# Logica Proposizionale Propositional Logic

Wolfgang Faber

University of Calabria, Italy

2007



#### Outline of Part I

- History
- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



#### Outline of Part II

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- 6 Computation



#### Part I

History, Syntax, Semantics

#### Roots of Logic

- Greece (Aristotle, Euclid of Megara [not Alexandria!])
- India (Nyaya school)
- China (Mo Zi)

all between 400BC - 100BC

#### Continuation

- Arab and Islamic Logicians
- Scholastic Logic

#### Formal Logic



Gottfried Wilhelm von Leibniz (1646–1716) ⇒ "Calculus Ratiocinator"

#### Formal Logic



Augustus de Morgan (1806–1871) ⇒ "Logic as Algebra"

#### Formal Logic



George Boole (1815–1864) ⇒ "Symbolic Logic," "Truth Values"

# Intuition Syntax Definition Equivalent Definitions Examples Convenient Notation Formula Structure

#### Outline



# Syntax

- Intuition
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

#### Propositional Logic – Intuition

- Assume basic statements (propositions) to be given.
- Make formulas out of them using a fixed set of connectives.
- Truth of propositions determines truth of formulas.

#### Propositional Logic – Intuition

- Assume basic statements (propositions) to be given.
- Make formulas out of them using a fixed set of connectives.
- Truth of propositions determines truth of formulas.

#### Propositional Logic – Intuition

- Assume basic statements (propositions) to be given.
- Make formulas out of them using a fixed set of connectives.
- Truth of propositions determines truth of formulas.

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

#### Outline

- History
- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



- Countable set V of propositional variables
- Example: {*A*, *B*, *C*, *D*, *A*<sub>0</sub>, *A*<sub>1</sub>, . . . }
- Important: No fixed meaning is associated to them!
- Propositional variables can mean anything.
- Truth value of variables fixed by semantics lateron.

- Countable set V of propositional variables
- Example: {*A*, *B*, *C*, *D*, *A*<sub>0</sub>, *A*<sub>1</sub>, . . . }
- Important: No fixed meaning is associated to them!
- Propositional variables can mean anything.
- Truth value of variables fixed by semantics lateron.

- Countable set V of propositional variables
- Example: {*A*, *B*, *C*, *D*, *A*<sub>0</sub>, *A*<sub>1</sub>, . . . }
- Important: No fixed meaning is associated to them!
- Propositional variables can mean anything.
- Truth value of variables fixed by semantics lateron.



- Countable set V of propositional variables
- Example: {*A*, *B*, *C*, *D*, *A*<sub>0</sub>, *A*<sub>1</sub>, . . . }
- Important: No fixed meaning is associated to them!
- Propositional variables can mean anything.
- Truth value of variables fixed by semantics lateron.

- Countable set V of propositional variables
- Example: {*A*, *B*, *C*, *D*, *A*<sub>0</sub>, *A*<sub>1</sub>, . . . }
- Important: No fixed meaning is associated to them!
- Propositional variables can mean anything.
- Truth value of variables fixed by semantics lateron.

- Define the set  $F_V$  of propositional formulas or well-formed formulas (wff) for a set of propositional variables V.
- Inductive definition!
- A propositional variable is a wff: If  $v \in V$  then  $v \in F_V$ .
- Propositional variables are called atomic formulas
- Also: (propositional) atoms

- Define the set  $F_V$  of propositional formulas or well-formed formulas (wff) for a set of propositional variables V.
- Inductive definition!
- A propositional variable is a wff: If  $v \in V$  then  $v \in F_V$ .
- Propositional variables are called atomic formulas.
- Also: (propositional) atoms

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

- Define the set  $F_V$  of propositional formulas or well-formed formulas (wff) for a set of propositional variables V.
- Inductive definition!
- A propositional variable is a wff: If  $v \in V$  then  $v \in F_V$ .
- Propositional variables are called atomic formulas.
- Also: (propositional) atoms



- Define the set  $F_V$  of propositional formulas or well-formed formulas (wff) for a set of propositional variables V.
- Inductive definition!
- A propositional variable is a wff: If  $v \in V$  then  $v \in F_V$ .
- Propositional variables are called atomic formulas.
- Also: (propositional) atoms

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

- $\top$  (verum) is a wff:  $\top \in F_V$
- $\perp$  (falsum) is a wff:  $\perp \in F_V$
- ⊤ and ⊥ will have a fixed meaning.
- ⊥ is always false.

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

- $\top$  (verum) is a wff:  $\top \in F_V$
- $\perp$  (falsum) is a wff:  $\perp \in F_V$
- ⊤ and ⊥ will have a fixed meaning.
- ⊥ is always false.

- $\top$  (verum) is a wff:  $\top \in F_V$
- $\perp$  (falsum) is a wff:  $\perp \in F_V$
- ⊤ and ⊥ will have a fixed meaning.
- ⊥ is always false.

- $\top$  (verum) is a wff:  $\top \in F_V$
- $\perp$  (falsum) is a wff:  $\perp \in F_V$
- ¬ and ⊥ will have a fixed meaning.
- ullet T is always true.
- ⊥ is always false.

- $\top$  (verum) is a wff:  $\top \in F_V$
- $\perp$  (falsum) is a wff:  $\perp \in F_V$
- ¬ and ⊥ will have a fixed meaning.
- ullet T is always true.
- $\bullet$   $\perp$  is always false.

#### Negation

- If P is a wff, then  $(\neg P)$  is a wff.
- If  $P \in F_V$ , then  $(\neg P) \in F_V$ .
- $(\neg P)$  should always have the opposite truth value of P.
- Note: P is a meta-symbol, and as a symbol not a wff, but a placeholder for a wff.

#### Negation

- If P is a wff, then  $(\neg P)$  is a wff.
- If  $P \in F_V$ , then  $(\neg P) \in F_V$ .
- $(\neg P)$  should always have the opposite truth value of P.
- Note: P is a meta-symbol, and as a symbol not a wff, but a placeholder for a wff.

#### Negation

- If P is a wff, then  $(\neg P)$  is a wff.
- If  $P \in F_V$ , then  $(\neg P) \in F_V$ .
- $(\neg P)$  should always have the opposite truth value of P.
- Note: P is a meta-symbol, and as a symbol not a wff, but a placeholder for a wff.

- If P and Q are wffs, then  $(P \land Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \land Q) \in F_V$ .
- $(P \land Q)$  should be true if both P and Q are true.
- Note: *P* and *Q* can be equal! *P*, *Q* are meta-symbols.

- If P and Q are wffs, then  $(P \land Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \land Q) \in F_V$ .
- $(P \land Q)$  should be true if both P and Q are true.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \land Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \land Q) \in F_V$ .
- $(P \land Q)$  should be true if both P and Q are true.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \land Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \land Q) \in F_V$ .
- $(P \land Q)$  should be true if both P and Q are true.
- Note: P and Q can be equal! P, Q are meta-symbols.

#### Disjunction

- If P and Q are wffs, then  $(P \lor Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \vee Q) \in F_V$ .
- $(P \lor Q)$  should be true if P, Q or both P and Q are true.
- Inclusive or!
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \lor Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \lor Q) \in F_V$ .
- $(P \lor Q)$  should be true if P, Q or both P and Q are true.
- Inclusive or!
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \lor Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \lor Q) \in F_V$ .
- $(P \lor Q)$  should be true if P, Q or both P and Q are true.
- Inclusive or!
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \lor Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \lor Q) \in F_V$ .
- $(P \lor Q)$  should be true if P, Q or both P and Q are true.
- Inclusive or!
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \lor Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \lor Q) \in F_V$ .
- $(P \lor Q)$  should be true if P, Q or both P and Q are true.
- Inclusive or!
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \rightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \to Q) \in F_V$ .
- $(P \rightarrow Q)$  should be true if Q is true whenever P is true.
- Sometimes written as ⊃.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \rightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \rightarrow Q) \in F_V$ .
- $(P \rightarrow Q)$  should be true if Q is true whenever P is true.
- Sometimes written as ⊃.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \rightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \to Q) \in F_V$ .
- $(P \rightarrow Q)$  should be true if Q is true whenever P is true.
- Sometimes written as ⊃.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \rightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \to Q) \in F_V$ .
- $(P \rightarrow Q)$  should be true if Q is true whenever P is true.
- Sometimes written as ⊃.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \rightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \to Q) \in F_V$ .
- $(P \rightarrow Q)$  should be true if Q is true whenever P is true.
- Sometimes written as ⊃.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \leftrightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \leftrightarrow Q) \in F_V$ .
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \leftrightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \leftrightarrow Q) \in F_V$ .
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.
- Note: *P* and *Q* can be equal! *P*, *Q* are meta-symbols.

- If P and Q are wffs, then  $(P \leftrightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \leftrightarrow Q) \in F_V$ .
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.
- Note: P and Q can be equal! P, Q are meta-symbols.

- If P and Q are wffs, then  $(P \leftrightarrow Q)$  is a wff.
- If  $\{P,Q\} \subseteq F_V$ , then  $(P \leftrightarrow Q) \in F_V$ .
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.
- Note: *P* and *Q* can be equal! *P*, *Q* are meta-symbols.

#### Outline



- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



#### Compressed

 $P \in F_V$  if and only if

- $P \in V$  or
- $P = \top$  or
- $P = \bot$  or
- $P = (\neg Q)$  where  $Q \in F_V$  or
- $P = (Q \land R)$  where  $Q, R \in F_V$  or
- $P = (Q \lor R)$  where  $Q, R \in F_V$  or
- $P = (Q \rightarrow R)$  where  $Q, R \in F_V$  or
- $P = (Q \leftrightarrow R)$  where  $Q, R \in F_V$

Note: P, Q, R are meta-symbols.



#### Grammar

- Terminals:  $V \cup \{\top, \bot\} \cup \{\neg, \land, \lor, \rightarrow, \leftrightarrow\} \cup \{(,)\}$
- Nonterminal: F<sub>V</sub>
- $F_V \longrightarrow v \in V \mid \top \mid \bot$
- $F_V \longrightarrow (\neg F_V)$
- $F_V \longrightarrow (F_V \wedge F_V)$
- $F_V \longrightarrow (F_V \vee F_V)$
- $F_V \longrightarrow (F_V \rightarrow F_V)$
- $F_V \longrightarrow (F_V \leftrightarrow F_V)$

# Language Elements

- V: propositional variables or atoms
- $\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow$ : logical connectives
- (,): auxiliary symbols

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation

#### Outline



- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- $\bullet$   $(A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg(A \to B)) \to ((\neg A) \land C))$

- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- $\bullet$   $(A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg(A \to B)) \to ((\neg A) \land C))$

- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- $\bullet$   $(A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg(A \to B)) \to ((\neg A) \land C))$

- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- (A → A)
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg (A \to B)) \to ((\neg A) \land C))$

- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- $\bullet (A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg(A \to B)) \to ((\neg A) \land C))$

- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- (A → A)
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg (A \to B)) \to ((\neg A) \land C))$

- Let  $V = \{A, B, C\}$ , the following are wffs:
- A
- (A → ⊥)
- $\bullet (A \rightarrow A)$
- $((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg (A \to B)) \to ((\neg A) \land C))$

- A⊥
- A → ⊥)
- $\bullet$   $A \rightarrow \neg$
- $\longrightarrow$
- $\bullet$   $((AB) \leftrightarrow B)$
- $\bullet \ ((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

- A⊥
- A → ⊥)
- $\bullet$   $A \rightarrow \neg$
- $( \longrightarrow )$
- ((AB) ← B)
- $\bullet \ ((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

- A⊥
- A → ⊥)
- A → ¬
- ((AB) ↔ B)
- $\bullet \ ((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

- A⊥
- A → ⊥)
- A → ¬
- $\bullet$   $(\rightarrow)$
- ((AB) ↔ B)
- $\bullet \ ((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

- A⊥
- A → ⊥)
- A → ¬
- ((*AB*) ↔ *B*)
- $\bullet \ ((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

- A⊥
- A → ⊥)
- A → ¬
- (→)
- $((AB) \leftrightarrow B)$
- $((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

- A⊥
- A → ⊥)
- A → ¬
- ((AB) ↔ B)
- $((A \lor \land) \leftrightarrow \neg(\top)$
- $\bullet \ (\neg A \to B \to (\neg A \land C \lor B))$

#### Outline



- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



# Eliminating Parentheses

We can omit many (and) if we agree on a precedence ("binding strength") of connectives.
Usual assumption:

- ¬ stronger than
- ∧ stronger than
- ∨ stronger than
- → stronger than



# **Examples Minimal Parentheses**



# **Examples Minimal Parentheses**

- $\bullet \ (A \to \bot)$   $\bullet \ (A \to A)$

- $(A \rightarrow \bot)$
- $\bullet \ (A \to A)$
- $A \lor B \leftrightarrow B \lor A$

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

- $(A \rightarrow \bot)$
- $\bullet (A \rightarrow A)$
- $\bullet \ (A \lor B) \leftrightarrow (B \lor A)$

- $(A \rightarrow \bot)$
- $\bullet (A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$

- $(A \rightarrow \bot)$
- $\bullet (A \to A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ \ A \lor B \leftrightarrow \neg(\top \to A \land B)$

- (*A* → ⊥)
- $\bullet (A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ \ A \lor B \leftrightarrow (\neg(\top \to A \land B))$

- $(A \rightarrow \bot)$
- $\bullet (A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ \ A \lor B \leftrightarrow (\neg(\top \to (A \land B)))$

- $(A \rightarrow \bot)$
- $\bullet (A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ (A \lor B) \leftrightarrow (\neg(\top \to (A \land B)))$

- (A → ⊥)
- $\bullet \ (A \to A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$

- (*A* → ⊥)
- $\bullet (A \rightarrow A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$

- (A → ⊥)
- $\bullet \ (A \to A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ (\neg A) \lor B \to (\neg A) \land C$

- (A → ⊥)
- $\bullet \ (A \to A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $(\neg A) \lor B \to ((\neg A) \land C)$

- (A → ⊥)
- $\bullet \ (A \to A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ ((\neg A) \lor B) \to ((\neg A) \land C)$

- (A → ⊥)
- $\bullet \ (A \to A)$
- $\bullet \ ((A \lor B) \leftrightarrow (B \lor A))$
- $\bullet \ ((A \lor B) \leftrightarrow (\neg(\top \to (A \land B))))$
- $\bullet \ (((\neg A) \lor B) \to ((\neg A) \land C))$

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

### Outline



- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



### Formulas as Trees

#### Every wff can be written as a formula tree:

$$\neg A \lor B \rightarrow \neg A \land C$$

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$



### Formulas as Trees

#### Every wff can be written as a formula tree:

$$\neg A \lor B \rightarrow \neg A \land C$$

$$(((\neg A) \lor B) \to ((\neg A) \land C))$$



### Formulas as Trees

#### Every wff can be written as a formula tree:

$$\neg \textit{A} \lor \textit{B} \to \neg \textit{A} \land \textit{C}$$

$$(((\neg A) \vee B) \rightarrow ((\neg A) \wedge C))$$



### Subformulas

- Immediate Subformula of a wff P (isf(P)):
  - $P_0$  if  $P = \neg P_0$
  - $P_0$  if  $P = P_0 \circ P_1$  for  $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
  - $P_1$  if  $P = P_0 \circ P_1$  for  $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Subformula of a wff P (sf(P)):
  - P itself
  - If  $P_s \in sf(P)$  then  $isf(P_s) \subseteq sf(P)$ .
  - The minimal set satisfying these conditions.

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

## Subformulas – Example

Subformulas of  $\neg A \lor B \rightarrow \neg A \land C$ :

 $\bullet \neg A \lor B \rightarrow \neg A \land C$ 

 $\bullet \neg A \lor B$ 

 $\bullet \neg A \land C$ 

\_ \_

• C

A

Intuition
Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

## Subformulas – Example

- $\bullet \neg A \lor B \rightarrow \neg A \land C$
- $\bullet \neg A \lor B$
- $\bullet \neg A \land C$
- ¬A
- R
- C
- A

- $\bullet \neg A \lor B \to \neg A \land C$
- ¬A ∨ B
- $\bullet \neg A \land C$
- ¬A
- D
- C
- A

- $\bullet \neg A \lor B \to \neg A \land C$
- $\bullet \neg A \lor B$
- $\bullet \neg A \land C$
- ¬A
- \_ \_
- C
- A

- $\bullet \neg A \lor B \to \neg A \land C$
- $\bullet \neg A \lor B$
- $\bullet \neg A \land C$
- ¬A
- B
- C
- A

- $\bullet \neg A \lor B \rightarrow \neg A \land C$
- ¬A ∨ B
- ¬A ∧ C
- ¬A
- B
- C
- A

- $\bullet \neg A \lor B \rightarrow \neg A \land C$
- ¬A ∨ B
- $\bullet \neg A \land C$
- ¬A
- B
- C
- A

- $\bullet \neg A \lor B \to \neg A \land C$
- ¬A ∨ B
- ¬A ∧ C
- ¬A
- B
- C
- A

- $\bullet \neg A \lor B \rightarrow \neg A \land C$
- ¬A ∨ B
- $\bullet \neg A \land C$
- ¬A
- B
- C
- A

### Outline

- History
- Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



- Associate a meaning to wffs in a formal way.
- We could associate "sentences" to variables (E.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences.
- Sentences are informal, truth values can be formalized!
- Associate truth values to atoms, truth values for formulas follow.



- Associate a meaning to wffs in a formal way.
- We could associate "sentences" to variables (E.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences.
- Sentences are informal, truth values can be formalized!
- Associate truth values to atoms, truth values for formulas follow.



Syntax Semantics

- Associate a meaning to wffs in a formal way.
- We could associate "sentences" to variables (E.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences.
- Sentences are informal, truth values can be formalized!
- Associate truth values to atoms, truth values for formulas follow.



Syntax Semantics

- Associate a meaning to wffs in a formal way.
- We could associate "sentences" to variables (E.g. "It is raining.")
- But we are interested only in the truth or falsity of these sentences.
- Sentences are informal, truth values can be formalized!
- Associate truth values to atoms, truth values for formulas follow.



### **Outline**

- History
- Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



### Truth valuation

- Truth values are 1 (true) and 0 (false).
- Given a set of propositional variables *V*,
- a (truth) valuation is a function  $\nu$ :  $V \mapsto \{0, 1\}$ .
- So for each  $A \in V$ , either  $\nu(A) = 1$  or  $\nu(A) = 0$ , not both.
- Now: Extend  $\nu$  (for atoms) to  $\nu^*$  (for wffs).

#### Truth valuation

- Truth values are 1 (true) and 0 (false).
- Given a set of propositional variables V,
- a (truth) valuation is a function  $\nu$ :  $V \mapsto \{0, 1\}$ .
- So for each  $A \in V$ , either  $\nu(A) = 1$  or  $\nu(A) = 0$ , not both.
- Now: Extend  $\nu$  (for atoms) to  $\nu^*$  (for wffs).

#### Truth valuation

- Truth values are 1 (true) and 0 (false).
- Given a set of propositional variables V,
- a (truth) valuation is a function  $\nu$ :  $V \mapsto \{0, 1\}$ .
- So for each  $A \in V$ , either  $\nu(A) = 1$  or  $\nu(A) = 0$ , not both.
- Now: Extend  $\nu$  (for atoms) to  $\nu^*$  (for wffs).

#### Truth valuation

- Truth values are 1 (true) and 0 (false).
- Given a set of propositional variables V,
- a (truth) valuation is a function  $\nu$ :  $V \mapsto \{0, 1\}$ .
- So for each  $A \in V$ , either  $\nu(A) = 1$  or  $\nu(A) = 0$ , not both.
- Now: Extend  $\nu$  (for atoms) to  $\nu^*$  (for wffs).

# Simple Formulas

• 
$$\nu^*(\top) = 1$$

• 
$$\nu^*(\bot) = 0$$

- Always the same for any  $\nu$ .
- If  $A \in V$ , then  $\nu^*(A) = \nu(A)$ .

#### Simple Formulas

• 
$$\nu^*(\top) = 1$$

• 
$$\nu^*(\bot) = 0$$

- Always the same for any  $\nu$ .
- If  $A \in V$ , then  $\nu^*(A) = \nu(A)$ .

## Simple Formulas

• 
$$\nu^*(\top) = 1$$

• 
$$\nu^*(\bot) = 0$$

- Always the same for any  $\nu$ .
- If  $A \in V$ , then  $\nu^*(A) = \nu(A)$ .

#### Negation

- $\neg P$  (where P is a wff)
- $\neg P$  should always have the opposite truth value of P.

• 
$$\nu^*(\neg P) = 1$$
 if (and only if)  $\nu^*(P) = 0$ 

• 
$$\nu^*(\neg P) = 0$$
 if (and only if)  $\nu^*(P) = 1$ 

| P | $\neg P$ |
|---|----------|
| 0 | 1        |
| 1 | 0        |

#### Negation

- $\neg P$  (where P is a wff)
- $\neg P$  should always have the opposite truth value of P.

• 
$$\nu^*(\neg P) = 1$$
 if (and only if)  $\nu^*(P) = 0$ 

• 
$$\nu^*(\neg P) = 0$$
 if (and only if)  $\nu^*(P) = 1$ 

| P | $\neg P$ |
|---|----------|
| 0 | 1        |
| 1 | 0        |

#### Negation

- $\neg P$  (where P is a wff)
- $\neg P$  should always have the opposite truth value of P.

• 
$$\nu^*(\neg P) = 1$$
 if (and only if)  $\nu^*(P) = 0$ 

• 
$$\nu^*(\neg P) = 0$$
 if (and only if)  $\nu^*(P) = 1$ 

| P | $\neg P$ |
|---|----------|
| 0 | 1        |
| 1 | 0        |

#### Conjunction

- $P \wedge Q$  (where P and Q are wffs)
- $P \wedge Q$  should be true if both P and Q are true.
- $\nu^*(P \land Q) = 1$  if (and only if)  $\nu^*(P) = 1$ ,  $\nu^*(Q) = 1$
- $\nu^*(P \wedge Q) = 0$  if (and only if)  $\nu^*(P) = 0$  or  $\nu^*(Q) = 0$

| Р | Q | $P \wedge Q$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 1 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 1 | 1            |

#### Conjunction

- $P \wedge Q$  (where P and Q are wffs)
- $P \wedge Q$  should be true if both P and Q are true.

• 
$$\nu^*(P \wedge Q) = 1$$
 if (and only if)  $\nu^*(P) = 1$ ,  $\nu^*(Q) = 1$ 

• 
$$\nu^*(P \wedge Q) = 0$$
 if (and only if)  $\nu^*(P) = 0$  or  $\nu^*(Q) = 0$ 

| Р | Q | $P \wedge Q$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 1 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 1 | 1            |

#### Conjunction

- $P \wedge Q$  (where P and Q are wffs)
- $P \wedge Q$  should be true if both P and Q are true.
- $\nu^*(P \wedge Q) = 1$  if (and only if)  $\nu^*(P) = 1$ ,  $\nu^*(Q) = 1$
- $\nu^*(P \wedge Q) = 0$  if (and only if)  $\nu^*(P) = 0$  or  $\nu^*(Q) = 0$

| Р | Q | $P \wedge Q$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 1 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 1 | 1            |

#### Disjunction

- $P \lor Q$  (where P and Q are wffs)
- $P \lor Q$  should be true if P or Q are true.
- $\nu^*(P \vee Q) = 1$  if (and only if)  $\nu^*(P) = 1$  or  $\nu^*(Q) = 1$
- $\nu^*(P \vee Q) = 0$  if (and only if)  $\nu^*(P) = 0$ ,  $\nu^*(Q) = 0$

| Р | Q | $P \lor Q$ |
|---|---|------------|
| 0 | 0 | 0          |
| 1 | 0 | 1          |
| 0 | 1 | 1          |
| 1 | 1 | 1          |

#### Disjunction

- $P \lor Q$  (where P and Q are wffs)
- $P \lor Q$  should be true if P or Q are true.

• 
$$\nu^*(P \vee Q) = 1$$
 if (and only if)  $\nu^*(P) = 1$  or  $\nu^*(Q) = 1$ 

• 
$$\nu^*(P \vee Q) = 0$$
 if (and only if)  $\nu^*(P) = 0$ ,  $\nu^*(Q) = 0$ 

| Р | Q | $P \lor Q$ |
|---|---|------------|
| 0 | 0 | 0          |
| 1 | 0 | 1          |
| 0 | 1 | 1          |
| 1 | 1 | 1          |

#### Disjunction

- $P \lor Q$  (where P and Q are wffs)
- $P \lor Q$  should be true if P or Q are true.
- $\nu^*(P \vee Q) = 1$  if (and only if)  $\nu^*(P) = 1$  or  $\nu^*(Q) = 1$
- $\nu^*(P \lor Q) = 0$  if (and only if)  $\nu^*(P) = 0$ ,  $\nu^*(Q) = 0$

| Р | Q | $P \lor Q$ |
|---|---|------------|
| 0 | 0 | 0          |
| 1 | 0 | 1          |
| 0 | 1 | 1          |
| 1 | 1 | 1          |

Syntax Semantics

#### **Implication**

- $P \rightarrow Q$  (where P and Q are wffs)
- $P \rightarrow Q$  should be true if Q is true whenever P is true.
- $\nu^*(P \to Q) = 1$  if (and only if)  $\nu^*(P) = 1$  and  $\nu^*(Q) = 1$ , or if  $\nu^*(P) = 0$
- $\nu^*(P \to Q) = 0$  if (and only if)  $\nu^*(P) = 1$ ,  $\nu^*(Q) = 0$

| P | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 1 | 0 | 0                 |
| 0 | 1 | 1                 |
| 1 | 1 | 1                 |



#### **Implication**

- $P \rightarrow Q$  (where P and Q are wffs)
- $P \rightarrow Q$  should be true if Q is true whenever P is true.
- $\nu^*(P \to Q) = 1$  if (and only if)  $\nu^*(P) = 1$  and  $\nu^*(Q) = 1$ , or if  $\nu^*(P) = 0$
- $\nu^*(P \to Q) = 0$  if (and only if)  $\nu^*(P) = 1$ ,  $\nu^*(Q) = 0$

| P | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 1 | 0 | 0                 |
| 0 | 1 | 1                 |
| 1 | 1 | 1                 |



Syntax Semantics

#### **Implication**

- $P \rightarrow Q$  (where P and Q are wffs)
- $P \rightarrow Q$  should be true if Q is true whenever P is true.
- $\nu^*(P \to Q) = 1$  if (and only if)  $\nu^*(P) = 1$  and  $\nu^*(Q) = 1$ , or if  $\nu^*(P) = 0$
- $\nu^*(P \to Q) = 0$  if (and only if)  $\nu^*(P) = 1$ ,  $\nu^*(Q) = 0$

| P | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 1 | 0 | 0                 |
| 0 | 1 | 1                 |
| 1 | 1 | 1                 |

#### Equivalence

- $P \leftrightarrow Q$  (where P and Q are wffs)
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.

• 
$$\nu^*(P \leftrightarrow Q) = 1$$
 if (and only if)  $\nu^*(P) = \nu^*(Q)$ 

• 
$$\nu^*(P \leftrightarrow Q) = 0$$
 if (and only if)  $\nu^*(P) \neq \nu^*(Q)$ 

| Р | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| 0 | 0 | 1                     |
| 1 | 0 | 0                     |
| 0 | 1 | 0                     |
| 1 | 1 | 1                     |

#### Equivalence

- $P \leftrightarrow Q$  (where P and Q are wffs)
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.

• 
$$\nu^*(P \leftrightarrow Q) = 1$$
 if (and only if)  $\nu^*(P) = \nu^*(Q)$ 

• 
$$\nu^*(P \leftrightarrow Q) = 0$$
 if (and only if)  $\nu^*(P) \neq \nu^*(Q)$ 

| P | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| 0 | 0 | 1                     |
| 1 | 0 | 0                     |
| 0 | 1 | 0                     |
| 1 | 1 | 1                     |

#### Equivalence

- $P \leftrightarrow Q$  (where P and Q are wffs)
- $(P \leftrightarrow Q)$  should be true if P has the same truth value as Q.
- $\nu^*(P \leftrightarrow Q) = 1$  if (and only if)  $\nu^*(P) = \nu^*(Q)$
- $\nu^*(P \leftrightarrow Q) = 0$  if (and only if)  $\nu^*(P) \neq \nu^*(Q)$

| P | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| 0 | 0 | 1                     |
| 1 | 0 | 0                     |
| 0 | 1 | 0                     |
| 1 | 1 | 1                     |

#### Outline

- History
- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



- An interpretation I consists exactly of a truth valuation  $\nu$ .
- Given a wff P and an interpretation I consisting of
- An interpretation associates a unique truth value to every
- The truth value is the meaning of the formula.
- Denote as set of true variables:  $\{A \mid A \in V, I(A) = 1\}$

- An interpretation I consists exactly of a truth valuation  $\nu$ .
- Given a wff P and an interpretation I consisting of valuation ν, let I(P) = ν\*(P).
- An interpretation associates a unique truth value to every formula.
- The truth value is the meaning of the formula.
- Denote as set of true variables:  $\{A \mid A \in V, I(A) = 1\}$

- An interpretation I consists exactly of a truth valuation  $\nu$ .
- Given a wff P and an interpretation I consisting of valuation ν, let I(P) = ν\*(P).
- An interpretation associates a unique truth value to every formula.
- The truth value is the meaning of the formula.
- Denote as set of true variables:  $\{A \mid A \in V, I(A) = 1\}$

- An interpretation I consists exactly of a truth valuation  $\nu$ .
- Given a wff P and an interpretation I consisting of valuation ν, let I(P) = ν\*(P).
- An interpretation associates a unique truth value to every formula.
- The truth value is the meaning of the formula.
- Denote as set of true variables:  $\{A \mid A \in V, I(A) = 1\}$

#### Calculating Truth Values of Formulas

- Given a formula P and interpretation I, determine I(P).
- Look at the subformulas of P.
- Work "bottom up".

#### Calculating Truth Values of Formulas

- Given a formula P and interpretation I, determine I(P).
- Look at the subformulas of P.
- Work "bottom up".

# Calculating Truth Values of Formulas

- Given a formula P and interpretation I, determine I(P).
- Look at the subformulas of P.
- Work "bottom up".

#### Subformulas of $\neg A \lor B \to \neg A \land C$ :

• 
$$\neg A \lor B \rightarrow \neg A \land C$$
,  $I(\neg A \lor B \rightarrow \neg A \land C) = 1$ 

$$\bullet \neg A \lor B, I(\neg A \lor B) = 0$$

• 
$$\neg A$$
,  $I(\neg A) = 0$ 

• 
$$B$$
,  $I(B) = 0$ 

• 
$$C$$
,  $I(C) = 1$ 

• **A**, 
$$I(A) = 1$$



Subformulas of  $\neg A \lor B \rightarrow \neg A \land C$ :

• 
$$\neg A \lor B \rightarrow \neg A \land C$$
,  $I(\neg A \lor B \rightarrow \neg A \land C) = 1$ 

$$\bullet \neg A \lor B, I(\neg A \lor B) = 0$$

• 
$$\neg A$$
,  $I(\neg A) = 0$ 

• 
$$B$$
,  $I(B) = 0$ 

• 
$$C$$
,  $I(C) = 1$ 

• 
$$A, I(A) = 1$$



Subformulas of  $\neg A \lor B \rightarrow \neg A \land C$ :

• 
$$\neg A \lor B \rightarrow \neg A \land C$$
,  $I(\neg A \lor B \rightarrow \neg A \land C) = 1$ 

$$\bullet \neg A \lor B, I(\neg A \lor B) = 0$$

• 
$$\neg A$$
,  $I(\neg A) = 0$ 

• 
$$B, I(B) = 0$$

• 
$$C$$
,  $I(C) = 1$ 

• 
$$A, I(A) = 1$$



Subformulas of  $\neg A \lor B \rightarrow \neg A \land C$ :

• 
$$\neg A \lor B \rightarrow \neg A \land C$$
,  $I(\neg A \lor B \rightarrow \neg A \land C) = 1$ 

• 
$$\neg A \land C$$
,  $I(\neg A \land C) = 0$ 

• 
$$\neg A$$
,  $I(\neg A) = 0$ 

• 
$$B, I(B) = 0$$

• 
$$C$$
,  $I(C) = 1$ 

• 
$$A, I(A) = 1$$



Subformulas of  $\neg A \lor B \rightarrow \neg A \land C$ :

• 
$$\neg A \lor B \rightarrow \neg A \land C$$
,  $I(\neg A \lor B \rightarrow \neg A \land C) = 1$ 

• 
$$\neg A \land C$$
,  $I(\neg A \land C) = 0$ 

• 
$$\neg A$$
,  $I(\neg A) = 0$ 

• 
$$B, I(B) = 0$$

• 
$$C$$
,  $I(C) = 1$ 

• 
$$A, I(A) = 1$$



## Calculating Truth Values

For calculating truth values for more than one interpretation, a

table is useful:

| Α | В | C |   | $\neg A \lor B$ | $\neg A \wedge C$ | $\neg A \lor B \to \neg A \land C$ |
|---|---|---|---|-----------------|-------------------|------------------------------------|
| 1 | 0 | 1 | 0 | 0               | 0                 | 1                                  |
| 0 | 0 | 0 | 1 | 1               | 0                 | 0                                  |
| 0 | 0 | 1 | 1 | 1               | 1                 | 1                                  |
| 0 | 1 | 0 | 1 | 1               | 0                 | 0                                  |
| 1 | 0 | 0 | 0 | 0               | 0                 | 1                                  |
| 0 | 1 | 1 | 1 | 1               | 1                 | 1                                  |
| 1 | 1 | 0 | 0 | 1               | 0                 | 0                                  |
| 1 | 1 | 1 | 0 | 1               | 0                 | 0                                  |

#### Outline

- History
- 2 Syntax
  - Intuition
  - Syntax Definition
  - Equivalent Definitions
  - Examples
  - Convenient Notation
  - Formula Structure
- Semantics
  - Meaning of a Formula
  - Truth Valuations
  - Interpretations
  - Models



- An interpretation I is a model of a wff P if I(P) = 1
- If I(P) = 1, then I satisfies P.
- If I satisifes P, we write  $I \models P$ .
- $I(P) = 1 \Leftrightarrow I$  is a model of  $P \Leftrightarrow I$  satisfies  $P \Leftrightarrow I \models P$

- An interpretation I is a model of a wff P if I(P) = 1
- If I(P) = 1, then I satisifies P.
- If *I* satisifes *P*, we write  $I \models P$ .
- $I(P) = 1 \Leftrightarrow I$  is a model of  $P \Leftrightarrow I$  satisfies  $P \Leftrightarrow I \models P$

- An interpretation I is a model of a wff P if I(P) = 1
- If I(P) = 1, then I satisifies P.
- If I satisifes P, we write  $I \models P$ .
- $I(P) = 1 \Leftrightarrow I$  is a model of  $P \Leftrightarrow I$  satisfies  $P \Leftrightarrow I \models P$

- An interpretation I is a model of a wff P if I(P) = 1
- If I(P) = 1, then I satisifies P.
- If I satisifes P, we write  $I \models P$ .
- $I(P) = 1 \Leftrightarrow I$  is a model of  $P \Leftrightarrow I$  satisifies  $P \Leftrightarrow I \models P$

- An interpretation I is not a model of a wff P if I(P) = 0
- If I(P) = 0, then I does not satisfy P.
- If I does not satisfy P, we write  $I \not\models P$ .
- $I(P) = 0 \Leftrightarrow I$  is not a model of  $P \Leftrightarrow I$  does not satisfy  $P \Leftrightarrow I \not\models P$

- An interpretation I is not a model of a wff P if I(P) = 0
- If I(P) = 0, then I does not satisfy P.
- If I does not satisfy P, we write  $I \not\models P$ .
- $I(P) = 0 \Leftrightarrow I$  is not a model of  $P \Leftrightarrow I$  does not satisfy  $P \Leftrightarrow I \not\models P$

- An interpretation I is not a model of a wff P if I(P) = 0
- If I(P) = 0, then I does not satisfy P.
- If I does not satisfy P, we write  $I \not\models P$ .
- $I(P) = 0 \Leftrightarrow I$  is not a model of  $P \Leftrightarrow I$  does not satisfy  $P \Leftrightarrow I \not\models P$

- An interpretation I is not a model of a wff P if I(P) = 0
- If I(P) = 0, then I does not satisfy P.
- If I does not satisfy P, we write  $I \not\models P$ .
- $I(P) = 0 \Leftrightarrow I$  is not a model of  $P \Leftrightarrow I$  does not satisfy  $P \Leftrightarrow I \not\models P$

#### Part II

Properties, Normal Forms, Computation

#### Outline

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- 6 Computation



- A wff P is valid if all interpretations are models of P.
- A wff P is invalid if not all interpretations are models of P.
- A wff P is satisfiable if there exists an interpretation which is a model of P.
- A wff P is unsatisfiable if no interpretation is a model of P.

- A wff P is valid if all interpretations are models of P.
- A wff P is invalid if not all interpretations are models of P.
- A wff P is satisfiable if there exists an interpretation which is a model of P.
- A wff P is unsatisfiable if no interpretation is a model of P.

- A wff P is valid if all interpretations are models of P.
- A wff P is invalid if not all interpretations are models of P.
- A wff P is satisfiable if there exists an interpretation which is a model of P.
- A wff P is unsatisfiable if no interpretation is a model of P.

- A wff P is valid if all interpretations are models of P.
- A wff P is invalid if not all interpretations are models of P.
- A wff P is satisfiable if there exists an interpretation which is a model of P.
- A wff P is unsatisfiable if no interpretation is a model of P.

#### Classification of Formulas

#### A wff P is called

- tautology if it is valid
- contradiction if it is unsatisfiable.
- Tautologies are satisfiable.
- Contradictions are invalid.
- Tautologies are never contradictions.

#### Classification of Formulas

#### A wff P is called

- tautology if it is valid
- contradiction if it is unsatisfiable.
- Tautologies are satisfiable.
- Contradictions are invalid.
- Tautologies are never contradictions.

| Α | В | C | $\neg A$ | $\neg A \lor B$ | $\neg A \land C$ | $\neg A \lor B \rightarrow \neg A \land C$ |
|---|---|---|----------|-----------------|------------------|--------------------------------------------|
| 1 | 0 | 1 | 0        | 0               | 0                | 1                                          |
| 0 | 0 | 0 | 1        | 1               | 0                | 0                                          |
| 0 | 0 | 1 | 1        | 1               | 1                | 1                                          |
| 0 | 1 | 0 | 1        | 1               | 0                | 0                                          |
| 1 | 0 | 0 | 0        | 0               | 0                | 1                                          |
| 0 | 1 | 1 | 1        | 1               | 1                | 1                                          |
| 1 | 1 | 0 | 0        | 1               | 0                | 0                                          |
| 1 | 1 | 1 | 0        | 1               | 0                | 0                                          |

- $\bullet \neg A \lor B \rightarrow \neg A \land C$  is invalid.
- $\neg A \lor B \rightarrow \neg A \land C$  is satisfiable.
- $\neg A \lor B \rightarrow \neg A \land C$  is neither a tautology nor a contradiction.

| Α | В | С | $\neg A$ | $\neg A \lor B$ | $\neg A \wedge C$ | $\neg A \lor B \rightarrow \neg A \land C$ |
|---|---|---|----------|-----------------|-------------------|--------------------------------------------|
| 1 | 0 | 1 | 0        | 0               | 0                 | 1                                          |
| 0 | 0 | 0 | 1        | 1               | 0                 | 0                                          |
| 0 | 0 | 1 | 1        | 1               | 1                 | 1                                          |
| 0 | 1 | 0 | 1        | 1               | 0                 | 0                                          |
| 1 | 0 | 0 | 0        | 0               | 0                 | 1                                          |
| 0 | 1 | 1 | 1        | 1               | 1                 | 1                                          |
| 1 | 1 | 0 | 0        | 1               | 0                 | 0                                          |
| 1 | 1 | 1 | 0        | 1               | 0                 | 0                                          |

- $\neg A \lor B \rightarrow \neg A \land C$  is invalid.
- $\neg A \lor B \rightarrow \neg A \land C$  is satisfiable.
- $\neg A \lor B \rightarrow \neg A \land C$  is neither a tautology nor a contradiction.

| Α | В | С | $\neg A$ | $\neg A \lor B$ | $\neg A \wedge C$ | $\neg A \lor B \rightarrow \neg A \land C$ |
|---|---|---|----------|-----------------|-------------------|--------------------------------------------|
| 1 | 0 | 1 | 0        | 0               | 0                 | 1                                          |
| 0 | 0 | 0 | 1        | 1               | 0                 | 0                                          |
| 0 | 0 | 1 | 1        | 1               | 1                 | 1                                          |
| 0 | 1 | 0 | 1        | 1               | 0                 | 0                                          |
| 1 | 0 | 0 | 0        | 0               | 0                 | 1                                          |
| 0 | 1 | 1 | 1        | 1               | 1                 | 1                                          |
| 1 | 1 | 0 | 0        | 1               | 0                 | 0                                          |
| 1 | 1 | 1 | 0        | 1               | 0                 | 0                                          |

- $\neg A \lor B \rightarrow \neg A \land C$  is invalid.
- $\neg A \lor B \rightarrow \neg A \land C$  is satisfiable.
- $\neg A \lor B \rightarrow \neg A \land C$  is neither a tautology nor a contradiction.



| Α | В | С | $\neg A$ | $\neg A \lor B$ | $\neg A \wedge C$ | $\neg A \lor B \to \neg A \land C$ |
|---|---|---|----------|-----------------|-------------------|------------------------------------|
| 1 | 0 | 1 | 0        | 0               | 0                 | 1                                  |
| 0 | 0 | 0 | 1        | 1               | 0                 | 0                                  |
| 0 | 0 | 1 | 1        | 1               | 1                 | 1                                  |
| 0 | 1 | 0 | 1        | 1               | 0                 | 0                                  |
| 1 | 0 | 0 | 0        | 0               | 0                 | 1                                  |
| 0 | 1 | 1 | 1        | 1               | 1                 | 1                                  |
| 1 | 1 | 0 | 0        | 1               | 0                 | 0                                  |
| 1 | 1 | 1 | 0        | 1               | 0                 | 0                                  |

- $\neg A \lor B \rightarrow \neg A \land C$  is invalid.
- $\neg A \lor B \rightarrow \neg A \land C$  is satisfiable.
- $\neg A \lor B \rightarrow \neg A \land C$  is neither a tautology nor a contradiction.



#### Validity, Satisfiability Equivalence

Entailment Validity, Equivalence, Entailment as (Un)Satisfiability

- P → P tautology
- $P \land \neg P$  contradiction
- $P \lor \neg P$  tautology
- P v T tautology
- P ∧ ⊥ contradiction

- P → P tautology
- $P \land \neg P$  contradiction
- $P \lor \neg P$  tautology
- P v T tautology
- P ∧ ⊥ contradiction

- P → P tautology
- $P \land \neg P$  contradiction
- P∨¬P tautology
- P v T tautology
- P ∧ ⊥ contradiction

- P → P tautology
- $P \land \neg P$  contradiction
- $P \vee \neg P$  tautology
- P∨⊤ tautology
- P ∧ ⊥ contradiction



- P → P tautology
- $P \land \neg P$  contradiction
- $P \vee \neg P$  tautology
- P ∨ ⊤ tautology
- P ∧ ⊥ contradiction

- P → P tautology
- $P \land \neg P$  contradiction
- $P \vee \neg P$  tautology
- P ∨ ⊤ tautology
- $P \wedge \bot$  contradiction

#### Outline

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- 6 Computation



#### Equivalence

- Two wffs P, Q are equivalent if for each interpretation I(P) = I(Q).
- Two wffs P, Q are equivalent if P and Q have the same models.
- Two wffs P, Q are equivalent if  $P \leftrightarrow Q$  is valid.
- Denote equivalence of P and Q as  $P \equiv Q$ .

## Equivalence

- Two wffs P, Q are equivalent if for each interpretation I I(P) = I(Q).
- Two wffs P, Q are equivalent if P and Q have the same models.
- Two wffs P, Q are equivalent if  $P \leftrightarrow Q$  is valid.
- Denote equivalence of P and Q as  $P \equiv Q$ .

## Equivalence

- Two wffs P, Q are equivalent if for each interpretation I(P) = I(Q).
- Two wffs P, Q are equivalent if P and Q have the same models.
- Two wffs P, Q are equivalent if  $P \leftrightarrow Q$  is valid.
- Denote equivalence of P and Q as  $P \equiv Q$ .

- $P \lor Q \equiv Q \lor P$  (Commutativity)
- $P \wedge Q \equiv Q \wedge P$  (Commutativity)
- $P \leftrightarrow Q \equiv Q \leftrightarrow P$  (Commutativity)
- $P \lor P \equiv P$  (Idempotence)
- $P \wedge P \equiv P$  (Idempotence)
- $P \lor T \equiv T$
- $P \land \bot \equiv \bot$

- $P \lor Q \equiv Q \lor P$  (Commutativity)
- $P \wedge Q \equiv Q \wedge P$  (Commutativity)
- $P \leftrightarrow Q \equiv Q \leftrightarrow P$  (Commutativity)
- $P \lor P \equiv P$  (Idempotence)
- $P \wedge P \equiv P$  (Idempotence)
- $P \lor T \equiv T$
- $P \land \bot \equiv \bot$

- $P \lor Q \equiv Q \lor P$  (Commutativity)
- $P \wedge Q \equiv Q \wedge P$  (Commutativity)
- $P \leftrightarrow Q \equiv Q \leftrightarrow P$  (Commutativity)
- $P \lor P \equiv P$  (Idempotence)
- $P \wedge P \equiv P$  (Idempotence)
- $P \lor T \equiv T$
- $P \land \bot \equiv \bot$

- $P \lor Q \equiv Q \lor P$  (Commutativity)
- $P \wedge Q \equiv Q \wedge P$  (Commutativity)
- $P \leftrightarrow Q \equiv Q \leftrightarrow P$  (Commutativity)
- $P \lor P \equiv P$  (Idempotence)
- $P \wedge P \equiv P$  (Idempotence)
- $P \lor T \equiv T$
- $P \wedge \bot \equiv \bot$

- $P \lor \bot \equiv P$  (Neutrality)
- $P \wedge \top \equiv P$  (Neutrality)
- $P \lor \neg P \equiv \top$
- $P \land \neg P \equiv \bot$
- $\neg \neg P \equiv P$
- $\bullet \ P \to Q \equiv \neg P \lor Q$
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$  (Contraposition)

- $P \lor \bot \equiv P$  (Neutrality)
- $P \wedge \top \equiv P$  (Neutrality)
- $P \vee \neg P \equiv \top$
- $P \land \neg P \equiv \bot$
- $\neg \neg P \equiv P$
- $\bullet \ P \to Q \equiv \neg P \lor Q$
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$  (Contraposition)

- $P \lor \bot \equiv P$  (Neutrality)
- $P \wedge \top \equiv P$  (Neutrality)
- $P \vee \neg P \equiv \top$
- $P \land \neg P \equiv \bot$
- ¬¬P ≡ P
- $\bullet \ P \to Q \equiv \neg P \lor Q$
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$  (Contraposition)

- $P \lor \bot \equiv P$  (Neutrality)
- $P \wedge \top \equiv P$  (Neutrality)
- $P \vee \neg P \equiv \top$
- $P \land \neg P \equiv \bot$
- ¬¬P ≡ P
- $P \rightarrow Q \equiv \neg P \lor Q$
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$  (Contraposition)

- $P \lor \bot \equiv P$  (Neutrality)
- $P \wedge \top \equiv P$  (Neutrality)
- $P \vee \neg P \equiv \top$
- $P \land \neg P \equiv \bot$
- ¬¬P ≡ P
- $P \rightarrow Q \equiv \neg P \lor Q$
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$  (Contraposition)

• 
$$\neg (P \lor Q) \equiv \neg Q \land \neg P$$
 (De Morgan)

• 
$$\neg (P \land Q) \equiv \neg Q \lor \neg P$$
 (De Morgan)

• 
$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$$
 (Associativity)

• 
$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$
 (Associativity)

• 
$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$$
 (Distributivity)

• 
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$
 (Distributivity)

• 
$$P \land (P \lor Q) \equiv P$$
 (Absorption)

• 
$$P \lor (P \land Q) \equiv P$$
 (Absorption)

• 
$$\neg (P \lor Q) \equiv \neg Q \land \neg P$$
 (De Morgan)

• 
$$\neg (P \land Q) \equiv \neg Q \lor \neg P$$
 (De Morgan)

• 
$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$$
 (Associativity)

• 
$$P \land (Q \land R) \equiv (P \land Q) \land R$$
 (Associativity)

• 
$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$$
 (Distributivity)

• 
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$
 (Distributivity)

• 
$$P \land (P \lor Q) \equiv P$$
 (Absorption)

• 
$$P \lor (P \land Q) \equiv P$$
 (Absorption)

- $\neg (P \lor Q) \equiv \neg Q \land \neg P$  (De Morgan)
- $\neg (P \land Q) \equiv \neg Q \lor \neg P$  (De Morgan)
- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$  (Associativity)
- $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$  (Associativity)
- $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$  (Distributivity)
- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$  (Distributivity)
- $P \land (P \lor Q) \equiv P$  (Absorption)
- $P \lor (P \land Q) \equiv P$  (Absorption)

- $\neg (P \lor Q) \equiv \neg Q \land \neg P$  (De Morgan)
- $\neg (P \land Q) \equiv \neg Q \lor \neg P$  (De Morgan)
- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$  (Associativity)
- $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$  (Associativity)
- $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$  (Distributivity)
- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$  (Distributivity)
- $P \land (P \lor Q) \equiv P$  (Absorption)
- $P \lor (P \land Q) \equiv P$  (Absorption)



- $\neg (P \lor Q) \equiv \neg Q \land \neg P$  (De Morgan)
- $\neg (P \land Q) \equiv \neg Q \lor \neg P$  (De Morgan)
- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$  (Associativity)
- $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$  (Associativity)
- $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$  (Distributivity)
- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$  (Distributivity)
- $P \land (P \lor Q) \equiv P$  (Absorption)
- $P \lor (P \land Q) \equiv P$  (Absorption)

## Equivalence and Validity

- A wff P is a tautology if and only if  $P \equiv \top$ .
- A wff *P* is a contradiction if and only if  $P \equiv \bot$ .

## Equivalence and Validity

- A wff P is a tautology if and only if  $P \equiv \top$ .
- A wff *P* is a contradiction if and only if  $P \equiv \bot$ .

#### Outline

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- On Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- 6 Computation



#### Interpretations could be represented as wffs!

- If  $I = \{P_1, \dots, P_n\}$ , write  $P_1 \wedge \dots \wedge P_n \wedge \neg P_{n+1} \wedge \dots \wedge \neg P_m$  where  $P_{n+1}, \dots, P_m$  are the variables which are false in I.
- Such a formula has exactly one model: /!
- So far:  $I \models Q$  for interpretations I.
- $\Rightarrow$  Define  $P \models Q$  also for arbitrary wffs.
- $P \models Q$  if each model of P is also a model of Q.
- If  $P \models Q$ , P entails Q.
- $P \models Q$  holds if and only if  $M \models Q$  for all models M of P.
- $\bullet \models P$  if and only if P is a tautology.



- Interpretations could be represented as wffs!
- If  $I = \{P_1, \dots, P_n\}$ , write  $P_1 \wedge \dots \wedge P_n \wedge \neg P_{n+1} \wedge \dots \wedge \neg P_m$  where  $P_{n+1}, \dots, P_m$  are the variables which are false in I.
- Such a formula has exactly one model: /!
- So far:  $I \models Q$  for interpretations I.
- $\Rightarrow$  Define  $P \models Q$  also for arbitrary wffs.
- $P \models Q$  if each model of P is also a model of Q.
- If  $P \models Q$ , P entails Q.
- $P \models Q$  holds if and only if  $M \models Q$  for all models M of P.
- $\bullet \models P$  if and only if P is a tautology.



- Interpretations could be represented as wffs!
- If  $I = \{P_1, \dots, P_n\}$ , write  $P_1 \wedge \dots \wedge P_n \wedge \neg P_{n+1} \wedge \dots \wedge \neg P_m$  where  $P_{n+1}, \dots, P_m$  are the variables which are false in I.
- Such a formula has exactly one model: I!
- So far:  $I \models Q$  for interpretations I.
- $\Rightarrow$  Define  $P \models Q$  also for arbitrary wffs.
- $P \models Q$  if each model of P is also a model of Q.
- If  $P \models Q$ , P entails Q.
- $P \models Q$  holds if and only if  $M \models Q$  for all models M of P.
- $\bullet \models P$  if and only if P is a tautology.



- Interpretations could be represented as wffs!
- If  $I = \{P_1, \dots, P_n\}$ , write  $P_1 \wedge \dots \wedge P_n \wedge \neg P_{n+1} \wedge \dots \wedge \neg P_m$  where  $P_{n+1}, \dots, P_m$  are the variables which are false in I.
- Such a formula has exactly one model: /!
- So far:  $I \models Q$  for interpretations I.
- $\Rightarrow$  Define  $P \models Q$  also for arbitrary wffs.
- $P \models Q$  if each model of P is also a model of Q.
- If  $P \models Q$ , P entails Q.
- $P \models Q$  holds if and only if  $M \models Q$  for all models M of P.
- $\bullet \models P$  if and only if P is a tautology.



- Interpretations could be represented as wffs!
- If  $I = \{P_1, \dots, P_n\}$ , write  $P_1 \wedge \dots \wedge P_n \wedge \neg P_{n+1} \wedge \dots \wedge \neg P_m$  where  $P_{n+1}, \dots, P_m$  are the variables which are false in I.
- Such a formula has exactly one model: /!
- So far:  $I \models Q$  for interpretations I.
- $\Rightarrow$  Define  $P \models Q$  also for arbitrary wffs.
- $P \models Q$  if each model of P is also a model of Q.
- If  $P \models Q$ , P entails Q.
- $P \models Q$  holds if and only if  $M \models Q$  for all models M of P.
- $\bullet \models P$  if and only if P is a tautology.



- Interpretations could be represented as wffs!
- If  $I = \{P_1, \dots, P_n\}$ , write  $P_1 \wedge \dots \wedge P_n \wedge \neg P_{n+1} \wedge \dots \wedge \neg P_m$  where  $P_{n+1}, \dots, P_m$  are the variables which are false in I.
- Such a formula has exactly one model: I!
- So far:  $I \models Q$  for interpretations I.
- $\Rightarrow$  Define  $P \models Q$  also for arbitrary wffs.
- $P \models Q$  if each model of P is also a model of Q.
- If  $P \models Q$ , P entails Q.
- $P \models Q$  holds if and only if  $M \models Q$  for all models M of P.
- $\bullet \models P$  if and only if P is a tautology.



- $P \wedge Q \models P$
- $P \land Q \models P \rightarrow Q$
- $\bullet \neg P \models P \rightarrow Q$
- $\bullet$   $P \models Q \rightarrow P$
- $P \models P \lor Q$

• 
$$P \wedge Q \models P$$

• 
$$P \land Q \models P \rightarrow Q$$

$$\bullet \neg P \models P \rightarrow Q$$

$$\bullet$$
  $P \models Q \rightarrow P$ 

$$P \models P \lor Q$$

• 
$$P \wedge Q \models P$$

• 
$$P \land Q \models P \rightarrow Q$$

$$\bullet$$
  $P \models Q \rightarrow P$ 

$$P \models P \lor Q$$

• 
$$P \wedge Q \models P$$

• 
$$P \wedge Q \models P \rightarrow Q$$

$$\bullet \neg P \models P \rightarrow Q$$

$$P \models Q \rightarrow P$$

$$P \models P \lor Q$$

• 
$$P \wedge Q \models P$$

• 
$$P \land Q \models P \rightarrow Q$$

$$\bullet \neg P \models P \rightarrow Q$$

$$P \models Q \rightarrow P$$

• 
$$P \models P \lor Q$$

- If  $P \models Q$ , then  $P \land R \models Q$  (Monotonicity)
- $P \land R \models Q$  if and only if  $P \models R \rightarrow Q$  (Deduction Theorem)
- $P \land R \models \neg Q$  if and only if  $P \models Q \rightarrow \neg R$  (Contraposition Theorem)

- If  $P \models Q$ , then  $P \land R \models Q$  (Monotonicity)
- $P \land R \models Q$  if and only if  $P \models R \rightarrow Q$  (Deduction Theorem)
- $P \land R \models \neg Q$  if and only if  $P \models Q \rightarrow \neg R$  (Contraposition Theorem)

- If  $P \models Q$ , then  $P \land R \models Q$  (Monotonicity)
- $P \land R \models Q$  if and only if  $P \models R \rightarrow Q$  (Deduction Theorem)
- $P \land R \models \neg Q$  if and only if  $P \models Q \rightarrow \neg R$  (Contraposition Theorem)

- If  $P \models Q$ , then  $P \land R \models Q$  (Monotonicity)
- $P \land R \models Q$  if and only if  $P \models R \rightarrow Q$  (Deduction Theorem)
- $P \land R \models \neg Q$  if and only if  $P \models Q \rightarrow \neg R$  (Contraposition Theorem)

#### **Outline**

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- Computation



- P is valid if  $\top \models P$
- What about  $\neg P$ ?
- $\bullet \neg P$  is then unsatisfiable.
- To check whether *P* is valid:
- Check whether  $\neg P$  is satisfiable.
- If yes, P is not valid.
- If no, P is valid.

- P is valid if  $\top \models P$
- What about  $\neg P$ ?
- $\bullet \neg P$  is then unsatisfiable.
- To check whether *P* is valid:
- Check whether  $\neg P$  is satisfiable.
- If yes, P is not valid.
- If no, P is valid.

- P is valid if  $\top \models P$
- What about  $\neg P$ ?
- $\bullet \neg P$  is then unsatisfiable.
- To check whether *P* is valid:
- Check whether  $\neg P$  is satisfiable.
- If yes, P is not valid.
- If no, P is valid.

- P is valid if  $\top \models P$
- What about  $\neg P$ ?
- $\bullet \neg P$  is then unsatisfiable.
- To check whether P is valid:
- Check whether  $\neg P$  is satisfiable.
- If yes, P is not valid.
- If no, *P* is valid.



- P is valid if  $\top \models P$
- What about  $\neg P$ ?
- $\bullet \neg P$  is then unsatisfiable.
- To check whether P is valid:
- Check whether  $\neg P$  is satisfiable.
- If yes, P is not valid.
- If no, P is valid.

### Equivalence

- $P \equiv Q$  holds if  $P \leftrightarrow Q$  is valid.
- To check whether  $P \equiv Q$  holds:
- Check whether  $\neg(P \leftrightarrow Q)$  is satisfiable.
- If yes,  $P \equiv Q$  does not hold
- If no,  $P \equiv Q$  holds.

#### Equivalence

- $P \equiv Q$  holds if  $P \leftrightarrow Q$  is valid.
- To check whether  $P \equiv Q$  holds:
- Check whether  $\neg (P \leftrightarrow Q)$  is satisfiable.
- If yes,  $P \equiv Q$  does not hold
- If no,  $P \equiv Q$  holds.

### Equivalence

- $P \equiv Q$  holds if  $P \leftrightarrow Q$  is valid.
- To check whether  $P \equiv Q$  holds:
- Check whether  $\neg(P \leftrightarrow Q)$  is satisfiable.
- If yes,  $P \equiv Q$  does not hold
- If no,  $P \equiv Q$  holds.

- $P \models Q$  holds if  $P \rightarrow Q$  is valid (Deduction Theorem).
- To check whether  $P \models Q$  holds:
- Check whether  $\neg(P \rightarrow Q)$  is satisfiable.
- If yes,  $P \models Q$  does not hold
- If no,  $P \models Q$  holds.

#### Entailment

- $P \models Q$  holds if  $P \rightarrow Q$  is valid (Deduction Theorem).
- To check whether  $P \models Q$  holds:
- Check whether  $\neg(P \rightarrow Q)$  is satisfiable.
- If yes,  $P \models Q$  does not hold
- If no,  $P \models Q$  holds.

#### Entailment

- $P \models Q$  holds if  $P \rightarrow Q$  is valid (Deduction Theorem).
- To check whether P ⊨ Q holds:
- Check whether  $\neg(P \rightarrow Q)$  is satisfiable.
- If yes,  $P \models Q$  does not hold
- If no,  $P \models Q$  holds.

- For wffs P, Q, R:
- P[R/Q] denotes the formula in which all occurrences of Q are replaced by R
- Example:  $P_1 = (A \rightarrow B) \land (B \rightarrow A)$
- $Q_1 = A \to B, R_1 = \neg A \lor B$
- $P_1[R_1/Q_1] = (\neg A \lor B) \land (B \to A)$
- Example:  $P_2 = (A \rightarrow B) \land (A \rightarrow B)$
- $Q_2 = A \rightarrow B$ ,  $R_2 = \neg A \lor B$
- $P_2[R_2/Q_2] = (\neg A \lor B) \land (\neg A \lor B)$



- For wffs P, Q, R:
- P[R/Q] denotes the formula in which all occurrences of Q are replaced by R
- Example:  $P_1 = (A \rightarrow B) \land (B \rightarrow A)$
- $Q_1 = A \to B, R_1 = \neg A \lor B$
- $P_1[R_1/Q_1] = (\neg A \lor B) \land (B \to A)$
- Example:  $P_2 = (A \rightarrow B) \land (A \rightarrow B)$
- $Q_2 = A \rightarrow B$ ,  $R_2 = \neg A \lor B$
- $P_2[R_2/Q_2] = (\neg A \lor B) \land (\neg A \lor B)$



- For wffs P, Q, R:
- P[R/Q] denotes the formula in which all occurrences of Q are replaced by R
- Example:  $P_1 = (A \rightarrow B) \land (B \rightarrow A)$
- $Q_1 = A \to B, R_1 = \neg A \lor B$
- $P_1[R_1/Q_1] = (\neg A \lor B) \land (B \to A)$
- Example:  $P_2 = (A \rightarrow B) \land (A \rightarrow B)$
- $Q_2 = A \to B, R_2 = \neg A \lor B$
- $P_2[R_2/Q_2] = (\neg A \lor B) \land (\neg A \lor B)$

- For wffs P, Q, R:
- P[R/Q] denotes the formula in which all occurrences of Q are replaced by R
- Example:  $P_1 = (A \rightarrow B) \land (B \rightarrow A)$
- $Q_1 = A \to B, R_1 = \neg A \lor B$
- $P_1[R_1/Q_1] = (\neg A \lor B) \land (B \to A)$
- Example:  $P_2 = (A \rightarrow B) \land (A \rightarrow B)$
- $Q_2 = A \to B, R_2 = \neg A \lor B$
- $P_2[R_2/Q_2] = (\neg A \lor B) \land (\neg A \lor B)$



- For wffs P, Q, R:
- P[R/Q] denotes the formula in which all occurrences of Q are replaced by R
- Example:  $P_1 = (A \rightarrow B) \land (B \rightarrow A)$
- $Q_1 = A \to B, R_1 = \neg A \lor B$
- $P_1[R_1/Q_1] = (\neg A \lor B) \land (B \to A)$
- Example:  $P_2 = (A \rightarrow B) \land (A \rightarrow B)$
- $Q_2 = A \to B, R_2 = \neg A \lor B$
- $P_2[R_2/Q_2] = (\neg A \lor B) \land (\neg A \lor B)$



#### Substitution Theorem

#### Theorem

For wffs P, Q, R, where  $Q \equiv R$ , we obtain  $P \equiv P[R/Q]$ 

#### Proof.

By induction over the formula structure.

• Example: 
$$\neg(A \land B) \rightarrow C$$

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\bullet \neg (A \land B) \rightarrow C \equiv (\neg A \lor \neg B) \rightarrow C$$



#### Substitution Theorem

#### Theorem

For wffs P, Q, R, where  $Q \equiv R$ , we obtain  $P \equiv P[R/Q]$ 

#### Proof.

By induction over the formula structure.



• Example: 
$$\neg(A \land B) \rightarrow C$$

$$\neg (A \land B) \equiv \neg A \lor \neg B$$



#### Substitution Theorem

#### Theorem

For wffs P, Q, R, where  $Q \equiv R$ , we obtain  $P \equiv P[R/Q]$ 

#### Proof.

By induction over the formula structure.



$$\neg (A \land B) \equiv \neg A \lor \neg B$$



#### Outline

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- Computation



# Simplify Formulas

- Many connectives:  $\top$ ,  $\bot$ ,  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$
- Diverse structure
- Can we find a subset of connectives *C*, such that any wff is equivalent to a formula with connectives of *C*?
- Can we find a formula structure, such that any wff is equivalent to a formula of this structure?

## Simplify Formulas

- Many connectives:  $\top$ ,  $\bot$ ,  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$
- Diverse structure
- Can we find a subset of connectives *C*, such that any wff is equivalent to a formula with connectives of *C*?
- Can we find a formula structure, such that any wff is equivalent to a formula of this structure?

## Simplify Formulas

- Many connectives:  $\top$ ,  $\bot$ ,  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$
- Diverse structure
- Can we find a subset of connectives *C*, such that any wff is equivalent to a formula with connectives of *C*?
- Can we find a formula structure, such that any wff is equivalent to a formula of this structure?

## **Eliminating Connectives**

- Consider only ¬, ∧, ∨!
- $\top \equiv \neg A \lor A$  (We need at least one variable for this!)
- $\perp \equiv \neg A \land A$  (We need at least one variable for this!)
- $P \rightarrow Q \equiv \neg P \lor Q$
- $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \equiv (\neg P \lor Q) \land (\neg Q \lor P)$
- Use repeated formula substitution to eliminate other connectives.
- Every formula is equivalent to one containing only connectives ¬, ∧, ∨.



## **Eliminating Connectives**

- Consider only  $\neg$ ,  $\land$ ,  $\lor$ !
- $\top \equiv \neg A \lor A$  (We need at least one variable for this!)
- $\perp \equiv \neg A \land A$  (We need at least one variable for this!)
- $P \rightarrow Q \equiv \neg P \lor Q$
- $\bullet \ P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \equiv (\neg P \lor Q) \land (\neg Q \lor P)$
- Use repeated formula substitution to eliminate other connectives.
- Every formula is equivalent to one containing only connectives ¬, ∧, ∨.



## **Eliminating Connectives**

- Consider only ¬, ∧, ∨!
- $\top \equiv \neg A \lor A$  (We need at least one variable for this!)
- $\perp \equiv \neg A \land A$  (We need at least one variable for this!)
- $P \rightarrow Q \equiv \neg P \lor Q$
- $\bullet \ P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P) \equiv (\neg P \lor Q) \land (\neg Q \lor P)$
- Use repeated formula substitution to eliminate other connectives.
- Every formula is equivalent to one containing only connectives ¬, ∧, ∨.



- Conjunctive Normal Form (CNF)
  - $C_1 \wedge C_2 \wedge \ldots \wedge C_n$
  - Each conjunct or clause  $C_i$  is of the form  $L_1 \vee L_2 \vee ... \vee L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .
- 2 Disjunctive Normal Form (DNF)
  - $D_1 \vee D_2 \vee \ldots \vee D_n$
  - Each disjunct  $D_i$  is of the form  $L_1 \wedge L_2 \wedge \ldots \wedge L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .



- Conjunctive Normal Form (CNF)
  - $C_1 \wedge C_2 \wedge \ldots \wedge C_n$
  - Each conjunct or clause  $C_i$  is of the form  $L_1 \vee L_2 \vee ... \vee L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .
- Disjunctive Normal Form (DNF)
  - $D_1 \vee D_2 \vee \ldots \vee D_n$
  - Each disjunct  $D_i$  is of the form  $L_1 \wedge L_2 \wedge ... \wedge L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .



- Conjunctive Normal Form (CNF)
  - $C_1 \wedge C_2 \wedge \ldots \wedge C_n$
  - Each conjunct or clause  $C_i$  is of the form  $L_1 \vee L_2 \vee ... \vee L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .
- ② Disjunctive Normal Form (DNF)
  - $D_1 \vee D_2 \vee \ldots \vee D_n$
  - Each disjunct  $D_i$  is of the form  $L_1 \wedge L_2 \wedge ... \wedge L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .



- Conjunctive Normal Form (CNF)
  - $C_1 \wedge C_2 \wedge \ldots \wedge C_n$
  - Each conjunct or clause  $C_i$  is of the form  $L_1 \vee L_2 \vee ... \vee L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .
- ② Disjunctive Normal Form (DNF)
  - $D_1 \vee D_2 \vee \ldots \vee D_n$
  - Each disjunct  $D_i$  is of the form  $L_1 \wedge L_2 \wedge \ldots \wedge L_{m_i}$ .
  - Each literal  $L_{i_j}$  is a variable A or the negation of a variable  $\neg A$ .



#### Outline

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- Computation



#### **CNF** Transformation

- **1** Eliminate  $\top$ ,  $\bot$ ,  $\rightarrow$ ,  $\leftrightarrow$ .
- 2 Apply De Morgan equivalences:

$$\neg (P \lor Q) \equiv \neg Q \land \neg P$$

• 
$$\neg (P \land Q) \equiv \neg Q \lor \neg P$$

- Apply double negation equivalences:
  - ¬¬P ≡ P
- Apply Distributivity equivalence:

• 
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

Order of 2-4 does not matter!



#### **CNF** Transformation

- **1** Eliminate  $\top$ ,  $\bot$ ,  $\rightarrow$ ,  $\leftrightarrow$ .
- 2 Apply De Morgan equivalences:

$$\neg (P \lor Q) \equiv \neg Q \land \neg P$$

• 
$$\neg (P \land Q) \equiv \neg Q \lor \neg P$$

- Apply double negation equivalences:
  - ¬¬P ≡ P
- Apply Distributivity equivalence:

• 
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

Order of 2-4 does not matter!



- $\neg ((\neg A \lor B) \land (B \leftrightarrow C)) \equiv \neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B)))$
- $\neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \\ \neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $\neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$



- $\neg ((\neg A \lor B) \land (B \leftrightarrow C)) \equiv \neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B)))$
- $\neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \\ \neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $\neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$



- $\bullet \neg ((A \rightarrow B) \land (B \leftrightarrow C))$

- $\neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \\ \neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $\neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$



- $\neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$



- $(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$



- $\bullet \neg ((A \rightarrow B) \land (B \leftrightarrow C))$

- $\bullet (\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$



- $\bullet (\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$
- $(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv$  $(A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$

- $(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv$  $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$
- $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor \neg(\neg C \lor B)) \equiv$  $(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$

- $(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv$  $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$
- $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor \neg(\neg C \lor B)) \equiv$  $(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$

- $(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv$  $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$
- $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$
- $\bullet (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B)) \equiv \\ (A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$

- $(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv$  $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$
- $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$
- $\bullet (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B)) \equiv \\ (A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv$  $(A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$

- $\bullet \ (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv \\ (A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))))$

# Example CNF Transformation (3)

- $\bullet \ (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv \\ (A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))))$

## Example CNF Transformation (3)

- $\bullet \quad (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv$  $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))))$

## Example CNF Transformation (3)

- $\bullet \quad (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv$  $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

## Example CNF Transformation (4)

- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $\bullet \ ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg A \lor (\neg C \lor \neg B))))$

# Example CNF Transformation (4)

- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg A \lor (\neg A \lor (\neg A \lor C) \lor (A \lor (\neg A \lor A)))))$

## Example CNF Transformation (4)

- $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $\bullet \ ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

# Example CNF Transformation (5)

- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B)))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))))$
- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B))))$

# Example CNF Transformation (5)

- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B)))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))))$
- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B))))$

### Example CNF Transformation (5)

- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B)))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))))$
- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \equiv \\ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B))))$

## Example CNF Transformation (6)

- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor \neg C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B))))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B))))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B))))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C)))) \land (\neg B \lor (\neg C \lor \neg B)))))$

# Example CNF Transformation (6)

- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B))))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C)))) \land (\neg B \lor (\neg C \lor \neg B))))$

# Example CNF Transformation (7)

- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor (\neg C \lor \neg C))) \land ((A \lor (\neg C \lor \neg C))) \land ((A \lor (B \lor \neg C)) \land (A \lor (\neg C \lor \neg C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor \neg C)))) \land ((\neg B \lor (\neg C \lor \neg B)))) \land (\neg B \lor (\neg C \lor \neg B))))$
- Flattening:
- $(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B)$

# Example CNF Transformation (7)

- $\bullet \ (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor (\neg C \lor \neg C))) \land ((A \lor (\neg C \lor \neg C))) \land ((A \lor (B \lor \neg C)) \land (A \lor (\neg C \lor \neg C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor \neg C)))) \land ((\neg B \lor (\neg C \lor \neg B)))) \land (\neg B \lor (\neg C \lor \neg B))))$
- Flattening:
- $(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B)$

#### **Example CNF Transformation**

- $\neg((A \rightarrow B) \land (B \leftrightarrow C))$
- $(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B)$
- • (eliminate clauses containing P and ¬P, those are equivalent to ⊤ and are hence neutral for ∧)
- $(A \lor B \lor C) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor \neg C)$

### **Example CNF Transformation**

- $\bullet (A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B)$
- • (eliminate clauses containing P and ¬P, those are equivalent to ⊤ and are hence neutral for ∧)
- $(A \lor B \lor C) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor \neg C)$

#### **CNF** Representation

- $(L_{1_1} \lor L_{2_1} \lor \ldots \lor L_{m_1}) \land (L_{1_2} \lor L_{2_2} \lor \ldots \lor L_{m_2}) \land \ldots \land (L_{1_n} \lor L_{2_n} \lor \ldots \lor L_{m_n})$
- It is clear where which connectives are, so write it as a set of clauses.
- Write clauses as sets of literals.
- Write CNFs as a set of sets of literals:

• 
$$\{\{L_{1_1}, L_{2_1}, \dots, L_{m_1}\}, \{L_{1_2}, L_{2_2}, \dots, L_{m_2}\}, \dots, \{L_{1_n}, L_{2_n}, \dots, L_{m_n}\}\}$$

#### Outline

- Properties
  - Validity, Satisfiability
  - Equivalence
  - Entailment
  - Validity, Equivalence, Entailment as (Un)Satisfiability
- Normal Forms
  - Why Normal Forms?
  - Conjunctive Normal Form
  - Disjunctive Normal Form
- 6 Computation



#### **DNF** Transformation

- **1** Eliminate  $\top$ ,  $\bot$ ,  $\rightarrow$ ,  $\leftrightarrow$ .
- 2 Apply double negation equivalence:

$$\neg \neg P \equiv P$$

Apply De Morgan equivalences:

• 
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

• 
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

Apply Distributivity equivalence:

• 
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Order of 2-4 does not matter!



#### **DNF** Transformation

- **1** Eliminate  $\top$ ,  $\bot$ ,  $\rightarrow$ ,  $\leftrightarrow$ .
- 2 Apply double negation equivalence:

Apply De Morgan equivalences:

• 
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

• 
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

Apply Distributivity equivalence:

• 
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Order of 2-4 does not matter!



# Satisfiability: Complexity

#### Theorem (Cook 1971)

#### Satisfiability of wffs is NP-complete

- First NP-completeness proof ever!
- Membership: Guess an interpretation I (from  $2^n$  possibilities, for n variables), verify in polynomial time that  $I \models \phi$ .
- Hardness: Simulate nondeterministic Turing machine with polynomial time bound.



# Satisfiability: Complexity

#### Theorem (Cook 1971)

Satisfiability of wffs is NP-complete

- First NP-completeness proof ever!
- Membership: Guess an interpretation I (from  $2^n$  possibilities, for n variables), verify in polynomial time that  $I \models \phi$ .
- Hardness: Simulate nondeterministic Turing machine with polynomial time bound.



### Satisfiability: Methods

- Truth Table
- DLL
- Resolution
- Tableaux
- . . . .

Many require CNF input



### Satisfiability: Methods

- Truth Table
- DLL
- Resolution
- Tableaux
- . . . .

Many require CNF input!

