Logic Programming
in non-conventional environments

Stefano Germano

Abstract

Logic Programming became a very useful paradigm in many different areas and
thus several languages (and solvers) have been created to support various kinds of
reasoning tasks. However, in the last decades, thanks also to results in the Com-
putational Complexity area, the weaknesses and the limits of this formalism have
been revealed. Therefore, we decided to study solutions that would allow the use
of the Logic Programming paradigm in contexts, such as Stream Reasoning, Big Data
or Games’ Al, that have very specific constraints that make the practical use of logic-
based formalisms not so straightforward.

Logic Programming is best used for problems where a properly defined search space
can be identified and has to be explored in full. For this reason, almost all the
approaches that have been tried so far, have focused on problems where the amount
of input data is not huge and is stored in a few well-defined sources, which are often
completely available at the beginning of the computation.

Some interesting ideas and approaches in the mentioned fields have been already
introduced, however, they are in a preliminary stage and often are tailored to a
specific problem, and do not allow the users to perform “complex” reasoning on the
data. In order to make the utilisation of this paradigm computationally feasible and
reliable in contexts where the reasoning methods have to handle a huge amount of
data that “expires” soon, i.e., become soon useless, and quickly react to them, new
solutions have to be introduced.

In this Thesis, we illustrate how Logic Programming can play a role in such challen-
ging scenarios. We both describe the general approaches taken, and how these solu-
tions have been used in several application contexts, some of which were milestones
of large-scale international projects. We found that combining different reasoning
methods and technologies is one of the crucial methodologies to adopt in order to
effectively tackle and solve these challenges. Moreover, we identify the methodo-
logical gaps that are not yet closed, and prevent the large adoption of logic-based
programming techniques.



