Satisfiability Testing Truth Tables Propositional Resolution Refinements Infinite Formulas

Risoluzione Proposizionale Propositional Resolution

Wolfgang Faber

University of Calabria, Italy

2007

- Satisfiability Testing
- 2 Truth Tables
- Propositional Resolution
 - Resolution
 - Derivations
 - Refutations
 - Implementing Resolution
- Refinements
- Infinite Formulas

Satisfiability

- Consequence and validity can be reduced to satisfiability testing (SAT).
- SAT: Long tradition
- Cook's Theorem
- Very efficient method unlikely.
- But one can try to be as efficient as possible!

Satisfiability Testing
Truth Tables
Propositional Resolution
Refinements
Infinite Formulas

Satisfiability – Truth Tables

- Construct Truth Tables
- Simple Method
- But usually quite inefficient
- Semantic level (try interpretations)

Satisfiability – Truth Tables

```
function sat_truthtable(\phi: formula) {
	foreach interpretation /
	{
		if( evaluate(\phi,/) == true)
		return true;
	}
	return false;
}
```

Syntactic Method

- For all unsatisfiable formula ϕ : $\phi \equiv \bot$
- Find transformation which takes ϕ to \bot for each unsatisfiable formula ϕ .
- Use a normal form (CNF).
- $\phi \Rightarrow \phi^{CNF} \Rightarrow \bot$ for unsatisfiable ϕ
- $\phi \Rightarrow \phi^{CNF} \Rightarrow \rho \neq \bot$ for satisfiable ϕ

Outline

- Satisfiability Testing
- 2 Truth Tables
- Propositional Resolution
 - Resolution
 - Derivations
 - Refutations
 - Implementing Resolution
- 4 Refinements
- Infinite Formulas

Main Observation:

$$(a \lor b) \land (\neg b \lor c) \equiv (a \lor b) \land (\neg b \lor c) \land (a \lor c)$$

$$(a \lor b) \land (\neg b \lor c) \models (a \lor c)$$

Main Observation:

$$(a \lor b) \land (\neg b \lor c) \equiv (a \lor b) \land (\neg b \lor c) \land (a \lor c)$$

$$(a \lor b) \land (\neg b \lor c) \models (a \lor c)$$

More general:

$$C_1 \wedge \ldots \wedge C_k \wedge (L_1^1 \vee \ldots \vee L_n^1 \vee a) \wedge (L_1^2 \vee \ldots \vee L_m^2 \vee \neg a) = C_1 \wedge \ldots \wedge C_k \wedge (L_1^1 \vee \ldots \vee L_n^1 \vee L_1^2 \vee \ldots \vee L_m^2)$$

Resolution

Propositional Factorization

Additional observation:

$$(a \lor a \lor B) \equiv (a \lor B)$$

Factorization

Propositional Factorization

Additional observation:

$$(a \lor a \lor B) \equiv (a \lor B)$$

Factorization

Formulas in CNF, write them as sets:

$$\{C_1, \dots, C_k, \{L_1^1, \dots, L_n^1, a\}, \{L_1^2, \dots, L_m^2, \neg a\}\}$$

$$\models$$

$$\{C_1, \dots, C_k, \{L_1^1, \dots, L_n^1, L_1^2, \dots, L_m^2\}\}$$

Factorization comes "for free"!

Formulas in CNF, write them as sets:

$$\{C_1, \dots, C_k, \{L_1^1, \dots, L_n^1, a\}, \{L_1^2, \dots, L_m^2, \neg a\}\}$$

$$\models$$

$$\{C_1, \dots, C_k, \{L_1^1, \dots, L_n^1, L_1^2, \dots, L_m^2\}\}$$

Factorization comes "for free"!

Resolvent

Definition

Given two clauses C_1 and C_2 such that $a \in C_1$ and $\neg a \in C_2$, then $(C_1 \setminus \{a\}) \cup (C_2 \setminus \{\neg a\})$ is the resolvent of C_1 and C_2 .

Outline

- Satisfiability Testing
- 2 Truth Tables
- Propositional Resolution
 - Resolution
 - Derivations
 - Refutations
 - Implementing Resolution
- 4 Refinements
- Infinite Formulas

Derivation

Definition

Given a set of clauses S, a derivation by resolution of a clause C from S is a sequence C_1, \ldots, C_n , such that $C_n = C$ and for each C_i ($0 \le i \le n$) we have

- $\mathbf{0}$ $C_i \in S$ or
- ② C_i is a resolvent of C_j and C_k , where j < i and k < i.

If a derivation by resolution of C from S exists, we write $S \vdash_R C$

Derivation

Definition

Given a set of clauses S, a derivation by resolution of a clause C from S is a sequence C_1, \ldots, C_n , such that $C_n = C$ and for each C_i ($0 \le i \le n$) we have

- $\mathbf{0}$ $C_i \in S$ or
- ② C_i is a resolvent of C_j and C_k , where j < i and k < i.

If a derivation by resolution of C from S exists, we write $S \vdash_R C$.

```
(rain \rightarrow streetwet) \land rain
(\neg rain \lor streetwet) \land (rain)
\{\{\neg rain, streetwet\}, \{rain\}\}\}
C_1 = \{\neg rain, streetwet\}
C_2 = \{rain\}
C_3 = \{streetwet\}
```

```
(rain \rightarrow streetwet) \land rain \ (\neg rain \lor streetwet) \land (rain) \ \{\{\neg rain, streetwet\}, \{rain\}\}
```

```
C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{streetwet\}
```

 $(rain \rightarrow streetwet) \land rain \vdash_R streetwet$


```
(rain \rightarrow streetwet) \land rain

(\neg rain \lor streetwet) \land (rain)

\{\{\neg rain, streetwet\}, \{rain\}\}\}

C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{streetwet\}
```

 $(rain \rightarrow streetwet) \land rain \vdash_R streetwet$

```
(rain \rightarrow streetwet) \land rain

(\neg rain \lor streetwet) \land (rain)

\{\{\neg rain, streetwet\}, \{rain\}\}

C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{streetwet\}
```

 $(rain \rightarrow streetwet) \land rain \vdash_R streetwet$

```
(rain \rightarrow streetwet) \land rain

(\neg rain \lor streetwet) \land (rain)

\{\{\neg rain, streetwet\}, \{rain\}\}

C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{streetwet\}
```

 $(rain \rightarrow streetwet) \land rain \vdash_{B} streetwet$

Resolution

Theorem

If $S \vdash_R C$, then $S \models C$.

Proof.

Prove that $\{C_1, C_2\} \models C$ for two clauses C_1 , C_2 and their resolvent C: Case distinction over the pair of resolved literals.

Outline

- Satisfiability Testing
- 2 Truth Tables
- Propositional Resolution
 - Resolution
 - Derivations
 - Refutations
 - Implementing Resolution
- 4 Refinements
- Infinite Formulas

Resolution
Derivations
Refutations
Implementing Resolution

Empty Clause

Definition

Let □ be the empty clause.

 \square is like ot . \square is different from an empty CNF.

Empty Clause

Definition

Let □ be the empty clause.

 \square is like \bot . \square is different from an empty CNF!

Empty Clause

Definition

Let □ be the empty clause.

 \square is like \bot . \square is different from an empty CNF!

Resolution
Derivations
Refutations
Implementing Resolution

Refutation

Definition

A derivation by resolution of \square from S is called a refutation of S.

```
(rain \rightarrow streetwet) \land rain \land \neg streetwet
(\neg rain \lor streetwet) \land (rain) \land (\neg streetwet)
\{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\}
```

```
C_1 = \{ \neg rain, streetwet \}
C_2 = \{ rain \}
C_3 = \{ \neg streetwet \}
C_4 = \{ streetwet \}
C_5 = \{ \} = \square
```



```
(rain \rightarrow streetwet) \land rain \land \neg streetwet
(\neg rain \lor streetwet) \land (rain) \land (\neg streetwet)
\{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\}
```

```
C_1 = \{ \neg rain, streetwet \}

C_2 = \{ rain \}

C_3 = \{ \neg streetwet \}

C_4 = \{ streetwet \}

C_5 = \{ \} = \square
```



```
(rain \rightarrow streetwet) \land rain \land \neg streetwet

(\neg rain \lor streetwet) \land (rain) \land (\neg streetwet)

\{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\}

C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{\neg streetwet\}

C_4 = \{streetwet\}

C_5 = \{\} = \square
```

```
(rain \rightarrow streetwet) \land rain \land \neg streetwet

(\neg rain \lor streetwet) \land (rain) \land (\neg streetwet)

\{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\}

C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{\neg streetwet\}

C_4 = \{streetwet\}

C_5 = \{\} = \Box
```



```
(rain \rightarrow streetwet) \land rain \land \neg streetwet (\neg rain \lor streetwet) \land (rain) \land (\neg streetwet) \{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\} C_1 = \{\neg rain, streetwet\} C_2 = \{rain\} C_3 = \{\neg streetwet\} C_4 = \{streetwet\} C_5 = \{\} = \Box
```



```
(rain \rightarrow streetwet) \land rain \land \neg streetwet
(\neg rain \lor streetwet) \land (rain) \land (\neg streetwet)
\{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\}
             C_1 = \{\neg rain, streetwet\}
             C_2 = \{rain\}
             C_3 = \{\neg streetwet\}
             C_4 = \{streetwet\}
             C_5 = \{\} = \square
```

Resolution

Theorem

 $S \vdash_R \Box$ if and only if S is unsatisfiable.

Proof.

Soundness follows from $S \models \Box$.

Completeness by induction over the number of variables in the formula.

Theorem

 $S \vdash_R \Box$ if and only if S is unsatisfiable.

Proof.

Soundness follows from $S \models \Box$.

Completeness by induction over the number of variables in the formula.

- Validity of F: Test whether $\neg F \vdash_R \Box$.
- Satisfiability of F: Test whether $F \not\vdash_R \square$.
- Entailment of *G* by F ($F \models G$): Test whether $F \land \neg G \vdash_R \Box$.

- Validity of F: Test whether $\neg F \vdash_B \Box$.
- Satisfiability of F: Test whether $F \not\vdash_R \Box$.
- Entailment of *G* by $F(F \models G)$: Test whether $F \land \neg G \vdash_R \Box$.

- Validity of F: Test whether $\neg F \vdash_B \Box$.
- Satisfiability of F: Test whether $F \not\vdash_R \Box$.
- Entailment of *G* by F ($F \models G$): Test whether $F \land \neg G \vdash_R \Box$.

Outline

- Satisfiability Testing
- Truth Tables
- Propositional Resolution
 - Resolution
 - Derivations
 - Refutations
 - Implementing Resolution
- 4 Refinements
- Infinite Formulas

Resolve All Clauses

```
function resolve_all(F: cnf) { for each C1 \in F for each C2 \in F for each a \in V such that a \in C1 \land \neg a \in C2 F := F \cup \{C1 \setminus \{a\} \cup C2 \setminus \{\neg a\}\}; return F; }
```

This could be parallelized.

Resolve All Clauses

```
function resolve_all(F: cnf) { for each C1 \in F for each C2 \in F for each a \in V such that a \in C1 \land \neg a \in C2 F := F \cup \{C1 \setminus \{a\} \cup C2 \setminus \{\neg a\}\}; return F; }
```

This could be parallelized.

SAT via Resolution

```
function sat resolution breadth first(\phi: formula)
     cnf F := \text{transform to cnf}(\phi);
     cnf Fold:
     repeat
          Fold := F:
          F := \text{resolve all}(F);
          if(\square \in F)
             return false;
     until( F == Fold );
     return true;
```

Complexity

- Deciding $F \vdash_R \Box$ requires up to an exponential number of steps (with respect to the size of the formula).
- Since unsatisfiability of a formula is co NP complete, this
 is "reasonable".

Complexity

- Deciding $F \vdash_R \Box$ requires up to an exponential number of steps (with respect to the size of the formula).
- Since unsatisfiability of a formula is co NP complete, this
 is "reasonable".

Example

$$(A \lor B) \land (A \leftrightarrow B) \land (\neg A \lor \neg B)$$

Simple Refinements

- Drop tautological clauses (i.e. clauses C for which $\exists a \in V : a \in C \land \neg a \in C$).
- Drop subsumed clauses (clause C_1 subsumes clause C_2 if $C_1 \subseteq C_2$).

Satisfiability Testing Truth Tables Propositional Resolution Refinements Infinite Formulas

Linear Resolution

 Linear Resolution: Any intermediate derivation uses a clause obtained in the previous step.

Theorem

Linear resolution is refutation complete; i.e. if a formula is unsatisfiable, a refutation by linear resolution exists.

Example

$$\{\{A,B\},\{A,\neg B\},\{\neg A,B\},\{\neg A,\neg B\}\}$$

Linear Input Resolution

 Linear Input Resolution: Any intermediate derivation uses a clause obtained in the previous step and a clause of the original formula.

Definition

A clause is called Horn clause if it contains at most one positive atom. A formula in CNF is a Horn formula if it contains only Horn clauses.

Theorem

Linear input resolution is refutation complete for Horn formulas; i.e. if a Horn formula is unsatisfiable, a refutation by linear input resolution exists.

Examples

$$\{\{A,B\},\{A,\neg B\},\{\neg A,B\},\{\neg A,\neg B\}\}$$

$$\{\{A\}, \{B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$$

Examples

$$\{\{A, B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$$

$$\{\{A\}, \{B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$$

Infinite CNFs

Theorem (Compactness)

An infinite set of clauses is satisfiable if and only if each finite subset is satisfiable.

Theorem (Compactness)

An infinite set of clauses is unsatisfiable if and only if there exists a finite subset, which is unsatisfiable.

Infinite CNFs

Theorem (Compactness)

An infinite set of clauses is satisfiable if and only if each finite subset is satisfiable.

Theorem (Compactness)

An infinite set of clauses is unsatisfiable if and only if there exists a finite subset, which is unsatisfiable.