
Contents
1 Satisfiability Testing 1

2 Truth Tables 1

3 Propositional Resolution 2
3.1 Resolution . 2
3.2 Derivations . 3
3.3 Refutations . 3
3.4 Implementing Resolution . 4

4 Refinements 5

5 Infinite Formulas 5

1 Satisfiability Testing
Satisfiability

• Consequence and validity can be reduced to satisfiability testing (SAT).

• SAT: Long tradition

• Cook’s Theorem

• Very efficient method unlikely.

• But one can try to be as efficient as possible!

2 Truth Tables
Satisfiability – Truth Tables

• Construct Truth Tables

• Simple Method

• But usually quite inefficient

• Semantic level (try interpretations)

Satisfiability – Truth Tables

function sat_truthtable(φ: formula)
{
foreach interpretation I

{
if(evaluate(φ,I) == true)

return true;
}

return false;
}

3 Propositional Resolution
Syntactic Method

• For all unsatisfiable formula φ: φ ≡ ⊥

• Find transformation which takes φ to ⊥ for each unsatisfiable formula φ.

• Use a normal form (CNF).

• φ⇒ φCNF ⇒ ⊥ for unsatisfiable φ

• φ⇒ φCNF ⇒ ρ 6= ⊥ for satisfiable φ

3.1 Resolution
Propositional Resolution

Main Observation:
(a ∨ b) ∧ (¬b ∨ c) ≡ (a ∨ b) ∧ (¬b ∨ c) ∧ (a ∨ c)

(a ∨ b) ∧ (¬b ∨ c) |= (a ∨ c)

Propositional Resolution
More general:

C1 ∧ . . . ∧ Ck ∧ (L1
1 ∨ . . . ∨ L1

n ∨ a) ∧ (L2
1 ∨ . . . ∨ L2

m ∨ ¬a)
|=
C1 ∧ . . . ∧ Ck ∧ (L1

1 ∨ . . . ∨ L1
n ∨ L2

1 ∨ . . . ∨ L2
m)

Resolution

Propositional Factorization
Additional observation:

(a ∨ a ∨B) ≡ (a ∨B)

Factorization

Propositional Resolution
Formulas in CNF, write them as sets:

{C1, . . . , Ck, {L1
1, . . . , L

1
n, a}, {L2

1, . . . , L
2
m,¬a}}

|=
{C1, . . . , Ck, {L1

1, . . . , L
1
n, L

2
1, . . . , L

2
m}}

Factorization comes “for free”!

Resolvent

Definition 1. Given two clauses C1 and C2 such that a ∈ C1 and ¬a ∈ C2, then (C1 \ {a}) ∪ (C2 \ {¬a}) is the
resolvent of C1 and C2.

2

3.2 Derivations
Derivation

Definition 2. Given a set of clauses S, a derivation by resolution of a clause C from S is a sequence C1, . . . , Cn, such
that Cn = C and for each Ci (0 ≤ i ≤ n) we have

1. Ci ∈ S or

2. Ci is a resolvent of Cj and Ck, where j < i and k < i.

If a derivation by resolution of C from S exists, we write S `R C.

Example Derivation

(rain→ streetwet) ∧ rain
(¬rain ∨ streetwet) ∧ (rain)
{{¬rain, streetwet}, {rain}}

C1 = {¬rain, streetwet}
C2 = {rain}
C3 = {streetwet}

(rain→ streetwet) ∧ rain `R streetwet

Resolution

Theorem 3. If S `R C, then S |= C.

Proof. Prove that {C1, C2} |= C for two clauses C1, C2 and their resolvent C: Case distinction over the pair of
resolved literals.

3.3 Refutations
Empty Clause

Definition 4. Let 2 be the empty clause.

2 is like ⊥. 2 is different from an empty CNF!

Refutation

Definition 5. A derivation by resolution of 2 from S is called a refutation of S.

Example Refutation

(rain→ streetwet) ∧ rain ∧ ¬streetwet
(¬rain ∨ streetwet) ∧ (rain) ∧ (¬streetwet)
{{¬rain, streetwet}, {rain}, {¬streetwet}}

C1 = {¬rain, streetwet}
C2 = {rain}
C3 = {¬streetwet}
C4 = {streetwet}
C5 = {} = 2

(rain→ streetwet) ∧ rain ∧ ¬streetwet `R 2

3

Resolution

Theorem 6. S `R 2 if and only if S is unsatisfiable.

Proof. Soundness follows from S |= 2.
Completeness by induction over the number of variables in the formula.

Resolution

• Validity of F : Test whether ¬F `R 2.

• Satisfiability of F : Test whether F 6`R 2.

• Entailment of G by F (F |= G): Test whether F ∧ ¬G `R 2.

3.4 Implementing Resolution
Resolve All Clauses

function resolve_all(F : cnf)
{
foreach C1 ∈ F

foreach C2 ∈ F
foreach a ∈ V such that a ∈ C1 ∧ ¬a ∈ C2

F := F ∪ {C1 \ {a} ∪ C2 \ {¬a}};
return F ;
}

This could be parallelized.

SAT via Resolution

function sat_resolution_breadth_first(φ: formula)
{
cnf F := transform_to_cnf(φ);
cnf Fold;
repeat

{
Fold := F ;
F := resolve_all(F);
if(2 ∈ F)

return false;
}

until(F == Fold);
return true;
}

Complexity

• Deciding F `R 2 requires up to an exponential number of steps (with respect to the size of the formula).

• Since unsatisfiability of a formula is co−NP complete, this is “reasonable”.

4

Example

(A ∨B) ∧ (A↔ B) ∧ (¬A ∨ ¬B)

4 Refinements
Simple Refinements

• Drop tautological clauses (i.e. clauses C for which ∃a ∈ V : a ∈ C ∧ ¬a ∈ C).

• Drop subsumed clauses (clause C1 subsumes clause C2 if C1 ⊆ C2).

Linear Resolution

• Linear Resolution: Any intermediate derivation uses a clause obtained in the previous step.

Theorem 7. Linear resolution is refutation complete; i.e. if a formula is unsatisfiable, a refutation by linear resolution
exists.

Example

{{A,B}, {A,¬B}, {¬A,B}, {¬A,¬B}}

Linear Input Resolution

• Linear Input Resolution: Any intermediate derivation uses a clause obtained in the previous step and a clause of
the original formula.

Definition 8. A clause is called Horn clause if it contains at most one positive atom. A formula in CNF is a Horn
formula if it contains only Horn clauses.

Theorem 9. Linear input resolution is refutation complete for Horn formulas; i.e. if a Horn formula is unsatisfiable,
a refutation by linear input resolution exists.

Examples

{{A,B}, {A,¬B}, {¬A,B}, {¬A,¬B}}

{{A}, {B}, {A,¬B}, {¬A,B}, {¬A,¬B}}

5 Infinite Formulas
Infinite CNFs

Theorem 10 (Compactness). An infinite set of clauses is satisfiable if and only if each finite subset is satisfiable.

Theorem 11 (Compactness). An infinite set of clauses is unsatisfiable if and only if there exists a finite subset, which
is unsatisfiable.

5

