
Malware Analysis: tools and techniques of
Reverse Engineering on malicious code

Elia Florio
Security Response Engineer
6th March 2006

2 / 40

Agenda
Introduction
Technical Background

Malware classification
Win32 Portable Executable Format
Assembly Language Basics
Windows API and calling convention

Reverse Engineering
Methodology
Disassembler
Debugger
Network and Monitoring tools
Virtual Machines

Common Problems
Executable Packers
Encryption
Anti-Debugging
Stealth Techniques (Rootkit)
Polymorphic Code

Live Malware analysis Demo
Questions

3 / 40

Agenda
Introduction
Technical Background

Malware classification
Win32 Portable Executable Format
Assembly Language Basics
Windows API and calling convention

Reverse Engineering
Methodology
Disassembler
Debugger
Network and Monitoring tools
Virtual Machines

Common Problems
Executable Packers
Encryption
Anti-Debugging
Stealth Techniques (Rootkit)
Polymorphic Code

Live Malware analysis Demo
Questions

4 / 40

Trojan Horse
Program that masquerades as useful program to execute malicious code
once executed by the user.

Backdoor
Malicious program that gives to the attacker the ability to control the
compromised system bypassing normal authentication methods.

Virus
Computer program that can self-replicate by making copies of itself or by
inserting piece of its code into other “host” programs.

Worm
Computer program that can self-replicate spreading from a computer to
another computer using network resources.

Rootkit
Stealth program able to hide its presence in the system by altering core
components of the OS.

Exploit
Piece of code that take advantage of a software bug/vulnerability to perform
unwanted actions (eg. Privilege escalation, DoS, Code Execution)

Malware Classification

Technical Background

5 / 40

Malware Classification: virus or worm?

Technical Background

Virus Worm

6 / 40

Adware
Software that facilitates delivery of advertising content to the user through
their own or another program's interface.

Spyware
Programs that have the ability to gather, collect and distribute personal
information, individual files and users data.

Dialer
Programs that use a hijack/modify modem connection to dial out to a toll
number or internet site, typically to accrue charges.

Hacktool
Programs that can be used by an attacker for malicious purposes (eg.
lower security settings, disable firewall, gain privilege, attack an host,
perform a DoS)

Remote Access
Programs that allow remote access to an host from a remote computer.

Others (SecurityRisk)
Programs that do not meet the definition of any of the previous category but
are a potential risk if installed.

Malware Classification: what’s not a “malware” ?

Technical Background

7 / 40

Win32 Portable Executable Format

…every programmer knows exactly how a .CPP file looks like, but
who knows what’s inside a compiled (executable) file?
Portable Executable format (PE) was created by Microsoft in 1993
and first introduced in Windows NT 3.1
PE format was essentially designed by Microsoft from “COFF”
format of Unix System V (Common Object File Format
Specification)
PE format - with some improvements - is the official “win32”
executable format of almost every Windows (NT, 9X, ME, 2000,
XP and 2003)
PE defines the internal data structure and the encapsulation of
code objects inside executables (.EXE / .DLL / .SYS and many
other types)
It’s a 32-bit file format created to replace the 16-bit NE of Windows
3.x and the old MS-DOS “MZ” format
PE was designed to keep backward compatibility with old DOS
application and contains a small MS-DOS stub
PE supports x86 architecture but it’s a format in evolution (PE+)
and can support IA-64, PowerPC and ARM processors as well
(Windows CE executable are still PE files).

Technical Background

8 / 40

Win32 Portable Executable Format

Technical Background

?

9 / 40

MS-DOS Header

MS-DOS Stub

Win32 Entry-Point!!

Win32 Portable Executable Format

Technical Background

Optional Header

“PE\0\0”, machine,
num of sections
and timestamp

Image Base

10 / 40

....at the end of the file

+ Export Table and Import Table (DLLs required and APIs used)

+ Debug Information (.PDB)

+ File Properties (…right click to see!)

Sections Headers

Win32 Portable Executable Format

Technical Background

11 / 40

Win32 Portable Executable Format

Technical Background

Executable files on disk look different when loaded in memory. Basic concepts
and definitions:

FILE OFFSET
Index or position in the physical image of the file (stored on disk).

IMAGE BASE
Preferred address when loaded into memory (must be a multiple of 64K). The default
for EXE in Windows NT, 9X, 2000, XP is 0x00400000. The default for DLLs is
0x10000000.

RELATIVE VIRTUAL ADDRESS (RVA)
RVA is always the address of an item once loaded into memory with the base address
of the image file subtracted from it. The RVA of an item will almost always differ from
its file offset.

VIRTUAL ADDRESS (VA)
Same as RVA, except that the base address of the image file is not subtracted.

PHYSICAL ADDRESS
Real (not virtual) address of data loaded into the physical memory of the machine
(\Device\PhysicalMemory).

12 / 40

Win32 Portable Executable Format

Technical Background

Win32 programs are executed in “Protected
Mode”. Windows runs a process into a virtual
space and reserves 4 GB memory area for it.
Processes (in normal conditions) are not
allowed to modify code or memory region of
other processes.
x86 CPU supports four different execution
“rings”, but Windows uses only two of them
(Ring-0 and Ring-3).
User-Mode programs run usually in Ring-3 and
they are not allowed to execute privileged
instructions and change memory locations out
of their memory space. When an user-mode
program crashes, other processes are not
affected.
Kernel Drivers, Services and core system
processes run in Ring-0 privileged mode. A
software error in a Kernel driver program
causes a BSOD (Blue Screen Of Death).

13 / 40

Win32 Portable Executable Format

Technical Background

Useful tools and resources for PE:
Stud PE
http://www.softpedia.com/get/Programming/File-Editors/StudPE.shtml
Lord PE
http://www.softpedia.com/get/Programming/File-Editors/LordPE.shtml
ImpRec (Import Reconstructor)
ProcDump

About PE format:
Inside Windows: An In-Depth Look into the Win32 Portable Executable File Format:
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
Microsoft Portable Executable and Common Object File Format Specification:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
“PE File Structure” explained

http://www.madchat.org/vxdevl/papers/winsys/pefile/pefile.htm

14 / 40

Assembly Language Basics

Registers of x86 architecture:
EAX, EBX, ECX, EDX (accumulator, base, counter, data)
ESI, EDI (source, destination)
EBP, ESP (stack and base procedure call pointers)
EIP (current instruction pointer)
DS, ES, SS, FS, GS (segments)
CRx (control register, eg. CR3 contains PDB)
EFLAGS (ZF, SF, PF, CF, OF)

Some common instructions (and their opcodes):
MOV (0x89, 0x8A,0x8B, …)
LEA (0x8D)
INC / DEC (0x40, 0x48, …)
CMP (0x3A, 0x3C, …)
JUMPS: JMP, JZ, JNZ, JE, JNE, JB, JA (0xE9, 0x74, 0x75, …)
ADD / SUB
AND / OR / XOR (0x83E0, 0x83F0, …)
PUSH / POP (0x50, 0x56, 0x53, …)
CALL (0xE8, 0xFF15) – RET (0xC3)

Technical Background

15 / 40

Assembly Language Basics

…not only theory! (Pentium Instruction Set http://www.intel.com/design/pentium4/manuals/245471.htm)

Technical Background

16 / 40

Assembly Language Basics

Operands and some typical memory addressing:
MOV EAX,EBX (register 32-bit)
MOV EAX, 0x12345678 (immediate 32-bit)
MOV AX, 0x1234 (immediate 16-bit)
MOV AL, 0x12 (immediate 8-bit)
MOV DWORD PTR [EBX], 0x12345678 (register direct 32-bit)
MOV WORD PTR [EBX], 0x1234 (register direct 16-bit)
MOV BYTE PTR [EBX], 0x12 (register direct 8-bit)
MOV WORD PTR [EBX], EAX (wrong size!)
MOV AH, BX (wrong size!)
MOV DWORD PTR [EAX], DWORD PTR [EBX] (not allowed!)
LEA EAX, DWORD PTR [0x00401000]
LEA EAX, DWORD PTR [EAX]
LEA EAX, DWORD PTR [EAX*2+EAX] (trick, multiply by 3 fast)
XOR EDX,EDX (trick to reset a register fast)
PUSH 1234
PUSH DWORD PTR [1234]
CALL 0x401000 or CALL DWORD PTR [0x401000] or CALL EAX

Technical Background

17 / 40

Windows API and calling convention

Consider the following C++ program:
int myFunc(int a, int b, int c) {
int r1,r2,r3;
r1=a+b;
r2=c*2;
r3=r1+r2
return r3;

}
void main() {
myFunc(10,3,7);

}

How this code will be translated in Assembly language?

In C++ calling convention the parameters of a function are
pushed into the stack from right to left, so the first parameter is
always the last to be pushed (the stack works as LIFO).

Technical Background

18 / 40

Windows API and calling convention

The called function saves uses EBP to address the stack and
get the parameters from the caller.

Technical Background

prolog

epilog

19 / 40

Windows API and calling convention

“The Microsoft Windows application programming interface (API) provides building blocks
used by applications written for Windows … You can provide your application with a
graphical user interface; display graphics and formatted text; and manage system objects
such as memory, files, and processes” – Microsoft MSDN

API calling example:
#include<windows.h>
#pragma comment(lib, "user32")
void main() {

MessageBox(0, "Ciao", "Title", 0);
}

How this code will be executed by the CPU ?

The CALL lookups a DWORD value (a pointer) from the import table of PE file
and redirects the code through the operating system libraries where the real
function resides (eg. USER32.DLL, KERNEL32.DLL, GDI32.DLL, etc.).

Technical Background

20 / 40

Agenda
Introduction
Technical Background

Malware classification
Win32 Portable Executable Format
Assembly Language Basics
Windows API and calling convention

Reverse Engineering
Methodology
Disassembler
Debugger
Network and Monitoring tools
Virtual Machines

Common Problems
Executable Packers
Encryption
Anti-Debugging
Stealth Techniques (Rootkit)
Polymorphic Code

Live Malware analysis Demo
Questions

21 / 40

Reverse Engineering
Reverse engineering is the process of creating an high-level description of a software
to discern its rules by analyzing its functioning and its internal structure. White box and
black box testing and analysis methods both attempt to understand the software, but
they use very different approaches.

White Box
White box analysis involves analyzing and understanding source code. Sometimes
only binary code is available, but if you decompile a binary to get source code and
then study the code, this can be considered a kind of white box analysis as well.

Black Box
Black box analysis refers to analyzing a running program by probing it with various
inputs. This kind of testing requires only a running program and does not make use of
source code analysis of any kind.

A mixed approach: Gray Box
Gray box analysis combines white box techniques with black box input testing. Gray
box approaches usually require using several tools together. A good example of a
simple gray box analysis is running a target program within a debugger and then
supplying particular sets of inputs to the program.

DMCA
In the United States, the Digital Millennium Copyright Act exempts from the
circumvention ban some acts of reverse engineering aimed at interoperability of file
formats and protocols (17 USC 1201(f)), but judges in key cases have ignored this law,
since it is acceptable to circumvent restrictions for use, but not for access.

Methodology

Reverse Engineering

22 / 40

A disassembler is a computer program which translates machine language into assembly
language, performing the inverse operation to that of an assembler. A dissasembler
differs from a decompiler, which targets a high level language rather than assembly
language (eg. Java).
IDA (Interactive DisAssembler) is the most famous disassembler (www.datarescue.com)

6A 00 68 30 60 40 00 68 38 60 40 00 6A 00..... (opcodes)

Disassembler

Reverse Engineering

23 / 40

A debugger is a computer program that is used to analyze, test (and sometimes optimize)
other programs. The code to be examined is executed step-by-step and is possible to
control the execution when some specific conditions occurs (breakpoint).
Notable debugging programs are OllyDbg (user-mode debugger, http://www.ollydbg.de)
and SoftICE (kernel-mode debugger, http://www.compuware.com).
Microsoft distributes a free kernel debugger for Windows. WinDbg is downloadable from:
http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx.

Debugger

Reverse Engineering

24 / 40

Sniffer and Protocol Analyzer
(eg. Ethereal, www.ethereal.com)

Netcat, the TCP/IP “swiss army knife”
available since 1996

Fake-Server Daemons (httpd, smtpd, ircd)

IDS (Intrusion Detection System, eg. Snort)

Vulnerability Scanner

Monitoring programs for Registry, Files, Disk,
API calls (check Mark Russinovich tools
at http://www.sysinternals.com)

Network and Monitoring Tools

Reverse Engineering

25 / 40

Virtual Machines are powerful OS emulators that can run as “guest” of a real operating
system sharing its resources (memory, disks, network, etc.). For example, a Virtual
Machine can run a Linux environment inside a Windows box.

VMWare (http://www.vmware.com/)
Virtual PC (http://www.microsoft.com/windows/virtualpc/default.mspx)

VM are used to build Honeypots, simulated environments where is possible to test “live”
malware by running them on virtual OS.
Is the virtual “cage” safe enough? Many security researchers are studying VM
environments to find a way to escape from the sand-box, but at the moment there’s still
no exploit available.
However there are several methods and piece of code that can detect if a program is
running inside a VM or not. Many recent malwares use this approach to change the
behavior during execution.
Common methods used to detect commercial VM:

Hardware / Registry / Process fingerprinting
I/O backdoor for VMWare (MOV ECX, 0A / MOV EAX, “VMXh” / MOV DX, “VX” / IN EAX, DX)
Invalid Instruction processing for Virtual PC (http://www.codeproject.com/system/VmDetect.asp)
“Red Pill” for VMWare (http://invisiblethings.org/papers/redpill.html, SIDT anomaly)

Virtual Machines

Reverse Engineering

26 / 40

Agenda
Introduction
Technical Background

Malware classification
Win32 Portable Executable Format
Assembly Language Basics
Windows API and calling convention

Reverse Engineering
Methodology
Disassembler
Debugger
Network and Monitoring tools
Virtual Machines

Common Problems
Executable Packers
Encryption
Anti-Debugging
Stealth Techniques (Rootkit)
Polymorphic Code

Live Malware analysis Demo
Questions

27 / 40

Packers are programs that can compress a PE file on disk adding a loader stub to the
executable. Once executed, the loader will decompress the original executable in memory
and rebuild the PE structure so that the OS will run it without problems.
Some special packers may also add an encryption layer over the compressed data
(making them unreadable to hex editors) and may create a special loader/decrypter stub,
which uses anti-debugging to avoid reverse engineering of the code.

At the moment there are more than 50 families of packers (…but if we consider custom-
made packers, they are much more!)
Some of the most common packers:

UPX, Petite, PolyEne, NsPack, PeCompact, Armadillo, Morphine, ASPack, D.B.P.E., Obsidium

AV Scan Engines include special code to detect packers or eventually are able to unpack
the file and search for virus patterns. Generic unpacking is realized by emulation.

Executable Packers

Common Problems

.EXE.EXELOADER

28 / 40

UPX compression example:

Executable Packers

Common Problems

Not compressed

UPX compressed

29 / 40

Malwares protect their code from static string analysis using encryption algorithms with
variable keys.
Code encryption is used since MS-DOS virus!
The classic encryption function is XOR (simmetric property):

MOV ESI, offset _EncryptedBuffer
MOV ECX, 0x1000
MOV DL, 0x5A

encrypting:
MOV BL, BYTE PTR [ESI]
XOR BL, DL
MOV BYTE PTR [ESI], BL
LOOP encrypting

More complex encryption algorithms use ADD / SUB / ROR / ROL / NOT instructions and
they can involve the counter in the key to reduce crypto-analysis attacks success.
AV scanners can detect the most common encryption loops and are able emulate the
generic encryption function to get the original bytes back.
In some cases is possible to detect a malware by analyzing the encrypted data without
decrypting the code. This attack (X-RAY) exploits statistical property of encrypted data
and analyze well-known regions of the PE file (known-plaintext attack).

Encryption

Common Problems

30 / 40

Encryption Example (XOR, 1-byte key, fixed key):

Encryption

Common Problems

H E L L O W O R L D
0x48 0x45 0x4C 0x4C 0x4F 0x57 0x4F 0x52 0x4C 0x440x20

0x2E 0x23 0x2A 0x2A 0x29 0x31 0x29 0x34 0x2A 0x220x46

0x79 0x74 0x7D 0x7D 0x7E 0x66 0x7E 0x63 0x7D 0x750x11

Plaintext (ASCII)

Plaintext (HEX)

Ciphertext(XOR 0x66)

Ciphertext (XOR 0x31)

#* *Pattern Attack

0x0D 0x09 0x00 0x03Delta Attack 0x6F ...

31 / 40

Anti-Debugging techniques are routine and piece of code used to detect if a program is
debugged or not. This techniques can be passive (only detection of the debugger) or
active (crashing/attacking the debugger).

The most common anti-debug techniques are:
Malformed PE Header
Timing Attacks
Check for breakpoint (INT 3)
“IsDebuggerPresent” API
“CreateFile” API attack (for SoftICE)
“FindWindow” API attack (for OllyDbg)
SEH (Structured Exception Handler)
TLS (Thread Local Storage)
INT 1 / INT 3 hooking

Anti-Debugging

Common Problems

32 / 40

Malformed PE Header example:
Patching some fields of the PE header (eg. LoaderFlags and NumberOfRvaAndSizes) with
random values is possible to crash OllyDbg when the debugger attempts to run the executable
file.

Anti-Debugging

Common Problems

33 / 40

Timing Attacks
When a program is being debugged, it runs in “step-by-step” mode. So, the execution flow is
usually slower compared to normal running due to the tracing activity, the presence of
breakpoints, the debugger delay, etc.
Timing Attacks can detect debuggers by checking the time difference in two different locations of
the code.
Timing Attacks may use “GetTickCount” API or the “RDTSC” assembly instruction (ReaD Time
Stamp Counter), which get the number of cycles executed by CPU. Comparing the time
difference with a specific delta value, the program will take a different execution branch detecting
the debugger.

#include <windows.h>
void main() {

_asm {
call dword ptr [GetTickCount]
mov ebx, eax

mov ecx, 0x5000
fakeLoop:
dec ecx
loop fakeLoop

call dword ptr [GetTickCount]
sub eax, ebx
cmp eax, 500 ; 1/2 sec.
jbe notdebugged

mov eax,1

notdebugged:
mov eax,0

}
}

Anti-Debugging

Common Problems

34 / 40

Check for breakpoint (INT 3):
Debuggers use INT 1 and INT 3 to debug a program step-by-step. INT 3 (opcode =
0xCC) is used to set breakpoints: when the interrupt is triggered, the execution
control is returned from the debugged program to the debugger. Checking the code
for presence of INT 3 will reveal a debugger in action!

#include <windows.h>
void main() {

_asm {
mov esi, dword ptr [GetTickCount]
mov dl, byte ptr [esi]
cmp dl, 0xCC ; INT3 opcode
jne notdebugged
call dword ptr [ExitProcess]

notdebugged:
call dword ptr [GetTickCount]

}
}

“CreateFile” attack for SoftICE:
HANDLE hFile=CreateFile("\\\\.\\NTICE",

GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,

NULL);

Anti-Debugging

Common Problems

35 / 40

Rootkits are stealth programs that hide their presence (files, ports, processes, registry
keys) in a compromised system by patching critical area and components of the operating
system. Rootkits are able to “subvert” OS by patching API code to return false information
or by altering kernel data regions where kernel information are stored.
Rootkit works in user-mode (Ring-0) or kernel-mode (Ring-3).
Calling APIs, the big picture:

Stealth Techniques (Rootkit)

Common Problems

Application
(call CreateFile)

KERNEL32.DLL
(“NtCreateFile” API)

NTDLL.DLL
(“ZwCreateFile” API)

KiSystemService

SDT

NtCreateFile

NtOpenFile

NtQuerySystemInformation

NtOpenThread

NtQueryKey

36 / 40

Rootkits techniques:
User-mode:

• IAT patching
• DLL injection

Kernel-mode:
• IDT (Interrupt Descriptor Table) hooking
• SDT (System Service Descriptor Table) hooking
• Native Kernel API hooking
• DKOM (Direct Kernel Object Manipulation)

Kernel mode Rootkits need to work in Ring-0 and usually are implemented as System
Device Drivers (.SYS files). Alternatively they can patch Kernel by writing directly into
“\Device\PhysicalMemory” object.
Some in-famous rootkits:

Vanquish, FU, Hacker Defender, Shadow Walker, Apropos.C, Suckit, eEye BootRoot

Stealth Techniques (Rootkit)

Common Problems

37 / 40

Common Problems

Resources for Rootkit studying:
“Rootkits, subverting Windows Kernel” – Greg Hoglund and Jamie Butler (book)

“Windows rootkits of 2005” - http://www.securityfocus.com/infocus/1850

Rootkit discussion about code, ideas, new techniques:
http://www.rootkit.com

J. Rutkowska, developer of SVV and Flister
http://www.invisiblethings.org

Windows System Call Table (NT/2000/XP/2003) by Metasploit
http://www.metasploit.com/users/opcode/syscalls.html

Rootkit Revealer by Mark Russinovich
http://www.sysinternals.com/Utilities/RootkitRevealer.html

Stealth Techniques (Rootkit)

38 / 40

Polymorphic generators come from old DOS viruses, when many virus writes started to
develop complex polymorphic engines (Dark Avenger developed one the first mutation
engine called “MtE” in 1992).
A polymorphic engine is a routine that can generate completely different samples of the
same piece of code using different opcodes and without changing the semantic of the
original program.

Polymorphic Code

Common Problems

0040103A B8 03000000 MOV EAX,3
0040103F C1E0 02 SHL EAX,2
00401042 BB 04000000 MOV EBX,4
00401047 03C3 ADD EAX,EBX

0040104A 53 PUSH EBX
0040104B 5B POP EBX
0040104C B8 03000000 MOV EAX,3
00401051 75 00 JNZ SHORT 00401053
00401053 48 DEC EAX
00401054 40 INC EAX
00401055 C1E0 02 SHL EAX,2
00401058 90 NOP
00401059 90 NOP
0040105A BB 03000000 MOV EBX,4
0040105F 8BD2 MOV EDX,EDX
00401061 74 00 JE SHORT 00401063
00401063 9B WAIT
00401064 03C3 ADD EAX,EBX
00401066 F7D3 NOT EBX
00401068 F7D3 NOT EBX

Original (3*4 + 4) program

Equivalent “junk-instructions” version

39 / 40

Another example: self-modifying code and meta-morphic code
(…powerful of semantic!):

Polymorphic Code

Common Problems

0040103A B8 03000000 MOV EAX,3
0040103F C1E0 02 SHL EAX,2
00401042 BB 04000000 MOV EBX,4
00401047 03C3 ADD EAX,EBX

01020C90 E8 00000000 CALL 01020C95
01020C95 5E POP ESI
01020C96 66:C746 07 B803 MOV WORD PTR DS:[ESI+7],03B8
01020C9C 33C0 XOR EAX,EAX
01020C9E 0000 ADD BYTE PTR DS:[EAX],AL
01020CA0 00C1 ADD CL,AL
01020CA2 E0 02 LOOPDNE SHORT 01020CA6
01020CA4 BB 04000000 MOV EBX,4
01020CA9 03C3 ADD EAX,EBX

0040103A B8 02000000 MOV EAX,2
0040103F 40 INC EAX
00401040 B9 02000000 MOV ECX,2
00401045 D3E0 SHL EAX,CL
00401047 33DB XOR EBX,EBX
00401049 83C3 05 ADD EBX,5
0040104C 4B DEC EBX
0040104D 03C3 ADD EAX,EBX

Self-modifying code

Meta-morphic code

