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ABSTRACT 

 
Cellular automata are widely utilised for modelling and simulating complex dynamical systems, 
whose evolution depends on the local interactions of their constituent parts. SCIARA is a 

Cellular Automata model for simulating lava flows; its release γ2 introduces innovations to the 
empirical method for modelling macroscopic phenomena that was utilised in the previous 
releases. The lava flows are described as “blocks”, individuated by their barycentre co-ordinates 
and velocities. This approach is different from the previous releases of SCIARA and from 
cellular automata derived models for fluid-dynamical phenomena such as lattice-gas and lattice-
Boltzmann models. Block specifications permit to obtain a more physical description of the 

phenomenon and a more accurate control of its development. SCIARA γ2 was applied to the 
2002 Etnean lava flows with satisfying results, obtaining better simulations in comparison with 
the previous releases.  
Lava flows represent one of greatest dangers for people security and involve invasion of land 
and property. Lava flow simulation could abate this hazard by forecasting lava paths and 
evaluating the effects of human interventions such as the construction of embankments or 
channels. Nonetheless, lava flows are complex phenomena and need, in general, sophisticated 
modelling tools. In fact, the major difficulty in modelling lava flows arises since derived 
equations (i.e. conservation, state and constitutive equations) must also satisfy additional 
variables to describe the physical properties of lava and its environment. For instance, because 
of cooling and crystallization, lava may change from a viscous fluid to a brittle solid during 
emplacement. Consequently, it is extremely difficult to characterize the resistance of lava to 
motion (Kilburn & Luongo, 1993). This work deals with a different approach, modelling flow 
field growth with Cellular Automata techniques. 
Cellular Automata (CA) are one of the first Parallel Computing models (von Neumann, 1966); 
they capture the peculiar characteristics of systems, whose global evolution may be described 
on the basis of local interactions of their constituent parts (i.e. locality property). 
A homogeneous CA (Worsch, 1999) can be considered as a d-dimensional space, the cellular 
space, partitioned into regular cells of uniform size, each one embedding an identical finite 
automaton, the elementary automaton (ea). Input for each ea is given by the states of the ea in 
the neighbouring cells, where neighbourhood conditions are determined by a pattern, which is 
invariant in time and constant over the cells. At time t=0 (step 0), ea are in arbitrary states and 
the CA evolves changing the state of all ea simultaneously at discrete times, according to the 
transition function of the ea.  
Complex phenomena modelled by classical CA involve an ea with few states (usually no more 
than two dozens) and a simple transition function, easily specified by a lookup table (Toffoli & 
Margolus, 1987).  
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Fluid-dynamics is an important field of CA application: lattice gas automata models (Frisch et 
al., 1990) and lattice Boltzmann models (Succi, 2001) were introduced for describing the 
motion and collision of “fluid particles” on a discrete space/time. It was shown that such 
models could simulate fluid dynamical properties; the continuum limit of these models leads to 
the Navier-Stokes equations.  
This CA approach doesn’t permit to make velocity explicit in the local context of the cell: i.e., 
an amount moves from the central cell to an adjacent cell in a CA step (which is a constant 
time), implying a constant “velocity”. Nevertheless, velocities can be deduced by analyzing the 
global behaviour of the system in time and space. In such models, the flow velocity is an 
emergent property. It can be deduced implicitly by averaging quantities on space (i.e. 
considering clusters of cells) or by averaging quantities on time (e.g. considering the average 
velocity of the advancing flow front in a sequence of Cellular Automaton steps). 
Many complex macroscopic fluid dynamical phenomena, which own the same locality property 
of CA, the surface-flows, like lava flows, seem difficult to be modelled in these CA frames, 
because they take place on a large space scale and need practically a macroscopic level of 
description that involves the management of a large amount of data, e.g., the morphological 
data.  

SCIARA γ2 adopts and extends some mechanisms (Di Gregorio & Serra, 1999), which permit 
to define the macroscopic phenomenon of lava flow in terms of CA formalism. In particular, 
the flows are characterised by a mass centre position (inside the cell), that changes according 
the velocity and produces an outflow, when position moves to a neighbouring cell. 
 

 

References 

 

• Di Gregorio, S., Serra, R., 1999. An empirical method for modelling and simulating some 
complex macroscopic phenomena by cellular automata in Future Generation Computer 
Systems, 16, 259-271. 

• Frisch U., D’Humieres D., Hasslacher B., Lallemand P., Pomeau Y., Rivet J.P., 1990. 
Lattice Gas Methods for Partial Differential Equations in Complex Systems, Vol. 1 edited 
by Doolen et al., Addison–Wesley, Reading, MA, 75. 

• Kilburn, C.R.J., Luongo, G., 1993. Active Lavas: monitoring and modelling, UCL Press, 
London. 

• Succi, S., 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford 
University Press, Oxford. 

• Toffoli, T., Margolus, N., 1987. Cellular Automata Machines. MIT Press, Cambridge. 

• Von Neumann, J., 1966. Theory of self reproducing automata. University of Illinois Press, 
Urbana. 

• Worsch, T., 1999. Simulation of Cellular Automata in Future Generation Computer 
Systems, 16, 157-170. 

 


