Beyond SAT
 QSAT: Quantified propositional logic

Marco Maratea, Wolfgang Faber

Ragionamento Automatico, Esercitazione III 2006

Outline

(1) Beyond SAT : QSAT: Quantified SAT

- Quantified Boolean formulas (QBFs) satisfiability
- Applications of QBFs and QBF reasoning
- Solving methods for QBFs
- State of the art in QBF reasoning

Outline

(1) Beyond SAT : QSAT: Quantified SAT

- Quantified Boolean formulas (QBFs) satisfiability
- Applications of QBFs and QBF reasoning
- Solving methods for QBFs
- State of the art in QBF reasoning

The syntax of QBFs

- Every $Q_{i}(1 \leq i \leq n)$ is a quantifier, either existential \exists or universal \forall
- Every z_{i} is a Boolean variable
- ϕ is a Boolean formula over the set of variables $\left\{z_{1}, \ldots z_{n}\right\}$ using standard Boolean connectives and the constants \perp and T

Examples

$\forall y \exists x \cdot(x \leftrightarrow y)$
forall values of y, is there a value for x such that $x \leftrightarrow y$ is true?
$\exists x \forall y .(x \leftrightarrow y)$
Is there a value for x such that for all values of $y, x \leftrightarrow y$ is true?
$\exists x_{1} \forall y \exists x_{2} \cdot\left(x_{1} \wedge y\right) \rightarrow x_{2}$
Is there a value for x_{1} such that for all values of y, there exists a value of x_{2}, such that x_{1} and y imply x_{2} ?
$\exists x_{1} \exists x_{2} \exists x_{3} .\left(x_{1} \wedge x_{2}\right) \leftrightarrow x_{3}$
Is the Boolean formula $\left(x_{1} \wedge x_{2}\right) \leftrightarrow x_{3}$ satisfiable?
$\forall y_{1} \forall y_{2} \cdot \neg\left(y_{1} \wedge y_{2}\right) \leftrightarrow\left(\neg y_{1} \vee \neg y_{2}\right)$
Is the Boolean formula $\neg\left(y_{1} \wedge y_{2}\right) \leftrightarrow\left(\neg y_{1} \vee \neg y_{2}\right)$ a tautology?

The semantics of QBFs

Truth of a QBF φ

- If the prefix is empty then φ 's truth is defined according to the semantics of Boolean logic
- If $\varphi=\exists x \psi$ then φ is true iff $\left(\varphi_{x} \vee \varphi_{\neg x}\right)$ is true
- If $\varphi=\forall y \psi$ then φ is true iff $\left(\varphi_{y} \wedge \varphi_{\neg y}\right)$ is true

Definition of φ_{x} and $\varphi_{\neg x}$
Given $\varphi=Q_{1} z_{1} \cdots Q_{n} z_{n} \phi\left(z_{1}, \ldots, z_{n}\right)$ and $x=z_{i}$ then

- $\varphi_{x}=Q_{1} z_{1} \cdots Q_{i-1} z_{i-1} Q_{i+1} z_{i+1} \cdots Q_{n} z_{n} \phi\left[\top / z_{i}\right]$
- $\varphi_{\neg x}=Q_{1} z_{1} \cdots Q_{i-1} z_{i-1} Q_{i+1} z_{i+1} \cdots Q_{n} z_{n} \phi\left[\perp / z_{i}\right]$

Reasoning and complexity (I)

$$
\begin{array}{cc}
Q_{1} z_{1} \cdots Q_{n} z_{n} \phi\left(z_{1}, \ldots, z_{n}\right) & n \geq 0 \\
Q_{1} Z_{1} \cdots Q_{k} Z_{k} \phi\left(Z_{1}, \ldots, z_{k}\right) & k \geq 0
\end{array}
$$

- Every $Q_{i}(1 \leq i \leq k)$ is a quantifier, sucht that $Q_{i} \neq Q_{i+1}$
- Z_{1}, \ldots, Z_{k} define a partition of Z
- $k-1$ is the number of alternations

Reasoning and complexity (II)

Let φ be an expression of the form $Q_{1} Z_{1} \cdots Q_{k} Z_{k} \phi\left(Z_{1}, \ldots, Z_{k}\right)$
Problems
QSAT Is φ true?
QSAT $_{k}$ Is φ true with k known a priori?

Complexity
QSAT is the prototypical PSPACE-Complete problem
QSAT $_{k}$ is $\Sigma_{k} P$-Complete if $Q_{1}=\exists$ and $\Pi_{k} P$-Complete if

$$
Q_{1}=\forall
$$

Outline

(1) Beyond SAT : QSAT: Quantified SAT

- Quantified Boolean formulas (QBFs) satisfiability
- Applications of QBFs and QBF reasoning
- Solving methods for QBFs
- State of the art in QBF reasoning

Applications: overview

Theory \& Practice

In theory every problem in PSPACE can be encoded efficiently into some QBF reasoning problem. In practice QSAT solvers must be competitive w.r.t. specialized algorithms

Domains

- Equivalence of partially specified circuits
- Conformant/Conditional planning
- Symbolic reachability
- Games, reasoning about knowledge,

Equivalence of circuits

Setting

$\varphi_{i}(X)(1 \leq i \leq m)$ is the i-th output of the specification φ over the inputs X
$\psi_{i}(X, Y)(1 \leq i \leq m)$ is the i-th output of the circuit ψ over the inputs X and the black box variables Y

Problem

Does the circuit ψ satisfy the specification φ ?

QBF encoding

If the QBF $\exists X \forall Y \bigvee_{i=1}^{m} \varphi_{i}(X) \oplus \psi_{i}(X, Y)$ is true then ψ does not fullfill the specification φ

Conformant planning

Setting

F is the set of fluents, A is the set of actions $I(F), G(F)$ encode the set of initial and goal states, resp. $\tau\left(F, A, F^{\prime}\right)$ is the set of possible transitions

Problem

Given a non-deterministic action domain, is there a sequence of actions that is guaranteed to achieve the goal (in k steps)?

QBF encoding

$$
\exists A_{0} \cdots A_{k-1} \forall F_{0} \cdots \forall F_{k}\left(I\left(F_{0}\right) \wedge \bigwedge_{t=0}^{k-1} \tau\left(F_{t}, A_{t}, F_{t+1}\right) \rightarrow G\left(F_{k}\right)\right)
$$

Symbolic reachability

Setting

Vertices are set of boolean variables, and $\tau(S, T)$ is a Boolean formula which is true when there is an edge between S and T

Problem

Is there a walk between two (sets of) states?

QBF encoding

$$
\left\{\begin{aligned}
& \varphi^{i}(S, T)=\exists Z^{i} \forall y^{i} \exists S^{i} \exists T^{i}(\left(y^{i} \rightarrow\left(S \leftrightarrow S^{i} \wedge Z^{i} \leftrightarrow T^{i}\right)\right) \wedge \\
&\left(\neg y^{i} \rightarrow\left(Z^{i} \leftrightarrow S^{i} \wedge T \leftrightarrow T^{i}\right)\right) \wedge \\
&\left.\varphi^{i-1}\left(S^{i}, T^{i}\right)\right) \\
& \varphi^{0}=\tau(S, T)
\end{aligned}\right.
$$

Outline

(1) Beyond SAT : QSAT: Quantified SAT

- Quantified Boolean formulas (QBFs) satisfiability
- Applications of QBFs and QBF reasoning
- Solving methods for QBFs
- State of the art in QBF reasoning

Basics

Input formula

$\varphi=Q_{1} Z_{1} \cdots Q_{k} Z_{k} \phi\left(Z_{1}, \ldots, Z_{k}\right)$ with $k \geq 0$ where ϕ is a
Boolean formula in conjunctive normal form

More notation

- level(z) denotes the value i s.t. $z \in Z_{i}$
- $|I|$ denotes the variable occurring in I
- level $(I)=$ level $(|I|)$ is the level of a literal $/$

DLL-based search algorithm

DLL-QSAT (φ)
1 if $\varphi=\emptyset$ then return TRUE
2 if $\emptyset \in \varphi$ then return FALSE
3 if "/ is unit in φ " then
return $\operatorname{DLL}-\operatorname{QSAT}\left(\varphi_{l}\right)$
4 if $\varphi=\exists x \psi$ then
return $\operatorname{DLL-QSAT}\left(\varphi_{x}\right)$ or $\operatorname{DLL-QSAT}\left(\varphi_{\neg x}\right)$
else
return $\operatorname{DLL-QSAT}\left(\varphi_{x}\right)$ and
$\operatorname{DLL-QSAT}\left(\varphi_{\neg x}\right)$

Unit literal

A literal $/$ is unit in φ iff it is the only existential in some clause $c \in \phi$ and all the universal literals $l^{\prime \prime} \in c$ are s.t. level(I^{\prime}) > level($/$)
φ_{x} is $\operatorname{assign}(x, \phi)$!

An example about search

$$
\exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
$$

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \quad{ }_{1}=0 \text { OR node } \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}_{3}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\}, \quad\right. \text { OR } \\
& \left.\quad\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

An example about search

$$
\begin{aligned}
& \quad \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \quad x_{1}=0 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}_{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\}, \quad\right. \text { OR node } \\
& \left.\quad\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \text { AND node } \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\},\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

An example about search

An example about search

$$
\begin{aligned}
& \quad \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \quad x_{1}=0 \text { OR node } \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \text { AND node }\left.\right|^{y=1} \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\},\right.\right. \\
& \left.\left.\left\{x_{2}, x_{3}\right\}\right\} \quad\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=1 \left\lvert\, \begin{array}{l}
\text { solution }
\end{array}\right.
\end{aligned}
$$

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{1}=0 \quad \text { OR node } \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \text { AND node } \quad y=1 \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\},\right.\right. \\
& \left.\left.\left\{x_{2}, x_{3}\right\}\right\} \quad\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=1 \left\lvert\, \begin{array}{rr}
x_{2}=0 \\
x_{3}=0 \\
\{ \} & \{\{ \}\}
\end{array}\right. \\
& \text { solution }
\end{aligned}
$$

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{1}=0 \quad \text { OR node } \quad x_{1}=1 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, x_{2}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \frac{\text { AND node }}{} \quad y=1 \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\},\right.\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=1 \left\lvert\, \begin{array}{r}
x_{2}=0 \\
x_{3}=0 \\
\{ \}
\end{array}\right. \\
& \text { solution } \\
& \text { conflict }
\end{aligned}
$$

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{1}=0 \quad \text { OR node } \quad x_{1}=1 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, x_{2}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{x_{2}\right\},\left\{\bar{x}_{2}\right\},\right.\right.\right.\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=\left.1\right|_{\{ \}}{ }_{\text {solution }} \\
& \begin{array}{c}
x_{2}=0 \\
x_{3}= \\
\\
\{\{\}\} \\
\times \text { conflict }
\end{array} \\
& x_{2}=1 \left\lvert\, \begin{array}{l}
\left.\left\{x_{2}, x_{3}\right\}\right\} \\
\{ \} \\
x_{2}=0 \mid \\
\{\{ \}\}
\end{array}\right.
\end{aligned}
$$

Backjumping

Problem

Time spent visiting parts of the search space in vain because some choices may not be responsible for the result of the search

Solution

(1) for each node of the search tree, compute a subset (called "reason") of the assigned variables which are responsible for the current result; and
(2) while backtracking, skip nodes which do not belong to the reason for the discovered conflicts/solutions:

CBJ Conflict backjumping
SBJ Solution backjumping

Learning

Problem

CBJ and SBJ may do the same wrong choices in different branches

Solution

Learn (some of) the reasons computed during backjumping:
CBJ \Rightarrow conflict learning of "nogoods" (as in SAT)
SBJ \Rightarrow solution learning of "goods" (specific of QBF):

- a good is a term (conjunction of literals)
- goods are to be treated as if in disjunction with the matrix

Learning in practice

Problem

The number of computed reasons can be exponential, thus it can be practically unfeasible to learn all the reasons

Solution

We must introduce criteria for:

- deciding when to store a computed reason ; and
- deciding when to forget a stored reason (e.g., periodically clean up the learned constraints storage)

Alternative approaches

Resolution \& Expansion

- eliminate existential variables using resolution
- expand universal variables $\forall x F(x)=F_{x} \wedge F_{\neg x}$

Symbolic algorithms

- use ZDDs to represent clauses
- implement resolution and expansion as ZDD operations

Skolemization

- based on skolemization and symbolic representation (with OBDD) of the constraints about Skolem functions
- implements and interleaves various strategies (e.g., expansion, search, ...)

Outline

(1) Beyond SAT : QSAT: Quantified SAT

- Quantified Boolean formulas (QBFs) satisfiability
- Applications of QBFs and QBF reasoning
- Solving methods for QBFs
- State of the art in QBF reasoning

Short history of QBF evaluations

S. Margherita '03: 11 solvers

Vancouver '04: 16 solvers, 2 generators
St. Andrews 2005: 13 solvers, 3 generators

Seattle 2006: first competitions!

QDIMACS input format

$$
\begin{aligned}
& \text { Ex: } \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} x_{5}\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(x_{1} \vee \neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{5}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{4} \vee \neg x_{5}\right) \wedge \\
& \left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee \neg x_{4}\right) \wedge\left(x_{3} \vee \neg x_{2} \vee x_{1}\right)
\end{aligned}
$$

Example

```
c This is a CNF in QDIMACS
c
p cnf 5 }
a10
e 20
a 30
e450
1340
-1340
1-450
-1250
1-3 4-50
-1 3-40
-1 -2 -3 -5 0
1-40
3-210
```


QDIMACS input format in BNF grammar

BNF grammar

```
< input > ::= < preamble > < prefix > < matrix > EOF
< preamble > ::= [< commentlines >] < problemline >
< commentlines > ::= < commentline > < commentlines > | < commentline >
< commentline > ::= c < text > EOL
< problemline > ::= p cnf < pnum > < pnum > EOL
< prefix > ::= [< quantsets >]
< quantsets > ::= < quantset > < quantsets > | < quantset > EOL
< quantset > ::= < quantifier > < atomset > 0
< quantifier > ::= e|a
< atomset > ::= < pnum > < atomset > | < pnum >
< matrix > ::= < clauselist >
< clauselist > ::= < clause > < clauselist > | < clause >
< clause > ::= < literal > < clause > | < literal > 0
< literal > ::= < num >
< text > ::= A sequence of non - special ASCII characters
< pnum > ::= A signed integer greater than 0
< num > ::= A signed integer different from 0
```


Challenges and ongoing work

Hot topics

- certificates of truth/falsity (done?!)
- heuristics
- search vs symbolic vs skolemization

Stay tuned:

- www.qbflib.org
- www.qbflib.org/qbfeval

