
DLVDB

A System for Advanced Database Applications

Ph.D. Thesis

Vincenzino Lio

December 22, 2008



ii

Abstract

One of the most fundamental uses of a Database is to store and retrieve information, particu-
larly when there is a large amount of data to be stored. Mining information and knowledge
from large databases has been recognized by many researchers as a key research topic in data-
base systems and machine learning fields, and by many industrial companies as an important
area with an opportunity of major revenues.

Moreover, our capabilities of both generating and collecting data have been increasing
rapidly. The widespread use of internet applications for most commercial activities, the com-
puterization of many business and government transactions, and the advances in data col-
lection tools have provided us with huge amounts of data. Millions of databases have been
used in business management, government administration, scientific and engineering data
management, and many other applications. It has been observed that the number of such
databases keeps growing rapidly because of the availability of powerful and affordable da-
tabase systems. This explosive growth in data and databases has generated an urgent need
for new techniques and tools that can intelligently and automatically transform the processed
data into useful information and knowledge.

In this scenario, a mounting wave of data intensive and knowledge based applications,
such as Data Mining, Data Warehousing and Online Analytical Processing (OLAP) have cre-
ated a strong demand for more powerful database languages and systems. This led to the
definition of both several data model extensions (e.g., the Object Relational model), and new
language constructs (e.g., recursion and OLAP constructs), and various database extenders
(based, e.g., on user defined functions), to enhance the current Database Management Sys-
tems DBMSs.

However, state of the art DBMSs are still not powerful and general enough for many ad-
vanced database applications. Indeed, there is a variety of systems and efficient techniques to
store and retrieve data, but the problem of understanding and interpreting this large amount
of information is still complex, particularly when the data belong to complex domains. More-
over, a number of applications that have a database ”flavor”, are not well addressed by con-
ventional database management systems. The explosive growth of new database applications
has, in several cases, outpaced the progress made by database technology. The great success
of new application areas often serves as a grim reminder of the limitations from which DBMSs
still suffer in terms of expressive power. For instance, the newly introduced Object Relational
(O-R) systems offer great improvements in generality, extensibility, and query power; yet O-R
systems do not fully support data mining applications. Summarizing, current Database Sys-
tems don’t have reasoning modules in order to extract complex and more complete knowl-
edge from the underlying data. To solve this problem, a mechanism for reasoning about the
stored information is necessary. This desirable mechanism must be capable of managing and
handling very large amounts of information, as well as of performing sophisticated inference
tasks, and of drawing the appropriate conclusions.

These reasoning capabilities can be provided by logic-based systems. In particular, logic
programming provides a powerful formalism capable of easily modelling and solving com-
plex problems. While research in this area initially had mainly a theoretical impact, the recent
development of efficient Anwer Set Programming (ASP) systems like DLV [3] and Smodels
[6] has renewed the interest in the area of non-monotonic reasoning and declarative logic
programming for solving real world problems in a number of application areas. As a conse-
quence, they can provide the powerful reasoning capabilities needed to solve novel complex
database problems.



iii

However, many of the interesting problems are either “data intensive”, such as the au-
tomatic correction of census data [4], or they produce huge ground programs that can not
be handled in a typical logic programming main-memory data structure. As an example,
elaboration on Scientific Databases in order to detect or extract chemical structure (e.g., cel-
lular interactions or to analyze the medical histories in order to verify the possible causes of
diseases (e.g., radioactivity or genome malformation) are typical data intensive applications
that cannot be efficiently managed neither by main memory logic systems nor by traditional
databases.

Summarizing:

• Logic-based systems evaluate logic programs efficiently in main memory, but are tuple-
at-a-time, and therefore inefficient with respect to disk accesses.

• In contrast, database systems can implement only a non-recursive subset of logic pro-
grams (essentially described by relational algebra), but do so efficiently with respect to
disk accesses (set-at-a-time).

• The expressive power of logic-based systems allows to easily write declarative solutions
to complex problems which cannot be solved by database systems.

• In typical database applications, the amount of data is sufficiently large that much of it
is on secondary storage. Efficient access to this data provided by database systems is,
then, crucial to achieve good performance.

The considerations above put into evidence that efficient and effective data management
techniques that combine Logic Inference Systems with Database Management Systems, are
mandatory. In particular, there is the need of combining the expressive power of logic-based
systems with the efficient data management features of DBMSs. Indeed, logic-based sys-
tems (such as the ASP ones) provide an expressive power that goes far beyond that of SQL3,
whereas good DBMSs provide very efficient query optimization mechanisms. In the literature
Deductive Database Systems have been proposed to combine these two realities. In practice,
deductive database systems are an attempt to adapt typical Datalog systems, which have a
“smalldata” view of the world, to a “largedata” world via intelligent interactions with some
DBMSs.

In more detail, Deductive Database Systems are advanced forms of database management
systems whose storage structures are designed around a logical model of data and inference
modules are designed on logic programming systems. Deductive databases not only store ex-
plicit information in the manner of a relational database, but they also store rules that enable
inferences based on the stored data. Using techniques developed for relational systems in con-
junction with declarative logic programming, deductive databases are capable of performing
reasoning based on that information.

There are many application areas for deductive database technology. In general, deduc-
tive database technology allows to analyze more efficiently large amounts of information. This
property, makes deductive systems a good solution for several data intensive problems. De-
ductive database technology is an appropriate solution also to decisional problems. Decision
support systems are needed by the organizations in order to reason effectively about plans for
the present and future product activities. Another application area, with similar properties of
the former one, concerns Planning systems. For example, guidance systems require the ability
to generate round-the-world trip and the possibility to explore alternatives and hypotheses



iv

solutions. Another fruitful application area is that of expert systems. As the former prob-
lems, expert systems require to manage large amounts of data but, in this case, the amount of
facts can be distilled by a simple yet tedious analysis to prevent the user to explore irrelevant
problem solutions (based on past experience).

Despite their potential, the development of deductive database systems did not receive
much attention in the literature, mainly due to the high difficulties in obtaining efficient and
effective systems.

Objectives and contributions

This work provides a first, initial contribution in the area of Deductive Database systems,
bridging the gap between ASP systems and DBMSs; indeed, it first provides an overview of
the state of art datalog systems and of various technics that led to the successful implementa-
tion of some deductive database systems; in particular, we point out the problems concerning
code optimization, program rewriting, efficient plan for query execution and other operations
on the data which are crucial for a successful development of a deductive database system.
After this we present the deductive database system DLVDB , developed in this work.

DLVDB has been conceived to increase the cooperation between ASP systems and data-
bases. As such, it allows substantial improvements in both the evaluation of logic programs
and the management, within an existing ASP system (namely, DLV ), of input and output
data distributed on several databases.

DLVDB has been developed as an extension of the well known ASP system DLV and, as
such, it combines the experience in optimizing logic programs gained within the DLV project
with the well assessed data management capabilities of existing DBMSs. This makes it well
suited to be applied on both complex and data intensive applications. Moreover, its architec-
ture has been designed so as to allow further extensions to the more powerful capabilities of
the DLV language, such as disjunctions.

Presently, DLVDB allows for two typologies of execution: (i) direct database execution,
which evaluates logic programs directly on the databases, with a very limited usage of main
memory, and (ii) main memory execution, which loads input data from different (possibly
distributed) databases and executes the logic program directly into the main memory.

From this considerations it is possible to observe that, DLVDB provides a well established
infrastructure for the interoperation with databases and allows the application of several op-
timization techniques already developed or under development in the DLV project (such as
magic sets [1, 2, 5, 7, 8]). Moreover, as it will be shown in the experimental evaluation, it gives
both important speed ups in the running times for several relevant problems and the capa-
bility to handle greater data sets, w.r.t. previously developed, both logic-based and database,
systems.

Currently, the DLVDB system is successfully exploited as the core reasoning module within
the Infomix System, a system for Information Integration developed within the project funded
by the European Commission IST-2001-33570 INFOMIX project (see chapter ?? for a complete
description of this Information Integration System).

Summarizing, the overall contributions of this work are the following:

• A comprehensive survey of existing logic-based systems;

• The development of a fully fledged system enhancing in different ways the interactions
between logic-based systems and DBMSs;



v

• The development of a novel evaluation strategy for logic programs allowing to minimize
the usage of main-memory and to maximize the advantages of optimization techniques
implemented in existing DBMSs;

• The definition of a framework for carrying out an experimental comparative analysis of
the performance of the existing systems (both ASP, DDS and DBMS) and of DLVDB .



vi



Bibliography

[1] F. Bancilhon, F. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to
implement logic programs. In Proc. of the ACM Symposium on Principles of Database Systems
(PODS’86), pages 1–16, Cambridge, Massachusetts, 1986. ACM Press.

[2] C. Beeri and R. Ramakrishnan. On the power of magic. J. Logic Programming, 10(3/4):255–
299, 1991.

[3] T. Dell’Armi, W. Faber, G. Ielpa, C. Koch, N. Leone, S. Perri, and G. Pfeifer. System Descrip-
tion: DLV. In T. Eiter, W. Faber, and M. aw Truszczyński, editors, Logic Programming and
Nonmonotonic Reasoning — 6th International Conference, LPNMR’01, Vienna, Austria, Septem-
ber 2001, Proceedings, number 2173 in Lecture Notes in AI (LNAI), pages 409–412. Springer
Verlag, September 2001.

[4] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello. Census Data Repair: a
Challenging Application of Disjunctive Logic Programming. In In Proc. of LPAR 2001,
pages 561–578, 2001.

[5] I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic conditions. ACM
Trans. Database Systems, 21(1):107–155, 1996.

[6] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A System for Answer Set Programming.
In C. Baral and M. Truszczyński, editors, Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning (NMR’2000), Breckenridge, Colorado, USA, April 2000.

[7] K. Ross. Modular stratification and magic sets for datalog programs with negation. In
Proc. of the ACM Symposium on Pronciples of Database Systems, 1990.

[8] D. Saccà and C. Zaniolo. Magic counting methods. In Proc. of the ACM SIGMOD Annual
Conference on Management of Data (SIGMOD ’87), pages 49–59, San Francisco, CA, 1987.
ACM Press.

vii


