Contents

1	Satisfiability Testing	1
2	Truth Tables	1
3	Propositional Resolution	2
	3.1 Resolution	
	3.2 Derivations	
	3.3 Refutations	
	3.4 Implementing Resolution	4
4	Refinements	5
5	Infinite Formulas	5

1 Satisfiability Testing

Satisfiability

- Consequence and validity can be reduced to satisfiability testing (SAT).
- SAT: Long tradition
- Cook's Theorem
- Very efficient method unlikely.
- But one can try to be as efficient as possible!

2 Truth Tables

Satisfiability - Truth Tables

- Construct Truth Tables
- Simple Method
- But usually quite inefficient
- Semantic level (try interpretations)

Satisfiability - Truth Tables

```
\label{eq:continuous_state} \begin{split} & \text{function sat\_truthtable}(\phi \text{: formula}) \\ & \{ \\ & \text{for each interpretation } I \\ & \{ \\ & \text{if (evaluate}(\phi,I) == \text{true}) \\ & \text{return true;} \\ & \} \\ & \text{return false;} \\ \} \end{split}
```

3 Propositional Resolution

Syntactic Method

- For all unsatisfiable formula ϕ : $\phi \equiv \bot$
- Find transformation which takes ϕ to \bot for each unsatisfiable formula ϕ .
- Use a normal form (CNF).
- $\phi \Rightarrow \phi^{CNF} \Rightarrow \bot$ for unsatisfiable ϕ
- $\phi \Rightarrow \phi^{CNF} \Rightarrow \rho \neq \bot$ for satisfiable ϕ

3.1 Resolution

Propositional Resolution

Main Observation:

$$(a \lor b) \land (\neg b \lor c) \equiv (a \lor b) \land (\neg b \lor c) \land (a \lor c)$$
$$(a \lor b) \land (\neg b \lor c) \models (a \lor c)$$

Propositional Resolution

More general:

$$C_1 \wedge \ldots \wedge C_k \wedge (L_1^1 \vee \ldots \vee L_n^1 \vee a) \wedge (L_1^2 \vee \ldots \vee L_m^2 \vee \neg a) \models C_1 \wedge \ldots \wedge C_k \wedge (L_1^1 \vee \ldots \vee L_n^1 \vee L_1^2 \vee \ldots \vee L_m^2)$$

Resolution

Propositional Factorization

Additional observation:

$$(a \lor a \lor B) \equiv (a \lor B)$$

Factorization

Propositional Resolution

Formulas in CNF, write them as sets:

$$\begin{aligned} &\{C_1,\ldots,C_k,\{L_1^1,\ldots,L_n^1,a\},\{L_1^2,\ldots,L_m^2,\neg a\}\} \\ &\models \\ &\{C_1,\ldots,C_k,\{L_1^1,\ldots,L_n^1,L_1^2,\ldots,L_m^2\}\} \end{aligned}$$

Factorization comes "for free"!

Resolvent

Definition 1. Given two clauses C_1 and C_2 such that $a \in C_1$ and $\neg a \in C_2$, then $(C_1 \setminus \{a\}) \cup (C_2 \setminus \{\neg a\})$ is the *resolvent* of C_1 and C_2 .

3.2 Derivations

Derivation

Definition 2. Given a set of clauses S, a *derivation* by resolution of a clause C from S is a sequence C_1, \ldots, C_n , such that $C_n = C$ and for each C_i $(0 \le i \le n)$ we have

- 1. $C_i \in S$ or
- 2. C_i is a resolvent of C_j and C_k , where j < i and k < i.

If a derivation by resolution of C from S exists, we write $S \vdash_R C$.

Example Derivation

$$(rain \rightarrow streetwet) \land rain$$

 $(\neg rain \lor streetwet) \land (rain)$
 $\{\{\neg rain, streetwet\}, \{rain\}\}$
 $C_1 = \{\neg rain, streetwet\}$
 $C_2 = \{rain\}$
 $C_3 = \{streetwet\}$
 $(rain \rightarrow streetwet) \land rain \vdash_R streetwet)$

Resolution

Theorem 3. If $S \vdash_R C$, then $S \models C$.

Proof. Prove that $\{C_1, C_2\} \models C$ for two clauses C_1 , C_2 and their resolvent C: Case distinction over the pair of resolved literals.

3.3 Refutations

Empty Clause

Definition 4. Let \square be the *empty clause*.

 \square is like \bot . \square *is different* from an empty CNF!

Refutation

Definition 5. A derivation by resolution of \square from S is called a *refutation* of S.

Example Refutation

$$(rain \rightarrow streetwet) \land rain \land \neg streetwet$$

 $(\neg rain \lor streetwet) \land (rain) \land (\neg streetwet)$
 $\{\{\neg rain, streetwet\}, \{rain\}, \{\neg streetwet\}\}$
 $C_1 = \{\neg rain, streetwet\}$
 $C_2 = \{rain\}$
 $C_3 = \{\neg streetwet\}$
 $C_4 = \{streetwet\}$
 $C_5 = \{\} = \square$
 $(rain \rightarrow streetwet) \land rain \land \neg streetwet \vdash_R \square$

Resolution

Theorem 6. $S \vdash_R \Box$ *if and only if* S *is unsatisfiable.*

Proof. Soundness follows from $S \models \Box$.

Completeness by induction over the number of variables in the formula.

Resolution

- Validity of F: Test whether $\neg F \vdash_R \Box$.
- Satisfiability of F: Test whether $F \not\vdash_R \Box$.
- Entailment of G by F ($F \models G$): Test whether $F \land \neg G \vdash_R \Box$.

3.4 Implementing Resolution

Resolve All Clauses

This could be parallelized.

SAT via Resolution

```
function sat_resolution_breadth_first(\phi: formula) {
    cnf F := transform_to_cnf(\phi);
    cnf Fold;
    repeat
    {
        Fold := F;
        F := resolve_all(F);
        if( \square \in F )
            return false;
        }
    until( F == Fold );
    return true;
    }
```

Complexity

- Deciding $F \vdash_R \Box$ requires up to an *exponential* number of steps (with respect to the size of the formula).
- Since unsatisfiability of a formula is co NP complete, this is "reasonable".

Example

$$(A \lor B) \land (A \leftrightarrow B) \land (\neg A \lor \neg B)$$

4 Refinements

Simple Refinements

- Drop tautological clauses (i.e. clauses C for which $\exists a \in V : a \in C \land \neg a \in C$).
- Drop subsumed clauses (clause C_1 subsumes clause C_2 if $C_1 \subseteq C_2$).

Linear Resolution

• Linear Resolution: Any intermediate derivation uses a clause obtained in the previous step.

Theorem 7. Linear resolution is refutation complete; i.e. if a formula is unsatisfiable, a refutation by linear resolution exists

Example

$$\{\{A,B\},\{A,\neg B\},\{\neg A,B\},\{\neg A,\neg B\}\}$$

Linear Input Resolution

• *Linear Input Resolution*: Any intermediate derivation uses a clause obtained in the previous step and a clause of the original formula.

Definition 8. A clause is called *Horn clause* if it contains at most one positive atom. A formula in CNF is a *Horn formula* if it contains only Horn clauses.

Theorem 9. Linear input resolution is refutation complete for Horn formulas; i.e. if a Horn formula is unsatisfiable, a refutation by linear input resolution exists.

Examples

$$\{\{A,B\},\{A,\neg B\},\{\neg A,B\},\{\neg A,\neg B\}\}\$$

$$\{\{A\},\{B\},\{A,\neg B\},\{\neg A,B\},\{\neg A,\neg B\}\}$$

5 Infinite Formulas

Infinite CNFs

Theorem 10 (Compactness). An infinite set of clauses is satisfiable if and only if each finite subset is satisfiable.

Theorem 11 (Compactness). An infinite set of clauses is unsatisfiable if and only if there exists a finite subset, which is unsatisfiable.