
Contents
1 Computation 1

2 Sequent Calculus 1

3 First-Order Resolution 4
3.1 Unification . 5
3.2 Resolution and Factorization . 7
3.3 Refutations . 8
3.4 Restrictions . 8

1 Computation
Methods

• Propositional Logic

– Truth tables

– DLL

– Resolution

• Quantified Boolean Formulas

– DLL Extensions

• First-Order Logic

– Sequent Calculus

– Resolution

2 Sequent Calculus
Gerhard Gentzen

Gerhard Gentzen (1909–1945)

Sequent Calculus

• Idea: Define inference rules for sequents Γ ` ∆.

• Γ and ∆ are sequences of formulas

• Intuition: Read Γ ` ∆ like (
∧

Γ)→ (
∨

Γ).

• Goal 1: Γ ` ∆ holds if Γ |= ∆ (completeness)

• Goal 2: If Γ ` ∆ holds, then Γ |= ∆ (soundness)

• Notation:
S1 . . . Sn

S
means: From sequents S1 . . . Sn we conclude sequent

S.

• System considered here: LK

Sequent Calculus – Axioms

• Begin with axioms (true statements)

•
f ` f

• . . . for any formula f

Sequent Calculus – Structural

• weakening left:
Γ ` ∆

Γ, A ` ∆

• weakening right:
Γ ` ∆

Γ ` A,∆

2

• contraction left:
Γ, A,A ` ∆

Γ, A ` ∆

• contraction right:
Γ ` A,A,∆

Γ ` A,∆

• permutation left:
Γ, A,B ` ∆
Γ, B,A ` ∆

• permutation left:
Γ ` ∆1, A,B,∆2

Γ ` ∆1, B,A,∆2

Sequent Calculus – Conjunction

• ∧ left 1:
Γ, A ` ∆

Γ, A ∧B ` ∆

• ∧ left 2:
Γ, B ` ∆

Γ, A ∧B ` ∆

• ∧ right:
Γ ` A,∆ Σ ` B,Π

Γ,Σ ` A ∧B,∆,Π

Sequent Calculus – Disjunction

• ∨ right 1:
Γ ` A,∆

Γ ` A ∨B,∆

• ∨ right 2:
Γ ` B,∆

Γ ` A ∨B,∆

• ∨ left:
Γ, A ` ∆ Σ, B ` Π

Γ,Σ, A ∨B ` ∆,Π

Sequent Calculus – Negation

• ¬ right:
Γ, A ` ∆

Γ ` ¬A,∆

• ¬ left:
Γ ` A,∆

Γ,¬A ` ∆

Sequent Calculus – Implication

• → right:
Γ, A ` B,∆

Γ ` A→ B,∆

• → left:
Γ ` A,∆ Γ, B ` ∆

Γ, A→ B ` ∆

3

Sequent Calculus – Quantifiers

• A[t] means that a term t occurs in A.

• A[Y] means that a variable Y occurs in A, which is not free elsewhere (i.e.
neither in Γ nor in ∆).

• ∀ right:
Γ ` A[Y],∆

Γ ` ∀X A[X/Y],∆

• ∀ left:
Γ, A[t] ` ∆

Γ,∀X A[X/t] ` ∆

• ∃ right:
Γ ` A[t],∆

Γ ` ∃X A[t/X],∆

• ∃ left:
Γ, A[Y] ` ∆

Γ,∃X A[X/Y] ` ∆

Sequent Calculus – Cut

• Cut – a special structural inference

•
Γ ` A,∆ Σ, A ` Π

Γ,Σ ` ∆,Π

Sequent Calculus

• Use these inference rules consecutively.

• Example: A ` A
` ¬A,A

• If on top there are only axioms, then it is a derivation of the bottom sequent.

Sequent Calculus – Theorem

Theorem 1. Sequent Calculus is sound and complete. I.e. if we can derive Γ ` ∆,
then Γ |= ∆, and if Γ |= ∆ then there is a derivation for Γ ` ∆.

3 First-Order Resolution
Reminder — Propositional Resolution

• Input: Formulas in CNF→ set of clauses

• Resolvents of two clauses

4

• Factorization of a clause (automatic for set representation)

• Derivations

• Refutations (derivations of empty clause 2)

Relationship

• Similar to DLL procedure!

• Similar to cut!

• Works on CNFs!

First Order Resolution

• Can we generalize propositional resolution to first-order formulas?

• Biggest obstacle: “Equality” of atoms to be resolved.

• ∀X : (h(X)→ m(X)) ∧ h(socrates)

• {{¬h(X) ∨m(X)}, {h(socrates)}}

• h(X) 6= h(socrates)!

• For the special case {{¬h(socrates)∨m(socrates)}, {h(socrates)}} it works.

• Formalize this idea!

3.1 Unification
Substitution

Definition 2. A substitution is a set of the form {t1/X1, . . . , tn/Xn} where each Xi

is a distinct (object) variable, and Xi 6= ti (1 ≤ i ≤ n).

Usually denoted by lowercase greek letters (σ, ϑ, ρ).
Usually ε = {} is the empty substitution.

Application of Substitutions

Definition 3. Let E be an atomic first-order formula (or other syntactic first-order
structure) and σ = {t1/X1, . . . , tn/Xn} be a substitution. Then Eσ is the application
of σ on E, obtained by simultaneously replacing each variable Xi by ti.

Composition of Substitutions

Definition 4. Let σ = {t1/X1, . . . , tn/Xn} ϑ = {u1/Y1, . . . , um/Ym} be substitu-
tions. The composition σ◦ϑ (or simply σϑ) is derived from {t1ϑ/X1, . . . , tnϑ/Xn, u1/Y1, . . . , um/Ym},
where uj/Yj is omitted if Yj ∈ {X1, . . . , Xn}, and tkϑ/Xk is omitted if Xk = tkϑ.

5

Properties of Substitutions

• σ ◦ ε = ε ◦ σ = σ

• (σ ◦ ϑ) ◦ ρ = σ ◦ (ϑ ◦ ρ)

• (Eσ)ϑ = E(σ ◦ ϑ) = Eσϑ

• σ ◦ ϑ 6= ϑ ◦ σ

Unification

Definition 5. Let E1,E2 be atomic first-order formulas (or other syntactic first-order
structures). A substitution σ is a unifier if E1σ = E2σ.

Most General Unifier

Definition 6. Let E1,E2 be atomic first-order formulas (or other syntactic first-order
structures). A unifier σ is a most general unifier (mgu) if for any unifier ϑ of E1, E2 it
holds that ϑ = σ ◦ ρ for some substitution ρ.

Most General Unifier – Properties

• If E1,E2 are unifiable, an mgu exists.

• If E1,E2 are unifiable, the mgu is unique modulo variable renamings.

Algorithm: Disagreement Set

• D(E)

• Input: E set of formulas or terms

• Output: set of disagreeing terms

• return the set of terms (or formulas) at leftmost subexpressions on which expres-
sions in E differ

Example: Disagreement Set

• D({p(X, f(a)), p(g(b), Y)}) = {X, g(b)}

• D({p(X, f(a)), q(g(b), Y)}) = {p(X, f(a)), q(g(b), Y)}

• D({p(g(b), f(a)), p(g(b), f(Y))}) = {a, Y }

• D({p(g(b), f(a, c)), p(g(b), f(Y, d))}) = {a, Y }

6

Algorithm: Unification

• unify(E)

• Input: E set of formulas or terms

• Output: MGU or ⊥

1. k := 0; σk := ε;

2. if |Eσk| = 1 then return σk; else D := D(Eσk);

3. if a variable X and term t exist in D such that X does not occur in t

– σk+1 = σk ◦ {t/X}; k++; goto 2;

4. return ⊥

Example: Unification

• unify({p(X, f(X)), p(Y, f(g(b)))})

• σ0 = ε

• Eσ0 = {p(X, f(X)), p(Y, f(g(b)))}

• D({p(X, f(X)), p(Y, f(g(b)))}) = {X,Y }

• σ1 = σ0 ◦ {Y/X} = {Y/X}

• Eσ1 = {p(Y, f(Y)), p(Y, f(g(b)))}

• D({p(Y, f(Y)), p(Y, f(g(b)))}) = {Y, g(b)}

• σ2 = σ1 ◦ {g(b)/Y } = {Y {g(b)/Y }/X, g(b)/Y } = {g(b)/X, g(b)/Y }

• Eσ2 = {p(g(b), f(g(b))}

• mgu is {g(b)/X, g(b)/Y }

3.2 Resolution and Factorization
First-Order Resolution: Resolvent

Definition 7. • Given two clauses C1 and C2, assume two variable renaming sub-
stitutions σ1 and σ2, such that C1σ1 and C2σ2 do not share variables.

• If a ∈ C1σ1 and ¬b ∈ C2σ2 such that a and b are unifiable with mgu ϑ, then
((C1σ1 \ {a}) ∪ (C2σ2 \ {¬b}))ϑ is a resolvent of C1 and C2.

First-Order Resolution: Factorization

Definition 8. Given a clauseC, and two literals a, b ofC, such that a and b are unifiable
with mgu ϑ, then Cϑ is a factor of C.

7

3.3 Refutations
Derivation

Definition 9. Given a set of clauses S, a derivation by resolution of a clause C from S
is a sequence C1, . . . , Cn, such that Cn = C and for each Ci (0 ≤ i ≤ n) we have

1. Ci ∈ S or

2. Ci is a resolvent of Cj and Ck, where j < i and k < i or

3. Ci is a factor of Cj , where j < i.

If a derivation by resolution of C from S exists, we write S `R C.

Refutation

Definition 10. A derivation by resolution of 2 from S is called a refutation of S.

Resolution

Theorem 11. S `R 2 if and only if S is unsatisfiable.

Proof. Soundness by showing S |= 2.
Completeness using Herbrand’s theorem.

3.4 Restrictions
Linear Resolution

• Linear Resolution: Any intermediate derivation uses a clause obtained in the
previous step.

Theorem 12. Linear resolution is refutation complete; i.e. if a formula is unsatisfiable,
a refutation by linear resolution exists.

Horn and Goal Clauses, SLD Resolution

• A Horn clause is a clause containing at most one positive literal.

• A Goal clause is a clause containing no positive literal.

• SLD Resolution: Linear resolution, where at each step only goal clauses and
(instances of) input clauses are used.

Theorem 13. SLD resolution is refutation complete for Horn clauses.

8

Prolog

• Prolog: Programmation en Logique

• Allow only Horn clauses and one goal clause.

• SLD resolution is the basis of Prolog.

• Additional procedural semantics.

9

