Corso di
“Sviluppo di applicazioni
Web”

Docente: Giovanni Grasso

- Transazionalita in Spring



Pluggable Transaction

*M Strategy

= Spring PlatformTransactionManager

= Transaction management provided by
implemenation
= Implemenations include
= JDBC
= Hibernate
= JTA
= Others




Creating a
&W TransactionManager

= Each implementation will require a
different set of properties to configure
" For example, the

HibernateTransactionManager requires a
reference to a Session Factory

<bean id="txManager" class="'org.springframework.orm.hibernate3.HibernateTransactionManager'>
<property name='"sessionFactory'" ref="sessionFactory" />
</bean>




*M Programmatic Transactions

" TransactionTemplate

= Works just like other Spring Template
classes
= HibernateTemplate
= JDBCTemplate
= Primary method:
* doInTransaction



&% Declarative Transactions

= Modeled after EJB declarative transactions

= Transactions are declared not programmed
= Configuration-based
= Annotation-based
= Transaction support supplied by AOP
= Several options exist
= TransactionProxyFactoryBean
= Aspect]

= Define a transaction manager



Spring Declarative Transaction

*W Features

= POJO-baesd

= Supports Interfaces or Classes

= Rollback rules on certain exceptions
= Customizable using AOP features




&W Transaction

Attributes

= Spring suppor

s the following

configuration of transactions:
= Propagation behavior

= Jsolation levels

= Read-only hints

* Transaction timeout period



Transaction Propagation

= Defines the transaction boundry between
client and method

pported modes

= Su

PROPAGAT
PROPAGAT
PROPAGAT
PROPAGAT
PROPAGAT
PROPAGAT

'TON_MANDATORY
'TON_NESTED
'TON_NEVER
'TON_NOT_SUPPORTED
'TON_REQUIRED
'TON_REQUIRES_NEW

PROPAGAT

'TON_SUPPORTS



Transaction Propagation

« PROPAGATION REQUIRED
— Support a current transaction, create a new one if none exists.

PROPAGATION_SUPPORTS

- Support a current transaction, execute non-transactionally if
none exists.

PROPAGATION_MANDATORY

— Support a current transaction, throw an exception if none exist

PROPAGATION_REQUIRES NEW

- Create a new transaction, suspend the current transaction if or
exists.

o P

o P

o P

RO
RO

RO

PAGAT
PAGAT

PAGAT

ON_NOT SUPPORTED
ON NEVER
ON_NESTED ;



w Isolation Levels

= Spring supports the following isolation
levels on transactions:

= ISO
= ISO
= JSO
= ISO
= ]SO

_ATION_DEFAULT (datastore)

| ATION_READ_UNCOMMITTED
ATION_READ_COMMITTED
 ATION_REPEATABLE_READ

LATION_SERIALIZABLE



Transaction Isolation Levels

ISOLATION_DEFAULT

ISOLATION_READ_UNCOMMITTED

- Dirty reads, non-repeatable reads and phantom
reads can occur.

ISOLATION_READ_COMMITTED

- Dirty reads are prevented; non-repeatable reads
and phantom reads can occur.

ISOLATION_REPEATABLE_READ

- Dirty reads and non-repeatable reads are
prevented; phantom reads can occur.

ISOLATION_SERIALIZABLE

- Dirty reads, non-repeatable reads and phantom
reads are prevented



&MM Annotation vs. Configuration

= Previous versions of Spring did not support
Annotation-based declarative transactions

= Configuration-based resulted in highly complex
application context configuration

= Annotation-based is preferred approach
= Much simpler configuration
= More obvious in source code




Enabling Spring Transactions
&W with Annotations

= Step 1: Enable Feature

<tx:annotation-driven transaction-manager=""txManager" />

= Step 2: Annotate Classes or Interfaces

public interface StockService {

#Transac tional
public Stock listsStock(Stock stock) !




*W Setting Transaction Attributes

= @Transactional supports annotation
parameters for:

* Propagation

= Jsolation

= Timeout

= Read only

= Rollback rules



&MM Rollback Rules

= Spring supports declaring under what
conditions a rollback should
automatically take place

= Default behavior
= Automatic rollback on RuntimeException




How Spring Transactions Work

Control flows back through
interceptor chain to return
/ result to caller
:} Transaction
Advisor(s)

Advisor
Target

Method

Caller

B

Caller invokes proxy,

not target
Transaction created on way
in, committed or rolled

back on way out Business logic invoked

Custom interceptors may run
before or after transaction advisor
From Spring 2.0 Reference



Esercizio

Scaricare il codice della scorsa esercitazione e definire
un nuovo bean implementando la classe
PersistencelLayer che ha come dipendenze gli oggett
DAO gio disponibili.

PersistencelLayer deve offrire metodi TRANSAZIONALI
come:

o saveUser, findUserByld, deleteUser, updateUser

per ogni entita del modello. Questi metodi delegano il loro
comportamento agli oggetti DAO specifici.

Si adattino I test al nuovo setting





