b\}))\vartheta$  is a *resolvent* of  $C_1$  and  $C_2$ .

#### **First-Order Resolution: Factorization**

**Definition 8.** Given a clause C, and two literals a, b of C, such that a and b are unifiable with mgu  $\vartheta$ , then  $C\vartheta$  is a *factor* of C.

# 3.3 Refutations

#### Derivation

**Definition 9.** Given a set of clauses S, a *derivation* by resolution of a clause C from S is a sequence  $C_1, \ldots, C_n$ , such that  $C_n = C$  and for each  $C_i$   $(0 \le i \le n)$  we have

- 1.  $C_i \in S$  or
- 2.  $C_i$  is a resolvent of  $C_j$  and  $C_k$ , where j < i and k < i or
- 3.  $C_i$  is a factor of  $C_j$ , where j < i.

If a derivation by resolution of C from S exists, we write  $S \vdash_R C$ .

#### Refutation

**Definition 10.** A derivation by resolution of  $\Box$  from S is called a *refutation* of S.

#### Resolution

**Theorem 11.**  $S \vdash_R \Box$  if and only if S is unsatisfiable.

*Proof.* Soundness by showing  $S \models \Box$ . Completeness using Herbrand's theorem.

### **3.4 Restrictions**

## **Linear Resolution**

• *Linear Resolution*: Any intermediate derivation uses a clause obtained in the previous step.

**Theorem 12.** *Linear resolution is refutation complete; i.e. if a formula is unsatisfiable, a refutation by linear resolution exists.* 

#### Horn and Goal Clauses, SLD Resolution

- A Horn clause is a clause containing at most one positive literal.
- A Goal clause is a clause containing no positive literal.
- *SLD Resolution*: Linear resolution, where at each step only goal clauses and (instances of) input clauses are used.

**Theorem 13.** SLD resolution is refutation complete for Horn clauses.

# Prolog

- Prolog: Programmation en Logique
- Allow only Horn clauses and one goal clause.
- SLD resolution is the basis of Prolog.
- Additional procedural semantics.