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The aim of this thesis is to analyze some elliptic equations that are perturbative in nature. We

will examine our problem using two tools:

(i) perturbative methods;

(ii) variational methods.

In particular we are interested in the following perturbed mixed problem

(M̃ε)





−ε2∆u + u = up in Ω;

∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;

u > 0 in Ω,

where Ω is a smooth bounded subset of Rn, p ∈
(
1, n+2

n−2

)
, ε > 0 is a small parameter, and ∂NΩ,

∂DΩ are two subsets of the boundary of Ω such that the union of their closures coincides with the

whole ∂Ω.

These problems, with mixed conditions, appear in several situations. Generally the Dirichlet

condition is equivalent to impose some state on the physical parameter represented by u, while the

Neumann conditions give a meaning at the flux parameter crossing ∂NΩ. Here below there are some

common physical applications of such problems:

• Population dynamics. Assume that a species lives in a bounded region Ω such that the

boundary has two parts, ∂NΩ and ∂DΩ, where the first one is an obstacle that blocks the

pass across, while the second one is a killing zone for the population.

• Nonlinear heat conduction. In this case (M̃ε) models the heat (for small conductivity) in

the presence of a nonlinear source in the interior of the domain, with combined isothermal

and isolated regions at the boundary.

• Reaction diffusion with semi-permeable boundary. In this framework we have that the mean-

ing of the Neumann part, ∂NΩ, is an obstacle to the flux of the matter, while the Dirichlet

part, ∂DΩ, stands for a semipermeable region that allows the outwards transit of the matter

produced in the interior of the cell Ω by the reaction represented by a general nonlinearity

f(u).

The typical concentration behavior of solutions uε to the above two problems is via a scaling of

the variables in the form uε(x) ∼ U
(

x−Q
ε

)
, where Q is some point of Ω, and U is a solution of

(1) −∆U + U = Up in Rn (or in Rn
+ = {(x1, . . . , xn) ∈ Rn : xn > 0}),

the domain depending on whether Q lies in the interior of Ω or at the boundary; in the latter case

Neumann conditions are imposed. When p < n+2
n−2 (and indeed only if this inequality is satisfied),

such problem (1) admits positive radial solutions which decay to zero at infinity.

Solutions of (M̃ε) which inherit this profile are called spike layers, since they are highly concen-

trated near some point of Ω.
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We are interested in finding boundary spike layers for the mixed problem (M̃ε). First, we apply

a perturbative approach: the idea is to obtain two compensating effects from the Neumann and the

Dirichlet conditions. More precisely, calling IΩ the intersection of the closures of ∂DΩ and ∂NΩ,

and assuming that the gradient of H at IΩ points toward ∂DΩ, a spike layer centered on ∂NΩ will

be pushed toward IΩ by ∇H and will be repelled from IΩ by the Dirichlet condition.

Our main result will show that there exists a solution uε to the problem (M̃ε) concentrating at

the interface IΩ. The general strategy used relies on a finite-dimensional reduction. One finds first

a manifold Z of approximate solutions to the given problem, which in our case are of the form

U
(

1
ε (x−Q)

)
, and solve the equation up to a vector (in the Hilbert space) parallel to the tangent

plane of this manifold. In this way one generates a new manifold Z̃ close to Z which represents a

natural constraint for the Euler functional of (M̃ε), which is

(2) Ĩε(u) =
1
2

∫

Ω

ε2|∇u|2 + u2 − 1
p + 1

∫

Ω

|u|p+1; u ∈ H1
D(Ω).

Here H1
D(Ω) stands for the space of functions in H1(Ω) which have zero trace on ∂DΩ, and by natural

constraint we mean a set for which constrained critical points of Ĩε are true critical points.

The main difficulty however is to have a good control of Ĩε|Z̃ , which is done improving the

accuracy of the functions in the original manifold Z: in fact, the better is the accuracy of these

functions, the closer is Z̃ to Z, so the main term in the constrained functional will be given by

Ĩε|Z . To find sufficiently good approximate solutions we start with those constructed in literature

for the Neumann problem which reveal the role of the boundary mean curvature. However these

functions are not zero on ∂DΩ, and if one tries naively to annihilate them using cut-off functions,

the corresponding error turns out to be too large. A method which revealed itself to be useful for

the Dirichlet problem is to consider the projection operator in H1(Ω), which consists in associating

to some function in this space its closest element in H1
D(Ω). In our case instead, apart from having

mixed conditions, the maxima of the spike-layers tend to the interface IΩ, so, to better understand

the projection, we need to work at a scale d ' ε| log ε|, the order of the distance of the peak from

IΩ. At this scale the boundary of the domain looks nearly flat, so in this step we replace Ω with

a non smooth domain Γ̂D ⊆ Rn such that part of ∂Γ̂D looks like a cut of dimension n − 1. We

choose Γ̂D to be even with respect to the coordinate xn and we study H1 projections here (with

Dirichlet conditions) which are also even in xn: as a consequence we will find functions which have

zero xn-derivative on {xn = 0} \ ∂Γ̂D, which mimics the Neumann boundary condition on ∂NΩ.

After analyzing carefully the projection we define a family of suitable approximate solutions to (M̃ε),

which turn out to have a sufficient accuracy for our analysis.

We can finally apply the above mentioned perturbation method to reduce the problem to a finite

dimensional one, and study the functional constrained on Z̃. If zε
Q denotes (roughly speaking)

an approximate solution peaked at Q, with dist(Q, IΩ) = dε, then its energy turns out to be the

following

Ĩε(zε
Q) = εn

(
C̃0 − C̃1εH(Q) + e−2 dε

ε (1+o(1)) + O(ε2)
)

.
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Next, via variational methods, we analyze also the asymptotic profile of the least energy solutions

to the problem (M̃ε) under generic assumptions on the domain and on the interface.

First we show that Mountain Pass solutions are in fact least energy solutions. Then we prove that,

given a family of least energy solutions {uε}, their points of maximum must lie on the boundary of

the domain Ω, as in the Neumann case.

We also analyze the rate of convergence to specify better the location of maximum limit points

Pε of the least energy solutions as ε → 0: we show that the concentration point cannot belong to

the interior of Dirichlet boundary part. Next, we characterize the shape of least energy solutions

showing that such solutions can be approximated by the ground state solution U to the problem (1).

This fact follows from other results proved in the thesis; in particular we have that, after a scaling,

the maximum Pε (indeed unique) of the solutions uε is always bounded away from the interface IΩ

as ε → 0.

Moreover, we prove that the least energy solutions concentrate at boundary points in the closure

of ∂NΩ where the mean curvature is maximal. When this constrained maximum is attained on the

interface (and if ∇H here is non zero), we will be able to show that the Mountain Pass solution has

precisely the behavior found by perturbative methods.

In the last part of the thesis we consider the least energy solutions to the problem (M̃ε) and, via

numerical algorithm, we construct their shape and we present the related results.

We use a numerical method which allows us to find solutions of Mountain Pass type. We consider

a particular case of (M̃ε), choosing p = 3 and n = 2, namely

(˜̃Mε)





−ε2∆u + u = u3 in Ω;

∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;

u > 0 in Ω,

where Ω is a bounded domain of R2.

Such a problem is perturbative one with mixed boundary conditions that are numerically difficult

to deal with.

We define problem (˜̃Mε) in a bounded elliptical domain of R2 in order to have a non constant

mean curvature H to find Mountain Pass type solutions concentrating at the interface IΩ. Then, we

need to mesh Ω in order to describe and define the discrete differential problem associated to (˜̃Mε).

We want to point out that, from the numerical point of view, curved boundary domains, such as

the elliptical ones, are generally more difficult to treat than the square ones.

All the algorithm, used to get the shape of least energy (Mountain Pass type) solutions of (˜̃Mε),

was implemented with a MATLAB code.


