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Outline of Part lI

Q Properties
@ Validity, Satisfiability
@ Equivalence
@ Entailment
@ Validity, Equivalence, Entailment as (Un)Satisfiability

e Normal Forms
@ Why Normal Forms?
@ Conjunctive Normal Form
@ Disjunctive Normal Form

e Computation
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History

Roots of Logic

@ Greece (Aristotle, Euclid of Megara [not Alexandrial])
@ India (Nyaya school)
@ China (Mo Zi)

all between 400BC — 100BC
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History

Continuation

@ Arab and Islamic Logicians
@ Scholastic Logic
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History

Formal Logic
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History

Formal Logic

Augustus de Morgan (1806—-1871) = “Logic as Algebra”
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History

Formal Logic

George Boole (1815-1864) = “Symbolic Logic,” “Truth Values”
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Propositional Logic — Intuition

@ Assume basic statements (propositions) to be given.
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Propositional Logic — Intuition

@ Assume basic statements (propositions) to be given.
@ Make formulas out of them using a fixed set of connectives.
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Propositional Logic — Intuition

@ Assume basic statements (propositions) to be given.
@ Make formulas out of them using a fixed set of connectives.
@ Truth of propositions determines truth of formulas.
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Intuition
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Propositional Variables

@ Countable set V of propositional variables
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Intuition
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Convenient Notation
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Propositional Variables

@ Countable set V of propositional variables
@ Example: {A,B,C,D, Ay, Ay, ...}
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Propositional Variables

@ Countable set V of propositional variables
@ Example: {A,B,C,D, Ay, Ay, ...}
@ Important: No fixed meaning is associated to them!
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Propositional Variables

@ Countable set V of propositional variables

@ Example: {A,B,C,D, Ay, Ay, ...}

@ Important: No fixed meaning is associated to them!
@ Propositional variables can mean anything.
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Intuition
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Formula Structure

Propositional Variables

@ Countable set V of propositional variables

@ Example: {A,B,C,D, Ay, Ay, ...}

@ Important: No fixed meaning is associated to them!
@ Propositional variables can mean anything.

@ Truth value of variables fixed by semantics lateron.
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Propositional Formulas

@ Define the set Fy of propositional formulas or well-formed
formulas (wff) for a set of propositional variables V.

@ Inductive definition!
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Propositional Formulas

@ Define the set Fy of propositional formulas or well-formed
formulas (wff) for a set of propositional variables V.

@ Inductive definition!
@ A propositional variable is a wff: If v € V then v € Fy.
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Propositional Formulas

@ Define the set Fy of propositional formulas or well-formed
formulas (wff) for a set of propositional variables V.

@ Inductive definition!
@ A propositional variable is a wff: If v € V then v € Fy.
@ Propositional variables are called atomic formulas.
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Intuition
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Propositional Formulas

@ Define the set Fy of propositional formulas or well-formed
formulas (wff) for a set of propositional variables V.

@ Inductive definition!

@ A propositional variable is a wff: If v € V then v € Fy.
@ Propositional variables are called atomic formulas.

@ Also: (propositional) atoms
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Intuition
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Propositional Formulas

@ T (verum)isawff: T € Fy
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Propositional Formulas

@ T (verum)isawff: T € Fy
@ | (falsum)isawff: L € Fy
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Propositional Formulas

@ T (verum)isawff: T € Fy
@ | (falsum)isawff: L € Fy
@ T and L will have a fixed meaning.
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Propositional Formulas

@ T (verum)isawff: T € Fy

@ | (falsum)isawff: L € Fy

@ T and L will have a fixed meaning.
@ T is always true.
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Intuition
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Propositional Formulas

T (verum)isawff: T € Fy

L (falsum) is a wff: L € Fy

T and L will have a fixed meaning.
T is always true.

L is always false.

Wolfgang Faber Propositional Logic



Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Negation

e If Pis a wff, then (—P) is a wif.
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Negation

o If Pis a wff, then (—P) is a wff.
@ If P e Fy,then (=P) € Fy.

Wolfgang F: Propositional Logic



Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Negation

@ If Pis a wff, then (—P) is a wff.
@ If P e Fy,then (=P) € Fy.
@ (—P) should always have the opposite truth value of P.

@ Note: P is a meta-symbol, and as a symbol not a wff, but a
placeholder for a wff.
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Conjunction

@ If Pand Q are wffs, then (P A Q) is a wff.
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Conjunction

@ If Pand Q are wffs, then (P A Q) is a wff.
o If {P,Q} C Fy,then (PA Q) € Fy.

Wolfgang Faber Propositional Logic



Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Conjunction

@ If Pand Q are wffs, then (P A Q) is a wff.
o If {P,Q} C Fy,then (PA Q) € Fy.
@ (P A Q) should be true if both P and Q are true.
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Conjunction

@ If Pand Q are wffs, then (P A Q) is a wff.

o If {P,Q} C Fy,then (PA Q) € Fy.

@ (P A Q) should be true if both P and Q are true.

@ Note: P and Q can be equal! P, Q are meta-symbols.
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Disjunction

@ If P and Q are wffs, then (P v Q) is a wff.
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Disjunction

@ If P and Q are wffs, then (P v Q) is a wff.
e If {P,Q} C Fy,then (PV Q) € Fy.
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Disjunction

@ If P and Q are wffs, then (P v Q) is a wff.
o If {P, Q} C Fy, then (P\/ Q) € Fy.
@ (P Vv Q) should be true if P, Q or both P and Q are true.
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Syntax Definition
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Formula Structure

Disjunction

@ If P and Q are wffs, then (P v Q) is a wff.

e If {P,Q} C Fy,then (PV Q) € Fy.

@ (P Vv Q) should be true if P, Q or both P and Q are true.
@ Inclusive or!
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Intuition

Syntax Definition
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Disjunction

If P and Q are wffs, then (P Vv Q) is a wiff.

If {P,Q} C Fy,then (PV Q) € Fy.

(P Vv Q) should be true if P, Q or both P and Q are true.
Inclusive or!

Note: P and Q can be equal! P, Q are meta-symbols.
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Implication

@ If Pand Q are wffs, then (P — Q) is a wiff.
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Implication

@ If Pand Q are wffs, then (P — Q) is a wiff.
o If {P,Q} C Fy,then (P — Q) € Fy.
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Implication

@ If Pand Q are wffs, then (P — Q) is a wiff.
e If {P,Q} C Fy,then (P — Q) € Fy.
@ (P — Q) should be true if Q is true whenever P is true.
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Implication

@ If Pand Q are wffs, then (P — Q) is a wiff.

e If {P,Q} C Fy,then (P — Q) € Fy.

@ (P — Q) should be true if Q is true whenever P is true.
@ Sometimes written as D.
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Implication

If P and Q are wffs, then (P — Q) is a wff.

If {P,Q} C Fy, then (P — Q) € Fy.

(P — Q) should be true if Q is true whenever P is true.
Sometimes written as D.

Note: P and Q can be equal! P, Q are meta-symbols.
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Equivalence

@ If Pand Q are wffs, then (P « Q) is a wff.
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Equivalence

@ If Pand Q are wffs, then (P « Q) is a wff.
e If {P,Q} C Fy,then (P < Q) € Fy.
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Intuition
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Examples
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Equivalence

@ If Pand Q are wffs, then (P « Q) is a wff.
o If{P,Q} C Fy,then (P < Q) € Fy.
@ (P < Q) should be true if P has the same truth value as Q.
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Intuition

Syntax Definition
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Equivalence

@ If Pand Q are wffs, then (P « Q) is a wff.

e If {P,Q} C Fy,then (P < Q) € Fy.

@ (P < Q) should be true if P has the same truth value as Q.
@ Note: P and Q can be equal! P, Q are meta-symbols.
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Intuition
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Compressed

P € Fy if and only if

@ PcVor

@ P=Tor

@ P=_lor

@ P=(—Q)where Qe Fyor

@ P=(QAR)where Q Re Fyor
o P= (QvR)whereQReFVor
@ P=(Q— R)where Q,Re Fyor
e P= (QHR)whereQReF\/

Note: P, Q, R are meta-symbols.
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Intuition
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Examples
Convenient Notation
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Grammar

@ Terminals: VU{T, L} U{—~,A,V,—, <}U{(,)}
@ Nonterminal: Fy
o Fy—veV|T|L
Fy — (=Fv)
Fy — (Fv A Fy)
— (Fy V Fy)
Fy — (Fv — Fy)
Fy — (Fv < Fy)

e 6 6 o o
m
<
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Intuition

Syntax Definition
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Examples
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Language Elements

@ V: propositional variables or atoms
@ T,1,—,A,V,—,«: logical connectives
@ (,): auxiliary symbols
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Example Formulas

o Let V = {A, B, C}, the following are wffs:
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Formulas

o Let V = {A, B, C}, the following are wffs:
A
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Intuition
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Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Formulas

o Let V = {A, B, C}, the following are wffs:
A
e (A— 1)
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Intuition

Syntax Definition
Equivalent Definitions
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Convenient Notation
Formula Structure

Example Formulas

o Let V = {A, B, C}, the following are wffs:
A

e (A— 1)

e (A—-A)
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Formulas

o Let V = {A, B, C}, the following are wffs:
A

e (A— 1)

e (A—-A)

@ (AvB)«—(BVA))
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Formulas

o Let V = {A, B, C}, the following are wffs:
A

e (A— 1)

e (A—-A)

@ (AvB)«—(BVA))

® (AVB) = (=(T — (AAB))))
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Formulas

o Let V = {A, B, C}, the following are wffs:

A
o (A1)
e (A—-A)
@ (AvB)«— (BVA)
° ((Av B) = (=(T = (AN B))))
° ((=(A—B)) = ((=A) A C))
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Example Non-Formulas

The following are no wffs:
e AL
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Non-Formulas

The following are no wffs:
e AL
o A— J_)
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Intuition
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Examples
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Example Non-Formulas

The following are no wffs:
e AL
oA 1)
oA~

Wolfgang F: Propositional Logic



Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Non-Formulas

The following are no wffs:
e AL
oA 1)
oA~
° (—)
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Intuition

Syntax Definition
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Examples
Convenient Notation
Formula Structure

Example Non-Formulas

The following are no wffs:
e AL
oA 1)
oA~
° (—)
® ((AB) < B)
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Non-Formulas

The following are no wffs:
e AL
oA 1)
oA~
° (—)
® ((AB) < B)
® ((AVA)« =(T)
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Example Non-Formulas

The following are no wffs:
e AL
oA 1)
oA~
° (—)
® ((AB) < B)
® ((AVA)« =(T)
e (-A—-B—(-AANCVB))
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Eliminating Parentheses

We can omit many ( and ) if we agree on a precedence
("binding strength”) of connectives.
Usual assumption:

- stronger than
@ A stronger than
@ V stronger than
@ — stronger than
°

—
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Intuition
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Convenient Notation
Formula Structure

Examples Minimal Parentheses

e A— L
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Intuition
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Convenient Notation
Formula Structure

Examples Minimal Parentheses

° (A1)
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

o (A1)
e A—A
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Syntax Definition
Equivalent Definitions
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Convenient Notation
Formula Structure

Examples Minimal Parentheses
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

° (A1)
o (A— A)
e AvB+—~ BVA
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Intuition

Syntax Definition
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Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

° (A1)
° (A— A)
e (AVB)«~ (BVA)

Wolfgang Faber Propositional Logic



Intuition
Syntax Definition

Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Examples Minimal Parentheses

((AV B) < (BV A))
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

e (A— 1)

e (A—A)

@ (AvB)« (BVA)

@ AVB— ~(T —-AAB)
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

e (A— 1)

e (A—A)

@ (AvB)« (BVA)

@ AVB«~ (=(T — AAB))
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

e (A— 1)

e (A—A)

@ (AvB)«~ (BVA)

@ AVB«— (=(T — (AAB)))
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Intuition

Syntax Definition
Equivalent Definitions
Examples

Convenient Notation
Formula Structure

Examples Minimal Parentheses

(A= 1)

(A— A)

((AV B) < (BV A))

(AV B) = (=(T — (AN B)))
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Examples Minimal Parentheses

< (=(T = (AnB))))
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Examples Minimal Parentheses

°(A—1)
° (A—A)
o ((A\/B)<—>(B\/A))
@ (AvB) < (=(T—=(AAB))))
@ “AvB—-AAC
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Examples Minimal Parentheses

e (A— 1)

o (A— A

@ (AvB)«< (BVA))

® ((AVB) < (~(T — (AA B))))
@ (A vVB— (-AANC
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Examples Minimal Parentheses

e (A— 1)

o (A— A

@ (AvB)«< (BVA))

® ((AVB) < (~(T — (AA B))))
@ (HA)VB— ((-A)AC)

Wolfgang Faber Propositional Logic



Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Examples Minimal Parentheses
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Examples Minimal Parentheses

< (=(T = (AnB))))
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Formula Structure

Formulas as Trees

Every wff can be written as a formula tree:
-AvVB—-AANC
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Formulas as Trees

Every wff can be written as a formula tree:
-AvVB—-AANC

((A) v B) = (mA) A ©))
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Intuition
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Formulas as Trees

Every wff can be written as a formula tree:
-AvVB—-AANC

((A) v B) = (mA) A ©))

N
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Intuition
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Subformulas

@ Immediate Subformula of a wif P (isf(P)):
) Po if P= _‘PO
@ Pyif P=PyoPyforoce {/\,\/,—>,<—>}
@ Piif P=PyoPyforoe{AV,—, <}
@ Subformula of a wif P (sf(P)):
o Pitself
o If Ps € sf(P) then isf(Ps) C sf(P).
e The minimal set satisfying these conditions.
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Subformulas — Example

Subformulas of AV B — -AA C:
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Subformulas — Example

Subformulas of AV B — -AA C:
@ “AvB—-AANC
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Syntax Definition
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Formula Structure

Subformulas — Example

Subformulas of —Av B — -A A C:
e ~AVB—-AAC
e -AVB
e -AANC
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Subformulas — Example

Subformulas of —Av B — -A A C:
e —AVB—-AAC
e -AVB
e -AANC
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Intuition

Syntax Definition
Equivalent Definitions
Examples
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Formula Structure

Subformulas — Example

Subformulas of —Av B — -A A C:
-AvVB—-AAC

-AvV B

-ANC

_\A

B
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Intuition

Syntax Definition
Equivalent Definitions
Examples
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Subformulas — Example

Subformulas of —Av B — -A A C:
-AvVB—-AAC

-AvV B

-ANC

_\A

B
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Subformulas — Example

Subformulas of —Av B — -A A C:
-AvVB—-AAC

-AvV B

-ANC

_\A

B

C
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Intuition

Syntax Definition
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Subformulas — Example

Subformulas of —Av B — -A A C:
-AvVB—-AAC

-AvV B

-ANC

-A

B

C
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Intuition

Syntax Definition
Equivalent Definitions
Examples
Convenient Notation
Formula Structure

Subformulas — Example

Subformulas of —Av B — -A A C:
-AvVB—-AAC

-AvV B

-ANC

-A

B

C

A
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Meaning of a Formula
Truth Valuations
Interpretations

SEIETI( Models

Outline

e Semantics
@ Meaning of a Formula




Meaning of a Formula
Truth Valuations
Interpretations

SEIETI( Models

Semantics

@ Associate a meaning to wffs in a formal way.
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Meaning of a Formula
Truth Valuations
Interpretations

SEIETI( Models

Semantics

@ Associate a meaning to wffs in a formal way.
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Semantics

@ Associate a meaning to wffs in a formal way.

@ We could associate “sentences” to variables (E.g. “ltis
raining.”)

@ But we are interested only in the truth or falsity of these
sentences.

@ Sentences are informal, truth values can be formalized!
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Meaning of a Formula
Truth Valuations
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SEIETI( Models

Semantics

@ Associate a meaning to wffs in a formal way.

@ We could associate “sentences” to variables (E.g. “It is
raining.”)

@ But we are interested only in the truth or falsity of these
sentences.

@ Sentences are informal, truth values can be formalized!

@ = Associate truth values to atoms, truth values for
formulas follow.
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Truth valuation

@ Truth values are 1 (true) and 0 (false).
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Truth valuation

@ Truth values are 1 (true) and 0 (false).
@ Given a set of propositional variables V,
@ a (truth) valuation is a function v: V — {0,1}.
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Meaning of a Formula
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Truth valuation

@ Truth values are 1 (true) and 0 (false).

@ Given a set of propositional variables V,

@ a (truth) valuation is a function v: V — {0,1}.

@ So for each A € V, either v(A) = 1 or v(A) = 0, not both.
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Truth valuation

@ Truth values are 1 (true) and 0 (false).

@ Given a set of propositional variables V,

@ a (truth) valuation is a function v: V — {0,1}.

@ So for each A € V, either v(A) = 1 or v(A) = 0, not both.
@ Now: Extend v (for atoms) to v* (for wffs).
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Simple Formulas
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Simple Formulas

e v (T)=1
@ v(L)=0
@ Always the same for any v.
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Simple Formulas

e v (T)=1

@ v(L)=0

@ Always the same for any v.
e If Ac V, then v*(A) = v(A).
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Negation

@ —P (where P is a wff)

o
—_

"y
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Negation

@ —P (where P is a wff)
@ —P should always have the opposite truth value of P.

PP
0 1
1
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Negation

@ —P (where P is a wff)
@ —P should always have the opposite truth value of P.
@ v*(=P) =1if (and only if) v*(P) =0
@ v*(—=P) = 0if (and only if) v*(P) = 1
P | —-P
0 1
1
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Conjunction

@ P A Q (where P and Q are wffs)

o0l
_L_LOOO
- O O oO|l>
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Conjunction

@ P A Q (where P and Q are wffs)
@ P A Q should be true if both P and Q are true.

o0l
_L_LOOO
- O O oO|l>
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Conjunction

@ P A Q (where P and Q are wffs)

@ P A Q should be true if both P and Q are true.

o v*(PAQ)=1if(and only if) v*(P) =1, v*(Q) = 1

@ *(PAQ)=0if (and only if) v*(P) =0 or v*(Q) =0

PlQ|lPAQ
0|0 0
110 0
011 0
1 1 1
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Disjunction

@ PV Q (where P and Q are wffs)

PIQ|PvQ
0|0 0
110 1
011 1
1 1 1
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Disjunction

@ PV Q (where P and Q are wffs)
@ PV Q should be true if P or Q are true.

PIQ|PvQ
0|0 0
110 1
011 1
1 1 1
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Disjunction

@ PV Q (where P and Q are wffs)

@ PV Q should be true if P or Q are true.

e v*(PVv Q) =1if (and only if) v*(P) = 1 or v*(Q
e v*(PVv Q)=0if (and only if) v*(P) = 0, v*(Q) = 0

1

PIQ|PvQ
0|0 0
110 1
011 1
1 1 1
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Implication

@ P — Q (where P and Q are wffs)

PIQ[P—
0|0 1
110 0
0|1 1
111 1
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Implication

@ P — Q (where P and Q are wffs)
@ P — Q should be true if Q is true whenever P is true.

PlQ|P—-Q
0|0 1
110 0
01 1
111 1
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Implication

@ P — Q (where P and Q are wffs)

@ P — Q@ should be true if Q is true whenever P is true.

@ v*(P— Q) =1if (and only if) »*(P) =1 and v*(Q) = 1, or
if v*(P) =0

e v*(P— Q) =0if (and only if) v*(P) =1, v*(Q) =0

PlQ|P—-Q
0|0 1
110 0
01 1
111 1
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Equivalence

@ P < Q (where P and Q are wffs)

PlQ|P~Q
0|0 1
110 0
011 0
1 1 1
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Equivalence

@ P < Q (where P and Q are wffs)
@ (P < Q) should be true if P has the same truth value as Q.

PlQ|P~Q
0|0 1
110 0
011 0
1 1 1
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Equivalence

@ P < Q (where P and Q are wffs)

@ (P < Q) should be true if P has the same truth value as Q.
@ v*(P «— Q) =1if (and only if) v*(P) = v*(Q)

@ v*(P «~ Q) =0if (and only if) v*(P) # v*(Q)

PlQ|P~Q
0|0 1
110 0
011 0
1 1 1
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SEIETI( Models

Interpretations

@ An interpretation / consists exactly of a truth valuation v.
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Interpretations

@ An interpretation / consists exactly of a truth valuation v.

@ Given a wif P and an interpretation / consisting of
valuation v, let I(P) = v*(P).
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Interpretations

@ An interpretation / consists exactly of a truth valuation v.

@ Given a wif P and an interpretation / consisting of
valuation v, let I(P) = v*(P).

@ An interpretation associates a unique truth value to every
formula.

@ The truth value is the meaning of the formula.
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Interpretations

@ An interpretation / consists exactly of a truth valuation v.

@ Given a wif P and an interpretation / consisting of
valuation v, let I(P) = v*(P).

@ An interpretation associates a unique truth value to every
formula.

@ The truth value is the meaning of the formula.

@ Denote as set of true variables: {A|Ac V, I(A) =1}

Wolfgang Faber Propositional Logic
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Calculating Truth Values of Formulas

@ Given a formula P and interpretation /, determine /(P).
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Calculating Truth Values of Formulas

@ Given a formula P and interpretation /, determine /(P).
@ Look at the subformulas of P.
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Calculating Truth Values of Formulas

@ Given a formula P and interpretation /, determine /(P).
@ Look at the subformulas of P.
@ Work “bottom up”.
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Calculating Truth Values — Example

Subformulas of AV B — -AA C:

@ “AVB—-AAC
e AVB

-AANC

-A

B

C

A

Interpretation / = {C, A}.
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Calculating Truth Values — Example

Subformulas of AV B — -AA C:

-AvVB—-AAC
-AV B

-ANC

-A

B, I(B)=0

C, I(C)=1

A I(A) =1
Interpretation | = {C, A}.
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Calculating Truth Values — Example

Subformulas of AV B — -AA C:

-AvVB—-AAC

-AV B

-ANC

-A, I(ﬂA) =

B, I(B) =
C, I(C) =

A, I(A) =1

Interpretation / = {C, A}.
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Calculating Truth Values — Example

Subformulas of AV B — -AA C:

-AvVB—-AAC
-AV B, I(-AvB)=0
—“ANC, I(-FANC) =0
-A, I(-A) =

B, I(B)=0

C, I(C)=1

A I(A) =1
Interpretation / = {C, A}.
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Calculating Truth Values — Example

Subformulas of AV B — -AA C:

-AVB—-AANC, I[(-AVB — -AANC) =1
-AV B, I(-AvB)=0

—“ANC, I(-ANC) =0

-A, I(-A) =

B, I(B)=0

C, I(C)=1

A I(A) =1

Interpretation | = {C, A}.
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Calculating Truth Values

For calculating truth values for more than one interpretation, a

table is useful:
[A[B|C| -A| -AVB| -AAC| -AVB— -AAC|

1,01 0 0 0 1
000 1 1 0 0
0|01 1 1 1 1
0/1]0 1 1 0 0
1100 O 0 0 1
o 1]1 1 1 1 1
111]0] O 1 0 0
1]11]1 0 1 0 0
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Models

@ An interpretation / is a model of a wff P if /(P) = 1
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Models

@ An interpretation / is a model of a wff P if /(P) = 1
@ If I(P) =1, then | satisifies P.
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Models

@ An interpretation / is a model of a wff P if /(P) = 1
@ If I(P) =1, then | satisifies P.
o If | satisifes P, we write / = P.
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Models

@ An interpretation / is a model of a wff P if /(P) = 1

@ If I(P) =1, then | satisifies P.

o If | satisifes P, we write / = P.

@ /(P) =1« lisamodel of P < [ satisifies P < [ = P
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Non-Models

@ An interpretation /is not a model of a wff P if [(P) =0
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Non-Models

@ An interpretation /is not a model of a wff P if [(P) =0
@ If /[(P) =0, then I does not satisify P.
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Non-Models

@ An interpretation /is not a model of a wff P if [(P) =0
@ If /[(P) =0, then I does not satisify P.
@ If / does not satisify P, we write | |~ P.
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Non-Models

@ An interpretation /is not a model of a wff P if [(P) =0

@ If /[(P) =0, then I does not satisify P.

@ If / does not satisify P, we write | |~ P.

@ /(P) =0 < lis not a model of P < | does not satisify P <

£ P
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Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Validity

@ A wff Pis valid if all interpretations are models of P.
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Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Validity

@ A wff Pis valid if all interpretations are models of P.
@ A wff Pis invalid if not all interpretations are models of P.
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Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Validity

@ A wff Pis valid if all interpretations are models of P.
@ A wff Pis invalid if not all interpretations are models of P.

@ A wff P is satisfiable if there exists an interpretation which
is a model of P.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity

@ A wff Pis valid if all interpretations are models of P.
@ A wff Pis invalid if not all interpretations are models of P.

@ A wff P is satisfiable if there exists an interpretation which
is a model of P.

@ A wff P is unsatisfiable if no interpretation is a model of P.
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Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Classification of Formulas

A wif P is called
@ tautology if it is valid
@ contradiction if it is unsatisfiable.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Classification of Formulas

A wff P is called
@ tautology if it is valid
@ contradiction if it is unsatisfiable.
@ Tautologies are satisfiable.
@ Contradictions are invalid.
@ Tautologies are never contradictions.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Example

[A[B[C[ -A[-AVB|-AAC[-AVB—-AAC |

1,01 0 0 0 1
000 1 1 0 0
0|01 1 1 1 1
0[110 1 1 0 0
1/0[0] O 0 0 1
o[ 1]1 1 1 1 1
111]0] O 1 0 0
111]1 0 1 0 0
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Example

[A[B[C[ -A[-AVB|-AAC[-AVB—-AAC |

1,01 0 0 0 1
000 1 1 0 0
0|01 1 1 1 1
0[110 1 1 0 0
1/0[0] O 0 0 1
o[ 1]1 1 1 1 1
111]0] O 1 0 0
111]1 0 1 0 0

@ -AV B — —-AA Cisinvalid.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Example

[A[B[C[ -A[-AVB|-AAC[-AVB—-AAC |

1,01 0 0 0 1
000 1 1 0 0
0|01 1 1 1 1
0[110 1 1 0 0
1/0[0] O 0 0 1
o[ 1]1 1 1 1 1
111]0] O 1 0 0
111]1 0 1 0 0

@ -AV B — —-AA Cisinvalid.
@ -AvV B — —-AA C is satisfiable.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Example

[A[B[C[ -A[-AVB|-AAC[-AVB—-AAC |

1,01 0 0 0 1
000 1 1 0 0
0|01 1 1 1 1
0[110 1 1 0 0
1/0[0] O 0 0 1
o[ 1]1 1 1 1 1
111]0] O 1 0 0
111]1 0 1 0 0

@ -Av B— —-AA Cisinvalid.
@ -AV B — —-AA Cis satisfiable.
@ -AV B — —-AA C is neither a tautology nor a contradiction.
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Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Validity, Satisfiability — Examples

eP—-P
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Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Validity, Satisfiability — Examples

@ P — P tautology
@ PA-P

Wolfgang Faber Propositional Logic



Properties Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Validity, Satisfiability — Examples

@ P — P tautology
@ P A =P contradiction
@ Pv-P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Examples

@ P — P tautology

@ P A —P contradiction
@ P v —P tautology

e PVT
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Examples

P — P tautology

P A =P contradiction
P v —P tautology

P v T tautology
PAL
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity, Satisfiability — Examples

@ P — P tautology

@ P A —P contradiction
@ P v —P tautology

@ PV T tautology

@ P A L contradiction
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Validity, Equivalence, Entailment as (Un)Satisfiability

Properties
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence

@ Two wffs P, Q are equivalent if for each interpretation /
I(P) =1(Q).
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence

@ Two wffs P, Q are equivalent if for each interpretation /
I(P) = 1(Q).

@ Two wffs P, Q are equivalent if P and Q have the same
models.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence

@ Two wffs P, Q are equivalent if for each interpretation /
I(P) = 1(Q).

@ Two wffs P, Q are equivalent if P and Q have the same
models.

@ Two wffs P, Q are equivalent if P « Q is valid.

@ Denote equivalence of Pand Qas P = Q.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

e PvQ=QVP
e PAQ=QAP
eP-Q=Q<P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ PV Q= QV P (Commutativity)
@ PA Q= QA P (Commutativity)
@ P+ Q= Q < P (Commutativity)
e PVYP=P

e PAN\P=P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ PV Q= QV P (Commutativity)
@ PA Q= QA P (Commutativity)
@ P+ Q= Q < P (Commutativity)
@ PV P = P (Idempotence)

@ P A P = P (Idempotence)

@ PVT=T
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ PV Q= QV P (Commutativity)
@ PA Q= QA P (Commutativity)
@ P+ Q= Q < P (Commutativity)
@ PV P = P (Idempotence)

@ P A P = P (Idempotence)

@ PVT=T

e PANLl=1
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

e PvLl=P
@ PANT=P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ PV 1 = P (Neutrality)
@ P AT = P (Neutrality)
e PV-P=T
@ PA-P=_1
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

PV 1L = P (Neutrality)
P AT = P (Neutrality)
Pv-P=T
PA=-P=1

-—-P=P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

PV 1L = P (Neutrality)
P AT = P (Neutrality)
Pv-P=T
PA=-P=1
-—-P=P
P—-Q=-PVvQ
P—-Q=-Q— —-P

Wolfgang Faber Propositional Logic



Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

PV 1L = P (Neutrality)

P AT = P (Neutrality)

Pv-P=T

PA=-P=1

-—-P=P

P—-Q=-PvQ

P — Q= -Q — —P (Contraposition)
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ -(PvQ)=-QA-P
e -(PANQ)=-QV-P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ -(PVvQ)=-QA—-P (De Morgan)
e -(PANQ)=-QV P (De Morgan)
e PV(QVR)=(PvQ)V
@ PAN(QAR) =(PAQ)A
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ -(PVvQ)=-QA—-P (De Morgan)

@ -(PAQ)=-QV —P (De Morgan)

@ Pv(QVR)=(PVQ)V R (Associativity)
@ PA(QAR)=(PAQ)A R (Associativity)
@ PAN(QVR)=(PAQ)V(PAR)

e PV(QAR)=(PVQ)A(PVR)
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ -(PVvQ)=-QA—-P (De Morgan)

@ -(PAQ)=-QV —P (De Morgan)

@ PV (QVR)=(PVQ)V R (Associativity)

@ PA(QAR)=(PAQ)A R (Associativity)

@ PA(QVR)=(PAQ)V(PAR) (Distributivity)
@ PV(QAR)=(PVQ)A(PV R) (Distributivity)
@ PAN(PVQ)=P

e PV(PANQ)=P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence — Examples

@ -(PVvQ)=-QA—-P (De Morgan)

@ -(PAQ)=-QV —P (De Morgan)

@ PV (QVR)=(PVQ)V R (Associativity)

@ PA(QAR)=(PAQ)A R (Associativity)

@ PA(QVR)=(PAQ)V(PAR) (Distributivity)
@ PV(QAR) = (P V Q) A (P V R) (Distributivity)
@ PA(PV Q)= P (Absorption)

@ PV (PA Q)= P (Absorption)
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence and Validity

@ A wff Pis atautology if and only if P = T.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence and Validity

@ A wff Pis atautology if and only if P = T.
@ A wff Pis a contradiction if and only if P = 1.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Outline

Q Properties

@ Entailment




Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ Interpretations could be represented as wifs!
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ Interpretations could be represented as wifs!

@ If I={Py,...,Pn},write Py A.. APy A=Ppiqg Ao A=Ppy
where Pp.1,..., Py are the variables which are false in /.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ Interpretations could be represented as wifs!

@ If I={Py,...,Pn},write Py A.. APy A=Ppiqg Ao A=Ppy
where Pp.1,..., Py are the variables which are false in /.

@ Such a formula has exactly one model: /!
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ Interpretations could be represented as wifs!

@ If I={Py,...,Pn},write Py A.. APy A=Ppiqg Ao A=Ppy
where Pp.1,..., Py are the variables which are false in /.

@ Such a formula has exactly one model: /!
@ So far: | = Q for interpretations /.
@ = Define P = Q also for arbitrary wffs.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ Interpretations could be represented as wifs!

@ If I={Py,...,Pn},write Py A.. APy A=Ppiqg Ao A=Ppy
where Pp.1,..., Py are the variables which are false in /.

@ Such a formula has exactly one model: /!

@ So far: | = Q for interpretations /.

@ = Define P = Q also for arbitrary wffs.

@ P = Qif each model of P is also a model of Q.
e If P|= Q, Pentails Q.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ Interpretations could be represented as wifs!

@ If I={Py,...,Pn},write Py A.. APy A=Ppiqg Ao A=Ppy
where Pp.1,..., Py are the variables which are false in /.

@ Such a formula has exactly one model: /!

So far: | = Q for interpretations /.

= Define P |= Q also for arbitrary wffs.

P = Qif each model of P is also a model of Q.

If P = Q, P entails Q.

P = Q holds if and only if M = Q for all models M of P.
E Pif and only if P is a tautology.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e PANQEP
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e PANQEP
e PANQEP—-Q
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e PANQEP
e PANQEP—-Q
°—|P):P—>Q
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e PANQEP

e PANQEP—-Q
°—|P):P—>Q
e PEQ—-P
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples
o
o
o
o
o
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PNQEP
PNQEP—-Q
-P=EP—-Q
P=EQ—-P
P=PvQ



Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

o lfP=Q,thenPAREQ

Wolfgang F: Propositional Logic



Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e If P = Q, then P A R = Q (Monotonicity)
@ PNREQQifandonlyif P=R— Q
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e If P = Q, then P A R = Q (Monotonicity)
@ PARE Qifandonly if P = R — Q (Deduction Theorem)
@ PANRE-Qifandonlyif P=Q — —-R
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment — Examples

e If P = Q, then P A R = Q (Monotonicity)
@ PARE Qifandonly if P = R — Q (Deduction Theorem)

@ PARE-Qifandonly if P = Q — —R (Contraposition
Theorem)
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Outline

Q Properties

@ Validity, Equivalence, Entailment as (Un)Satisfiability
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity

@ Pisvaldif T =P
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Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity

@ Pisvaldif TEP
@ What about —-P?




Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity

@ Pisvaldif T =P
@ What about —-P?
@ — P is then unsatisfiable.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity

@ Pisvaldif TEP

@ What about —-P?

@ —P s then unsatisfiable.

@ To check whether P is valid:

@ Check whether —P is satisfiable.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Validity

@ Pisvaldif TEP

@ What about —-P?

@ —P s then unsatisfiable.

@ To check whether P is valid:

@ Check whether —P is satisfiable.
@ If yes, Pis not valid.

@ If no, P is valid.
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence

@ P=Qholds if P — Q is valid.
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence

@ P=Qholds if P — Q is valid.
@ To check whether P = Q holds:
@ Check whether -(P < Q) is satisfiable.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Equivalence

@ P = Qholds if P — Qs valid.

@ To check whether P = Q holds:

@ Check whether —=(P « Q) is satisfiable.
@ If yes, P = Q does not hold

@ If no, P = Q holds.
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ P = Qholds if P— Q is valid (Deduction Theorem).
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ P = Qholds if P— Q is valid (Deduction Theorem).
@ To check whether P = Q holds:
@ Check whether -(P — Q) is satisfiable.
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Entailment

@ P = Qholds if P — Q is valid (Deduction Theorem).
@ To check whether P = Q holds:

@ Check whether -(P — Q) is satisfiable.

@ If yes, P = Q does not hold

@ Ifno, P = Q holds.

Wolfgang Faber Propositional Logic



Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Formula Substitution

@ For wffs P, Q, R:

@ P[R/Q] denotes the formula in which all occurrences of Q
are replaced by R

Wolfgang Faber Propositional Logic



Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Formula Substitution

For wffs P, Q, R:

P[R/Q)] denotes the formula in which all occurrences of Q
are replaced by R

@ Example: Py =(A— B)A (B — A)
e y=A—B R =-AVvB
® Pi[R/Qy] =
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Formula Substitution

For wffs P, Q, R:

P[R/Q)] denotes the formula in which all occurrences of Q
are replaced by R

Example: Py = (A— B) A (B — A)
Q1 =A— B, R1 =-AvB
Pi[Ri/Qi] = (-AV B) A (B — A)
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Formula Substitution

@ For wffs P, Q, R:

P[R/Q)] denotes the formula in which all occurrences of Q
are replaced by R

Example: Py = (A— B) A (B — A)
Q=A—-B R =-AVvB
Pi[Ri/Qi] = (~AV B) A (B — A)
Example: P, = (A— B) A (A— B)
Q=A—B R =-AVvB

P2[R2/ Qo] =
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Validity, Satisfiability

Equivalence

Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Formula Substitution

@ For wffs P, Q, R:

P[R/Q)] denotes the formula in which all occurrences of Q
are replaced by R

Example: Py = (A— B) A (B — A)
Q=A—-B R =-AVvB
Pi[Ri/Qi] = (~AV B) A (B — A)
Example: P, = (A— B) A (A— B)
Q=A—-B R,=-AVB

P2[Re/ Q] = (~AV B) A (-AV B)
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Substitution Theorem

For wffs P, Q, R, where Q = R, we obtain P = P[R/Q)]
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Substitution Theorem

For wffs P, Q, R, where Q = R, we obtain P = P[R/Q)]

By induction over the formula structure.
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Validity, Satisfiability
Equivalence
Entailment

Validity, Equivalence, Entailment as (Un)Satisfiability

Properties

Substitution Theorem

By induction over the formula structure.

For wffs P, Q, R, where Q = R, we obtain P = P[R/Q)]
[

@ Example: -(AAB) — C
e -(AANB)=-Av-B
@ -(ANB)—-C=(-Av-B)—-C
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Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Outline

e Normal Forms
@ Why Normal Forms?




Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Simplify Formulas

@ Many connectives: T, L, =, A, V, —, <
@ Diverse structure
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Simplify Formulas

@ Many connectives: T, L, =, A, V, —, <
@ Diverse structure

@ Can we find a subset of connectives C, such that any wff is
equivalent to a formula with connectives of C?
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Simplify Formulas

@ Many connectives: T, L, =, A, V, —, <
@ Diverse structure

@ Can we find a subset of connectives C, such that any wff is
equivalent to a formula with connectives of C?

@ Can we find a formula structure, such that any wff is
equivalent to a formula of this structure?
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Eliminating Connectives

@ Consider only —, A, V!
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Eliminating Connectives

@ Consider only —, A, V!

@ T =-AV A (We need at least one variable for this!)

@ | =-AA A(We need at least one variable for this!)

e P—-Q=-PvQ

PP Q=P-QN(Q—=P)=(—-PvQ)A(—-QVP)

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Eliminating Connectives

@ Consider only -, A, V!

@ T =-AV A (We need at least one variable for this!)

@ | =-AA A (We need at least one variable for this!)

eP—-Q=-PVvQ

PP Q=P-QN(Q—=P)=(—-PvQ)A(—-QVP)

@ Use repeated formula substitution to eliminate other
connectives.

Every formula is equivalent to one containing only
connectives —, A, V.
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Limiting Structure

@ Conjunctive Normal Form (CNF)
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Limiting Structure

@ Conjunctive Normal Form (CNF)

@ CIANCA...NCp

e Each conjunct or clause C;isoftheform Ly VLo V...V Ly,

e Each literal L; is a variable A or the negation of a variable
—-A.
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Limiting Structure

@ Conjunctive Normal Form (CNF)

@ CIANCA...NCp

e Each conjunct or clause C;isoftheform Ly VLo V...V Ly,

e Each literal L; is a variable A or the negation of a variable
—-A.

@ Disjunctive Normal Form (DNF)
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Limiting Structure

@ Conjunctive Normal Form (CNF)
@ CINCA...NC,
e Each conjunct or clause C;isoftheform Ly VLo V...V Ly,
e Each literal L; is a variable A or the negation of a variable
-A.

@ Disjunctive Normal Form (DNF)

e DyvDyVv...vVDy

e Each disjunct D; is of the form Ly ALy A ... A Lpy,.

e Each literal L; is a variable A or the negation of a variable
—-A.
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Outline

e Normal Forms

@ Conjunctive Normal Form
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

CNF Transformation

@ Eliminate T, 1, —, <.
@ Apply De Morgan equivalences:
e -(PvQ)=-QA-P
e -(PAQ)=-QV-P
© Apply double negation equivalences:
e —P=P
© Apply Distributivity equivalence:
e PV(QAR)=(PVQ)A(PVR)
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

CNF Transformation

@ Eliminate T, 1, —, <.
@ Apply De Morgan equivalences:
e -(PvQ)=-QA-P
e -(PAQ)=-QV-P
© Apply double negation equivalences:
e —P=P
© Apply Distributivity equivalence:
e PV(QAR)=(PVQ)A(PVR)

Order of 2-4 does not matter!

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

® ~((A—B)A(B < 0))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

o ~((A—B)A(B < C))
@ ~((A— B)A (B« C))=—((-AVB)A(B < C))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

o ~((A—B)A(B < C))
@ ~((A— B)A (B« C))=~((-AV B)A (B« C))
@ ~((mAVB)A(B < C)) = ~((-AVB)A((—-BVC)A(=CVB)))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

® (A= B)A (B ()

° ~((A—=B)A (B = C))=~((-AVB)A (B~ C))

° ﬂ((ﬂAVB) (B = C)) = ~((-AVB)A((-BVC)A(-CVB)))
@ ~((mAVB)A (ﬂB\/ C)A(-CVB)))=

~(=AV B) V ~((~BV C) A (=CV B))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

(A= B)A(B-C))

(A BN (B 0) = (A B (B O)

~((~FAVB)A(B <> C)) = ~((~AVB)A((~BV C)A(~CVB)))

~((~AV B) A ( BV C)A(~CV B))) =

~(=AV B)V ~((-BV C) A (=C V B))
)

@ (mAvB)V—((-BVvC)A(-CVB)) =
(——AAN=B)V=((-BVv C)A(-CV B))

—
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

o ~((A—B)A(B < C))

° ﬂ((AHB)/\(BHC))E ~((-AVB) A (B~ C))

® ~((mAVB)A(B < C)) = ~((-~AVB)A((~BVC)A(-CVB)))

o —((-AV B) A ((- B\/C)/\( CV B))) =
~(=AV B)V ~((-BV C) A (=C V B))
“(AV B)V ~((~BV C) A (~CV B))
(—=A A -B)V =((~BV C) A (~CV B)

o (-——AA-=B)V ~((-BV C)A(~CV B)
(AA-B)V ~((~BV C) A (~CV B))

~— —
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

® ~((A—B)A(B+ C))

° ~((A— B)A(BH C)) = ~((-AVB)A (B = ()

® ~((-AVB)A(B < C)) = ~((-AVB)A((-BVC)A(=CV B)))

e ((mAVB)A ( Bv C)A(-CVB))) =
=(=AV B)V —((-BV C)A(=CV B))

@ -(—AVB)V~((-BVC)A(-CV B)) =
(——AA-B)V—((-BV C)A(=CV B))

@ (——AA-B)V—((-BVC)A(-CVB))=
(AN=B)V=((=BV C)A(—CV B))

@ (AN-B)V—((-BVC)A(-CVB)) =
(AN=B)V (~(=BV C)V—(—-CV B))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (2)

® (AA—=B)V (~(~BV C)V ~(~=CV B)) =
(AA=B)V ((-——B A —~C)V~(~CV B))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (2)

® (AA=B)V (~(=BV C)V ~(~CV B)) =
(AA-B)V ((-+=B A ~C)V ~(~CV B))

@ (AA-B)V ((—~BA-C)V~(~CVB)) =
(AA-B)V ((BA-C)V—~(~CV B))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (2)

@ (AA-B)V (~(-BV C)V~(~CVB))=
(AN=-B)V ((——BA—-C)V ~(=CV B))
@ (AAN-B)V((—BA-C)V—(-CVB))=
(AAN=B)V ((BA=C)V~(-CV B))
@ (AA-B)V((BA-C)V—(=CVB))=
(AN-B)V ((BA-C)V (-—~CA—B))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (2)

@ (AA-B)V (~(-BV C)V~(~CVB))=
(AN=-B)V ((——BA—-C)V ~(=CV B))

@ (AAN-B)V((—BA-C)V—(-CVB))=
(AAN=B)V ((BA=C)V~(-CV B))

@ (AA-B)V((BA-C)V—(=CVB))=
(AN-B)V ((BA-C)V (-—~CA—B))

@ (AAN-B)V((BA-C)V (-—CA-B)) =
(AN=B)V ((BA=C)V (CA-B))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (3)

@ (AN-B)v((BA-C)V(CA-B))=
(AV((BA=C)V(CA-B)))A(=BV((BAN=C)V(CA-B)))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (3)

e (AN-B)v((BAN-C)V(CA-B)) =
(AV((BA=C)V(CA=B)))A(=BV((BA-C)V(CA-B)))

o (Av((BA-C)V(CA=B))YA(=BV((BA-C)V(CA—-B))) =

(AV((BA=C)VC)A((BAN-C)V-B)))A(=BV((BA

~C) Vv (CA=B)))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (3)

o (AN-B)V ((BA=C)V(CA-B))=
(AV ((BA=C)V (CA-B)))A(=BV ((BA=C)V(CA=B)))
@ (AV((BA-C)V(CA-B))A(=BV((BA-C)V(CA-B))) =
(AV (((BA=C)V C) A ((BA=C)V -B)))A(=BV ((BA

-C) Vv (CA~-B)))

o (AV((BA-C)V C)A((BA=C)V-B))A(-BV ((BA

~C)V(CA-B)))=(AV(((BVC)A(=CV C)) A((BA

—~C)V=B))) A (-BV ((BA-C)V (CA—B)))
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (3)

o (AN-B)V ((BA=C)V(CA-B))=
(AV ((BA=C)V (CA-B)))A(=BV ((BA=C)V(CA=B)))
@ (AV((BA-C)V(CA-B))A(=BV((BA-C)V(CA-B))) =

(AV ((BA=C)V C)A((BA-C)V-B)))A(=BV ((BA
-C) Vv (CA~-B)))

o (AV((BA-C)V C)A((BA=C)V-B))A(-BV ((BA
~C)V (CA-B)))=(AV ((BVC)A(=CV C))A((BA
—~C)V=B))) A (-BV ((BA-C)V (CA—B)))

o (AV (((BV C)A(=CV C))A((BA—C)V=B)))A(-BV
((BA=C)V (CA=B)))=(AV(((BVC)A(=CV C)) A
((BV =B) A (=CV =B)))) A (=BV ((BA—-C) V (C A -B)))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (4)

o (AV(((BVC)A(~CV C))A((BV-B)A(~CV-B))))A(-BV
(BA=C)V (C/\ﬂB))) ((AV ((BV C)A(=CV C))) A (AV
((BV=B)A(=CV=B)))A(-BV((BA-C)V(CA-B)))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (4)

® (AV(((BVC)A(~CVC))A((BV-B)A(~CV-B))))A(~BV
(BA=C)V (CA-B))) = ((AV((BV C)A(=CV C)))A(AV
((BV =B) A (=CV ~B)))) A (=BV ((BA—~C) V (C A -B)))
o (AV((BV C) (=CV O A (AV ((BV=B)A(~CV
—B)))) A(=BV ((BA=C)V(CA-B)))=
(((Av (BV C)) (AV (=CV C) A(AV ((BV=B)A(~CV
—B)))) A (=BV ((BA=C)V (CA=B)))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (4)

® (AV(((BVC)A(~CVC))A((BV-B)A(~CV-B))))A(~BV
(BA=C)V (CA-B))) = ((AV((BV C)A(=CV C)))A(AV
((BV =B) A (=CV ~B)))) A (=BV ((BA—~C) V (C A -B)))

o (AV((BVC)A(=CVC))A(AV((BV-B)A(~CV
~B)))) A (=BV ((BA=C) V (C A—=B))) =
((AV (BV C)) A (AV (=CV C))) A(AV ((BV=B) A (~CV
—B)))) A (=BV ((BA=C)V (CA=B)))

o ((AV(BV C))A(AV (~CV C)) A(AV ((BV -B) A (~CV
~B)))) A (=BV ((BA—=C) V (C A—=B))) =
((AV (BV C)) A(AV (=CV C)) A ((AV (BV—=B)) A (AV
(=CV —=B)))) A (=B V ((BA—C)V (C A-B)))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (5)

@ ((AV(BVC)AN(AV(=CVO))A((AV(BV-B)A(AV
(=CV-B))A(=BV(BAN-C)V(CA-B))) =
(AV(BVC)A(AV(-CVO))A((AV(BV-B))A(AV
(=CV=B)) A (=BV((BA=C)V C)A((BA=C)V-B)))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (5)

e ((AV(BVC)A(AV(~CV C))) v
~CV =B)))) A (=BV ((BA-C)V (CA -

((AV(BV C))A(AV (-CV C))) v (B -B)) A (AV
~CV=B) A (=BV(((BA-C)VC)A((BA=C)V—B)))
((AV(BV C)A(AV (-CV C)) A ((AV (BV=B)) A (AV
~CV=B))))A(=BV (((BA-C)V C)A((BA-C)V-B))) =
(AV(BV C))A(AV(~CV C)))A((AV(BV-B))A(AV(~CV
~B)))) A (=BV (((BV C) A (=CV C)) A ((B A ~C) V —B)))

(B\/ﬂB))/\(A\/

>A>
O
)>>)>
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (5)

@ ((AV(BVC)A(A Y
-CV-B)A(=BV( =
((AV(BVC))A(A \/(B\/ﬁB)) (AvV
—~CVv-B)))A(=BV((BA=C)V C)A((BA=C)V—B)))
(AV(BVC)ANAV(-CVO)))A((AV(BV-B)A(AV
~CV-B)A(=BV(((BAN-C)VC)A((BA-C)V-B))) =
((AV(BVC))A(AV(=CVC)))A((AV(BV-B))A(AV(=CV

B AN (=BV((BVC)A(=CVC)A((BA=C)V =B)))
® ((AV(BVC)A(AV(=CVO)))N((AV(BV-B))A(AV(-CV

—B)))A(=BV(((BVC)A(=CVC))A((BA-C)V=B))) =
(((AV(BVC)A(AV(=CVC)))A((AV(BV=B))A(AV(-CV
—B)))A(=BV(((BVC)A(=CVC))A((BV-B)A(~CV-B))))

Wolfgang Faber Propositional Logic

Vv (=Cv0)))
(BA-C)V
V(=Cv ()

(B\/ﬂB))/\(A\/

>A>
O
)>>)>
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Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (6)

o (((AV (BVC))A(AV(=CVC)))A((AV (BV-B)) A (AV
(=CV=B))) A (=BV (((BV C) A (=CV C)) A ((BV -B) A
(=CV=B))) = ((AV (BVC) A (AV(=CV C)) A ((AV
(BV =B)) A (AV (=CV =B)) A (=B V ((BV C) A (=CV
C))) A (=BV ((BV =B) A (=CV —B))))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (6)

o (((AV (BVC))A(AV(=CVC)))A((AV (BV-B)) A (AV
(=CV=B))) A (=BV (((BV C) A (=CV C)) A ((BV -B) A
(=CV=B))) = ((AV (BVC) A (AV(=CV C)) A ((AV
(BV =B)) A (AV (=CV =B)) A (=B V ((BV C) A (=CV
C))) A (=BV ((BV =B) A (=CV —B))))

o (((AV (BVC))A(AV(=CV C))A((AV (BV-B))A(AV
(=CV =B)))) A((=BV ((BV C) A (=CV C))) A (=B V ((BV
—B)A(~CV=B))) = ((AV (BV C) A (AV (=CV C))) A

(AV (BV=B))A(AV (=CV —=B))) A ((-BV (BV C)) A
(=B V (<CV C))) A (=BV ((BV =B) A (~C V ~B))))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (7)

o (((AV (BVC))A(AV(-CVC)A((AV(BV -B))A(AV
(=CV-B))A(((=BV(BVC))A(=BV(=CVC)))A(-BV
(BV =B) A (= C\/—B))))E(((A\/(B\/ CHA(AV (-CV
C)))A((AV(BV=B))A(AV(=CV=B))))A(((=BV(BV C))A
(=BV (=CV ) A((-BV(BV=B))A(=BV(=CV-B))))

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation (7)

@ ((AV(BVC)AN(AV(-CVO))AN(AV(BY-B)AN(AV
(=CV=B)))A(((=BV (BVC)) A (-BV(=CVC)))A(=BV
((Bv-B)A(—~CV-B)))) = (((A\/ (BVC)A(AV(-CV
C))A((AV(BV=B))A(AV(=CV=B))))A(((=BV(BVC)) A
(=BV (=CV C))A((=BV(BV=B))A(=BV(=CV=B)))

@ Flattening:

@ (AVBVC)A(AV-CVC)A(AVBY-B)A(AV-CV-B)A
(=BVBV C)A(~BV~CV C)A(-BVBV-B)A(~BV-CV-B)

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

® ~((A— B)A(B+ C))
o =

@ (AVBVC)A(AV-CV C)A(AVBV-B)A(AV-CV-B)A
(-BvBvC)AN(-Bv-CVC)AN(-BvBvV-B)A(-Bv—-CVv-B)

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Example CNF Transformation

® ~((A— B)A(B+ C))
o =

@ (AVBVC)A(AV-CV C)A(AVBV-B)A(AV-CV-B)A
(-BvBvC)AN(-Bv-CVC)AN(-BvBvV-B)A(-Bv—-CVv-B)

@ = (eliminate clauses containing P and —P, those are
equivalent to T and are hence neutral for A)

@ (AVBVC)A(AV-CV-B)A(—-BV-0)

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

CNF Representation

© (Ly, VL V.. VL )N (Li,VLi,V...VLm)AN...N(L,V
Lo, V...V Ln,)

@ It is clear where which connectives are, so write it as a set
of clauses.

@ Write clauses as sets of literals.
@ Write CNFs as a set of sets of literals:
(*}

Ly, Loy oL 3 {Lys Loy oo Ly b { Lty Loy, -y L}

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

Outline

e Normal Forms

@ Disjunctive Normal Form

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

DNF Transformation

@ Eliminate T, 1, —, <.

@ Apply double negation equivalence:
e —P=P

© Apply De Morgan equivalences:
e ~(PvQ@Q)=-PAr-Q
e «(PANQ)=-PVv-Q

© Apply Distributivity equivalence:
e PAN(QVR)=(PAQ)V(PAR)

Wolfgang Faber Propositional Logic



Why Normal Forms?
Normal Forms Conjunctive Normal Form
Disjunctive Normal Form

DNF Transformation

@ Eliminate T, 1, —, <.

@ Apply double negation equivalence:
e —P=P

© Apply De Morgan equivalences:
e ~(PvQ@Q)=-PAr-Q
e «(PANQ)=-PVv-Q

© Apply Distributivity equivalence:
e PAN(QVR)=(PAQ)V(PAR)

Order of 2-4 does not matter!

Wolfgang Faber Propositional Logic



Computation

Satisfiability: Complexity

Theorem (Cook 1971)
Satisfiability of wffs is NP-complete

Wolfgang Faber Propositional Logic



Computation

Satisfiability: Complexity

Theorem (Cook 1971)
Satisfiability of wffs is NP-complete

@ First NP-completeness proof ever!

@ Membership: Guess an interpretation / (from 2"
possibilities, for n variables), verify in polynomial time that
I = ¢.

@ Hardness: Simulate nondeterministic Turing machine with
polynomial time bound.

Wolfgang Faber Propositional Logic



Computation

Satisfiability: Methods

@ Truth Table
e DLL

@ Resolution
@ Tableaux
o ...

Wolfgang Faber Propositional Logic



Computation

Satisfiability: Methods

@ Truth Table
e DLL

@ Resolution
@ Tableaux
o ...

Many require CNF input!

Wolfgang Faber Propositional Logic
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