
Corso di
“Sviluppo di applicazioni
Web”

Docente: Giovanni Grasso

- Transazionalità in Spring

Pluggable Transaction
Strategy
 Spring PlatformTransactionManager
 Transaction management provided by

implemenation
 Implemenations include

 JDBC
 Hibernate
 JTA
 Others

Creating a
TransactionManager

 Each implementation will require a
different set of properties to configure
 For example, the

HibernateTransactionManager requires a
reference to a Session Factory

Programmatic Transactions

 TransactionTemplate
 Works just like other Spring Template

classes
 HibernateTemplate
 JDBCTemplate

 Primary method:
 doInTransaction

Declarative Transactions
 Modeled after EJB declarative transactions
 Transactions are declared not programmed

 Configuration-based
 Annotation-based

 Transaction support supplied by AOP
 Several options exist
 TransactionProxyFactoryBean
 AspectJ

 Define a transaction manager

Spring Declarative Transaction
Features

 POJO-baesd
 Supports Interfaces or Classes
 Rollback rules on certain exceptions
 Customizable using AOP features

Transaction Attributes

 Spring supports the following
configuration of transactions:
 Propagation behavior
 Isolation levels
 Read-only hints
 Transaction timeout period

Transaction Propagation
 Defines the transaction boundry between

client and method
 Supported modes

 PROPAGATION_MANDATORY
 PROPAGATION_NESTED
 PROPAGATION_NEVER
 PROPAGATION_NOT_SUPPORTED
 PROPAGATION_REQUIRED
 PROPAGATION_REQUIRES_NEW
 PROPAGATION_SUPPORTS

9

Transaction Propagation
● PROPAGATION_REQUIRED
– Support a current transaction, create a new one if none exists.

● PROPAGATION_SUPPORTS
– Support a current transaction, execute non-transactionally if

none exists.
● PROPAGATION_MANDATORY
– Support a current transaction, throw an exception if none exists.

● PROPAGATION_REQUIRES_NEW
– Create a new transaction, suspend the current transaction if one

exists.
● PROPAGATION_NOT_SUPPORTED
● PROPAGATION_NEVER
● PROPAGATION_NESTED

Isolation Levels

 Spring supports the following isolation
levels on transactions:
 ISOLATION_DEFAULT (datastore)
 ISOLATION_READ_UNCOMMITTED
 ISOLATION_READ_COMMITTED
 ISOLATION_REPEATABLE_READ
 ISOLATION_SERIALIZABLE

7

Transaction Isolation Levels
● ISOLATION_DEFAULT
● ISOLATION_READ_UNCOMMITTED
– Dirty reads, non-repeatable reads and phantom

reads can occur.
● ISOLATION_READ_COMMITTED
– Dirty reads are prevented; non-repeatable reads

and phantom reads can occur.
● ISOLATION_REPEATABLE_READ
– Dirty reads and non-repeatable reads are

prevented; phantom reads can occur.
● ISOLATION_SERIALIZABLE
– Dirty reads, non-repeatable reads and phantom

reads are prevented

Annotation vs. Configuration
 Previous versions of Spring did not support

Annotation-based declarative transactions
 Configuration-based resulted in highly complex

application context configuration
 Annotation-based is preferred approach

 Much simpler configuration
 More obvious in source code

Enabling Spring Transactions
with Annotations

 Step 1: Enable Feature

 Step 2: Annotate Classes or Interfaces

Setting Transaction Attributes

 @Transactional supports annotation
parameters for:
 Propagation
 Isolation
 Timeout
 Read only
 Rollback rules

Rollback Rules

 Spring supports declaring under what
conditions a rollback should
automatically take place

 Default behavior
 Automatic rollback on RuntimeException

How Spring Transactions Work

From Spring 2.0 Reference

Esercizio
 Scaricare il codice della scorsa esercitazione e definire

un nuovo bean implementando la classe
PersistenceLayer che ha come dipendenze gli oggetti
DAO giò disponibili.

 PersistenceLayer deve offrire metodi TRANSAZIONALI
come:
 saveUser, findUserById, deleteUser, updateUser

per ogni entità del modello. Questi metodi delegano il loro
comportamento agli oggetti DAO specifici.

 Si adattino i test al nuovo setting

