
Efficiently Computable Datalog∃ Programs
Technical report containing the full version of the paper submitted to KR 2012

Nicola Leone and Marco Manna and Giorgio Terracina and Pierfrancesco Veltri
Department of Mathematics, University of Calabria, Italy

{leone,manna,terracina,veltri}@mat.unical.it

Abstract

Datalog∃ is the natural extension of Datalog, allow-
ing existentially quantified variables in rule heads. This
language is highly expressive and enables easy and
powerful knowledge-modeling, but the presence of ex-
istentially quantified variables makes reasoning over
Datalog∃ undecidable, in the general case. The results
in this paper enable powerful, yet decidable and effi-
cient reasoning (query answering) on top of Datalog∃

programs.
On the theoretical side, we define the class of parsimo-
nious Datalog∃ programs, and show that it allows of de-
cidable and efficiently-computable reasoning. Unfortu-
nately, we can demonstrate that recognizing parsimony
is undecidable. However, we single out Shy, an eas-
ily recognizable fragment of parsimonious programs,
that significantly extends both Datalog and Linear-
Datalog∃, while preserving the same (data and com-
bined) complexity of query answering over Datalog, al-
though the addition of existential quantifiers.
On the practical side, we implement a bottom-up eval-
uation strategy for Shy programs inside the DLV sys-
tem, enhancing the computation by a number of op-
timization techniques to result in DLV∃ – a powerful
system for answering conjunctive queries over Shy pro-
grams, which is profitably applicable to ontology-based
query answering. Moreover, we carry out an experimen-
tal analysis, comparing DLV∃ against a number of state-
of-the-art systems for ontology-based query answering.
The results confirm the effectiveness of DLV∃, which
outperforms all other systems in the benchmark domain.

1 Introduction
Context and Motivation. In the field of data and knowl-
edge management, ontology-based Query Answering (QA)
is becoming more and more a challenging task (Calvanese
et al. 2007; Calì, Gottlob, and Lukasiewicz 2009; Kollia,
Glimm, and Horrocks 2011; Calì, Gottlob, and Pieris 2011).
Actually, database technology providers – such as Oracle1,
Ontotext2 and Ontoprise3 – have started to build ontolog-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See: http://www.oracle.com/
2See: http://www.ontotext.com/
3See: http://www.ontoprise.de/

ical reasoning modules on top of their existing software.
Also, ontological reasoning is part of several research-based
systems, such as QuOnto (Acciarri et al. 2005), FaCT++
(Tsarkov and Horrocks 2006), and Nyaya (De Virgilio et
al. 2011). In this context, queries are not merely evaluated
on an extensional relational databaseD, but against a logical
theory combining the databaseD with an ontological theory
Σ. More specifically, Σ describes rules and constraints for
inferring intensional knowledge from the extensional data
stored in D (Johnson and Klug 1984). Thus, for a conjunc-
tive query (CQ) q, we do not actually check whether D en-
tails q, but we would like to know whether D ∪ Σ does.

A key issue in ontology-based QA is the design of the lan-
guage that is provided for specifying the ontological theory
Σ. This language should balance expressiveness and com-
plexity, and in particular it should possibly be: (1) intuitive
and easy-to-understand; (2) QA-decidable (i.e., QA should
be decidable in this language); (3) efficiently computable;
(4) powerful enough in terms of expressiveness; and (5)
suitable for an efficient implementation.

In this regard, Datalog±, the family of Datalog-based lan-
guages proposed by Calì, Gottlob, and Lukasiewicz (2009)
for tractable query answering over ontologies, is arousing
increasing interest (Mugnier 2011). This family, that encom-
passes and generalizes well known ontology specification
languages, is mainly based on Datalog∃, the natural exten-
sion of Datalog (Abiteboul, Hull, and Vianu 1995) that al-
lows ∃-quantified variables in rule heads. For example, the
following Datalog∃ rules

∃Y father(X,Y) :- person(X).
person(Y) :- father(X,Y).

state that if X is a person, then X must have a father Y ,
which has to be a person as well. However, more in gen-
eral, the Datalog± family intends to collect all expressive
extensions of Datalog which are based on tuple-generating
dependencies (or TGDs, which are Datalog∃ rules with pos-
sibly multiple atoms in rule heads), equality-generating de-
pendencies and negative constraint. In particular, the “plus”
symbol refers to any possible combination of these exten-
sions, while the “minus” one imposes at least decidability,
since Datalog∃ alone is already undecidable.

A number of QA-decidable Datalog± languages have
been defined in the literature. They rely on three main
paradigms, called weak-acyclicity (Fagin et al. 2005),

guardness (Calì, Gottlob, and Kifer 2008) and stickiness
(Calì, Gottlob, and Pieris 2010a), depending on syntac-
tic properties. But there are also QA-decidable “abstract”
classes of Datalog∃ programs, called Finite-Expansion-Sets,
Finite-Treewidth-Sets and Finite-Unification-Sets, depend-
ing on semantic properties that capture the three mentioned
paradigms, respectively (Mugnier 2011). However, even if
all known languages based on these properties enjoy the
simplicity of Datalog and are endowed with a number of
properties that are desired for ontology specification lan-
guages, none of them fully satisfy conditions (1)–(5) above
(see Section 8).

Contribution. In this work, we single out a new class of
Datalog∃ programs, called Shy, which enjoys a new seman-
tic property called parsimony and results in a powerful and
yet QA-decidable ontology specification language that com-
bines positive aspects of different Datalog± languages. With
respect to properties (1)–(5) above, the class of Shy pro-
grams behaves as follows: (1) it inherits the simplicity and
naturalness of Datalog; (2) it is QA-decidable; (3) it is ef-
ficiently computable (tractable data complexity and limited
combined-complexity); (4) it offers a good expressive power
being a strict superset of Datalog; and (5) it is suitable for an
efficient implementation. Specifically, Shy programs can be
evaluated by parsimonious forward-chaining inference that
allows of an efficient on-the-fly QA, as witnessed by our
experimental results.4 From a technical viewpoint, the con-
tribution of the paper is the following.
I We propose a new semantic property called parsi-
mony, and prove that on the abstract class of parsimonious
Datalog∃ programs, called Parsimonious-Sets, (atomic)
query answering is decidable and also efficiently com-
putable.
I After showing that recognition of parsimony is unde-
cidable (coRE-complete), we single out Shy, a subclass of
Parsimonious-Sets, which guarantees both easy recogniz-
ability and efficient answering even to conjunctive queries.
IWe demonstrate that both Parsimonious-Sets and Shy pre-
serve the same (data and combined) complexity of Datalog
for atomic query answering: the addition of existential quan-
tifiers does not bring any computational overhead here.
I We implement a bottom-up evaluation strategy for Shy
programs inside the DLV system, and enhance the com-
putation by a number of optimization techniques, yielding
DLV∃ – a powerful system for query answering over Shy
programs, which is profitably applicable for ontology-based
query answering. To the best of our knowledge, DLV∃ is the
first system supporting the standard first-order semantics for
unrestricted CQs with existential variables over ontologies
with advanced properties (some of these beyond AC0), such
as, role transitivity, role hierarchy, role inverse, and concept
products (Glimm et al. 2008).
I We perform an experimental analysis, comparing DLV∃

4Intuitively, parsimonious inference generates no isomorphic
atoms (see Section 3); while on-the-fly QA does not need any pre-
liminary materialization or compilation phase (see Section 7), and
is very well suited for QA against frequently changing ontologies.

against a number of state-of-the-art systems for ontology-
based QA. The positive results attained through this analysis
do give clear evidence that DLV∃ is definitely the most effec-
tive system for query answering in dynamic environments,
where the ontology is subject to frequent changes, making
pre-computations and static optimizations inapplicable.
I We analyze related work, providing a precise tax-
onomy of the QA-decidable Datalog∃ classes. It turns
out that both Parsimonious-Sets and Shy strictly contain
Datalog ∪ Linear-Datalog∃, while they are uncomparable
to Finite-Expansion-Sets, Finite-Treewidth-Sets, and Finite-
Unification-Sets.

Organization. The remaining of the paper is organized as
follows. Section 2 formally fixes syntax and semantics of
Datalog∃ programs, as well as some preliminaries and useful
notation. Section 3 defines a new class of Datalog∃ programs
introducing a novel semantic property: parsimony. Section 4
presents the Shy language and its main properties. Section 5
deals with complexity. Sections 6 and 7 describe the DLV∃
system and our experimental analysis. Finally, section 8 sur-
veys notable related works and discusses our results.

2 The Framework
In this section, after some useful preliminaries, we introduce
Datalog∃ programs and CQs. Next, we equip such struc-
tures with a formal semantics. Finally, we show the chase, a
well-known procedure that allows of answering CQs (Maier,
Mendelzon, and Sagiv 1979; Johnson and Klug 1984).

2.1 Preliminaries
The following notation will be used throughout the paper.
We always denote by ∆C , ∆N and ∆V , countably infinite
domains of terms called constants, nulls and variables, re-
spectively; by ∆, the union of these three domains; by t, a
generic term; by c, d and e, constants; by ϕ, a null; by X and
Y, variables; by X and Y, sets of variables; by Π an alpha-
bet of predicate symbols each of which, say p, has a fixed
nonnegative arity, denoted by arity(p); by a, b and c, atoms
being expressions of the form p(t1, . . . , tk), where p is a
predicate symbol and t1, . . . , tk is a tuple of terms. More-
over, if the tuple of an atom consists of only constants and
nulls, then this atom is called ground; if T ⊆ ∆C ∪ ∆N ,
then base(T) denotes the set of all ground atoms that can
be formed with predicate symbols in Π and terms from T ;
if a is an atom, then pred(a) denotes the predicate sym-
bol of a; if ς is any formal structure containing atoms, then
terms(ς) (resp., dom(ς)) denotes all the terms from ∆ (resp.,
∆C ∪∆N) occurring in the atoms of ς .

Mappings. Given a mapping µ : S1 → S2, its restriction
to a set S is the mapping µ|S from S1∩S to S2 s.t. µ|S(s) =
µ(s) for each s ∈ S1 ∩ S. If µ′ is a restriction of µ, then µ
is called an extension of µ′, also denoted by µ ⊇ µ′. Let
µ1 : S1 → S2 and µ2 : S2 → S3 be two mappings. We
denote by µ2 ◦ µ1 : S1 → S3 the composite mapping.

We call homomorphism any mapping h : ∆ → ∆ whose
restriction h|∆C

is the identity mapping. In particular, h is
an homomorphism from an atom a = p(t1, . . . , tk) to an

atom b if b = p(h(t1), . . . , h(tk)). With a slight abuse of
notation, b is denoted by h(a). Similarly, h is a homomor-
phism from a set of atoms S1 to another set of atoms S2 if
h(a) ∈ S2, for each a ∈ S1. Moreover, h(S1) = {h(a) :
a ∈ S1} ⊆ S2. In particular, if S1 = ∅, then h(S1) = ∅.
In case the domain of h is the empty set, then h is called
empty homomorphism and it is denoted by h∅. In particular,
h∅(a) = a, for each atom a.

An isomorphism between two atoms (or two sets of
atoms) is a bijective homomorphism. Given two atoms a and
b, we say that: a � b iff there is a homomorphism from b
to a; a ' b iff there is an isomorphism between a and b;
a ≺ b iff a � b holds but a ' b does not.

A substitution is a homomorphism σ from ∆ to ∆C ∪∆N

whose restriction σ|∆C∪∆N
is the identity mapping. Also,

σ∅ = h∅ denotes the empty substitution.

2.2 Programs and Queries
A Datalog∃ rule r is a finite expression of the form:

∀X∃Y atom[X′∪Y] ← conj[X] (1)

where (i) X and Y are disjoint sets of variables (next called
∀-variables and ∃-variables, respectively); (ii) X′ ⊆ X;
(iii) atom[X′∪Y] stands for an atom containing only and
all the variables in X′ ∪ Y; and (iv) conj[X] stands for a
conjunct (a conjunction of zero, one or more atoms) con-
taining only and all the variables in X. Constants are also al-
lowed in r. In the following, head(r) denotes atom[X′∪Y],
and body(r) the set of atoms in conj[X]. Universal quan-
tifiers are usually omitted to lighten the syntax, while ex-
istential quantifiers are omitted only if Y is empty. In the
second case, r coincides with a standard Datalog rule. If
body(r) = ∅, then r is usually referred to as a fact. In par-
ticular, r is called existential or ground fact according to
whether r contains some ∃-variable or not, respectively. A
Datalog∃ program P is a finite set of Datalog∃ rules. We de-
note by preds(P) ⊆ Π the predicate symbols occurring in
P , by data(P) all the atoms constituting the ground facts of
P , and by rules(P) all the rules of P being not ground facts.

Example 2.1. The following expression is a Datalog∃ rule
where father is the head and person the only body atom.

∃Y father(X,Y) :- person(X).

Given a Datalog∃ program P , a conjunctive query (CQ) q
over P is a first-order (FO) expression of the form:

∃Y conj[X∪Y] (2)

where X are its free variables, and conj[X∪Y] is a conjunct
containing only and all the variables in X ∪ Y and possi-
bly some constants. To highlight the free variables, we write
q(X) instead of q. Query q is called Boolean CQ (BCQ) if
X = ∅. Moreover, q is called atomic if conj is an atom.
Finally, atoms(q) denotes the set of atoms in conj.

Example 2.2. The following expression is a CQ asking
whether there exists a grandfather having john as nephew.

∃Y father(’john’,X),father(X,Y)

2.3 Query Answering and Universal Models
In the following, we equip Datalog∃ programs and queries
with a formal semantics to result in a formal QA definition.

Given a set S of atoms and an atom a, we say that S |= a
(resp., S a) holds if there is a substitution σ s.t. σ(a) ∈ S
(resp., a homomorphism h s.t. h(a) ∈ S).

Let P ∈ Datalog∃. A setM ⊆ base(∆C∪∆N) is a model
for P (M |= P , for short) if, for each r ∈ P of the form (1),
whenever there exists a substitution σ s.t. σ(body(r)) ⊆M ,
then M |= σ|X(head(r)). (Note that, σ|X(head(r)) con-
tains only and all the ∃-variables Y of r.) The set of all the
models of P are denoted by mods(P).

Let M ∈ mods(P). A BCQ q is true w.r.t. M (M |= q)
if there is a substitution σ s.t. σ(atoms(q)) ⊆ M . Anal-
ogously, the answer of a CQ q(X) w.r.t. M is the set
ans(q,M) = {σ|X : σ is a substitution ∧ M |= σ|X(q)}.

The answer of a CQ q(X) w.r.t. a program P is the
set ansP (q) = {σ : σ ∈ ans(q,M) ∀M ∈ mods(P)}. Note
that, ansP (q) = {σ∅} iff q is a BCQ. In this case, we say
that q is cautiously true w.r.t. P or, equivalently, that q is
entailed by P . This is denoted by P |= q, for short.

Let C be a class of Datalog∃ programs. The following def-
inition formally fixes the computational problem studied in
this paper, concerning query answering.
Definition 2.3. QA[C] is the following decision problem.
Given a program P belonging to C, an atomic query q, and
a substitution σ for q, does σ belong to ansP (q)?

In the following, a Datalog∃ class C is called QA-
decidable if and only if problem QA[C] is decidable. Finally,
before concluding this section, we mention that QA can be
carried out by using a universal model. Actually, a model U
for P is called universal if, for each M ∈ mods(P), there is
a homomorphism h s.t. h(U) ⊆M .
Proposition 2.4 (Fagin et al. 2005). Let U be a univer-
sal model for P . Then, (i) P |= q iff U |= q, for each
BCQ q; (ii) ansP (q) ⊆ ans(q, U) for each CQ q; and (iii)
σ ∈ ansP (q) iff both σ ∈ ans(q, U) and σ : ∆V → ∆C .

2.4 The Chase
As already mentioned, the chase is a well-known procedure
for constructing a universal model for a Datalog∃ program.
We are now ready to show how this procedure works, in one
of its variants (although slightly revised).

First, we introduce the notion of chase step, which, intu-
itively, fires a rule r on a set C of atoms for inferring new
knowledge. More precisely, given a rule r of the form (1)
and a set C of atoms, a firing substitution σ for r w.r.t.
C is a substitution σ on X s.t. σ(body(r)) ⊆ C. Next,
given a firing substitution σ for r w.r.t. C, the fire of r on
C due to σ infers σ̂(head(r)), where σ̂ is an extension of
σ on Y ∪ X associating each ∃-variable in Y to a differ-
ent null. Finally, Procedure 1 illustrates the overall restricted
chase procedure. Importantly, we assume that different fires
(on the same or different rules) always introduce different
“fresh” nulls. The procedure consists of an exhaustive series
of fires in a breadth-first (level-saturating) fashion, which
leads as result to a (possibly infinite) chase(P).

Procedure 1 CHASE(P)

Input: Datalog∃ program P
Output: A Universal Model chase(P) for P
1. C := data(P)
2. NewAtoms := ∅
3. for each r ∈ P do
4. for each firing substitution σ for r w.r.t. C do
5. if ((C ∪ NewAtoms) 6|= σ(head(r)))
6. add(σ̂(head(r)),NewAtoms)
7. if (NewAtoms 6= ∅)
8. C := C ∪ NewAtoms
9. go to step 2
10. return C

The level of an atom in chase(P) is inductively defined
as follows. Each atom in data(P) has level 0. The level of
each atom constructed after the application of a restricted
chase step is obtained from the highest level of the atoms in
σ(body(r)) plus one. For each k ≥ 0, chasek(P) denotes
the subset of chase(P) containing only and all the atoms of
level up to k. Actually, by Procedure 1, chasek(P) is pre-
cisely the set of atoms which is inferred the kth-time that
the outer for-loop is ran.
Proposition 2.5. (Fagin et al. 2005; Deutsch, Nash, and
Remmel 2008) Given a Datalog∃ program P , CHASE con-
structs a universal model for P .

Unfortunately, CHASE does not always terminates.
Proposition 2.6. (Fagin et al. 2005; Deutsch, Nash, and
Remmel 2008) QA[Datalog∃] is undecidable even for atomic
queries. In particular, it is RE-complete.

3 A New QA-Decidable Datalog∃ Class
This section introduces a new class of Datalog∃ programs,
called Parsimonious-Sets, as well as some of its properties.

Definition 3.1. For any Datalog∃ program P , parsimo-
nious chase (PARSIM-CHASE(P) for short) is the proce-
dure resulting by the replacement of operator 6|= by 6 in
the condition of the if-instruction at step 5 in Procedure 1
CHASE(P). The output of PARSIM-CHASE(P) is denoted by
pChase(P).

Note that, differently from chase(P), here pChase(P)
might not be a model any more. Based on Definition 3.1,
we next define a new class of Datalog∃ programs depending
on a novel semantic property, called parsimony.

Definition 3.2. A Datalog∃ program P is called parsi-
monious if pChase(P) a, for each a ∈ chase(P).
Parsimonious-Sets next denotes the class of all parsimonious
programs.

We next show that atomic QA against a
Parsimonious-Sets program can be carried out by the
PARSIM-CHASE algorithm.
Proposition 3.3. Algorithm PARSIM-CHASE over parsimo-
nious programs is sound and complete w.r.t. atomic QA.

Proof. Soundness follows, by Definition 3.1, since
pChase(P) ⊆ chase(P) holds. In fact, since each

substitution is a homomorphism, then, given a set of
atoms S and an atom a, S |= a always entails S a.
Conversely, S 6 a always entails S 6|= a. Finally,
ans(q, pChase(P)) ⊆ ansP (q), for each CQ q.

For completeness, let P be a parsimonious program
and q be an atomic query. To prove that ansP (q) ⊆
ans(q, pChase(P)) we observe that whenever σ ∈ ansP (q),
then chase(P) |= σ(q), namely there is a substitution σ′
such that σ′(σ(q)) ∈ chase(P). But, by Definition 3.2,
pChase(P) σ′(σ(q)), namely there is a homomorphism
h such that h(σ′(σ(q))) ∈ pChase(P). Now, since each
substitution is a homomorphism and since composition of
homomorphisms is a homomorphism, we call h′ the homo-
morphism h ◦ σ′. Thus, h′(σ(q)) ∈ pChase(P). But, since
h′ = h ◦ σ′ is actually a substitution, then pChase(P) |=
σ(q), namely σ ∈ ans(q, pChase(P)).

Now, before proving one of the main results of this section
concerning decidability of atomic query answering against
parsimonious programs, we show that the cardinality of
pChase(P) is finite as well as the number of levels reached
by PARSIM-CHASE.

Lemma 3.4. Let P be a Datalog∃ program, α be the max-
imum arity over all predicate symbols in P , and Φ be a set
of α nulls. Then, there is a one-to-one correspondence µ be-
tween pChase(P) and a subset of base(dom(P) ∪ Φ) such
that a ' µ(a), for each a ∈ pChase(P).

Proof. First we observe that each atom in pChase(P), say
a, has at most α different nulls. Thus, after replacing the
nulls of a with different nulls from Φ we obtain an isomor-
phic atom belonging to base(dom(P) ∪ Φ). Now assume
that two atoms a1 6= a2 in pChase(P) had one common
isomorph b ∈ base(dom(P) ∪ Φ), namely a1 ' b and
a2 ' b. This would clearly entail that a1 ' a2. But this
is not possible since data(P) contains no pair of isomorphic
atoms, and because PARSIM-CHASE (due to the introduction
of operator) does not allow any addition to pChase(P)
of an isomorphic atom. Consequently, µ can be built by as-
sociating to each atom in pChase(P) one of its isomorphic
atoms in base(dom(P) ∪ Φ).

Corollary 3.5. Let P be a Datalog∃ program, and α be
the maximum arity over all predicate symbols in P . Then,
|pChase(P)| ≤ |preds(P)| · (|dom(P)|+ α)α.

Proof. This upperbound directly follows from Lemma 3.4
by considering the cardinality of base(dom(P)∪Φ), where
Φ is a set of α nulls.

The following theorem claims that parsimony makes
atomic query answering decidable.

Theorem 3.6. Atomic query answering against
Parsimonious-Sets programs is decidable.

Proof. Proposition 3.3 ensures that atomic QA is sound
and complete against pChase(P). Corollary 3.5 ensures
that the cardinality of pChase(P) is finite, entailing that
both PARSIM-CHASE stops after computing no more that

Algorithm 2 ORACLE-QA(P, q)

Input: Datalog∃ program P ∧ Boolean atomic query q
Output: true ∨ false
1. if (IS-PARSIMONIOUS(P))
2. return (pChase(P) |= q)
3. else
4. k := firstAwakeningLevel(P)
5. P ′ := P ∪ (chasek(P)− chasek−1(P))
6. return ORACLE-QA(P ′, q)

|pChase(P)| levels, and the number of firing substitutions
considered at step 4 of the algorithm is always finite.

We now show that recognizing parsimony is undecidable.

Theorem 3.7. Checking whether a program is parsimonious
is not decidable. In particular, it is coRE-complete.

Proof. For the membership, given a Datalog∃ program P ,
we show that one can semi-decide whether P is not parsi-
monious. In fact, in such a case, there must exist by defi-
nition a level k such that, for each atom a ∈ chasek(P),
chasek−1(P) a but there is an atom a′ ∈ chasek+1(P)
such that chasek(P) 6 a′. Thus, if a program is not parsi-
monious, then we can discover that by running the CHASE.

For the hardness part, we use Algorithm 2, called
ORACLE-QA, that would solve the QA[Datalog∃] problem
(which, by Proposition 2.6, is RE-complete) if the prob-
lem of checking whether a program is parsimonious was
decidable. In particular, given a Datalog∃ program P ,
we denote by IS-PARSIMONIOUS the Boolean terminat-
ing function deciding whether P is parsimonious or not;
and by firstAwakeningLevel(P) the lowest level k reached
by the CHASE such that pChase(P) a for each a ∈
chasek−1(P), and pChase(P) 6 a for at least one a ∈
chasek(P). Finally, it is enough to show that the algorithm:
(i) is sound, since P ′ only contains atoms from chase(P);
(ii) is complete, since P ′ evolves to a parsimonious program
after each execution of instruction 5 adding to P ′ at least one
atom a such that chasek−1(P) 6 a; (iii) terminates, since
the cardinality of pChase(P) is finite (where P denotes the
initial program), entailing that at most |pChase(P)| recur-
sive calls can be activated.

4 Recognizable Parsimonious Programs
We next define a novel syntactic Datalog∃ class: Shy. Later,
we prove that this class enjoys the parsimony property.

4.1 Shy: Definition and Main Properties
Calì, Gottlob, and Kifer (2008) introduced the notion of
“affected position” to know whether an atom with a null at
a given position might belong to the output of the CHASE.
Specifically, let a be an atom of arity k with a variable X oc-
curring at position i ∈ [1..k]. Position i of a is marked as
affected w.r.t. P if there is a rule r ∈ P s.t. pred(head(r)) =
pred(a) and X is either an ∃-variable, or a ∀-variable s.t. X
occurs in the body of r in affected positions only. Otherwise,

position i is definitely marked as unaffected. However, this
procedure might mark as affected some position hosting a
variable that can never be mapped to nulls.

To better detect whether a program admits a firing substi-
tution that maps a ∀-variable into a null, we introduce the
notion of null-set of a position in an atom. More precisely,
ϕrX denotes the “representative” null that can be introduced
by the ∃-variable X occurring in rule r. (If (r, X) 6= (r′, X′),
then ϕrX 6= ϕr

′

X′ .)

Definition 4.1. Let P be a Datalog∃ program, a be an atom,
and X a variable occurring in a at position i. The null-set
of position i in a w.r.t. P , denoted by nullset(i,a), is in-
ductively defined as follows. If a is the head atom of some
rule r ∈ P , then nullset(i,a) is: (1) either the set {ϕrX},
if X is ∃-quantified in r; or (2) the intersection of every
nullset(j,b) s.t. b ∈ body(r) and X occurs at position j
in b, if X is ∀-quantified in r. If a is not a head atom,
then nullset(i,a) is the union of nullset(i, head(r)) for each
r ∈ P s.t. pred(head(r)) = pred(a).

Note that nullset(i,a) may be empty. A representative null
ϕ invades a variable X that occurs at position i in an atom
a if ϕ is contained in nullset(i,a). A variable X occurring
in a conjunct conj is attacked in conj by a null ϕ if each
occurrence of X in conj is invaded by ϕ. A variable X is
protected in conj if it is attacked by no null. Clearly, each
attacked variable is affected but the converse is not true.

We are now ready to define the new Datalog∃ class.

Definition 4.2. A rule r of a Datalog∃ program P is called
shy w.r.t. P if the following conditions are both satisfied:

1. If a variable X occurs in more than one body atom, then X
is protected in body(r);

2. If two distinct ∀-variables are not protected in body(r) but
occur both in head(r) and in two different body atoms,
then they are not attacked by the same null.

Finally, Shy denotes the class of all Datalog∃ programs con-
taining only shy rules.

After noticing that a program is Shy regardless its ground
facts, we give an example of program being not Shy.

Example 4.3. Let P be the following Datalog∃ program:
r1 : ∃Y u(X,Y) :- q(X).
r2 : v(X,Y,Z) :- u(X,Y), p(X,Z).
r3 : p(X,Y) :- v(X,Y,Z).
r4 : u(Y,X) :- u(X,Y).

Let a1, . . . ,a9 be the atoms of P in left-to-right/top-to-
bottom order. First, nullset(2,a1) = {ϕr1Y }. Next, this sin-
gleton is propagated (head-to-body) to nullset(2,a4) and
nullset(2,a9). At this point, from a9 the singleton is prop-
agated (body-to-head) to nullset(1,a8), and from a4 to
nullset(2,a3), and so on, according to Definition 4.1. Fi-
nally, even if X is protected in r2 since it is invaded only
in a4, rule r2, and therefore P , is not shy due to Y and Z that
are attacked by ϕr1Y and occur in head(r2). Moreover, it is
easy to verify that P plus any fact for q does not belong to
Parsimonious-Sets.

Intuitively, the key idea behind this class is as follows. If
a program is shy then, during a CHASE execution, nulls do

not meet each other to join but only to propagate. Moreover,
a null is propagated, during a given fire, from a single atom
only. Hence, the shyness property, which ensures parsimony.

Theorem 4.4. Shy ⊂ Parsimonious-Sets.

Proof. Let P be a Shy program. Assume there exists a level
k such that pChase(P) a for each a ∈ chasek−1(P),
and pChase(P) 6 b for at least one atom b ∈ chasek(P).
Let j < k − 1 be the level where PARSIM-CHASE has
stopped. Since b ∈ chasek(P) − chasek−1(P), then there
must be at least one atom in chasek−1(P) − chasek−2(P)
that is necessary for firing a rule r to chasek−1(P) to infer
b. Let σ be the firing substitution for r w.r.t. chasek−1(P)
used for inferring b, and a1, . . . ,an be the body atoms of
r. Clearly, pChase(P) σ(ai) for each i ∈ [1..n]. Now,
since P is shy then, by Definition 3.2, σ may map a vari-
able into a null only if such a variable does not appear in
two different atoms, and two different variables appearing
in the head cannot be mapped to the same null. This means
that if we consider the n homomorphisms h1, . . . , hn such
that hi(σ(ai)) ∈ pChase(P) for each i ∈ [1..n], then we
can take the union h of their restrictions on the ∃-variables
of r without generating any conflict. But this is not pos-
sible because h ◦ σ is also a firing substitution for r on
pChase(P) entailing the existence of an homomorphism
from σ(head(r)) to h(σ(head(r))). Finally, this entails an
homomorphism from b to the atom inferred by the exten-
sion of h ◦ σ.

Corollary 4.5. Atomic QA over Shy is decidable.

We now show that recognizing parsimony is decidable.

Theorem 4.6. Checking whether a program P is shy is de-
cidable. In particular, it is doable in polynomial-time.

Proof. First, the occurrences of ∃-variables in P fix the
number h of nulls appearing in the null-sets of P . Next, let
k be the number of atoms occurring in P , and α be the max-
imum arity over all predicate symbols in P . It is enough
to observe that P allows at most k ∗ α null-sets each of
which of cardinality no greater than h. Finally, the statement
holds since the null-set-construction is monotone and stops
as soon as a fixpoint has been reached.

4.2 Conjunctive Queries over Shy
In this section we show that conjunctive QA against Shy pro-
grams is also decidable. To manage CQs, we next describe
a technique called parsimonious-chase resumption, which is
sound for any Datalog∃ program P , and also complete over
Shy. Before proving formal results, we give a brief intuition
of this approach. Assume that pChase(P) consists of the
atoms p(c, ϕ), q(d, e), r(c, e). It is definitely possible that
chase(P) contains also q(ϕ, e), which, of course, cannot
belong to pChase(P) due to q(d, e). Now consider the CQ
q = ∃Y p(X, Y), q(Y, Z). Clearly, pChase(P) does not pro-
vide any answer to q even ifP does. Let us both “promote”ϕ
to constant in ∆C , and “resume” the PARSIM-CHASE execu-
tion at step 3, in the same state in which it had stopped after

returning the set C at step 10. But, now, since ϕ can be con-
sidered as a constant, then there is no homomorphism from
q(ϕ, e) to q(d, e). Thus, q(ϕ, e) may be now inferred by the
algorithm and used to prove that ansP (q) is nonempty.

We call freeze the act of promoting a null from ∆N to
an extra constant in ∆C . Also, given a set S of atoms, we
denote by dSc the set obtained from S after freezing all of
its nulls. The following definition formalizes the notion of
parsimonious-chase resumption after freezing actions.

Definition 4.7. Let P ∈ Datalog∃. The set pChase(P, 0)
denotes data(P), while the set pChase(P, k) denotes
pChase(rules(P) ∪ dpChase(k − 1)c), for each k > 0.

Clearly, the sequence {pChase(P, k)}k∈N is monotoni-
cally increasing; the limit of this sequence is denoted by
pChase(P,∞). The next lemma states that the proposed re-
sumption technique is always sound w.r.t. QA, and that its
infinite application also ensures completeness.

Lemma 4.8. pChase(P,∞) = chase(P) ∀P ∈ Datalog∃.

Proof. The statement holds since operator in PARSIM-
CHASE behaves, on freezed nulls, as |= in the CHASE.

Before proving that the PARSIM-CHASE algorithm over
Shy programs is complete w.r.t. CQ answering after a fi-
nite number of resumptions, we need to introduce some
more notation. The chase-graph for a Datalog∃ program P
is the directed acyclic graph GP = 〈chase(P), A〉 where
(a,b) ∈ A iff b has been inferred by the CHASE through
a firing substitution σ for a rule r where a ∈ σ(body(r)).
Moreover, for a given set S ∈ chase(P), GSP denotes the
maximal subgraph of GP where a node may have no ingo-
ing arc only if it belongs to S.

Lemma 4.9. Let P be a Shy program, q be a CQ,
σa ∈ ansP (q), σ be a substitution proving that P |= σa(q)
holds, and YN be only and all the ∃-variables of q mapped
by σ to nulls. Then, there is a substitution σ′, proving that
P |= σa(q) holds, that maps at least one variable in YN to
a term occurring in pChase(P).

Proof. Let Φ contain the nulls occurring in σ(q), B con-
tain the atoms in chase(P) where the nulls of Φ have been
introduced for the first time, and b1, . . . ,bn be the atoms
of B listed in the same order they have been inferred by the
CHASE. Moreover, let Φi denote, for each i ∈ [1..n], the sub-
set of Φ of only and all the nulls that have been introduced
for the first time in bi, and a1 an atom form pChase(P)
such that a1 � b1. We build σ′ in such a way that at least
one variable in YN is mapped to some term occurring in
a1. In particular, we build a set A ⊆ chase(P) and a ho-
momorphism h : Φ → terms(A) such that a1 ∈ A and, for
each atom b inGBP containing at least a null from Φ, there is
h′ ⊇ h such that h′(b) belongs to GAP . Finally, σ′ = h ◦ σ.

We proceed by induction. More precisely, we construct
A, GAP and h by progressively considering all the atoms of
GBP in the same order they have been inferred by the CHASE.
Initially, A = {a1}, GAP contains only node a1, and h maps
each constant in σ(q) to itself, and each null in Φ1 occurring
at position i in b1 to the ith term of a1.

Base case: Let b be the first atom in GBP inferred by the
CHASE, via a rule r, after b1. Let σr be the firing substitution
for r used by the CHASE whose extension σ̂r has produced
b. If σr(body(r)) does not involve b1, then b = b2 and
we can choose any a � b to extend A. On the contrary, if
σr(body(r)) involves b1, since P is shy, then there is also
a firing substitution σ′r for r, where a1 ∈ σ′r(body(r)) and
σr(body(r))−{b1} = σ′r(body(r))−{a1}. (Note that also
in this case, b = b2 might hold.) Clearly, if σr can be ex-
tended to infer a new atom b, then either σ′r can be extended
to infer a new atom a or there is already some a such that
{a} |= σ′r(head(r)). But since a null in a but not in b either
comes from a1 or it is fresh, then a � b. Finally, a is added
to A, GAP is updated and, only in case b = b2, h is updated
according to a.

Inductive hypothesis: After considering the first k atoms
in GBP inferred by the CHASE, we assume that, for each such
an atom b containing at least a null from Φ, there is h′ ⊇ h
such that h′(b) belongs to GAP .

Inductive step: Let b be the (k+1)th atom inGBP inferred
by the CHASE, via a rule r. By using the same argument that
was used in the Base case, we can extend A and GAP by an
atom a � b. Moreover, if b = bi for some i ∈ [2..n], then
h is updated according to a. The only difference here is that
b may require more than one atom among the first k already
inferred.

Lemma 4.10. Let P ∈ Shy and q be a CQ with n different
∃-variables. Then, ansP (q) ⊆ ans(q, pChase(P, n+ 1)).

Proof. In Light of Lemma 4.9, in the worst case, to be sure
that all the nulls involved by σ′ are generated, we claim that
it is enough to compute pChase(P, n) where n is the num-
ber of ∃-variables of q. With respect to Lemma 4.9, let Y be
one of the variable in YN mapped by σ′ to a term occur-
ring in pChase(P). Assume that this term is a null say ϕ.
After freezing ϕ, we could replace Y in q by ϕ to obtain q′.
Clearly, P |= σa(q) iff P |= σa(q′). However, The BCQ
σa(q′) has an ∃-variable less than the BCQ σa(q). Thus, we
can use again the statement of Lemma 4.9 after replacing
pChase(P) by pChase(P, 2) and q by q′. We can reiterate
this process until the query has no ∃-variable, namely after
n−1 resumptions producing pChase(P, n). Finally, by Def-
inition 3.2, we are sure that pChase(P, n + 1) contains all
the atoms appearing in σa(σ′(q)).

Theorem 4.11. Conjunctive QA over Shy is decidable.

Proof. Soundness follows by Lemma 4.8, completeness by
Lemma 4.10, while termination by combining Theorem 3.6
and Definition 4.7.

The following example, after defining a Shy program P ,
shows that P imposes the computation of pChase(P, 3) to
prove (after two resumptions) that a BCQ q containing two
atoms and two variables is entailed by P .

Example 4.12. Let P denote the following Shy program.
p(a,b). u(c,d). r1 : ∃Z v(Z) :- u(X,Y). r2 : ∃Y
u(X,Y) :- v(X). r3 : p(X,Z) :- v(X), p(Y,Z).
r4 : p(X,W) :- p(X,Y), u(Z,W).

Consider the BCQ q = ∃X, Y p(X,Y),u(X,Y). Figure 1
shows that q cannot be proved before two freezing.

Figure 1: Snapshot of pChase(P, 3) w.r.t. Example 4.12

5 Computational Complexity
In this section we study the complexity of Parsimonious-Sets
and Shy programs. Moreover, let C be one of these classes,
we talk about combined complexity of QA[C] in general, and
about data complexity of QA[C] under the assumption that
data(P) are the only input while both q and rules(P) are
considered fixed. The results obtained from our analysis
have been then compared, in Section 8, with those already
proved for some representative Datalog± languages. We
start with upper bounds.

Theorem 5.1. QA[Parsimonious-Sets] is in P (resp., EXP) in data
complexity (resp., combined complexity).

Proof. Let P be a parsimonious program, α be the maxi-
mum arity over all predicate symbols in P , and β be the
maximum number of body atoms over all rules in P . Since
|pChase(P)| ≤ |preds(P)| · (|dom(P)|+ α)α by Corollary
3.5, then each rule admits at most |pChase(P)|β different
firing substitutions. Thus, all the firing substitutions are no
more that |P − data(P)| · |preds(P)|β · (|dom(P)|+α)α·β .
Moreover, for each firing substitution σ for a rule r, the algo-
rithm has to check whether there is an homomorphism from
σ̂(head(r)) to pChase(P). These checks are no more than
|P − data(P)| · |preds(P)|2·β · (|dom(P)|+ α)2·α·β .

We now consider lower bounds, and thus completeness.

Theorem 5.2. Both QA[Shy] and QA[Parsimonious-Sets] are
P-complete (resp., EXP-complete) in data complexity (resp.,
combined complexity).

Proof. Since, by Theorem 4.4, a shy program is also parsi-
monious, then (i) upper-bounds of Theorem 5.1 hold for Shy
programs as well; (ii) lower-bounds for QA[Datalog] (Dantsin
et al. 2001) also hold both for Shy and Parsimonious-Sets
programs, by Theorem 8.1.

6 Implementation and Optimizations
We implemented a system for answering conjunctive queries
over Shy programs (it actually works on any parsimonious
program). The system, called DLV∃, efficiently integrates

the PARSIM-CHASE algorithm defined in Section 3 and
the resumption technique introduced in Section 4.2, in the
well known Answer Set Programming (ASP) system DLV
(Leone et al. 2006). Following the DLV philosophy, it has
been designed as an in-memory reasoning system.

To answer a CQ q against a Shy program P , DLV∃ carries
out the following steps.

Skolemization. ∃-variables in rule heads are managed by
skolemization. Given a head atom a = p(t1, . . . , tk), let us
denote by fpos(Y,a) the position of the first occurrence of
variable Y in a. The skolemized version of a is obtained by
replacing in a each ∃-variable Y by fpfpos(Y,a)

(t′1, . . . , t
′
k)

where, for each i ∈ [1..k], t′i is either #fpos(ti,a) or ti ac-
cording to whether ti is an ∃-variable or not, respectively.
Every rule in P with ∃-variables is skolemized in this way,
and skolemized terms are interpreted as functional symbols
(Calimeri et al. 2010) within DLV∃.

Example 6.1. The Datalog∃ rule
∃X,Y p(Z,X,W,Y) :- s(Z,W).

is skolemized in
p(Z,t1,W,t2) :- s(Z,W).

where t1 = f p2(Z,#2,W,#4), t2 = f p4(Z,#2,W,#4).

Data Loading and Filtering. Since DLV∃ is an in-
memory system, it needs to load input data in memory be-
fore the reasoning process can start. In order to optimize the
execution, the system first singles out the set of predicates
which are needed to answer the input query, by recursively
traversing top-down (head-to-body) the rules in P , starting
from the query predicates. This information is used to fil-
ter out, at loading time, all the facts belonging to predicates
certainly irrelevant for answering the input query.

Program Optimization. Data filtering, carried out at the
level of predicates, may still include some facts which are
not needed for the query at hand. The DLV∃ computation
is further optimized by “pushing-down” the bindings com-
ing from possible query constants. To this end, the program
is rewritten by a variant of the well-known magic-set op-
timization technique (Cumbo et al. 2004), that we adapted
to Datalog∃ by avoiding to propagate bindings through
“attacked” argument-positions (since ∃-quantifiers generate
“unknown” constants). The result is a program, being equiv-
alent to P for the given query, that can be evaluated more
efficiently. In the following, P denotes the program that has
been rewritten by magic-sets.

pChase Computation and Optimized Resumption. Af-
ter the skolemization, loading, and rewriting phases, the sys-
tem computes pChase(P) as defined in Section 3. Since
∃-variables have been skolemized, the rules are safe and
can be evaluated in the usual bottom-up way; but, accord-
ing to pChase(P), the generation of homomorphic atoms
should be avoided. To this end, each time a new head-atom
a is derivable, the system verifies whether an homomorphic
atom had been previously derived, where each skolem term

Algorithm 3 RESUMPTION-LEVEL(q, P)

Input: A CQ q = ∃Y conj[X∪Y] and a program P
Output: The number of needed resumptions for q and P .
1. Y∗ := Y
2. for each Y ∈ Y do
3. if Y is protected in q OR Y occurs in only one atom of q
4. remove(Y,Y∗)
5. return |Y∗|

is considered as a null for the sake of homomorphisms ver-
ification. In the negative case, a is derived; otherwise it is
discarded.

If the input query is atomic, then pChase(P) is sufficient
to provide an answer (see Proposition 3.3); otherwise, the
fixpoint computation should be resumed several times (see
Lemma 4.10). In this case, every null (skolem term) derived
in previous reiterations is freezed (see Section 4.2) and con-
sidered as a standard constant; in our implementation, this
is implemented by attaching a “level” to each skolem term,
representing the fixpoint reiteration where it has been de-
rived. This is important because homomorphism verifica-
tion must consider as nulls only skolem terms produced in
the current resumption-phase; while previously introduced
skolem terms must be interpreted as constants. The number
k of times that the fixpoint must be reiterated has been stated
in Lemma 4.10. In our implementation, this number is fur-
ther reduced by Algorithm 3 considering the structure of the
query w.r.t. P .

Query Answering. After the fixpoint is resumed k times,
the answers to query q are given by ans(q, pChase(P, k +
1)).

7 Experiments
In this section we report on some experiments we carried out
to evaluate the efficiency and the effectiveness of DLV∃.

Benchmark Focus. The focus of our tests is on rapidly
changing and evolving ontologies (rules or data). In fact, in
many contexts data frequently vary, even within hours, and
there is the need to always provide the most updated an-
swers to user queries. One of these contexts is e-commerce;
another example is the university context, where data on ex-
ams, courses schedule and assignments may vary on a fre-
quent basis. Benchmark framework from university domain
and obtained results are discussed next.

Compared Systems. As it will be pointed out in Sec-
tion 8, ontology reasoners mainly rely on three categories
of inference, namely: tableau, forward-chaining, and query-
rewriting. Systems belonging to the latter category are still
research prototypes and a comparison with them was not
possible. We compared DLV∃ with the following systems,
being representatives of the first two categories.
I Pellet (Sirin et al. 2007) is an OWL 2 reasoner which
implements a tableau-based decision procedure for gen-
eral TBoxes (subsumption, satisfiability, classification) and
ABoxes (retrieval, conjunctive query answering).

I OWLIM-SE (Bishop et al. 2011) is a commercial product
which supports the full set of valid inferences using RDFS
semantics; it’s reasoning is based on forward-chaining. This
system is oriented to massive volumes of data and, as such,
based on persistent storage manipulation and reasoning.
I OWLIM-Lite (Bishop et al. 2011), sharing the same in-
ference mechanisms and semantics with OWLIM-SE, is an-
other product of the OWLIM family designed for medium
data volumes; reasoning and query evaluation are performed
in main memory.

Data Sets. We concentrated on a well known benchmark
suite for testing reasoners over ontologies, namely LUBM
(Guo, Pan, and Heflin 2005).

The Lehigh University Benchmark (LUBM) has been
specifically developed to facilitate the evaluation of Seman-
tic Web reasoners in a standard and systematic way. In
fact, the benchmark is intended to evaluate the performance
of those reasoners with respect to extensional queries over
large data sets that commit to a single realistic ontology. It
consists of a university domain ontology with customizable
and repeatable synthetic data. The LUBM ontology schema
and its data generation tool are quite complex and their de-
scription is out of the scope of this paper.

We used the Univ-Bench ontology that describes (among
others) universities, departments, students, professors and
relationships among them; we considered the entire set of
rules in Univ-Bench, except for equivalences with restric-
tions on roles, which cannot be expressed in Shy in some
cases; these have been transformed in subsumptions. Data
generation is carried out by the Univ-Bench data generator
tool (UBA) whose main generation parameter is the number
of universities to consider. The interested reader can find all
information in (Guo, Pan, and Heflin 2005).

In order to perform scalability tests, we generated a num-
ber of increasing data sets named: lubm-10, lubm-30, and
lubm-50, where right-hand sides of these acronyms indi-
cate the number of universities used as parameter to gener-
ate the data. The number of statements (both individuals and
assertions) stored in the data sets vary from about 1M for
lubm-10 to about 7M for lubm-50

LUBM incorporates a set of 14 queries aimed at
testing different capabilities of the systems. A de-
tailed description of rules and queries is provided at
http://www.mat.unical.it/kr2012.

Data preparation. LUBM is provided as owl files. Each
owl class is associated with a unary predicate in Datalog∃;
each individual of a class is represented by a Datalog∃ fact
on the corresponding predicate. Each role is translated in
a binary Datalog∃ predicate with the same name. Finally,
assertions are translated in suitable Shy rules. The following
example shows some translations where the DL has been
used for clarity.

Example 7.1. The assertions
AdministrativeStaff v Employee
subOrgOf+

are translated in the following rules:

Employee(X) :- AdministrativeStaff(X).
subOrgOf(X,Z) :-subOrgOf(X,Y),subOrgOf(Y,Z).

where subOrgOf stands for subOrganizationOf.

The complete list of correspondences between DL,
OWL, and Datalog∃ rules and queries is provided at
http://www.mat.unical.it/kr2012.

Results and Discussion. Tests have been carried out on an
Intel Xeon X3430, 2.4 GHz, with 4 Gb Ram, running Linux
Operating System; for each query, we allowed a maximum
running time of 7200 seconds (two hours).

Table 1 reports the times taken by the tested systems to an-
swer the 14 LUBM queries. Since, as previously pointed out,
we are interested in evaluating a rapidly changing scenario,
each entry of the table reports the total time taken to answer
the respective query by a system (including also loading and
reasoning). In addition, the first column (labeledQall) shows
the time taken by the systems to compute all atomic conse-
quences of the program; this roughly corresponds to loading
and inference time for Pellet, OWLIM-Lite, and OWLIM-
SE and to parsing and first fixpoint computation for DLV∃.

The results in Table 1 show that DLV∃ clearly outper-
forms the other systems as an on-the-fly reasoner. In fact, the
overall running times for DLV∃ are significantly lower than
the corresponding times for the other systems. Pellet shows,
overall, the worst performances. In fact, it has not been able
to complete any query against lubm-30 and lubm-50, and
is also slower than competitors for the smallest data sets.

For both OWLIM-Lite and OWLIM-SE, most of the to-
tal time is taken for loading/inference (Qall), as the recon-
struction of the answers from the materialized inferences is
a trivial task, often taking less than one second. However, as
previously stated, this behavior is unsuited for reasoning on
frequently changing ontologies, where previous inferences
and materialization cannot be re-used, and loading must be
repeated or time-consuming updates must be performed. As
expected, loading/inference times (Qall) for OWLIM-SE are
higher than for OWLIM-Lite, but OWLIM-SE is faster than
OWLIM-Lite in the reconstruction of the answers from the
materialized inferences (this time is basically obtainable by
subtracting Qall). Because of this inefficiency in answers-
reconstruction OWLIM-Lite has not been able to answer
some queries in the time-limit that we set for the experiments
(two hours); these queries involve many classes and roles.

We carried out some tests also on ontology updates; just to
show an example, deleting 10% of lubm-50 individuals im-
posed OWLIM-SE 152 seconds of update activities, which is
sensibly higher than the highest query time needed by DLV∃
(42 seconds for Q9) on the same data set. OWLIM-Lite was
even worse on updates, since it required 133 seconds for the
deletion of just one individual.

It is worth pointing out that DLV∃ is the only of the tested
systems for which the times needed for answering single
queries (Q1 . . . Q14) are significantly smaller than those re-
quired for materializing all atomic consequences (Qall). This
result highlights the effectiveness of the query-oriented op-
timizations implemented in DLV∃ (magic sets and filtering,
in particular), and confirms the suitability of the system for

Qall Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 # solved Geom. Avg time

lubm-10
DLV∃ 17 5 4 2 4 6 1 6 4 8 5 <1 1 6 2 14 2.87
Pellet 27 82 84 84 82 80 88 81 89 95 82 82 89 82 84 14 84.48
OWLIM-Lite 33 33 – 33 33 33 33 4909 70 – 33 33 33 33 33 12 53.31
OWLIM-SE 105 105 105 105 105 105 105 105 106 106 105 105 105 105 105 14 105.14

lubm-30
DLV∃ 55 16 13 7 14 21 3 21 12 25 18 <1 5 23 8 14 9.70
Pellet – – – – – – – – – – – – – – – 0 –
OWLIM-Lite 106 107 – 107 106 107 106 – 528 – 107 106 106 107 106 11 123.18
OWLIM-SE 323 323 328 323 323 323 323 323 323 326 323 323 323 323 323 14 323.57

lubm-50
DLV∃ 93 27 23 12 23 35 6 34 22 42 31 <1 9 33 14 14 16.67
Pellet – – – – – – – – – – – – – – – 0 –
OWLIM-Lite 187 188 – 190 187 189 188 – 1272 – 189 187 187 189 187 11 223.79
OWLIM-SE 536 536 547 536 536 536 537 536 536 542 536 536 536 536 537 14 537.35

Table 1: Running times for LUBM queries (sec).

on-the-fly query answering. Interestingly, even if DLV∃ is
specifically designed for query answering, it outperformed
the competitors also for the computation of all atomic con-
sequences (query Qall). Indeed, on each of the three ontolo-
gies, DLV∃ took, respectively, about 17% and 51% of the
time taken by OWLIM-SE and OWLIM-Lite.

8 Related Work
8.1 Datalog± Languages
We overview the most relevant QA-decidable subclasses of
Datalog∃ defined in the literature. Then, we provide their
precise taxonomy and the complexity of QA in each class,
highlighting the differences to Parsimonious-Sets and Shy.

The best-known QA-decidable subclass of Datalog∃ is
clearly Datalog, the largest ∃-free Datalog∃ class (Abite-
boul, Hull, and Vianu 1995) which, notably, admits a unique
and yet finite (universal) model enabling efficient QA.

Three abstract QA-decidable classes have been sin-
gled out, namely, Finite-Expansion-Sets, Finite-Treewidth-
Sets, and Finite-Unification-Sets (Baget et al. 2009; Baget,
Leclère, and Mugnier 2010). Intuitively, the semantic prop-
erties behind these classes rely on a “forward-chaining infer-
ence that halts in finite time”, a “forward-chaining inference
that generates a tree-shaped structure”, and a “backward-
chaining inference that halts in finite time”, respectively.

Syntactic subclasses of Finite-Treewidth-Sets, of increas-
ing complexity and expressivity, have been defined by Calì,
Gottlob, and Kifer (2008). They are: (i) Linear-Datalog∃

where at most one body atom is allowed in each rule; (ii)

Guarded-Datalog∃ where each rule needs at least one body
atom that covers all ∀-variables; and (iii) Weakly-Guarded-
Datalog∃ extending Guarded by allowing unaffected “un-
guarded” variables (see Section 4.1 for the meaning of unaf-
fected). The first one generalizes the well known Inclusion-
Dependencies class (Johnson and Klug 1984; Abiteboul,
Hull, and Vianu 1995), with no computational overhead;
while only the last one is a superset of Datalog, but at the
price of a drastic increase in complexity. In general, to be
complete w.r.t. QA, the CHASE ran on a program belonging
to one of the latter two classes requires the generation of a
very high number of isomorphic atoms, so that no (efficient)
implementation has been realized yet.

More recently, another class of Datalog∃, called Sticky,
has been defined by Calì, Gottlob, and Pieris (2010a). Such a
class enjoys very good complexity, encompasses Inclusion-
Dependencies, but since it is FO-rewritable, it has limited
expressive power and, clearly, does not include Datalog. In-
tuitively, if a program is sticky, then all the atoms that are in-
ferred (by the CHASE) starting from a given join contain the
term of this join. Several generalizations of stickiness have
been defined by Calì, Gottlob, and Pieris (2010b). For exam-
ple, the Sticky-Join class preserves the sticky-complexity by
also including Linear-Datalog∃. Both Sticky and Sticky-Join
are subclasses of Finite-Unification-Sets.

Finally, in the context of data exchange, where a finite uni-
versal model is required, Weakly-Acyclic-Datalog∃, a sub-
class of Finite-Expansion-Sets, has been introduced (Fagin
et al. 2005). Intuitively, a program is weakly-acyclic if the
presence of a null occurring in an inferred atom at a given
position does not trigger the inference of an infinite number
of atoms (with the same predicate symbol) containing sev-
eral nulls in the same position. This class both includes and
has much higher complexity than Datalog, but misses to cap-
ture even Inclusion-Dependencies. A number of extensions,
techniques and criteria for checking chase termination have
been recently proposed in this context (Deutsch, Nash, and
Remmel 2008; Marnette 2009; Meier, Schmidt, and Lausen
2009; Greco, Spezzano, and Trubitsyna 2011).

Figure 2 provides a precise taxonomy of the considered
classes; while Table 2 summarizes the complexity of QA[C],
by varying C among the syntactic classes. In both diagrams,
only Datalog is intended to be ∃-free; while Datalog∃ is the
only undecidable language in the figure.

Theorem 8.1. For each pair C1 and C2 of classes repre-
sented in Figure 2, the following hold: (i) there is a direct
path from C1 to C2 iff C1 ⊃ C2; (ii) C1 and C2 are not linked
by any directed path iff they are uncomparable.

Proof. Relationships among known classes are pointed
out by Mugnier (2011). Shy ⊂ Parsimonious-Sets
holds by Theorem 4.4. Shy ⊃ Datalog ∪ Linear holds
since Datalog programs only admit protected positions,
while Linear ones only bodies with one atom. How-
ever, since there are both Weakly-Acyclic and Sticky pro-
grams being not Parsimonious-Sets, then both Shy and

Figure 2: Taxonomy of representative Datalog± languages

Class C Data Combined
Complexity Complexity

Weakly-Guarded EXP-complete 2EXP-complete
Guarded
Weakly-Acyclic P-complete 2EXP-complete

Datalog, Shy
(Parsimonious-Sets) P-complete EXP-complete

Sticky, Sticky-Join in AC0 EXP-complete
Linear in AC0 PSPACE-complete

Table 2: Complexity of the QA[C] problem

Parsimonious-Sets are uncomparable to Finite-Expansion-
Sets, Weakly-Acyclic, Finite-Unification-Sets, Sticky-Join
and Sticky. Now, to prove that Shy 6⊆ Finite-Treewidth-Sets
we use the shy program

set1(a,a). ∃V′ set1(V,V′) :- set1(X,V).
set2(b,b). ∃V′ set2(V,V′) :- set2(X,V).
graphK(V1,V2) :- set1(V1,X), set2(V2,Y).

whose chase-graph GP has no finite treewidth (Calì, Gott-
lob, and Kifer 2008) since it contains a complete bipartite
graph Kn,n of 2n vertices – the treewidth of which is n
(Kloks 1994) – where n is not finite. Finally, since there
are Guarded programs that are not Parsimonious-Sets, then
both Shy and Parsimonious-Sets are uncomparable to Finite-
Treewidth-Sets, Weakly-Guarded and Guarded.

We care to notice that the proof of Theorem 8.1 uses the
so called concept product to generate a complete and infinite
bipartite graph. A natural and common example is

biggerThan(X,Y) :- elephant(X), mouse(Y).

that is expressible in Shy if elephant and mouse are dis-
joint concepts. However, such a concept cannot be expressed
in Finite-Treewidth-Sets and can be only simulated by a very
expressive ontology language for which no tight worst-case
complexity is known (Rudolph, Krötzsch, and Hitzler 2008).

8.2 Ontology Reasoners
To the best of our knowledge, there is only one ongoing
research work directly supporting ∃-quantifiers in Datalog,
namely Nyaya (De Virgilio et al. 2011). This system, based
on an SQL-rewriting, allows a strict subclass of Shy called

Linear-Datalog∃, which does not include, for instance, tran-
sitivity and concept products.5

Since the system we developed enables ontology reason-
ing, existing ontology reasoners are also related. They can
be classified in three groups: query-rewriting, tableau and
forward-chaining.

The systems QuOnto (Acciarri et al. 2005), Presto (Rosati
and Almatelli 2010), Quest (Rodriguez-Muro and Cal-
vanese 2011a), Mastro (Calvanese et al. 2011) and OBDA
(Rodriguez-Muro and Calvanese 2011b) belong to the
query-rewriting category. They rewrite axioms and queries
to SQL, and use RDBMSs for answers computation. Such
systems support standard first-order semantics for unre-
stricted CQs; but the expressivity of their languages is lim-
ited to AC0 and excludes, for instance, transitivity property
or concept products.

The systems FaCT++ (Tsarkov and Horrocks 2006),
RacerPro (Haarslev and Möller 2001), Pellet (Sirin et al.
2007) and HermiT (Motik, Shearer, and Horrocks 2009) are
based on tableau calculi. They materialize all inferences at
loading-time, implement very expressive description logics,
but they do not support the standard first-order semantics for
CQs (Glimm et al. 2008). Actually, the Pellet system enables
first-order CQs but only in the acyclic case.

OWLIM (Bishop et al. 2011) and KAON2 (Hus-
tadt, Motik, and Sattler 2004) are based on forward-
chaining.6 Similar to tableau-based systems, they perform
full-materialization and implement expressive DLs, but they
still miss to support the standard first-order semantics for
CQs (Glimm et al. 2008).

Summing up, it turns out that DLV∃ is the first system
supporting the standard first-order semantics for unrestricted
CQs with ∃-variables over ontologies with advanced prop-
erties (some of these beyond AC0), such as, role transitiv-
ity, role hierarchy, role inverse, and concept products. The
experiments confirm the efficiency of DLV∃, which con-
stitutes a powerful system for a fully-declarative ontology-
based query answering.

9 Acknowledgments
The authors want to thank: (i) Georg Gottlob, Giorgio Orsi,
and Andreas Pieris for useful discussions on the problem;
(ii) Mario Alviano for his support in the adaptation of the
magic-set technique; and (iii) Thomas Eiter, Giovambat-
tista Ianni, and Thomas Krennwallner for some tips about
Description Logic classes and systems.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases: The Logical Level. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Acciarri, A.; Calvanese, D.; De Giacomo, G.; Lembo,
D.; Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005.

5We could not compare DLV∃ with Nyaya since, as a research
prototype, Nyaya provides no API for data loading and querying.

6Actually, KAON2 first translates the ontology to a disjunctive
Datalog program, on which forward inference is then performed.

QUONTO: querying ontologies. In Proc. of the 20th na-
tional conference on Artificial intelligence, volume 4, 1670–
1671. AAAI Press.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E.
2009. Extending Decidable Cases for Rules with Existen-
tial Variables. In Boutilier, C., ed., Proceedings of the 21st
International Joint Conference on Artificial Intelligence, IJ-
CAI ’09, 677–682.
Baget, J.-F.; Leclère, M.; and Mugnier, M.-L. 2010. Walking
the Decidability Line for Rules with Existential Variables. In
Lin, F.; Sattler, U.; and Truszczynski, M., eds., Principles of
Knowledge Representation and Reasoning: Proceedings of
the Twelfth International Conference, KR ’10. AAAI Press.
Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. OWLIM: A family of scalable
semantic repositories. Semant. web 2:33–42.
Calì, A.; Gottlob, G.; and Kifer, M. 2008. Taming the In-
finite Chase: Query Answering under Expressive Relational
Constraints. In Proc. of the 11th International Conference
on Principles of Knowledge Representation and Reasoning,
70–80. AAAI Press. Revised version: http://dbai.
tuwien.ac.at/staff/gottlob/CGK.pdf.
Calì, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A gen-
eral datalog-based framework for tractable query answer-
ing over ontologies. In Proceedings of the twenty-eighth
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’09, 77–86. New York, NY,
USA: ACM.
Calì, A.; Gottlob, G.; and Pieris, A. 2010a. Advanced Pro-
cessing for Ontological Queries. PVLDB 3(1):554–565.
Calì, A.; Gottlob, G.; and Pieris, A. 2010b. Query Answer-
ing under Non-guarded Rules in Datalog±. In Hitzler, P., and
Lukasiewicz, T., eds., Proceedings of the 4th International
Conference on Web Reasoning and Rule Systems, volume
6333 of Lecture Notes in Computer Science, 1–17. Springer.
Calì, A.; Gottlob, G.; and Pieris, A. 2011. New Expressive
Languages for Ontological Query Answering. In Proceed-
ings of the 25th AAAI Conference on Artificial Intelligence,
1541–1546.
Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2010. En-
hancing ASP by Functions: Decidable Classes and Imple-
mentation Techniques. In Fox, M., and Poole, D., eds., Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI ’10. AAAI Press.
Calvanese, D.; Giacomo, G.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2007. Tractable Reasoning and Efficient Query
Answering in Description Logics: The DL-Lite Family. J.
Autom. Reason. 39:385–429.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The mastro system for ontology-based
data access. Semantic Web 2(1):43–53.
Cumbo, C.; Faber, W.; Greco, G.; and Leone, N. 2004. En-
hancing the magic-set method for disjunctive datalog pro-
grams. In Proceedings of the the 20th International Con-

ference on Logic Programming - ICLP ’04, volume 3132 of
LNCS, 371–385.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33:374–425.
De Virgilio, R.; Orsi, G.; Tanca, L.; and Torlone, R. 2011.
Semantic Data Markets: A Flexible Environment for Knowl-
edge Management. In Proc. of the 20th ACM international
Conference on Information and Knowledge Management,
CIKM ’11. New York, NY, USA: ACM. to appear.
Deutsch, A.; Nash, A.; and Remmel, J. 2008. The chase
revisiteddeutschnashremmelpods2008. In Proc. of the 27th
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems., PODS ’08, 149–158. New York, NY,
USA: ACM.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theoretical
Computer Science 336(1):89–124.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2008. Con-
junctive query answering for the description logic SHIQ. J.
Artif. Int. Res. 31(1):157–204.
Greco, S.; Spezzano, F.; and Trubitsyna, I. 2011. Stratifi-
cation criteria and rewriting techniques for checking chase
termination. PVLDB 4(11):1158–1168.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A bench-
mark for OWL knowledge base systems. Web Semant.
3:158–182. See URL:http://swat.cse.lehigh.
edu/projects/lubm/.
Haarslev, V., and Möller, R. 2001. Racer system descrip-
tion. In Goré, R.; Leitsch, A.; and Nipkow, T., eds., In-
ternational Joint Conference on Automated Reasoning, IJ-
CAR’2001, 701–705. Siena, Italy: Springer-Verlag.
Hustadt, U.; Motik, B.; and Sattler, U. 2004. Reducing
SHIQ- Descrption Logic to Disjunctive Datalog Programs.
In Proc. of the 9th International Conference on Knowledge
Representation and Reasoning, KR ’04, 152–162.
Johnson, D., and Klug, A. 1984. Testing containment
of conjunctive queries under functional and inclusion de-
pendencies. Journal of Computer and System Sciences
28(1):167–189.
Kloks, T. 1994. Treewidth, Computations and Approxima-
tions, volume 842 of Lecture Notes in Computer Science.
Springer.
Kollia, I.; Glimm, B.; and Horrocks, I. 2011. Sparql
query answering over owl ontologies. In Proceedings of the
24th International Workshop on Description Logics, volume
6643 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg. 382–396.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM TOCL 7(3):499–562.
Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies. ACM Trans. Database
Syst. 4(4):455–469.
Marnette, B. 2009. Generalized schema-mappings: from ter-
mination to tractability. In Proceedings of the twenty-eighth

ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’09, 13–22. New York, NY,
USA: ACM.
Meier, M.; Schmidt, M.; and Lausen, G. 2009. On Chase
Termination Beyond Stratification. PVLDB 2(1):970–981.
Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hypertableau
Reasoning for Description Logics. Journal of Artificial In-
telligence Research 36:165–228.
Mugnier, M.-L. 2011. Ontological query answering with ex-
istential rules. In Proceedings of the 5th international con-
ference on Web reasoning and rule systems, RR’11, 2–23.
Berlin, Heidelberg: Springer-Verlag.
Rodriguez-Muro, M., and Calvanese, D. 2011a. Dependen-
cies: Making ontology based data access work in practice. In
Proc. of the 5th Alberto Mendelzon International Workshop
on Foundations of Data Management, volume 477.
Rodriguez-Muro, M., and Calvanese, D. 2011b. Dependen-
cies to optimize ontology based data access. In Rosati, R.;
Rudolph, S.; and Zakharyaschev, M., eds., Description Log-
ics, volume 745 of CEUR Workshop Proceedings. CEUR-
WS.org.
Rosati, R., and Almatelli, A. 2010. Improving Query An-
swering over DL-Lite Ontologies. In Twelfth International
Conference on Principles of Knowledge Representation and
Reasoning (KR 2010), KR ’10, 290–300. Toronto, Ontario,
Canada: AAAI Press.
Rudolph, S.; Krötzsch, M.; and Hitzler, P. 2008. All ele-
phants are bigger than all mice. In Proceedings of the 21st
International Workshop on Description Logics, volume 353
of DL ’08. CEUR-WS.org.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz, Y.
2007. Pellet: A practical OWL-DL reasoner. Web Semant.
5(2):51–53.
Tsarkov, D., and Horrocks, I. 2006. FaCT++ Description
Logic Reasoner: System Description. In Proc. of the 3rd
Int. Joint Conf. on Automated Reasoning, volume 4130 of
IJCAR ’06, 292–297.

