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Abstract
In the past decades game theory allowed to model mathematically conflicts

between groups of players, each with their own agenda, and found ways to apply
them in real life situations. One of such applications, which has been studied
heavily in recent years, are security games. Their primary purpose is to help
find a way to distribute scarce resources of an entity whose job is to minimize
the potential chances of a successful attack on a system which is under its care.
The underlying assumption is that the second player, whose task is to launch an
successful attack on the system, has sufficient time to observe the way in which
the resources are used to find any patterns, or regularities. These games have
been successfully applied to several real life situations like the way checkpoints
and canine units are deployed on the LAX airport, the way air field marshals are
scheduled to fly on commercial airplanes, or the way patrol routs are made in
the Boston port. All of these works concentrate on considering mixed strategies,
that is using a random element to decide how the defender manages his resources.
While this approach is understandable in the case of one player managing all of
the resources, it becomes less obvious in the situation where multiple defenders,
with knowledge of other players priorities and limited means to coordinate are
given. The problem of finding what can be said about pure strategies in such a
situation is the goal of this thesis.

This thesis provides a brief overview of what is currently known about mod-
eling security games. The contribution is the following: a model for a multiple
defender security game with sequential resource allocation is presented and the
notions of reasonable behavior are described; a polynomial algorithm for finding
a reasonable move and predicting other players decisions is presented. Moreover,
it is proven that even if the actual play of the other players differs from what was
predicted, the result will still satisfy the assumption of rationality of the players.
Finally, to emulate coordination among the players, the model is expanded by
adding an additional player, called the Overseer, whose goal is to ensure that a set
of targets is protected by deciding the order in which all the other players commit.
It is shown that deciding whether such a sequence of players exist for a set of
targets of any size can be reduced to a set of one element in polynomial time. A
partial result for which this problem is in P class is shown.
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Chapter 1

Introduction

1.1 Background and motivation

The research in this thesis is focused on finding a good computational model to
find pure strategies in security games. To describe what a pure strategy is we need
to explain what a game, and in particular, what a security game is. To that end,
it is most appropriate to use game theory [22], which is concentrated on building
mathematical models of conflict resolution. In this theory a game is a situation, in
which we have at least two separate agents, called players, each of which has

• a set of possible actions, out of which he will pick one, and

• a valuation function which describes the gain he gets depending on the
choices of all players involved in the game.

A move is a description of how a player picks his action. A game is called a
security game if it is used to model potential threats to a system and possible
ways to counter them. In such games one of the players is distinguished as the
attacking player. The other are called defending players. The set of possible
actions is common for all players and is used to describe specific objects in the
system, which may be potential points of attack. If, as the end result, the attacking
player has picked the same object as one of the defending players, then it will
be significantly worse for him, than in the case in which none of the defending
players picked that object. The opposite is also true. If, in the end, one of the
defending players has picked the same object the attacking player has, the result
is much better for all defending players than otherwise.
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8 CHAPTER 1. INTRODUCTION

While several papers [1, 7, 10, 11, 17, 18, 19, 27, 39, 40] considering mixed
strategies (that is when the move is a probability distribution over the set of pos-
sible actions) have been written, the case of pure strategies (in which the move is
picking one of the actions) is left unexplored. The case of pure strategies has sev-
eral differences compared to the same game with mixed strategies available. For
example what is called a reasonable strategy is guarantied to exist in the mixed
case [26], but not in the pure case. As such questions often gives new insights
about the whole problem, we decided to pursue this case.

1.2 Contributions
Firstly, it can be argued that considering the attacking player is not necessary. As
he has full information about what the defending players will do and there is no
uncertainty involved, he will simply choose the highest valued object out of all
that have not been picked by the defending players. With that in mind, the model
can be simplified by considering only the defending players, assigning a value to
each object depending on his original valuating function, and defining the new
valuating function for each player as the sum of values of all objects picked by all
players. To simplify the reasoning, it is assumed that the players each have one
move, have all values of objects distinct, and pick the objects consecutively in a
given order. Now the question to consider is what a reasonable move in such a
setting looks like, and how it can be argued that there is a strategy to this decision.

Out of known descriptions of games the perfect information model allowed
to describe the problem in the easiest way to analyze. In this case, the game is
described as a tree in which each node (except the leaves) is a decision point for
one of the players, each edge corresponds to a move made by a player, and each
leaf corresponds to the payouts each player is going to get. In such model, a
strategy is a function which assigns to each node of the tree the move that the
player makes in that situation. It is important to see that if a player uses a strategy,
he in a way assumes that he knows what the players after him will do. The strategy
can be played by starting at the root of the tree and choosing the next node to be
moved into. The intuition behind a good strategy is that none of the players alone
can change their decisions in such a way that the value of the outcome increases
for him.

Finding such a strategy directly, while possible, would be inefficient, as the
size of the strategy is exponential with respect to the number of players, so we
proposed a slightly modified version of how to decide if a move is good. The
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player predicts what moves the following players will make. Based on that pre-
diction he chooses his own move. The move will be called reasonable, if a good
strategy can be found, which after playing out would give the same outcome.

We have constructed an algorithm that finds a reasonable move in that sense
for each player in polynomial time. Furthermore, the algorithm gives correct re-
sults in cases where some, maybe all, of the players can make more than one
move. We have shown that if the players strengthen their assumptions about other
players, in the sense that they will assume that every choice indifferent to the other
player will be made at random, we can argue that the outcome of such play is an
outcome of a good strategy.

To this point the model assumes no means of communication or coordination
between the players. In an attempt to simulate coordination efforts from an outside
party we defined a broader problem in which a new player, called the Overseer,
is added. Instead of a regular move he can choose the order in which the players
make the moves trying to make sure that some specific objects will be picked. We
have showed that the size of the set of specific objects does not affect the complex-
ity of the decision. Then a specific case of the Overseer problem is considered can
solved, where the object is always exactly the n-th desired object for all players,
where n is the number of players.

A paper summarizing these finding is currently being prepared for a confer-
ence.

1.3 Outline
The thesis is organized as follows:

Chapter 2 contains all the basic definitions used in the following chapters with
some examples of them being used.

Chapter 3 focuses on describing what we know so far about security games,
pure Nash equilibria, and contains an analysis how this knowledge is related to
the topic of the thesis.

In Chapter 4 the problem is formulated. Furthermore it contains the algorithm
used to make a prediction based on which decision a player will commit to. Then
it is proved that this prediction will result in a move that is a part of a good strategy.
Next it is proved that following the results of the algorithm will still construct a
good strategy, even if the predictions of the player happen to be false. Finally,
the necessary definitions are provided to introduce an Overseer. A reduction of
the whole problem to a simpler version in polynomial time is given as is a partial
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solution to the Overseer problem.
Chapter 5 contains a brief summary of the results of this thesis. In the end, a

brief outline how future work can be pursued is given.



Chapter 2

Preliminaries

In this chapter we introduce the basic definitions we will use trough the thesis.

2.1 Normal Form Games, strategies and Nash equi-
librium

The definitions presented in this section and the next and are basic notions in
game theory and taken from the handbook "Essentials of game theory: A con-
cise multidisciplinary introduction" [22]. The most basic form of game is called
a Normal Form Game. It is a situation with a set of players, each with his own
set of actions and a valuation function. Each player simultaneously assigns prob-
abilities to actions to determine how likely he is to commit to that action. This is
called a strategy of the player. Next for each player an action is picked at random
according to his strategy. Each player gets a payout given to him by their valu-
ating function depending on all of the actions chosen. The convention is to say
that players commit to actions, but for convenience, which will be apparent after
stating the main problem, all actions will be called objects.

Definition 2.1.1 (Normal Form Game)
A normal form game is a tuple (N,O, u) where:

• N is a finite set of players, indexed by i;

• O = O1 × · · · ×On where Oi is a finite set of objects available to player i.
Each vector (o1, . . . , on) ∈ A is called an object profile;

11
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• u = (u1, . . . , un), where ui : O → < is a valuating function for player i.

Having defined a game we need also to create means to reason about how the
players plan their moves. For that end we introduce the concept of a strategy. This
allows us to explore how a player, knowing which objects are available to him,
will reason about how to commit to one of them.

Definition 2.1.2 (Strategy)
Any assignment of probabilities by a player to his set of available objects is called
a strategy. If the assignment gives one of the objects probability 1 then it is called
a pure strategy. Any other strategy is called mixed. A strategy profile is a vector
containing strategies of all players in a given game.

Knowing how players can make their decisions we still need a method to dis-
tinguish a good strategy from a bad one. This cannot be done without adding
some assumptions about the players motivations. This idea has been approached
from several different angles, depending what type of behavior is being analyzed.
Sometimes it is assumed that the players will pick an object which gains them less
than maximum personal possible value to maximize the overall gained value. In
other cases players are assumed to be selfish, looking only to maximize their own
personal gain. We will focus on the latter approach.

For that end the idea of a best response and the Nash equilibrium will be
introduced as a proposition for verifying the validity of a solution. To simplify,
the following notation will be used. For the vector o = (o1, . . . , on) we denote
o−i = (o1, . . . , oi−1, oi+1, . . . , on) and (o−i, oi) for (o1, . . . , on).

Definition 2.1.3 (Best response)
For the player i a best response to an object vector o−i is an object o ∈ Oi such
that ∀o′ ∈ Oi ui(o−i, o) ≥ ui(o−i, o

′).

The concept that we now define was introduced in 1951 by John Nash in "Non-
cooperative Games"[26]. In this paper he considers games in which players act
independently without any means of communication, or collaboration. For that he
introduces the concept of the equilibrium point, which is now known as the Nash
equilibrium.

Definition 2.1.4 (Nash equilibrium)
A strategy a = (o1, . . . , on) is a Nash equilibrium iff ∀i ∈ {1, . . . , n} oi is a best
response to o−i.

To better understand these concepts consider the following example:
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C R
C (1, 1) (5, 0)
R (0, 5) (4, 4)

Table 2.1: Prisoners Dilemma

Example 2.1.1
In this game, two players are described as criminals who were arrested after
committing a robbery. The sentence for such a crime is 5 years in jail. There is
no direct evidence, so there is no way to convict both of them for full time. They
are separated and both are given an alternative: they can Cooperate and testify
against their partner, or they can Refuse. If both refuse the partial evidence will
be enough to lock them for 1 year. If both cooperate, then both will have their
sentence reduced for one year. If only one cooperates he walks free, while the
other serves full time. To be consistent with the notation used in this thesis, the
value represents the number of years reduced from the sentence.

The obvious solution is for both of them to refuse. So the strategy vector for
this is (R,R). Is R the best response for the first robber to the R of the second
one? No. By changing his strategy toC he increases his value to 5, while reducing
the second players value to 0. In the strategy vector (C,R), player 1 has indeed
the best response for player 2, but this is not the case for player 2. His best
response is C which increases his value to 1. In the case of (C,C) both players
have used the best response to the other player strategy, therefore this is a Nash
equilibrium.

This example may leave one wondering why it is reasonable to use the idea of
best response, when in the result a definitely suboptimal solution, as the values of
(C,C) are strictly lower than (R,R) for both players, is achieved. But this is a
direct result of the assumptions about the players. Without any consequences for
trying to get a better deal, or any reason to trust that the other player will not try
to take advantage of you, there it is not reasonable not to try to play it safe and by
chance even get a better result.

One of the large strengths of this idea is that Nash proved that any game with
finite players and finite possible actions has a mixed strategy Nash equilibrium.
This is not true for pure strategies. To illustrate that take the classical Rock-Paper-
Scissors game as an example shown in Table 2.2.

Example 2.1.2
In this example it is clear that none pure strategy Nash equilibrium exists, as
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R P S
R (0, 0) (−1, 1) (1,−1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)

Table 2.2: Rock-Paper-Scissors Game

for any pair of actions picked, one of the players will not gain the value 1 and
can switch to an action which gives him that value. On the other hand a mixed
equilibrium by Nash theorem must exist, and it is easy to show that when both
players distribute the probability equally between their actions that is the case.

2.2 Perfect Information Games
The Nash equilibrium is a very useful tool in analyzing normal form games, as it
defines situations in which none of the players can gain anything by changing his
strategy by himself. However, while it is possible to analyze sequential games in
normal form, the model quickly becomes too large to handle. It is more convenient
to describe such games as decision trees in which each node represents all of the
moves made so far, and each edge represents the move the player makes. Such
models are called perfect information games.

Definition 2.2.1 (Perfect information game)
A perfect information game (in extensive form) is a tupleG = (N,O,H,Z, χ, ρ, σ, υ)
where:

• N is the set of players;

• O is a (single) set of objects;

• H is a set of non terminal choice nodes;

• Z is a set of terminal nodes, disjoint from H;

• χ : H → 2O is the action function, which assigns to each choice node a set
of possible actions;

• ρ : H → N is the player function, which assigns to each non terminal node
a player i ∈ N who chooses an object in that node;
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• σ : H × O → H ∪ Z is the successor function, which maps a choice and
an object to a new choice node or terminal node such that
∀h1, h2 ∈ H ∀o1, o2 ∈ O (σ(h1, o1) = σ(h2, o2)⇒ h1 = h2 ∧ o1 = o2);

• υ = (υ1, . . . , υn) where υi : Z → <, is a real valued utility function for
player i on the terminal nodes Z.

In this form, it is not immediately obvious what a pure strategy is. The idea is
that the player declarers what he would choose in any possible situation in which
it is his move.

Definition 2.2.2 (Perfect information game pure strategies)
Let G = (N,O,H,Z, χ, ρ, σ, υ) be a perfect-information extensive-form game.
Then the pure strategies of player i consist of the Cartesian product Πh∈H,ρ=iχ(h).

Having defined what a strategy for a player is it is possible to define what a
strategy for a whole game is.

Definition 2.2.3
For a perfect information game G any function s : H → O is called a pure
strategy.

The notions of best response and Nash equilibrium work fine with such a look
on the strategy. Unfortunately, the notion of Nash equilibrium is not enough to
declare if a given strategy is good in this case. This is because it is interested in
the main result of a game and will not catch, if a player makes sub optimal moves
in situations that are not supposed to happen, like if players before him make bad
moves. To fix that the concept of a subgame perfect equilibrium is introduced,
which demands that starting from any possible point of the game the strategies of
the players will still form a Nash equilibrium.

Definition 2.2.4 (Subgame in a perfect-information game)
Given a perfect-information extensive-form game G, the subgame of G rooted at
node h is the restriction of G to the descendants of h. The set of subgames of G
consists of all subgames of G rooted at some node in G.

Definition 2.2.5 (Subgame perfect equilibrium)
The subgame perfect equilibria (SPE) of a gameG are all strategy profiles as such
that for any subgame G’ of G the restriction of s to G’ is a Nash equilibrium of
G’.The set of all strategies of game G that are SPE is denoted as SPE(G).
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2.3 Stackelberg games
The next important concept appeared in 1934 with the book "Market Structure and
equilibrium" by Heinrich von Stackelberg[43]. In this economy book Stackelberg
reasons about free market, different types of market structures that can happen
in it, and the relationships between them. Among the concepts described in it
is the idea of a leader advantage. This is the leaders advantage which was later
renamed as the Stackelberg strategy, which is the basis concept we use to model
the problem in my thesis. This idea has been refined over years and can now be
introduced using current game theoretical notations.

Definition 2.3.1 (Stackelberg Game)
A game is called a Stackelberg game if its set of players is divided in two subsets,
one containing players that are called leaders and the other containing followers.
Each action of the followers is defined as a function f : L → O where L is
the set of all possible strategy profiles of the attackers and O is the set of all
possible objects. It is assumed that all of the leaders commit to a strategy before
the followers. A strategy is called a Stackelberg strategy if it is a subgame perfect
equilibrium with respect to the notion of followers actions.

To better explain it we will use the following classical example.

L R
U (1, 1) (3, 0)
D (0, 0) (2, 1)

Table 2.3: Example

Example 2.3.1
Here the situation of a market is simplified to a normal form game between two
players. The first player picks a row and the second pick a column. The values
in the intersection give the payoffs to player 1 and 2 respectively. It is easy to
see that, if no information is exchanged between players, player 1 is better of
picking U instead of D. For both columns the value for player 1 is strictly larger
in the upper row than in the lower row. That being the case player 2 should go
for picking L as for him this gives a bigger payoff. This simplification is used
to describe a situation in which two competing firms find themselves in a new
market and after analyzing the possible approaches they can have to it and how
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the actions taken by their competitors will affect the value that they can take from
such market. Stackelberg argued that such a situation seldom takes place. When
a new market possibility arises usually it is that one firm notices the opportunity,
makes the proper analysis of the market and enters it, while his competitors follow
him. To simulate that we will assume that player 1 is the one who can act on
market first. If he stays with the strategy U once player 2 arrives he will pick L
and player 1 will get a value of 1 from the market. But if he picks D, then when
his competition arrives the correct choice will be R allowing the first player to
get the value of 2. Furthermore if we allow players to pick mixed strategies, so
that they can assign probabilities which they will use a certain row, or column the
first player can choose to pick U row with the probability 0.5 minus some small
epsilon, and the D row with the probability 0.5 plus that small epsilon. That way
the expected value of picking column R for player 2 is slightly larger than for
picking column L, which will incline him to do that, and secure an expected value
of about 2.5 for player 1.

This example is good to illustrate the connections between Nash equlibiria
and Stackelberg strategies. The situation described when both players moved
simultaneously ended with player 1 choosing U and player 2 L. This was not a
Stackelberg strategy, but it is a Nash equilibrium. If player 1 tries to place some
probability on playing D then he will only lower his expected value, because we
consider the situation where player 2 is tied to playing L. A symmetric argument
can be made for the second player. This example also shows that a Stackelberg
strategy does not necessarily have to be a Nash equilibrium. The pure strategy has
a lower value then the mixed one for player 1, but in both cases player 2 makes
the same decision, hence the pure case is not a Nash equilibrium.

There are cases where the leader advantage will leave the follower indifferent
between a few possible actions. To reason with more precision about such cases
Leitmann [20] purposed to consider strategies where such situations where played
either to the leaders advantage, or disadvantage. The former turned out to be a
stronger concept as it always exists and can be in practice obtained by the leader
with small modifications to his strategy, making the indifference more favorable
for the result he wants to obtain.

Definition 2.3.2 (Strong Stackelberg strategy)
A strong stackelberg strategy in a Stackelberg game is a Stackelberg strategy
which additionally assumes that when the follower is indifferent to a choice be-
tween possible actions he choose to the leaders advantage.



18 CHAPTER 2. PRELIMINARIES

2.4 Security games
Having all these concepts we have only to add what we understand a security
game is.

Definition 2.4.1 (Security game)
A security game is a game in which a subset of players is defined as attackers and
the rest are defined as defenders. The valuation function has the property that
the utility of an attacker of choosing an object that none of the defenders picked
is greater or equal to the value of choosing the same object if also one of the
defenders picked it. The utility of an defender of choosing an object that none of
the attackers picked is less or equal to the value of choosing the same object if
also one of the attacker picked it.

Definition 2.4.2 (Stackelberg Security Game)
A Stackelberg security game is game with the properties of both the Stackelberg
game and the security game, where the set of attackers is also the set of the fol-
lowers, and the set of defenders is the same as the set of leaders.



Chapter 3

State of the art

In this chapter of my thesis we will go over various books and papers that are
related to the concepts we will tackle on in this thesis. We will start by pointing to
the discussion whether the leader advantage has use in real life situations, as it has
been argued that without perfect information for the follower using the standard
Nash equilibrium is more rasonable. We will see what has been proven so far
for Stackelberg security games and how it has been applied. We will mention
correlated equilibria which serve as the base to describe coordination efforts in
games with selfish players. Finally we will briefly sum up what is known about
computing pure Nash equilibria so far.

3.1 Stackelberg vs Nash discussion

In this section a short description of the potential problems of choosing Stackel-
berg over Nash equilibria will be discussed. The purpose of it is to highlight the
potential real life problems that where brought to attention while trying to apply
the Stackelberg model.

In 1995 Bagwell[4] questioned the value of committing to pure strategies
given noisy observations by followers. He has shown that even with little im-
perfection when receiving information by the second player, in the case of pure
strategies the first player loses his Stackelberg advantage, due to the fact that the
receiving player has to take into account all possible variations of the signal, and
the Stackelberg strategy will have to reduce itself to a Nash equilibrium.

This in turn was questioned by Huck and Muller’s parer "Perfect versus Imper-
fect Observability. An experimental test of Bagwell’s result"[15] in 2000, where

19
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they provided four experimental games modeled on Bagwell’s example with vary-
ing noise of the signal from the first player. In all cases experienced players did
not support the findings of Bagwell.

Bagwell also argued that the noise in the signal does not effect the outcome
as much if mixed strategies are allowed. Later studies showed if the leader keeps
his advantage when considering mixed strategies in several cases. It has been
extended further to the case of n-players. In 1998 Maggi [14] showed that the
leader keeps his advantage with pure strategies, when considering games with
pure information. Following this Morgan and Vardy [25] considered the case
where information was not private, but costly to obtain.

The topic has been studied more thoroughly since. The paper "On the value of
Commitment"[21] by Letchford, Korzhyk and Conitzer concentrates on finding a
good method to compare the possible gains from committing

Another example is the paper "On the value of coleration"[2] by Ashlagi,
Monderer and Tennenholz

3.2 Security Games
In this section several papers concerning security games will be presented, along-
side with attempts to model them using game theory and the main theorems about
mixed strategies they have proven.

In 2009 Pita, Jain, Ordonez and Tambe[33] conducted an experiment to check
a variation of mixed defender strategies against human players. The result showed
the superiority of computed defender mixed strategies.

In 2011 Korzhyk, Yin, Kiekintveld, Conitzer and Tambe[19] showed that the
Nash equilibria in security games are interchangeable. They showed also that any
Stackelberg strategy is also a Nash equilibrium strategy, when the attacker can
only choose one target. Furthermore they showed that these observations do not
hold if we allow the attacker to choose multiple targets.

Theorem 3.2.1
Suppose that (C,a) and (C’,a’) are two Nash equilibria in a strategy gameG. Then
(C,a’) and (C’,a) are also Nash equilibria in G.

If a game has equilibria with such property it is said that they are interchange-
able. It is a very powerful property, as it allows to not worry which equilibrium is
chosen. A variant of this property is also a part of how we define a good move in
a pure strategy setting as we have shown in theorem 4.3.2.
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Theorem 3.2.2
In security games,where the schedules are of size 1 any defender’s Strong Stack-
elberg Equilibrium strategy is also a Nash equilibrium.

However these results do not hold true if the attacker has multiple resources.
The intuition behind this is following. Assume that there is an object with a very
high value for the defender, but the potential gain in utility is relatively small. In
a SSE strategy the defender will still want to place a resource at that target to
discourage the attacker from picking it. But in any Nash equilibrium the under-
lying assumption is that both sides commit simultaneously and the if there are
other targets with relatively larger the attacker can pick them in addition, due to
the multiple resources, and the defender would be better off committing to those
instead.

In 2002 Tennenholtz[41] studied safety-level strategies. These security games
find the strategies that maximize player 1 utility under the assumption that player
2 wants to minimize player’s 1 utility.

Definition 3.2.1 (Safety level strategy)
Given a game G and a mixed strategy of player i t the safety level value obtained
by i when choosing t in the game G is the minimal expected payoff that player
i may obtain when employing t against arbitrary strategy profiles of the other
players. A strategy t of player i for which this value is maximal is called a safely-
level strategy.

Theorem 3.2.3
The optimal safety-level value for a player in the leader election game equals its
expected payoff in the strictly mixed strategy equilibrium of that game.

Theorem 3.2.4
Given a 2-person set theoretic game G with a strictly mixed strategy Nash equi-
librium, then the value of an optimal safety level strategy of a player equals its
expected payoff in that equilibrium.

In the paper "Simulation and Game-Theoretic Analysis of an Attacker-Defender
Game"[28] A. Nochenson and C.F. Larry Heimann describe an interesting case of
security games in which they describe a network security game. The attacker
tries to cause as much damage as possible while the defender tries to minimize
the losses taking optimizing along the cost of defense. They use the concept to
model the situation of a Chief Information Security Officer (CISO) from a game
theoretic point of view.
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The case where an attacker has more that one resource available was presented
in 2011 in the paper "Security Games with Multiple Attacker Resources"[18] by
Korzhyk, Conitzer and Parr. The more important results are the following

Theorem 3.2.5
Finding a Nash equilibrium in security games with multiple attacker resources is
in P.

Theorem 3.2.6
Nash equilibria in security games with multiple attacker resources are interchange-
able.

Theorem 3.2.7
Finding a Stackelberg strategy in security games with multiple attacker resources
is NP-hard.

A good survey about what game theory has to offer security games was pre-
sented by Conitzer in 2012 in a paper "Computing Game-Theoretic Solutions and
Applications to Security"[7]. It includes an overview of most used game forms,
typical forms of solutions and a brief summary to their connection to security
games.

In the paper "Defender (Mis)coordination in Security Games"[17] Jiang, Pro-
caccia, Quain, Shah and Tambe reserched the case in which the security game was
modeled as a Stackelberg game. In most of the research the underlying assump-
tion was that there is only one defender who was access to all of the resources
to allocate to defend potential targets. In case of multiple defenders the simplest
way to go would be then to combine their resources and use a centralized to de-
ploy them. This however was observed not to happen in real life situation. The
purpose of this paper was to show how much of potential utility can be lost when
multiple defenders allocate their resources simultaneously, and what are the losses
if it happens in a sequence of moves.

Definition 3.2.2 (Price of miscoordination)
In a Stackelberg security game with d defenders assume that all defenders have the
same payoffs. The maximum utility is achieved by the defenders when they pool
their resources together, and use all their actions as if they were owned by a single
defender. We call this strategy profile the optimal correlated profile (OCP) as the
mixed strategies of individual defenders are correlated. We define the optimal
uncorrelated profile (OUP) as the profile of uncorrelated mixed strategies for the
defenders that yields maximum utility among all profiles of uncorrelated mixed
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strategies. We define the supremum (over a given class of security games) of the
ratio of the utility under OCP to that under OUP as the price of miscoordination
(PoM).

Theorem 3.2.8
The PoM is unbounded in general security games.

Theorem 3.2.9
The PoM in security games with identical targets is at most e

e−1
and at least

frac43.

Definition 3.2.3 (Price of sequential commitment)
In a Stackelberg security game with d defenders assume that all defenders have
the same payoffs. We assume that the defenders commit sequentially. The first
defender commits to a mixed strategy that optimizes the joint utility function in
the absence of the other defenders. Subsequently, each defender chooses a mixed
strategy that maximizes the joint utility function given the strategies of the earlier
defenders, in the absence of the later defenders. The price under the best or-
der of commitment (PoSCb) and the price under the worst order of commitment
(PoSCw) is the supremum (over all security games) of the ratio of the utility un-
der the OCP to the maximum (resp. minimum) utility over all orders of sequential
commitment.

Theorem 3.2.10
The POSCb in security games with identical targets is unbounded.

Theorem 3.2.11
Denote the max-simultaneous-coverage by k. Then the PoSCw is O(k) in security
games with identical targets and complete individual coverage.

The fact that even in the best possible scenario the ratio between coordinated
effort and sequential commitment can be unbounded led to our search of what can
we say if we restrict ourselves to consider only pure strategies, as opposed to the
focus on mixed strategies which this paper was based upon.

Another paper in 2013 by Letchford, Korzhyk and Conitzer "On the value of
commitment"[21] is dedicated to find how much a player can gain by committing
to a specific strategy before other players. They study how much can be gained
by commiting to a pure strategy, a mixed strategy. They also check what is the
ratio between these two values to find how much more beneficial it is to go with a
mixed strategy.
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Definition 3.2.4 (Values of commitment)
Let C be a class of games. Let SC denote a solution concept where both of the
players best respond under some information model (although the action they take
might not look like a best response under a different information model) and let
u1(SC(G)) be the utility that player 1 receives under that solution concept in
game G. Let S1 (resp. Σ1) be the set of player 1’s pure (resp. mixed) strategies.
(Of course, S1 ⊂ Σ1.) Let σ1 ∈ Σ1 be a strategy for player 1; letG|σ1 be the game
among the remaining players that results after player 1 commits to σ1. Then the
value of pure commitment is defined as

V oPC(C) = sup
G∈C

sups1∈S1
{u1(SC(G|s1))}

u1(SC(G))

the value of mixed commitment is defined

V oMC(C) = sup
G∈C

supσ1∈Σ1{u1(SC(G|σ1))}
u1(SC(G))

and the mixed vs. pure ratio

MvP = sup
G∈C

supσ1∈Σ1{u1(SC(G|σ1))}
sups1∈S1

{u1(SC(G|s1))}

Theorem 3.2.12
For the class of perfect information extensive-form games

V oPC = V oMC = MvP =∞.

Theorem 3.2.13
For the class of simple security games

V oPC = V oMC = MvP =∞.

The authors note that by their findings commitment to a pure strategy is gen-
erally almost as beneficial to the leader as commitment to a mixed strategy, with
the exception of zero-sum games.

3.3 Practical uses
The results of using Stackelberg model in security games has wide practical uses.
Among them are the ARMOR program [32] which has been deployed since 2007
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to schedule patrol routes and security checkpoints on the LAX airport. It uses a
simple Stackelberg security game model in which the actions are assigning sched-
ules, that is picking a set of objects (in this case roads where checkpoints are to be
set) at one time, depending on available resources. It has later been refined [33] by
applying algorithms that take into account the difference between true randomness
and how people perceive what an random approach is.

The next use is the IRIS program [42] used by the US Federal Air Marshals.
Again it relies on the Stackelberg security game model. There were additional
challenges presented as the whole transportation network is enormous and there
are several constraints on it that had to bee incorporated.

These applications were followed by the GUARDS program [34] which is tries
to expand these models on a much larger scale. Instead of focusing on one place
it reasons about hundreds of security activities and over diverse potential threats,
allowing to use it efficiently over a set off potential targets instead of just one.

These applications do not end at securing buildings. The Stackelberg model
has been also applied in dealing with pouching [11]. In this paper the authors
generalize the Stackelberg strategy to situations where the potential attacker has
no means to put good surveillance on the defender, and also a way to modify the
defenders strategy upon observation where successful poaching has happened.

3.4 Coordination efforts

In this section what how coordinating agents in multiple agent systems can be
beneficial to the combined output of the game will be discussed.

In 1974 Aumann’s "Subjectivity and correlation in randomized strategies" [3]
introduced an new concept in approaching the problem of maximizing the profit
obtainable by selfish players by adding an subjective random device to help the
players on deciding what strategies they should play. As the result one of the most
important concepts of equilibrium in game theory was created. It has been used
to add a way to model a benevolent administrator trying to coordinate between
selfish players in such way that the overall utility is maximized, while allowing
players to play rationally from their point of view, as seen for example in [5, 37].
This concept, although it was not possible to use it in a direct way, is what we are
trying to simulate in the Overseer problem.
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3.5 Findings on pure Nash equilibria
In this section what is currently known about the complexity of finding pure Nash
equilibria will be presented.

These papers have a specific thing in common: all of them relay on using
mixed strategies to find the best course of action. This is for various reasons. For
one we know, thanks to the famous Nash theorem from 1951, that any game with a
finite number of players and a finite number of possible actions will always have a
mixed Nash-equilibrium. But this stops being the case when we consider a larger
number of players. This also is not true if only pure strategies are allowed. In 1973
Robert W. Rosenthal [35] described a class of games, which is called congestion
games, in which it was guarantied for a pure Nash equilibrium to exist. They were
further studied by Monderer and Sharpley [24] who researched potential games
and there equivalency to congestion games and proved the existence of pure Nash
equilibria in some infinite potential games.

The complexity of finding Nash equlibria has also been broadly studied. While
the existence of mixed-strategies Nash equilibria is given by the Nash theorem
the question remained what is the complexity of finding one. In 1994 Papadim-
itriou [29] defined a new class of hard problems called PPAD and showed that
finding a Nash equilibrium belonged to it. The class name stands for "polynomial
parity argument for directed graphs" and consists of problems that can be reduced
to the so called end of the line problem. This is a search problem in which the in-
put consists of a directed graph and an unbalanced vertex in it, that is one in which
has a different number of incoming edges than the number of outgoing edges, and
gives as the output another unbalanced vertex, which is guarantied to exist.

The question about finding a pure Nash equilibrium returns to the NP class,
as the existence of such equilibrium is not guarantied. While the concept of pure
Nash equilibrium seems simpler the problem of fining one is proven to be NP-
complete. Moreover several other questions connected to it are in this class.

In 2005 Gottlob, Greco and Scarcello published a paper "Pure Nash Equilibria:
Hard and Easy Games" [13] in which they researched deeper on what restrictions
can have influence on the complexity of this problem. The research that in games
in standard normal form finding if there exists a Nash, Pareto and strong Nash
equilibrium is possible in logarithmic space for pure strategies. They note that
games in such representation could have an exponential size of valuation input
with respect to the number of players and actions. They focus their attention on
games in graphical normal form, as they found this form to be more practical in a
computational point of view than the standard normal form. They found that some
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strong restrictions, like the graphical normal form having bounded neighborhood,
or the graph being acyclic are not enough move the problem from the NP-class.
On the other hand a combination of weaker restrictions of having a small neigh-
borhood and bounded hypertree width will take the problem to the polynomial
complexity.
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Chapter 4

Obtained Results

4.1 Problem Statement
A lot has been done in the analysis of Stackelberg games with mixed strategies.
This work focused on less studied case in which only pure strategies are available
to players. Furthermore we assume that the defenders do not pick their strategy
simultaneously, but also commit to a strategy in a given order.

Problem 4.1.1 (Main Problem)
Consider a Stackelberg game in which there are n defenders and one attacker. All
players have full information about the values of each player. Only pure strategies
are permitted. The defenders commit to a strategy in a previously defined and
known order. Do strategies that maximize the value for each player in reasonable
time can be found?

This case has been studied for mixed strategies, but no result is known if only
pure strategies are allowed to be used. There is an interesting observation here to
make. By allowing only pure strategies the attacker is guaranteed to pick one of
the objects not chosen by the defenders. As there is no uncertainty he can pick
whatever is most valuable for him after knowing how the defenders will commit.
Thus he can be ignored in the problem. Also the concentration can remain on
the values of objects after being defended, which simplifies this problem to the
following.

Observation 4.1.1 (An equivalent problem)
Consider a set of n players and a common set of m objects. Each player has a
value assigned to each object. The players know each others valuation of objects.

29
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The players are assigned in an order and one by one each pick one of the objects.
The valuation of the result for a players is the sum of values of all objects that
have been picked. How should each player decide which object to pick?

Finding the whole strategy for a game in the perfect information model is
unfeasible as the whole strategy description is exponential in respect to the infor-
mation given by the players. We define another way to check if a given move is
good in the sense that we will not look for the whole strategy, but find if a good
strategy exists where such a move should be made.

Definition 4.1.1
Consider a game G with the set of objects O and a strategy s for G. A sequence
(o1, ..., on) ∈ On is a result of strategy s if, and only if starting in the root of the
strategy and moving down an edge only if the label of the edge is the same as
the label of the current vertex, the labels of the edges traveled through form the
sequence (o1, ..., on).

Definition 4.1.2
We say a sequence of actions (o1, ..., on) is called reasonable if there exists a
strategy profile s ∈ PSE(G) such that (o1, ..., on) is a result of s.

4.2 Algorithms for decisions
The idea behind the algorithm is the following: a player has no influence on what
the players before him will pick. They make their decisions on what is available
and what they expect the rest of the players to choose. No form of communication
is available, so no form of bargaining or threat is possible. Each player knows the
valuation of objects of the rest of the players, so he has a base to predict how the
players after him will decide. Thus we can assume a player will not pick an object
he has reasons to believe a player after him will choose. To make this prediction
he will assume that the last player will pick the most valuable object from his
point of view, as this is what all players assume. Then, for each previous player,
he assumes that they will pick their most valuable object from the set of objects
which excludes any that has already been predicted.
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Algorithm 1 The basic algorithm
Input: O - set of available objects;

V - the valuation matrix;
i - the index of the player making the decision;

Output: (oi, ..., on) the predicted choices of objects for players i to n.
1: Delete all columns for objects that have already been chosen.
2: Define k as the number of rows in the matrix.
3: Find in the last row the column in which there is the most valuable object for

the k-th player (if more then one pick at random).
4: Mark this object as ok.
5: Remove the last row from the matrix.
6: Repeat steps 1-4 until oi is defined.

To prove that the strategy is SPE we will need to consider all possible moves
the players can make. This can make it difficult to keep the original prediction
a player had, as running the algorithm on a smaller set of available objects (es-
pecially when there was uncertainty involved) can lead to a completely different
sequence of predicted choices. The next algorithm is necessary to keep control
when we have a sequence of predicted choices and get a smaller set of possible
objects.

Algorithm 2 The modified algorithm
Input: O - set of available actions;

V - the valuation matrix;
i - the index of the player making the decision;
(o1, ..., on) - sequence of choices of objects predicted by the original algo-
rithm;

Output: (o′i, ..., o
′
n) the predicted choices of objects for players i to n.

1: Delete all columns for objects that have already been chosen.
2: Define k as the number of rows in the matrix.
3: Find in the last row the column in which is the most valuable object for the
k-th player (if more than one and ok is available pick ok else pick at random).

4: Mark this object as o′k.
5: Remove the last row from the matrix.
6: Repeat steps 1-4 until o′i is defined.
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Example 4.2.1
To illustrate described algorithm in action, this example will consider a game in

which each player in his move will pick a city to defend. The goal of this example
is to predict second player choice of move.

Input:
O= {Cracow , London, New York , Budapest , Berlin}
i= index of player making the decision.
quantity of players= 4
V - valuation matrix is shown in table below.

Players/Objects Cracow London New York Budapest Berlin
1 10 12 18 20 15
2 18 20 20 10 16
3 20 19 12 16 17
4 20 15 20 18 14

The second player choice will be predicted according to algorithm steps.

1. No columns have been chosen yet, so none of them will be deleted.

2. k=4

3. For fourth player both Cracow and New York are most valuable objects.
Picking at random from those two has returned New York.

4. o4 = New York

5. The fourth row was removed from the matrix

Players/Objects Cracow London New York Budapest Berlin
1 10 12 18 20 15
2 18 20 20 10 16
3 20 19 12 16 17

6. o2 was not defined, repeat steps 1-5.

1. Delete column containing New York,
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Players/Objects Cracow London Budapest Berlin
1 10 12 20 15
2 18 20 10 16
3 20 19 16 17

2. k=3

3. For third player Cracow is most valuable object.

4. o3=Cracow

5. The third row was removed from the matrix

Players/Objects Cracow London Budapest Berlin
1 10 12 20 15
2 18 20 10 16

6. o2 was not defined, repeat steps 1-5.

1. Delete column containing Cracow,

Players/Objects London Budapest Berlin
1 12 20 15
2 20 10 16

2. k=2

3. For second player London is most valuable object.

4. o2=London

5. The second row was removed from the matrix

Players/Objects London Budapest Berlin
1 12 20 15
2 20 10 16

6. o2 was defined, end algorithm.

Output: {o2= London, o3= Cracow, o4= New York}
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4.3 The main theorem
To show that we can construct a full SPE strategy we will use the following
lemma, which shows that if we have a predicted sequence and we remove one
object from the set of possible objects, then using the modified algorithm 2 for a
player will have an outcome which will differ from the original outcome at most
at one choice.

Lemma 4.3.1
Let (o1, ..., on) be the result of using the algorithm 1 on the game G with the
set of objects O. By running the modified algorithm 2 for the game G, sequence
(o1, ..., on) and set of objectsO\{o}, where o ∈ O, will give a sequence (o′1, ..., o

′
n)

which will differ from (o1, ..., on) in at most one element and only if o ∈ {o1, ..., on}.

Proof. Case 1
First let us consider the case in which o 6∈ {o1, ..., on}. In this case the resulting

sequence will be identical to the original. Each player has a smaller set of objects
to choose from, but neither of them has chosen o in the first run of the algorithm.
In the modified version if there is an uncertainty which object to choose they
should pick the same object as in the original run. Because removing an element
from the set of available objects does not change their values for the players and
the algorithm picks the previous choice if it is still one of the most valuable ones,
none will change commitment.

Case 2
Now consider the case in which o ∈ {o1, ..., on}. Let us assume that o = ok

for some 1 ≥ k ≥ n. Since none of the values have changed and the players
form k + 1 to n will still have their previous choices available, the algorithm will
pick those objects . Of course player k cannot choose ok because it is unavailable
for anyone. The modified algorithm finds a new object for him which we will
mark as o′. It cannot be that o′ = oi for i > k because these objects are already
unavailable for the algorithm by now. If o′ 6= oi for all i < k then this will be the
only change result of the algorithm, because then all of the objects the modified
algorithm has to pick in case of ties are available. If a′ = oi for some i < k then
it will be assigned to player k. Running the modified algorithm for players from
i + 1 to k − 1 will give the same result as the original, by the same reasoning as
before. For player i we can repeat the same reasoning from the whole Case 2.
As in each such repetition the index will get smaller and the sequence is finite,
such replacement will happen only a finite number of times and will result in a
sequence which differs only in one element from the original sequence.
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With this we can prove the following theorem.

Theorem 4.3.1
Let (o1, ..., on) be the result of using the algorithm on the game G with the set of
objects O. Then (o1, ..., on) is reasonable.

Proof. We will prove this by constructing the full PSE strategy tree for the game
G for which (o1, ..., on) is the result. The proof goes by induction on the number
of players. The case of n = 1 is trivial.

n = 2 ] In this case constructing the strategy tree is fairly simple. We have
one vertex corresponding to the decision of player 1 from which descent m edges
corresponding to all possible actions for player 1. We put o2 on all verticies of
player 2 except the one connected to the edge o2. There we can use the modified
algorithm on the sequence (o1, o2) and the set of objects O\{o2} to find one to put
on this vertex. We put o1 on the root. It should be easy to see that this is a PSE
strategy tree with the sequence (o1, o2) as a result.

n− 1⇒ n
Now we assume that we can build a strategy tree for any game G with n −

1 players a given set of objects O which is PSE and a sequence given by the
algorithm is the result. We will show how to use this to construct the strategy tree
for any game with n players and a sequence (o1, ..., on) given by the algorithm.
We start from a strategy tree for the game G with all vertices empty. For every
vertex connected to the root we will run the modified algorithm on the game G
without player 1, sequence (o2, ..., on), and set of objects O\{o}, where o is the
label of the edge between this vertex and the root. By our inductive assumption,
we can construct a full strategy on the subtree starting from that vertex, which is
PSE and has (o′2, ..., o

′
n), given by the modified algorithm, as a result. We can

see that by discarding the object o for this whole subtree we can be sure that, as
long as we pick the proper object for the root, the whole strategy will stay PSE.
What is left is to show that there are no better actions to put at the root than o1.
Consider first edges o which are not in the set {o2, ..., on}. If player one was to
pick one of them the result of playing the subtree under that edge, by the lemma, is
exactly the sequence (o2, ..., on), so it only could be beneficial for him if vo1 > vo11

which is contrary to the way we picked o1. Suppose now that player 1 could
benefit from committing to an action a form the set {o2, ..., on}. By the lemma the
resulting sequence (a, o′2, ..., o

′
n) differs in at most one element from the sequence

(o1, ..., on). If it differs, then for it to be beneficial it had to be the case that this
one action has a greater value for player 1 than o1, which is in contrary with the
way o1 was chosen. So there is no action which grants a better result for player
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1 than choosing o1. We put o1 on the root getting a PSE strategy tree with the
result (o1, ..., on) thus completing the construction.

With multiple preferred objects it could happen that the whole outcome of the
game is very different from what the players predicted and in fact the outcome
does not have to be a SPE, which would undermine the validity of the reasonable
move as a good strategy concept. The next theorem proves that no matter how
often the players were wrong in their predictions the whole outcome will be in
fact reasonable.

Theorem 4.3.2
Let G be a game with n players and the set o of available objects. Player 1 uses
the algorithm to obtain the sequence (o1

1, ..., o
1
n) and picks o1

1. Then player 2 uses
the algorithm on the set A\{o1

1}, obtains the sequence (o2
1, ..., o

2
n−1) and commits

to o2
1. The following players continue in a similar fashion cutting the set of objects.

Then the sequence (o1
1, o

2
1, ..., o

n
1 ) is reasonable.

Proof. The proof goes by induction on the number of players. The case n = 1 is
trivial.

n = 2
As in the previous proof we have one vertex corresponding to the decision of

player 1 from which descent m edges corresponding to all possible actions for
player 1. W put o1

1 on the one vertex of player 1. We put o2
1 on all vertices of

player 2 except the one connected to the edge o2
1. We use the modified algorithm

for the sequence (o1
1, o

2
1) and the set of objectsO\{o2

1} to find what to place on the
last vertex. This strategy will have (o1

1, o
2
1) as a result. As to show that the strategy

is PSE it suffices to notice that even if o2
1 6= o1

2 both must be equally valued by
player 2 because the algorithm gave those two elements as a possible move of
player 2 on two different occasions, while both those actions where available to
the player.

n− 1⇒ n
We assume that we can build a strategy tree for any gameG with n−1 players

and a given set of actions A which is PSE and the proper sequence is the result.
To show the result for n players we start with a game tree with all vertices empty.
For every vertex connected to the root we run the modified algorithm on the game
G without player 1, sequence (o2

1, ..., o
n
1 ) and the set of actions O\{o}, where o is

the label of the edge between this vertex and the root. By the inductive assumption
the sequence(o2

1, ..., o
n
1 ) is reasonable for the proper subgame, so the result of the

modified algorithm is also reasonable and a PSE strategy can be constructed
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on this subtree. It remains to argue that after putting o1
1 in the root the strategy

we remain PSE. It is important to notice that the sequence (o1
1, o

2
1, ..., o

n
1 ) is a

possible result of using the regular algorithm for the game G with n players and
set of objects O. Thus we can use the lemma for all the subtrees. So we can use
the exact same argument as in the proof of Theorem 5.1 to show that player 1
cannot benefit from changing committing to another move than o1

1.

This proof is also beneficial in the sense that it solves the problem even if the
players have more that one move available, under the condition that they have to
use all their moves in one turn. It is easy to see that in such case we can replace
each player with a set of dummy players, each of which has one move, and that
in the sequence of play all exactly where the original player was relatively to
other players. The dummy players have their preferences identical to their original
player. It is easy to see that an reasonable outcome in such game would give a
good strategy to play in the original case as no new interference between players
is introduced. This however is not necessarily true if the players can make moves
in different parts of the sequence. Further investigation to that matter is required.

4.4 The Overseer
We will now bring a slight modification to our game. We add a new player to
the game which we will call the Overseer who has the following properties: he
has a set of objects which is a subset of all available objects, which we will call
the goal, knows the valuation of objects for all the players, and moves first and
instead of picking an object he decides the order in which the other players will
play. His victory condition is to pick such a sequence of players that all objects
from the goal will be selected during the rest of the game. The question whether
such a sequence of players exist we call the Overseer problem.

First we will show that it is enough to consider only the case in which the goal
is only one object.

Lemma 4.4.1
The complexity of solving the overseer problem with the goal set G of any size is
the same as solving the overseer problem with a goal set of size 1.

Proof. Obviously we if we can solve the overseer problem for G of any size we
can solve it for a goal set of size 1. Let us assume that we have an algorithm to
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solve the problem for sets of size 1. Let us take a game G with n players, set
of objects O and an overseer with a goal set G. To find a solution we will use an
extended version of this gameG′ with n+1 players the set of objectsO∪{α} and
an overseer with the goal set {α}. The preferences of the original n players remain
unchanged, but α is placed at the end of their preference list. The preferences of
the new player are following: first he values the elements of the goal set G then α
then all the elements of the set O\G. We can see that the overseer problem in this
case has a solution if and only if there was a solution in the original problem.

This is clearly a decision problem which in the wort case is in NP, as checking
the outcomes for all possible sequences of players takes n! runs of our previous
polynomial result. The next theorem shows a partial result in which the Overseer
problem is in P.

Theorem 4.4.1
The overseer problem with the additional assumption, that for each player the
goal is his n-th preferred object, where n is the number of players, is in P.

Proof. The size of the input in this problem will be n2, where n is the number
of players. First we have to observe that any solution will have to use all players
involved. Indeed if one of the players is to pick up the goal and each player can
pick only one object, then all of the more preferred objects must have been picked
by other players. The algorithm to check if there is a solution for a given player
goes as follows:

We make a bipartite graph of size (n − 1, n − 1) where one side of the graph
represents the rest of the players and the other represents all the objects that have
to be picked, before the chosen player will pick the goal. We will calls these
objects desired. For each of the other players we do the following: We start with
their most preferred object and check if it is desired. If so we add an edge between
the node representing that player and the node representing the desired object. If
not we stop and go to the next player. If there was an edge added repeat this check
for the next preferred object, until we are forced to move to the next player. After
using all players we get a graph with a following property: There is a traversal
in this graph if, and only if there is an ordering of other players such that each
desired object will be picked.

First let us assume that there is an ordering in which each player picks one
desired object. If for each such pairing in the graph there is an edge, this would
give us the traversal. Assume now that for one pairing such edge does not exist.
That would mean that he had an object more preferred that the one he picks which
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is not an desired object. The only way he can pick the object he is assigned to is
if someone else picks that undesired object. But this is not possible as there is a
solution only if all players pick desired objects.

Now assume that we have a traversal in our graph. We will use it to construct
an ordering of players in which each picks one desired object. We will now say
that a player want to exchange with another, if he has an more preferred object
than the one assigned by the traversal, that is assigned to the other player by the
traversal. We search the graph for cycles of players such that the first wants to
exchange with the second, the second with the third,..., and the last with the first.
We switch a assignments accordingly so that each player is now assigned to a
preferable object and the pairings are still a traversal. We continue to do so until
no further cycles are to be found. The end result is what is needed to find the
correct ordering. First we put all of the players for which their assigned object is
the one they most prefer at the end of the order.

We will show now that at least one such player must exist. Assume that there
is none. We will show that we can construct a sequence of players in which there
will be a cycle of players that want to exchange. Let us start with picking one
player at random. We check his most preferred object and look at the player that
has that object assigned to him and place him after the first. Then we look on his
most preferred object and repeat. We continue to do so until we return to a player
that is already in the sequence. Starting from that player the sequence would give
a cycle that is not possible after changing our traversal.

Now we remove all objects that are assigned to the players in the ordering.
After the removal we place all the players that now have their assigned object be-
ing their most preferred one before all players already assigned to the ordering.
At least one must exist by following the previous reasoning. We continue to re-
peat this process until all players are assigned, thus getting the ordering we were
looking for.

Finding whether a graph has a traversal is polynomial. The construction of the
graph requires no more than n3 checks. We can repeat this construction n times
to check whether any of the players can get the goal. If at least one can the the
algorithm returns a yes, else it returns a no. This requires at most n uses of a
polynomial algorithm, so this case of the overseer problem is in P.
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Chapter 5

Conclusions

5.1 Summary
We have simplified the problem of security games with pure strategies to a prob-
lem with players having the same role and an additive valuating function. We
modeled this as a Perfect Information game to find a way to argue what a strategy
is, and when it is good. We proposed a simple algorithm to find a base on which
a player should make his decision. We proved that using this algorithm gives a
result similar to finding a whole strategy for a game without having to explicitly
state what the whole strategy is. We have proven also that the outcome of a game,
even if not the same as the first prediction, is still an outcome of a good strategy,
without having to show the whole decision tree.

We introduced a new player with a role to coordinate other players to achieve
his goal. We proved that the size of his goal does not affect the complexity of
deciding whether his achieving goal is possible. We have proven that in a special
case the answer can be found in polynomial time. Moreover, if the answer is yes,
we can find the sequence of players that satisfies the Overseers goal in polynomial
time.

5.2 Future Work
Knowing all that has been done there are still several things that can be asked.
First thing among them is whether the Overseer problem in the general case is
in NP, or not. The proof that the special case is P heavily relies on the fact that
we know which object have to be used beforehand which allows to construct a
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bipartite graph of dependencies. This has been hard to use in the general case
and no method other that a brute force search through all possible sequences of
players has given satisfying results.

Another question to ask is what will happen if the players have more resources
(can pick more than one object). In the case where they have to allocate them all
at once we can use the result we have by adding an appropriate number of dummy
players which have the same valuation of objects as the player they represent
and keeping then next to that player in the sequence. The problem gets harder
if we allow the players to pick their objects several times in different parts of
the sequence, as the method used in our proof allows no coordination between
players. The special case of the Overseer problem could still be in P if we allow
player to commit in different parts of the sequence, as we could construct a similar
bipartite graph, if we know how the players will choose their objects depending
on the order there in. It is not clear if the special case would still be in P if a player
has to pick their objects all at once, as the method used to prove it at he moment
could require a player to commit in different parts of the sequence.

Finally we have no results describing the case in which the players can com-
municate and coordinate with each other. If they can commit only to one object
then the result would not change, as they have no leverage to influence each others
moves, but if we allow them to pick more such possibilities arise. Moreover any
result in this direction could make it easier to solve the Overseer problem with
multiple objects, as we could treat a player with multiple moves as several that
coordinate with each other perfectly.
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