Contents
1 Computation
2 Sequent Calculus

3 First-Order Resolution
3.1 Unification . . . . . .. . . .. .. ...
3.2 Resolution and Factorization . . . . ... ... ... .........
3.3 Refutations . . . . . . ... ...
3.4 Restrictions . . . . . . . ... e e e e

1 Computation
Methods

e Propositional Logic

— Truth tables
- DLL

— Resolution

e Quantified Boolean Formulas
— DLL Extensions

e First-Order Logic

— Sequent Calculus

— Resolution

2 Sequent Calculus
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Sequent Calculus

Idea: Define inference rules for sequents I' - A,

e I"and A are sequences of formulas

Intuition: Read T' - A like (AT) — (V).

Goal 1: T'F A holds if ' = A (completeness)
e Goal 2: If '+ A holds, then I" = A (soundness)

. 1 ce
e Notation: fn means: From sequents .S
S.

e System considered here: LK

Sequent Calculus — Axioms

e Begin with axioms (true statements)

*FET

e ... for any formula f

Sequent Calculus — Structural

kening left: r-a
e weakening [ert: m
feni ioht: I'FA
e weakening rignt: m
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T,AAFA
T,AF A

TFAAA
TFAA

T,ABFA
T,B,AFA

AL A B, Ay

contraction left:

contraction right:

permutation left:

e permutation left: I'FALLB, A A,

Sequent Calculus — Conjunction
NAFA

INAANBEA
I''BFA

IAANBEA

T'-A,A SFBI
[,SFAAB, AT

o Aleftl:

o A left2:

e Aright:

Sequent Calculus — Disjunction
'FAA

'AvVB,A
I'kB,A

T'FAVB,A

IAFA S,BFII
IS, AVBF A

e Vright 1:

e Vright 2:

o V left:

Sequent Calculus — Negation

T,AF A
TF—4,A

TFAA
T,—-AFA

e —right:
o — left:

Sequent Calculus — Implication
I'A+F B,A
I'HA— B,A

I'FAA T,BFA
I'A— BFA

e — right:

o — left:



Sequent Calculus — Quantifiers

e A[t] means that a term ¢ occurs in A.

A[Y] means that a variable Y occurs in A, which is not free elsewhere (i.e.
neither in I" nor in A).

'k AY],A
'EvX AIX/Y],A

V right:

T, Al - A
T,VX AX/t]F A

V left:

I+ AJl],A
I'F3X A[t/X],A

T right:

T A[Y]F A
T, 3X AX/Y]F A

3 left:

Sequent Calculus — Cut

e Cut — a special structural inference

THAA S AFT
TS F AT

Sequent Calculus
e Use these inference rules consecutively.

AFA

e Example: —]

e If on top there are only axioms, then it is a derivation of the bottom sequent.

Sequent Calculus — Theorem

Theorem 1. Sequent Calculus is sound and complete. Le. if we can derive I' - A,
then T |= A, and if T' |= A then there is a derivation for '+ A.

3 First-Order Resolution

Reminder — Propositional Resolution

e Input: Formulas in CNF — set of clauses

e Resolvents of two clauses



e Factorization of a clause (automatic for set representation)
e Derivations

e Refutations (derivations of empty clause )

Relationship
e Similar to DLL procedure!

e Similar to cut!

e Works on CNFs!

First Order Resolution

e Can we generalize propositional resolution to first-order formulas?

Biggest obstacle: “Equality” of atoms to be resolved.

VX : (h(X) — m(X)) A h(socrates)
{{-h(X) Vv m(X)},{h(socrates)}}
h(X) # h(socrates)!

For the special case {{—h(socrates)Vm(socrates)}, {h(socrates)}} it works.

Formalize this idea!

3.1 Unification

Substitution

Definition 2. A substitution is a set of the form {t,/X1,...,t,/X,} where each X;
is a distinct (object) variable, and X; # t; (1 < i < n).

Usually denoted by lowercase greek letters (o, ¢, p).
Usually € = {} is the empty substitution.

Application of Substitutions

Definition 3. Let E be an atomic first-order formula (or other syntactic first-order
structure) and o = {t1/X1,...,t,/X,} be a substitution. Then Eo is the application
of o on E, obtained by simultaneously replacing each variable X; by ¢;.

Composition of Substitutions

Definition 4. Let o = {t1/X1,...,tn/Xn}t O = {u1/Y1,..., tm/ Y} be substitu-
tions. The composition oot} (or simply o) is derived from {19/ X1, ..., t,¥/ Xpn, w1 /Y1, .. tm /Y },
where u;/Y; is omitted if Y; € {X,...,X,,}, and ¢,9/ X}, is omitted if X}, = ¢59.



Properties of Substitutions
® 0OCE—=€E€00 =0
e (coW)op=0co(dop)
e (Eo)y =E(ocod)=FEc?
e cgod#Joo

Unification

Definition 5. Let E,FE> be atomic first-order formulas (or other syntactic first-order
structures). A substitution ¢ is a unifier if E10 = Fso.

Most General Unifier

Definition 6. Let F1,F> be atomic first-order formulas (or other syntactic first-order
structures). A unifier o is a most general unifier (mgu) if for any unifier 9 of Fq, Fs it
holds that ¢ = ¢ o p for some substitution p.

Most General Unifier — Properties

e If F1,F)> are unifiable, an mgu exists.

e If F1,F)> are unifiable, the mgu is unique modulo variable renamings.

Algorithm: Disagreement Set
e D(F)
e Input: E set of formulas or terms
e Output: set of disagreeing terms

e return the set of terms (or formulas) at leftmost subexpressions on which expres-
sions in F differ

Example: Disagreement Set

e D{p(X, f(a)),p(g(b), Y)}) ={X,g(b)}

e D{p(X, f(a)),q(g(b),Y)}) = {p(X, f(a)),q(g(b),Y)}
e D({p(g(b), f(a)),p(g(b), F(Y))}) ={a,Y}
 D({p(g(b), f(a,¢)),p(g(b), F(Y,d))}) ={a,Y}



Algorithm: Unification
o unify(F)
e Input: E set of formulas or terms
e Output: MGU or L

1. k:=0;0% :=¢

2. if |Eok| = 1 then return oy; else D := D(Eoy,);

3. if a variable X and term ¢ exist in D such that X does not occur in ¢
- op+1 = o o {t/ X }; k++; goto 2;

4. return L

Example: Unification
o unify({p(X, f(X)),p(Y, f(g(6)))})
o Eog = {p(X, f(X)),p(Y, f(9(b)))}
o D{p(X, f(X)),p(Y, f(g(b)))H ={X,Y}
e g1 =090{Y/X}={Y/X}
o Eoy={p(Y,f(Y)),p(Y, f(g(b)))}
o D{p(Y, f(Y)),p(Y. f(g(0)))}) ={Y, g(b)}
e o2=010{g(b)/Y}={Y{g(b)/Y}/X,9(b)/Y}={g(b)/X,g(b)/Y}
o Eoy ={p(g(b), f(g(b))}
e mguis {g(b)/X,g(b)/Y}

3.2 Resolution and Factorization
First-Order Resolution: Resolvent

Definition 7. e Given two clauses C7 and C', assume two variable renaming sub-
stitutions o1 and o9, such that C;o1 and Ca05 do not share variables.

e If a € Ci0q and —b € Cs09 such that a and b are unifiable with mgu J, then
((Cro1\ {a}) U (Caoz \ {—b}))d is a resolvent of Cy and Cs.
First-Order Resolution: Factorization

Definition 8. Given a clause C, and two literals a, b of C, such that a and b are unifiable
with mgu 9, then C'¥ is a factor of C.



3.3 Refutations

Derivation

Definition 9. Given a set of clauses .S, a derivation by resolution of a clause C' from .S
is a sequence C', . .., C,, such that C,, = C and for each C; (0 < i < n) we have

1. C; € Sor
2. C; is aresolvent of C; and Cy, where j < i and k < i or
3. C; is a factor of C;, where j < 1.

If a derivation by resolution of C' from S exists, we write S kg C.

Refutation

Definition 10. A derivation by resolution of O from S is called a refutation of S.

Resolution
Theorem 11. S Fr O if and only if S is unsatisfiable.
Proof. Soundness by showing S |= O.

Completeness using Herbrand’s theorem. O

3.4 Restrictions

Linear Resolution

e Linear Resolution: Any intermediate derivation uses a clause obtained in the
previous step.

Theorem 12. Linear resolution is refutation complete; i.e. if a formula is unsatisfiable,
a refutation by linear resolution exists.

Horn and Goal Clauses, SLD Resolution
e A Horn clause is a clause containing at most one positive literal.
e A Goal clause is a clause containing no positive literal.

e SLD Resolution: Linear resolution, where at each step only goal clauses and
(instances of) input clauses are used.

Theorem 13. SLD resolution is refutation complete for Horn clauses.



Prolog

e Prolog: Programmation en Logique

Allow only Horn clauses and one goal clause.

SLD resolution is the basis of Prolog.

e Additional procedural semantics.



