
Università della Calabria
Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica e Informatica

XXIX ciclo

Tesi di Dottorato

Paracoherent
Answer Set Programming

Settore Disciplinare INF/01 – INFORMATICA

Coordinatore: Ch.mo Prof. Nicola Leone

Supervisore: Ch.mo Prof. Nicola Leone

Dottorando: Dott. Giovanni Amendola

Sommario

L’Answer Set Programming (ASP) è un paradigma di programmazione dichiarativa basato sulla
semantica dei modelli stabili. L’idea alla base di ASP è di codificare un problema computazionale
in un programma logico i cui modelli stabili, anche detti answer sets, corrispondono alle soluzioni
del problema originale.

La semantica degli answer sets potrebbe non assegnare alcun modello ad un programma logico
a causa di contraddizioni logiche o di negazioni instabili, causate dalla dipendenza ciclica di un
atomo dal suo negato. Mentre le contraddizioni logiche possono essere gestite con le tecniche
tradizionali usate nel ragionamento paraconsistente, l’instabilità della negazione richiede altri
metodi. Ricorriamo qui ad una semantica paracoerente in cui sono utilizzate delle interpretazioni
a 3 valori, dove un terzo valore di verità, oltre a quelli classici di vero e di falso, esprime che un
atomo è creduto vero. Ciò è alla base della semantica dei modelli semi-stabili che è stata definita
attraverso l’utilizzo di una trasformazione del programma originario.

Questa tesi ha come punto di partenza un articolo presentato nel 2010 alla dodicesima
“International Conference on Principles of Knowledge Representation and Reasoning” [21], dove
viene offerta innanzitutto una caratterizzazione dei modelli semi-stabili che rende la semantica
più comprensibile. Inoltre, motivati da alcune anomalie di tale semantica rispetto ad alcune
fondamentali proprietà epistemiche, viene proposta una correzione che soddisfa queste proprietà.
Per questa nuova semantica viene offerta sia una definizione attraverso una trasformazione del
programma originario che una caratterizzazione teorica dei modelli, che si rivelano essere un
rilassamento della logica di equilibrio, una logica caratterizzante la semantica degli answer sets.
Pertanto, la semantica introdotta viene chiamata semantica dei modelli di semi-equilibrio.

Nella tesi consideriamo alcuni miglioramenti di questa semantica rispetto alla modularità nelle
regole del programma, basata sugli insiemi di splitting, il principale strumento per la modularità
usato nel modellare e nel valutare i programmi ASP. Tra questi selezioniamo classi di modelli
canonici che permettono una valutazione bottom-up dei programmi ASP, con l’opzione di passare
ad una modalità paracoerente quando si rileva la mancanza di un answer set.

L’analisi della complessità computazionale dei principali task di ragionamento mostra che i
modelli di semi-equilibrio sono computazionalmente più difficili rispetto agli answer sets (ovvero,
modelli di equilibrio), a causa di una minimizzazione globale necessaria per mantenere quanto più
piccolo possibile il gap tra atomi creduti veri e atomi veri. Successivamente consideriamo differenti
algoritmi per calcolare modelli semi-stabili e modelli di semi-equilibrio, implementandoli ed
integrandoli all’interno di un framework per la costruzione degli answer sets. Riportiamo poi i
risultati di esperimenti condotti sui benchmarks provenienti dalle ASP competitions, identificando
l’algoritmo più efficiente.

I risultati di questa tesi contribuiscono alla fondazione logica dell’ASP paracoerente, che sta
gradualmente ottenendo una maggiore importanza nella gestione delle inconsistenze e, allo stesso
tempo, offrono una base per lo sviluppo di algoritmi e per la loro integrazione all’interno di un
solver ASP.

Abstract

Answer Set Programming (ASP) is a declarative programming paradigm based on the stable
model semantics. The idea of ASP is to encode a computational problem into a logic problem,
whose stable models, called also answer sets, correspond to the solution of the original problem.

The answer set semantics may assign a logic program no model, due to logical contradiction
or unstable negation, which is caused by cyclic dependency of an atom from its negation. While
logical contradictions can be handled with traditional techniques from paraconsistent reasoning,
instability requires other methods. We consider resorting to a paracoherent semantics, in which
3-valued interpretations are used where a third truth value besides true and false expresses that an
atom is believed true. This is at the basis of the semi-stable model semantics, which was defined
using a program transformation.

This thesis has, as starting point, a paper presented in 2010 at the 12th “International Confer-
ence on Principles of Knowledge Representation and Reasoning” [21], where a model-theoretic
characterization of semi-stable models, which makes the semantics more accessible is given.
Motivated by some anomalies of semi-stable model semantics with respect to basic epistemic
properties, an amendment that satisfies these properties is proposed. The latter has both a transfor-
mational and a model-theoretic characterization that reveals it as a relaxation of equilibrium logic,
the logical reconstruction of answer set semantics, and is thus called the semi-equilibrium model
semantics.

In this thesis, we consider refinements of this semantics to respect modularity in the rules,
based on splitting sets, the major tool for modularity in modelling and evaluating answer set
programs. In that, we single out classes of canonical models that are amenable for customary
bottom-up evaluation of answer set programs, with an option to switch to a paracoherent mode
when lack of an answer set is detected.

A complexity analysis of major reasoning tasks shows that semi-equilibrium models are harder
than answer sets (i.e., equilibrium models), due to a global minimization step for keeping the gap
between true and believed true atoms as small as possible. Then, we consider different algorithms
to compute semi-stable and semi-equilibrium models, implementing and integrating them into an
answer set building framework. Moreover, we report results of experimental activity conducted
on benchmarks from ASP competitions, identifying the more efficient algorithm.

Our results contribute to the logical foundations of paracoherent answer set programming,
which gains increasing importance in inconsistency management, and at the same time provide a
basis for algorithm development and integration into answer set solvers.

Contents

1 Introduction 1

2 Preliminaries 9
2.1 Answer Set Programs . 9

2.1.1 Weak constraints . 10
2.1.2 Stratified and headcycle-free programs. 11
2.1.3 Splitting sets and sequences . 11

2.2 Equilibrium Logic . 12
2.3 Semi-Stable Semantics . 14
2.4 Semi-Equilibrium Semantics . 17

2.4.1 Semantic Characterization of Semi-Stable Models 17
2.4.2 Semi-Equilibrium Models . 24

3 Split Semi-Equilibrium Semantics 30
3.1 Split Semi-Equilibrium Models . 33
3.2 Split Sequence Semi-Equilibrium Models . 37
3.3 Canonical Semi-Equilibrium Models . 39

3.3.1 SCC-split Sequences and Models . 40
3.3.2 MJC-split Sequences and Models . 51

3.4 Summary of model relationships . 56

4 Computational Complexity 57
4.1 Overview of complexity results . 58
4.2 Derivation of the results . 59

4.2.1 Hardness results for semi-equilibrium semantics 61
4.2.2 Hardness results for Problem INF with fixed truth value 63

4.3 Constructing and recognizing canonical splitting sequences 63

5 Computation and Implementation 67
5.1 Computation . 67
5.2 Implementation and Experiments . 72

I

6 Related Work 75
6.1 General principles . 75
6.2 Related semantics . 76

6.2.1 Evidential Stable Models . 76
6.2.2 CR-Prolog . 77
6.2.3 Well-founded Semantics . 78
6.2.4 Partial Stable Model Semantics . 81
6.2.5 Further Semantics . 83

6.3 Modularity . 84

7 Further Issues 87
7.1 Infinite splitting sequences . 87
7.2 User-defined subprograms and focusing . 87

7.2.1 User-defined subprograms . 87
7.2.2 Focusing . 89

7.3 Strong negation and non-ground programs . 89
7.4 Parametric merging semantics . 90

8 Conclusion and Main Publications 92
8.1 Open issues and outlook . 93
8.2 Main publications . 94

II

Chapter 1

Introduction

Answer Set Programming (ASP) is a premier formalism for nonmonotonic reasoning and knowl-
edge representation, mainly because of the existence of efficient solvers and well-established
relationships to common nonmonotonic logics. It is a declarative programming paradigm with a
model-theoretic semantics, where problems are encoded into a logic program using rules, and its
models, called answer sets (or stable models) [33], encode solutions; see [8, 12, 29].

As well-known, not every logic program has some answer set. This can be due to different
reasons.

(1) An emerging logical contradiction, as e.g. for the following program.

Example 1. Consider
P = { locked(door)← ∼open(door); −locked(door) }

where “−” denotes strong (sometimes also called classical) negation and “∼” denotes weak (or
default) negation; according to the first rule, a door is locked unless it is known to be open, and
according to the second rule it is not locked. The problem here is a missing connection from
−locked(door) to open(door).1

(2) Due to cyclic dependencies which pass through negation, as e.g. in the following simplistic
program.

Example 2. Consider the barber paradox, which can be regarded as an alternative form of
Russell’s famous paradox in naive set theory:2 in some town, the barber is a man who shaves
all men in town, and only those, who do not shave themselves. The paradox arises when we ask
“Who shaves the barber?”. Assuming that Joe is the barber, the knowledge about who is shaving
him is captured by the logic program

P = {shaves(joe, joe)← ∼shaves(joe, joe)},

Part of this thesis work has been already published in Artificial Intelligence Journal in 2016, while another part
will be published in the Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017 (for
further details, see Section 8.2).

1Constraints (rules with empty head) may be considered as descriptions of cases when inconsistency arises, if ⊥
(falsum) is added to the head; however, also an instability view is possible, cf. Section 3.3.2 in Chapter 3.

2Namely, that the set of all sets that are not members of themselves can not exist.

1

(where joe is the barber), which informally states that Joe shaves himself if we can assume that he
is not shaving himself. Under answer set semantics, P has no model; the problem is a lack of
stability, as either assumption on whether shaves(joe, joe) is true or false can not be justified by
the rule.

In general, the absence of an answer set may be well-accepted and indicates that the rules
cannot be satisfied under stable negation. There are nonetheless many cases when this is not
intended and one might want to draw conclusions also from a program without answer sets,
e.g., for debugging purposes, or in order to keep a system (partially) responsive in exceptional
situations; in particular, if the contradiction or instability is not affecting the parts of a system that
intuitively matter for a reasoning problem.

In order to deal with this, Inoue and Sakama [62] have introduced a paraconsistent semantics
for answer set programs. While dealing with logical contradictions can be achieved with similar
methods as for (non-) classical logic (cf. also [10, 1, 50]), dealing with cyclic default negation
turned out to be tricky. We concentrate in this thesis on the latter, in presence of constraints, and
refer to it as paracoherent reasoning, in order to distinguish reasoning under logical contradictions
from reasoning on programs without strong negation that lack stability in models.

With the idea that atoms may also be possibly true (i.e., believed true), Inoue and Sakama
defined a semi-stable semantics which, for the program in Example 2, has a model in which
shaves(joe, joe) is believed true; this is (arguably) reasonable, as shaves(joe, joe) can not be false
while satisfying the rule. Note however that believing shaves(joe, joe) is true does not provide a
proof or founded justification that this fact is actually true; as a mere belief it is regarded to be
weaker than if shaves(joe, joe) would be known as a fact or derived from a rule.

In fact, semi-stable semantics approximates answer set semantics and coincides with it
whenever a program has some answer set; otherwise, under Occam’s razor, it yields models with
a smallest set of atoms believed to be true. That is, the intrinsic closed world assumption (CWA)
of logic programs is slightly relaxed for achieving stability of models.

In a similar vein, we can regard many semantics for non-monotonic logic programs that relax
answer sets as paracoherent semantics, e.g. [6, 23, 52, 56, 57, 60, 61, 64, 68, 72]. Ideally, such a
relaxation meets for a program P the following properties:

(D1) Every (consistent) answer set of P corresponds to a model (answer set coverage).

(D2) If P has some (consistent) answer set, then its models correspond to answer sets (congru-
ence).

(D3) If P has a classical model, then P has a model (classical coherence).

In particular, (D3) intuitively says that in the extremal case, a relaxation should renounce to
the selection principles imposed by the semantics on classical models (in particular, if a single
classical model exists).

Widely-known semantics, such as 3-valued stable models [60], L-stable models [23], revised
stable models [56], regular models [72], and pstable models [52], satisfy only part of these
requirements (see Section 6.2 for more details). Semi-stable models however, satisfy all three
properties and thus have been the prevailing paracoherent semantics.

2

Use case scenarios. Paracoherent semantics may be fruitfully employed in different use cases of
ASP, such as model building respectively scenario generation, but also traditional reasoning from
the models of a logical theory. The semi-stable model semantics is attractive as it (1) brings in
“unsupported” assumptions as being believed, (2) remains close to answer sets in model building,
but distinguishes atoms that require such assumptions from atoms derivable without them, not
creating justified truth from positive beliefs, and (3) keeps the CWA/Logic Programming spirit of
minimal assumptions.

Let us consider two possible use cases for illustration.

Model building. In ASP, one of the principal reasoning tasks is model building, which
means to compute some, multiple or even all answer sets of a given program. Each answer set
encodes a possible world or solution to a problem that is represented by the program.

The standard answer set semantics may be regarded as appropriate when a knowledge base,
i.e., logic program, is properly specified adopting the CWA principle to deal with incomplete infor-
mation. It may then be perfectly ok that no answer set exists, as e.g. in the Gedanken-Experiment
of the barber paradox. However, sometimes the absence of an answer set is unacceptable as a
possible world is known to exist, and in this case a relaxation of the answer set semantics is
desired.

Example 3. Suppose we have a program that captures knowledge about friends of a person
regarding visits to a party, where go(X) informally means that X will go:

P =


go(John)← ∼go(Mark);

go(Peter)← go(John), ∼go(Bill);
go(Bill)← go(Peter)


It happens that P has no answer set. This is unacceptable as we know that there is a model in

reality, regardless of who will go to the party, and we need to cope with this situation. Semi-stable
semantics is a tool that allows us to gain an answer set, by relaxing the CWA and adopting
beliefs without further justifications. In particular, the semi-stable models of this program
are Iκ1 = {Kgo(Mark)} and Iκ2 = {go(John), Kgo(John), Kgo(Bill)}. Informally, the key
difference between Iκ1 and Iκ2 concerns the beliefs on Mark and John. In Iκ2 Mark does not go, and,
consequently, John will go (moreover, Bill is believed to go, and Peter will not go). In Iκ1 , instead,
we believe Mark will go, thus John will not go (likewise Peter and Bill). Notably, and different
from other related formalisms (cf. Section 6.2 of Chapter 6), positive beliefs do not create justified
truth: if we had a further rule fun ← go(Mark) in P , then from just believing that Mark will go
we can not derive that fun is true; Iκ1 would remain a semi-stable model.

As already mentioned, paracoherent semantics can serve as a starting point for debugging and
also repairing a program. Indeed, if all believed atoms were justified true, then we would obtain
an answer set of the program.3 Therefore, we might investigate reasons for the failure to derive
these atoms justified, and possibly add new rules or modify existing ones. However, dealing with
this issue and linking it to existing work on debugging and repair of answer set programs (e.g.,

3As we shall see, this actually holds for the amended semi-stable semantics.

3

[63, 65, 32, 6, 51]) is beyond the scope of this dissertation; we will briefly address it in Section 6.2
of Chapter 6.

Inconsistency-tolerant query answering. Query answering over a knowledge base resorts
usually to brave or cautious inference from the answer sets of a knowledge base, where the query
has to hold in some respectively in every answer set; let us focus on the latter here. However,
if incoherence of the knowledge base arises, then we lose all information and query answers
are trivial, since every query is vacuously true. This, however, may not be satisfactory and be
problematic, especially if one can not modify the knowledge base, which may be due to various
reasons (no permission for change, the designer or administrator of the knowledge base might
be unavailable, no clear way to fix the problem etc). Paracoherent semantics can be exploited
to overcome this problem and to render query answering operational, without trivialization.
We illustrate this on an extension to the barber paradox (but could equally well consider other
scenarios).

Example 4. Consider a variant of the barber paradox, cf. [62]:
P = {shaves(joe,X)← ∼shaves(X ,X), man(X); man(paul); man(joe)}.

While this program has no answer set, the semi-stable model semantics gives us the model
{man(joe), shaves(joe, paul), man(paul), Kshaves(joe, joe)}, in which shaves(joe, joe) is
believed to be true (as expressed by the prefix ’K’); here the incoherent rule shaves(joe, joe)←
∼shaves(joe, joe),man(joe), which is an instance of the rule in P for joe , is isolated from the rest
of the program to avoid the absence of models;4 this treatment allows us to derive, for instance,
that shaves(joe, paul) and man(paul) are true; furthermore, we can infer that shaves(joe, joe)
can not be false. Such a capability seems to be very attractive in query answering: to tolerate
inconsistency (that is, incoherence) without a “knowledge explosion.”

The well-founded semantics (WFS) [68] is the most prominent approximation of the answer
set semantics and in particular useful for query answering, since an atom that is true (resp. false)
under WFS is true (resp. false) in every answer set of a program. The WFS has similar capabilities,
but takes intuitively a coarser view on the truth value of an atom, which can be either true, false, or
undefined; in semi-stable semantics, however, undefinedness has a bias towards truth, expressed by
“believed true” (or stronger, by “must be true”); in the example above, under WFS shaves(joe, joe)
would be undefined. Furthermore, undefinedness is cautiously propagated under WFS, which may
prevent one from drawing expected conclusions.

Example 5. Consider the following extension of Russell’s paraphrase:

P =

{
shaves(joe, joe)← ∼shaves(joe, joe);
visits_barber(joe)← ∼shaves(joe, joe)

}
.

Arguably one expects that visits_barber(joe) is concluded false from this program: to satisfy
the first rule, shaves(joe, joe) can not be false, and thus the second rule can not be applied;

4A similar intuition underlies the CWA inhibition rule in [55] that is used for contradiction removal in logic
programs.

4

thus under CWA, visits_barber(joe) should be false. However, under well-founded semantics
all atoms are undefined; in particular, the undefinedness of shaves(joe, joe) is propagated to
visits_barber(joe) by the second rule.

The single semi-stable model of P from its epistemic transformation is {Kshaves(joe, joe)},
according to which shaves(joe, joe) is believed true while visits_barber(joe) is false.

Furthermore, it is well-known that the well-founded semantics has problems with reasoning
by cases .

Example 6. From the program

P =


shaves(joe, joe)← ∼shaves(joe, joe);
angry(joe)← ∼happy(joe); happy(joe)← ∼angry(joe);
smokes(joe)← angry(joe); smokes(joe)← happy(joe)

 ,

which is still incoherent with respect to answer set semantics, we can not conclude that smokes(joe)
is true under WFS: as angry(joe) and happy(joe) mutually define each other by negation, WFS re-
mains agnostic and leaves both atoms undefined; their undefinedness is propagated to smokes(joe)
by the rules for this atom. In contrast, we can conclude that smokes(joe) is true under semi-stable
semantics and its relatives: we have two semi-stable models, one in which angry(joe) is true
and happy(joe) is false, and one in which angry(joe) is false and happy(joe) is true; in both
models, however, smokes(joe) is true. Moreover, under these semantics we can e.g. not derive
that angry(joe) is true, which means that trivialization is avoided.

We elucidate the relationship between paracoherent semantics and WFS in more detail in
Chapter 6.

Semi-equilibrium semantics. Despite the model-theoretic nature of ASP, semi-stable models
have been defined by means of a program transformation, called epistemic transformation. A
semantic characterization in the style of equilibrium models for answer sets [54] was still missing.
Such a characterization is desired because working with program transformations becomes
cumbersome, if properties of semi-stable models should be assessed; and moreover, while the
program transformation is declarative and the intuition behind is clear, the interaction of rules
does not make it easy to understand or to see how the semantics works in particular cases.

Starting out from these observations, Eiter, Fink and Moura in [21] addressed the problem
making the following main improvements. Indeed, they characterize semi-stable models by
pairs of 2-valued interpretations of the original program, similar to so-called here-and-there (HT)
models in equilibrium logic [53, 54]. Equilibrium logic is the logical reconstruction of the answer
set semantics and has proven immensely useful to understand it better from a proof-theoretic
perspective based on intuitionistic logic, and to characterize important properties such as strong
equivalence of answer set programs [43]; furthermore, it naturally extends to richer classes of
programs. The logic of here-and-there, on which equilibrium logic is based, can be seen as the
monotonic core of answer set semantics; its semantics is captured by HT-models, which are pairs
(X, Y), where X ⊆ Y are sets of atoms that are true and believed true, respectively. Thus, to
characterize the semi-stable models in terms of HT-models or similar structures is a natural and

5

important issue. In the course of this, we point out some anomalies of the semi-stable semantics
with respect to basic rationality properties in modal logics (K and N) which essentially prohibit a
1-to-1 characterization5 in terms of HT-models. Roughly speaking, the epistemic transformation
misses some links between atoms encoding truth values of atoms, which may lead in some cases
to counterintuitive results.

These anomalies of the semi-stable model semantics led to propose an alternative paracoherent
semantics, called semi-equilibrium (SEQ) model semantics, which remedies them. It satisfies
the properties (D1)-(D3) from above and is fully characterized using HT-models. Informally,
semi-equilibrium models are 3-valued interpretations in which atoms can be true, false or believed
true; the gap between believed and (derivably) true atoms is globally minimized. That is, SEQ-
models can be seen as relaxed equilibrium models respectively answer sets where a smallest set
of atoms is believed to be true, without further justification, such that an answer set can be built.
Note that the semantic distinction between believed true and true atoms in models is important.
Other approaches, e.g. CR-Prolog [6], make a syntactic distinction at the rule level which does not
semantically discriminate believed atoms; due to truth propagation, this may lead to more models.
Notably, SEQ-models can be obtained by an extension of the epistemic transformation that adds
further rules which take care of the anomalies; we thus have both an appealing model-theoretic
and an declarative-operational view of the semantics.

Contributions. Starting out from these observations, we have addressed the problem making
the following main contributions:

– Different from equilibrium models, semi-equilibrium models do in general not obey a well-
known syntactic modularity property that allows one to build all models of a program by extending
the models of a bottom part to the rest of the program. More precisely, splitting sets [42], the
major tool for modularity in ASP, can not be blindly used to decompose an arbitrary program
under semi-equilibrium semantics. This shortcoming affects in fact two aspects: (1) program
evaluation, which for answer set programs in practice proceeds from bottom to top modules, and
(2) problem modelling, where user-defined subprograms are hierarchically organized. To address
this, we define split SEQ-models, where a concrete sequence S = (S1, . . . , Sn) of splitting sets
Si, called splitting sequence, is used to decompose the program into hierarchically organized
subprograms P1, . . . , Pn that are evaluated bottom up.

– In general, the resulting split SEQ-models depend on the particular splitting sequence. E.g.,
the party program in Example 3 has two SEQ-models, which result from different splitting
sequences.This is a drawback, as e.g. in program evaluation a solver may use one of many
splitting sequences. In order to make the semantics robust, we thus introduce canonical splitting
sequences, with the property that the models are independent of any particular member from a
class of splitting sequences, and thus obtain canonical models. This is analogous to the perfect
models of a (disjunctive) stratified program, which are independent of a concrete stratification
[5, 59]. We concentrate on program evaluation and show that for programs P with a benign
form of constraints, the class derived from the strongly connected components (SCCs) of P

5By 1-to-1 we mean a one to one and onto (i.e., bijective) correspondence.

6

warrants this property, as well as modularity properties. For the party program in Example 3,
the single canonical SEQ-model is Iκ2 , as there is no rule from which go(Mark) can be derived.
For arbitrary programs, independence is held by a similar class derived from the maximal joined
components (MJCs) of P , which intuitively merge SCCs that are involved in malign constraints.
A compact summary of the relationships of the different notions of models is shown in Figure 3.1
at the end of Chapter 2.4.

– We study major reasoning tasks for the semantics above and provide precise characterizations
of their computational complexity for various classes of logic programs. Besides brave and
cautious reasoning, deciding whether a program has a model, respectively recognizing models, is
considered. Briefly, the results show that semi-stable and SEQ-model semantics reside in the
polynomial hierarchy one level above the answer set semantics, and is for brave and cautious
reasoning from disjunctive programs Σp

3- respectively Πp
3-complete; for normal programs, the

problems are Σp
2- respectively Πp

2-complete. This increase in complexity is intuitively explained
by the congruence property (D2), which imposes another layer of optimization. Notably, split
SEQ- and canonical SEQ-models have the same complexity as SEQ-models for these problems,
but the model existence problem (which is NP-complete for SEQ-models) is harder (Σp

3- resp.
Σp

2-complete). Intuitively, this is explained by the fact that classical coherence (D3) already
ensures SEQ-model existence, but split SEQ- and canonical SEQ-models must fulfill further
conditions that are a source of complexity.

– We study different algorithms to compute semi-stable and semi-equilibrium models, implement-
ing and integrating them into an answer set building framework. We report results of experimental
activity conducted on benchmarks from ASP competitions [17], identifying the more efficient
algorithm.

– We compare the SEQ-model semantics to a number of related semantics in the literature.
It turns out that it coincides with the evidential stable model semantics for disjunctive logic
programs [64]. The latter has been defined like the semi-stable model semantics in terms of a
two stage program transformation, but using a rather different program. Thus our results provide
as a byproduct also a semantic and computational characterization of the evidential stable model
semantics. Another notable result is that the SEQ-model semantics of a slightly enriched program
Pwf refines the WFS of a given program P , by making in general more atoms true resp. false;
hence the query answers from SEQ-models are in general more informative than under WFS (cf.
Example 6). Moreover, the same holds for split SEQ-models.

Our results contribute to enhanced logical foundations of paracoherent answer set program-
ming, which gains increasing importance in inconsistency management. They provide a model-
theoretic characterization and an amendment of the semi-stable semantics, given by the semi-
equilibrium semantics, linking it to the view of answer sets semantics in equilibrium logic; this
also provides the basis for immediate extensions to richer classes of logic programs. Furthermore,
the split SEQ-model semantics, and in particular the SCC-models semantics, lends itself for a
modular use and bottom up evaluation of programs. Cautious merging of components, as done
forMJC-models, aims at preserving independence of components and thus possible parallel
evaluation. This makes the refined semantics attractive for incorporation into answer set solvers

7

and evaluation frameworks, in order to offer paracoherent features. Notably, the bottom-up
evaluation allows one to switch on the fly to a paracoherent mode when facing an incoherence, i.e.,
no answer set exists. Furthermore the notions and main results for SCC-models can be generalized
to user-defined subprograms (see Chapter 7).

Organization of the Thesis. The remainder of the thesis is organized as follows. In the
Chapter 2, we review answer set programs, equilibrium logic, semi-stable model semantics
and semi-equilibrium semantics. After that, we provide in Chapter 2.4 the refinement of the
semi-equilibrium semantics relative to splitting sets and arbitrary splitting sequences, introducing
canonical semi-equilibrium models. In the Chapter 4, we study the computational complexity
aspects of various semantics. Chapter 5 is devoted to find an efficient algorithm and to report
results of experimental activity. Related work is discussed in Chapter 6, followed by Chapter 7
that addresses possible extensions. Chapter 8 concludes the thesis with open issues, an outlook,
and main publications.

8

Chapter 2

Preliminaries

In this Chapter, we consider a propositional setting of logic programs; extensions to the usual
non-ground setting are straightforward. Since we are primarily interested in paracoherence, we
also disregard aspects devoted to paraconsistency, i.e., logical contradictions; more specifically,
we exclude strong negation. A discussion of how the work extends to non-ground programs and
strong negation is given in Chapter 7.

We first recall the answer set semantics of disjunctive logic programs, and then its reconstruc-
tion as equilibrium logic based on a non-classical logic.

2.1 Answer Set Programs
Given a propositional signature, i.e., a set of propositional atoms Σ, a (disjunctive) rule r is of the
form

a1 ∨ · · · ∨ al ← b1, . . . , bm, ∼c1, . . . , ∼cn, (2.1)

where l + m + n > 0, such that all ai, bj and ck are atoms.1 As usual, “∼” stands for weak or
default negation. The head of r is the set H(r) = {a1, . . . , al}, and the positive (respectively
negative) body is the set B+(r) = {b1, . . . , bm} (respectively B−(r) = {c1, . . . , cn}); the body of
r is B(r) = B+(r) ∪ ∼B−(r), where for any set S of atoms, ∼S = {∼a | a ∈ S}.

By abuse of notation, we will denote r also by

H(r)← B(r) or H(r)← B+(r), ∼B−(r).

A rule r is a (disjunctive) fact, if B(r) = ∅ (we then omit←); a constraint, if H(r) = ∅; normal,
if |H(r)| ≤ 1; and positive, if B−(r) = ∅.

A (disjunctive logic) program P is a finite set of disjunctive rules (over Σ). A program P is
called normal (resp. positive) if each r ∈ P is normal (resp. positive); P is constraint-free, if P
contains no constraints.

Example 7. Several programs have already been considered in the Introduction. As an example
of a disjunctive program, consider

1Occasionally, we use as in Example 4 schematic rules with variables which are instantiated to propositional rules.

9

P = {assistant ∨ student ← ∼professor ; discount ← student , ∼assistant}.

It intuitively captures that in some department members who are not known to be professors are
assistants or students, and a student who is not known to be assistant gets a discount for coffee.

We now recall the stable models (also called answers sets) of a program; intuitively, these
are models that can be reconstructed from the rules if negation is pre-evaluated according to the
model itself. An interpretation is any set I ⊆ Σ of atoms. An interpretation I satisfies a rule r,
denoted I |= r, if I ∩H(r) 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅, and I is a model of
a program P (denoted I |= P), if I |= r for each rule r ∈ P . A model I of P is minimal, if no
model J ⊂ I of P exists; MM (P) denotes the set of all minimal models of P .

An interpretation I is a stable model (or answer set) of P , if I ∈ MM (P I), where P I is
the well-known Gelfond-Lifschitz (GL) reduct [33] of P w.r.t. I , which is the positive program
P I = {H(r) ← B+(r) | r ∈ P,B−(r) ∩ I 6= ∅}. The program P I incorporates the value of
negation given by I into the program; if I ∈ MM (P I) holds, I can be reconstructed under the
“guess” for negation given by I . We denote by AS(P) the set of all answer sets of P .

Example 8 (continued). Reconsider the program P in Example 7, where for simplicity we use
a, b, c and d for professor , student , assistant , and discount , respectively; that is, we have
P = {b ∨ c ← ∼a; d ← c, ∼b}. This program has the minimal models MM (P) = {{a}, {b},
{c, d}} and the answer sets AS(P) = {{b}, {c, d}}. Note that I = {a} is not an answer set, as I
is not a minimal model of P I = {d← c}; intuitively the truth of a in I is unfounded, as it can not
be derived from rules.

2.1.1 Weak constraints
Now, we recall a useful extension of the answer set semantics by the notion of weak constraint [14].
A weak constraint ω is of the form:

;b1, . . . , bm, ∼c1, . . . , ∼cn.

Given a program P and a set of weak constraints W , the semantics of P ∪W extends from the
basic case defined above. A constraint ω ∈ W is violated by an interpretation I if all positive
atoms in ω are true, and all negated atoms are false with respect to I . An optimum answer set for
P ∪W is an answer set of P that minimizes the number of the violated weak constraints. We
denote by ASO(P ∪W) the set of all optimum answer sets of P ∪W .

Example 9 (continued). Consider the program P in Example 8 with the following set of weak
constraints

W = { ;b, ∼a, ∼c; ;c, ∼a; ;b, ∼d; ;b, c, ∼a}.

Now, the answer set {b} of P violates ;b, ∼a, ∼c and ;b, ∼d, whereas the answer set
{c, d} violates only ;c, ∼a. Therefore, the optimum answer set of P ∪W is {c, d}. Note that
the last weak constraint is not violated by any answer set.

10

2.1.2 Stratified and headcycle-free programs.
Among various syntactic classes of programs that are important for the use in practice are stratified
programs [5, 59] and headcycle-free (hcf) program [9]. In the following, we characterize these
notions in terms of the strongly connected components of a logic program.

The dependency graph of a program P is the directed graph DG(P) = 〈VDG , EDG〉 whose
nodes VDG are the atoms in P and with an edge (a, b) if a occurs in the head of a rule r and either
b occurs in the body of r or in the head of r and is different from a, i.e., EDG = {(a, b) | a ∈
H(r), b ∈ B+(r) ∪B−(r) ∪ (H(r) \ {a}), r ∈ P}. The strongly connected components (SCCs)
of P , denoted SCC(P), are the SCCs of DG(P), i.e., the maximal node sets C ⊆ At(P) such that
every pair of nodes v, v′ ∈ C is connected by some path in G with nodes only from C. Informally,
the dependency graph captures dependencies of the truth of an atom a that occurs in the head of a
rule r from the other occurrences of atoms in r; their value potentially influences the value of a.

A program P is stratified, if for each r ∈ P and C ∈ SCC(P) either H(r) ∩ C = ∅ or
B−(r) ∩ C = ∅. Note that the notion of stratified program introduced here applies also to
programs with constraints, while the original notion [5, 59] considers only constraint-free normal
respectively disjunctive logic programs. It conservatively generalizes the traditional notion and
simply disregards constraints, as H(r) ∩ C = ∅ trivially holds for each constraint r. If all other
rules r satisfy the condition, then no atom a can depend via rules in P on its negation: no path
a = a0, a1, . . . , ak = a where every (ai, ai+1), 0 ≤ i < k, is an edge in DG(P) exists thats leads
from a in the head of some rule through a literal a1 resp. ∼a1 in its body recursively to ∼a in some
rule body. This makes it possible to evaluate negation in layers (also called strata). Indeed, every
constraint-free stratified normal program P has a unique stable model which coincides with the
perfect (stratified) model of P that is defined along strata (see [5, 59]).

A program P is headcycle-free (hcf), if |H(r) ∩ C| ≤ 1 for each r ∈ P and C ∈ SCC(P ′),
where P ′ = {a← B+(r) | r ∈ P, a ∈ H(r)}. Headcycle-freeness means that distinct atoms a
and b that occur in the head of the same rule do not mutually depend on each other by recursion
through the positive parts of the rule bodies; this allows for tractable minimal model checking,
which is intractable for arbitrary disjunctive logic programs.

Example 10 (continued). The program P = {b ∨ c ← ∼a; d ← c, ∼b} is stratified and also
headcycle-free. Informally, the value of a, which does not depend on any other atom, can be
determined first, next the value of b and c, and finally the value of d; this gives rise to three
respective strata. The program is headcycle-free, as b and c do not mutually depend on each other
through positive rule bodies. This also holds for the extended program P ′ = P ∪ {b← d}: while
b positively depends on c (via b← d and d← c), c does not positively depend on b.

Notation. It is convenient to introduce further notation. For any rule r, we denote by At(r) =
H(r) ∪ B+(r) ∪ B−(r) the set of all atoms occurring in r, and for any program P , we let
At(P) =

⋃
r∈P At(r). We assume as usual that by default Σ = At(P), i.e., the signature is the

one generated by the considered program P .

2.1.3 Splitting sets and sequences

11

Stratified programs come with the modularity property that atoms in lower layers (in Example 10
e.g. a) have their value solely determined by rules there. This modularity property in fact
generalizes to a more abstract view of a program that is based on splitting sets of program [42].
Informally, a splitting set allows one to divide a program P into a lower and a higher part which
can be evaluated bottom up. More formally, a set S ⊆ Σ is a splitting set of P , if for every rule r in
P such that H(r)∩S 6= ∅ we have that At(r) ⊆ S. We denote by bS(P) = {r ∈ P | At(r) ⊆ S}
the bottom part of P , and by tS(P) = P \ bS(P) the top part of P relative to S. Note that the
union S = S1 ∪ S2 of splitting sets S1, S2 of a program P is also a splitting set of P .

As shown in [42], it holds that

AS(P) =
⋃

M∈AS(bS(P))

AS(tS(P) ∪M), (2.2)

where as usual, “∪M” means adding all atoms in M as facts, and S is a splitting set of P . That
is, we can obtain the answer sets of a program P by first evaluating its bottom part bS(P) with
respect to a splitting set S; this part contains rules that are entirely formulated over atoms from S.
After that, we evaluate the remaining part of the program, tS(P), in which the atoms from S can
only occur in rule bodies but not in rule heads, augmented with facts for the atoms that are found
true in an answer set.

Example 11 (continued). For the program P = {b∨ c← ∼a; d← c, ∼b}, the set S = {a, b, c} is
a splitting set, and we have bS(P) = {b ∨ c← ∼a} and tS(P) = {d← c, ∼b}; as AS(bS(P)) =
{{b}, {c}}, we get AS(P) = AS(tS(P) ∪ {b}) ∪ AS(tS(P) ∪ {c}) = {{b}, {c, d}}.

Splitting sets naturally lead to splitting sequences. A splitting sequence S = (S1, . . . , Sn)
of P is a sequence of splitting sets Si of P such that Si ⊆ Sj for each i < j; note that usually
Sn ⊂ Σ; the characterization in (2.2) can be extended accordingly.

Example 12 (continued). A splitting sequence for P = {b∨ c← ∼a; d← c, ∼b} is S = (S1, S2)
where S1 = {a} and S2 = {a, b, c}; bS1(P) = ∅, bS2(P) = {b ∨ c ← ∼a} and tS2(P) = {d ←
c, ∼b}.

With an eye on practical implementation, we do not consider infinite splitting sequences
here, but will comment on them at the beginning of Chapter 7. An important note is that
splitting sets and sequences are an important tool not only for modular representation, but also
for the implementation of answer set semantics. Advanced answer set solvers such as DLV [41],
CLASP [30] and WASP [2] exploit this tool heavily, and while the SCCs yield the most fine-grained
splitting sequences, in practice coarser splittings may be more advantageous.

2.2 Equilibrium Logic
The definition of answer set in Section 2.1 uses the GL-reduct, and thus in a sense has an
operational flavor. This raised the question whether a characterization of answer sets in terms of
a suitable logic is possible; and as constructibility of answer sets by rules is crucial, whether in

12

particular (a variant of) intuitionistic logic could serve this purpose. David Pearce showed that the
answer is positive and presented equilibrium logic [53, 54], which is a natural non-monotonic
extension of Heyting’s logic of here-and-there (HT) [35]. The latter is an intermediate logic
between (full) intuitionistic and classical logic, and it coincides with 3-valued Gödel logic. As it
turned out, HT-logic serves as a valuable basis for characterizing semantic properties of answer
set semantics and equilibrium logic can be regarded as a logical reconstruction of answer set
semantics that has many attractive features.

As such, HT-logic considers a full languageL± of formulas built over a propositional signature
Σ with the connectives ¬, ∧, ∨,→, and ⊥. We restrict our attention here to formulas of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn→a1 ∨ · · · ∨ al, (2.3)

which correspond in a natural way to rules of form (2.1) where for l = 0, the formula a1 ∨ · · · ∨ al
is ⊥; every program P corresponds then similarly to a theory (set of formulas) ΓP .

Example 13. For example, the program P = {a ← b; b ← ∼c; c ← ∼a}, corresponds to the
theory ΓP = {b → a; ¬c → b; ¬a → c}, while P = {b ∨ c ← ∼a; d ← c, ∼b} corresponds to
ΓP = {¬a→ b ∨ c; ¬b ∧ c→ d}.

In the rest of the thesis, we tacitly use this correspondence. We note, however, that the key
notions extend to the full language L±, and in this way some of the results to extensions of the
rule language that we consider (see Section 7.3) also apply to the full language.

As a restricted intuitionistic logic, HT can be semantically characterized by Kripke models,
in particular using just two worlds, namely “here” and “there” (assuming that the here world
is ordered before the there world). An HT-interpretation is a pair (X, Y) of interpretations
X, Y ⊆ Σ such that X ⊆ Y ; it is total, if X = Y . Intuitively, atoms in X (the here part) are
considered to be true, atoms not in Y (the there part) to be false, while the remaining atoms (from
Y \X) are undefined.

Assuming that X |= φ denotes satisfaction of a formula φ by an interpretation X in classical
logic, satisfaction of φ in HT-logic (thus, an HT-model), denoted (X, Y) |= φ, is defined
recursively as follows:

1. (X, Y) |= a if a ∈ X , for any atom a,

2. (X, Y) 6|= ⊥,

3. (X, Y) |= ¬φ if Y 6|= φ (that is, Y satisfies ¬φ classically),

4. (X, Y) |= φ ∧ ψ if (X, Y) |= φ and (X, Y) |= ψ,

5. (X, Y) |= φ ∨ ψ if (X, Y) |= φ or (X, Y) |= ψ,

6. (X, Y) |= φ→ ψ if (i) (X, Y) 6|= φ or (X, Y) |= ψ, and (ii) Y |= φ→ ψ.

Note that the condition in item 3 is equivalent to (X, Y) |= φ→ ⊥, thus we can view negation
¬φ as implication φ→ ⊥. Then, an HT-interpretation (X, Y) is a model of a theory Γ, denoted
(X, Y) |= Γ, if (X, Y) |= φ for every formula φ ∈ Γ. As regards negative literals and rules, the
following is not hard to see.

13

Proposition 1. Given a HT-interpretation (X, Y), for an atom a it holds that (X, Y) |= ¬a iff
a /∈ Y , and (X, Y) |= r for a rule r of form (2.1) iff either H(r) ∩ X 6= ∅, or B+(r) 6⊆ Y , or
B−(r) ∩ Y 6= ∅.

In terms of the GL-reduct, we have (X, Y) |= P for a program P iff Y |= P and X |= P Y

[67].
A total HT-interpretation (Y, Y) is an equilibrium model (EQ-model) of a theory Γ, if (Y, Y) |=

Γ and for every HT-interpretation (X, Y), such that X ⊂ Y , it holds that (X, Y) 6|= Γ; the set of
all EQ-models of Γ is denoted by EQ(Γ). The equilibrium models of a program P are then those
of ΓP , i.e., EQ(P) = EQ(ΓP). For further details and background see, e.g., [54].

Example 14 (continued). For the program P = {b ∨ c ← ∼a; d ← c, ∼b}, the sets (∅, a),
(a, a), (b, b), (∅, ab), (a, ab), (b, bc), (c, bc), (cd, cd) are some HT-models (X, Y) of the cor-
responding theory ΓP .2 The equilibrium models of P resp. ΓP are (b, b) and (cd, cd), i.e.,
EQ(P) = EQ(ΓP) = {(b, b), (cd, cd)}.

In the previous example, the program P has the answer sets I1 = {b} and I2 = {c, d}, which
amount to the equilibrium models (b, b) and (cd, cd), respectively. In fact, the answer sets and
equilibrium models of a program always coincide.

Proposition 2 ([53]). For every program P and M ⊆ At(P), it holds that M ∈ AS(P) iff
(M,M) is an EQ-model of ΓP .

In particular, asAS(P) = MM (P) for any positive program P , we have EQ(P) = {(M,M) |
M ∈ MM (P)} in this case.

We call a logic program incoherent, if it lacks answer sets due to cyclic dependency of atoms
among each other by rules through negation; that is, no answer set (equivalently, no equilibrium
model) exists even if all constraints are dismissed from the program.

Example 15. Reconsider the barber paradox; the HT-models of the corresponding program P =
{a← ∼a}, where a stands for shaves(joe, joe), are (∅, a) and (a, a); the single total HT-model is
(a, a), which however is not an equilibrium model. Similarly, the program P = {a← b; b← ∼a}
has the HT-models (∅, a), (∅, ab), (a, a), (a, ab), and (ab, ab); likewise, the total HT-models (a, a)
and (ab, ab) are not equilibrium models.

We next recall the semi-stable model semantics which deals with such incoherence.

2.3 Semi-Stable Semantics
Inoue and Sakama [62] introduced semi-stable models as an extension of paraconsistent answer set
semantics (called PAS semantics, respectively p-stable models by them) for extended disjunctive
logic programs. Their aim was to provide a framework which is paraconsistent for incoherence,

2We write (as common) sets {a1, a2, . . . , an} also as juxtaposition a1a2 · · · an of their elements.

14

i.e., in situations where stability fails due to cyclic dependencies of a literal from its default
negation.

We consider an extended signature Σκ = Σ ∪ {Ka | a ∈ Σ}. Intuitively, Ka can be read as a
is believed to hold. Semantically, we resort to subsets of Σκ as interpretations Iκ and the truth
values false ⊥,3 believed true bt, and true t, which are ordered by a binary relation � (a truth
ordering) such that ⊥ � bt � t. The truth value assigned by Iκ to a propositional variable a is
defined by

Iκ(a) =


t if a ∈ Iκ,
bt if Ka ∈ Iκ and a 6∈ Iκ,
⊥ otherwise.

The semi-stable models of a program P are obtained from its epistemic transformation P κ.

Definition 1 (Epistemic Transformation P κ [62]). Let P be a disjunctive program. Then its
epistemic transformation is defined as the positive disjunctive program P κ obtained from P by
replacing each rule r of the form (2.1) in P , such that B−(r) 6= ∅, with:

λr,1 ∨ . . . ∨ λr,l ∨Kc1 ∨ . . . ∨Kcn ← b1, . . . , bm, (2.4)
ai ← λr,i, (2.5)
← λr,i, cj, (2.6)

λr,i ← ai, λr,k, (2.7)

for 1 ≤ i, k ≤ l and 1 ≤ j ≤ n, where the λr,i, λr,k are fresh atoms.

Intuitively, the atom Kcj means that cj must be believed to be true, and λr,i means that in
the rule r, the atom ai in the head must be true. With this meaning, the rule (2.1) is naturally
translated into the rule (2.4): if all atoms in B(r) are true, then either some atom in H(r) is true,
and thus some λr,i is true, or some atom ci in B−(r) must be believed to be true (then ∼ci is false).
The rule (2.5) propagates the value of λr,i to ai, which then is visible also in other rules. The rules
(2.6) and (2.7) restrict the choice of λr,i for making the head of r true: if cj is true, the rule r is
inapplicable and no atom in H(r) has to be true (2.6). Furthermore, if the atom ai in the head is
true (via some other rule of P or by (2.5)), then whenever some atom ak in H(r) must be true,
also ai must be true (2.7); the minimality of answer set semantics effects that only ai must be true.

Example 16. Reconsider the barber paradox program P = {a ← ∼a}, where a stands for
shaves(joe, joe). Then

P κ = {λ1 ∨Ka← ; a← λ1; ← a, λ1; λ1 ← a, λ1}.

Consider the similar program P = {b← ∼a}, which is stratified. Its epistemic transformation is

P κ = {λ1 ∨Ka← ; b← λ1; ← a, λ1; λ1 ← b, λ1}.
3In [62] ⊥ is called ‘undefined’, as it should be if strong negation is considered as well.

15

Finally, let us also reconsider the stratified program P = {b ∨ c← ∼a; d← c, ∼b}. Its epistemic
transformation is

P κ =



λr1,1 ∨ λr1,2 ∨Ka← λr2,1 ∨Kb← c
b← λr1,1 d← λr2,1
c← λr1,2
← λr1,1, a ← λr2,1, b
← λr1,2, a

λr1,1← b, λr1,1 λr2,1← d, λr2,1
λr1,1← b, λr1,2
λr1,2← c, λr1,1
λr1,2← c, λr1,2


,

where r1 and r2 name the first and second rule, respectively.

Note that for any program P , its epistemic transformation P κ is a positive program. Models of
P κ are defined in terms of a fixpoint operator in [62], with the property that for positive programs,
according to Theorem 2.9 in [62], minimal fixpoints coincide with minimal models of the program.
Therefore, for any program P , minimal fixpoints of P κ coincide with answer sets of P κ.

Semi-stable models are then defined as maximal canonical interpretations among the minimal
fixpoints (answer sets) of P κ as follows. For every interpretation Iκ over Σ′ ⊇ Σκ, let gap(Iκ) =
{Ka ∈ Iκ | a 6∈ Iκ} denote the atoms that are believed true but not assigned true.

Definition 2 (maximal canonical). Given a set S of interpretations over Σ′, an interpretation
Iκ ∈ S is maximal canonical in S, if no Jκ ∈ S exists such that gap(Iκ) ⊃ gap(Jκ). By mc(S)
we denote the set of maximal canonical interpretations in S.

Then we can equivalently paraphrase the definition of semi-stable models in [62] as follows.

Definition 3 (semi-stable models). Let P be a program over Σ. An interpretation Iκ over Σκ

is a semi-stable model of P , if Iκ = S ∩ Σκ for some maximal canonical answer set S of P κ.
The set of all semi-stable models of P is denoted by SST (P), i.e., SST (P) = {S ∩ Σκ | S ∈
mc(AS(P κ))}.

Example 17 (continued). For P = {a← ∼a}, the epistemic transformation P κ, has the single
answer set M = {Ka}; hence, {Ka} is the single semi-stable model of P , in which a is believed
true. For the program P = {b ← ∼a}, the epistemic transformation P κ has the answers sets
M1 = {Ka} and M2 = {λ1, b}; as gap(M1) = {a} and gap(M2) = ∅, among them M2 is
maximal canonical, and hence M2 ∩ Σκ = {b} is the single semi-stable model of P . This is in
fact also the unique answer set of P .

Finally, the epistemic transformation of P = {b ∨ c ← ∼a; d ← c, ∼b} has the answer sets
M1 = {λr1,1, b}, M2 = {λr1,2, c, λr2,1, d}, M3 = {λr1,2, c,Kb}, and M4 = {Ka}, as may be
checked using an ASP solver. Among them as gap(M1) = gap(M2) = ∅ while M3 and M4 have
nonempty gap, M1 and M2 are maximal canonical and hence the semi-stable models of P ; they
correspond with the answer sets of P , {b} and {c, d}, as expected.

16

For a study of the semi-stable model semantics, we refer to [62]; notably,

Proposition 3 ([62]). The SST -models semantics, given by SST (P) for arbitrary programs P ,
satisfies properties (D1)-(D3).

Arguably, the transformational definition of semi-stable models makes it difficult to grasp
at the semantic level what makes an interpretation a semi-stable model, in particular if we
focus on the original language and forget about the auxiliary symbols. This raises the question
of a characterization of semi-stable models from first principles that can serve as an alternative
definition under a pure model-theoretic view. In the next section, we present such a characterization
and introduce semi-equilibrium semantics.

2.4 Semi-Equilibrium Semantics
In this section, we introduce a characterization of semi-stable models by pairs of 2-valued
interpretations of the original program, starting from the concept of bimodels, that are similar to
so-called here-and-there (HT) models in equilibrium logic [53, 54] (Section 2.4.1).

In the course of this, we point out some anomalies of the semi-stable semantics with respect
to basic rationality properties in modal logics (necessitation and distribution axioms), which
may lead in some cases to counterintuitive results. These anomalies of the semi-stable model
semantics lead us to introduce an alternative paracoherent semantics, called semi-equilibrium
(SEQ) model semantics. It satisfies the properties (D1)-(D3) and is fully characterized using
HT-models. Informally, semi-equilibrium models are 3-valued interpretations in which atoms can
be true, false or believed true; the gap between believed and (derivably) true atoms is globally
minimized. That is, SEQ-models can be seen as relaxed equilibrium models respectively answer
sets where a smallest set of atoms is believed to be true, without further justification, such that an
answer set can be built. Notably, SEQ-models can be obtained by an extension of the epistemic
transformation that adds further rules which take care of the anomalies; we thus have both an
appealing model-theoretic and an declarative-operational view of the semantics (Section 2.4.2).

2.4.1 Semantic Characterization of Semi-Stable Models
As opposed to its transformational definition, we aim in this section at a model-theoretic character-
ization of semi-stable models. Given that equilibrium logic and HT-models have been successfully
used to characterize stable models, it is natural to attempt to give such a characterization in the
line of model-theoretic characterizations of the answer set semantics by means of HT models.
Recall that in such a model (X, Y), the set X contains the atoms that are true while Y contains
the atoms that are believed true. Let us reconsider how HT-models work on the barber paradox.

Example 18. Reconsider P = {a← ∼a} in Examples 15 and 16, and recall that HT-models of
P are (∅, a) and (a, a). One might aim at characterizing the semi-stable model {Ka} by (∅, a).
Indeed, while (a, a) is inappropriate, (∅, a) perfectly describes the situation: a is believed true but
not assigned true, as this can not be proven.

17

However, resorting to HT-interpretations will not allow us to uniquely characterize semi-stable
models, as illustrated by the following example.

Example 19. Consider the program

P = {a; b; c; d← ∼a, ∼b; d← ∼b, ∼c}.

The program is coherent, with a single answer set {a, b, c}, while SST (P) = {{a, b, c,Kb},
{a, b, c, Ka,Kc}}. This is due to the fact that the epistemic transformation P κ contains rules
λr3,1 ∨Ka ∨Kb← and λr4,1 ∨Kb ∨Kc← and the constraints (2.6), given that a, b, and c are
true by facts, enforce that all λr,i are false; thus, either Kb or Ka,Kc must be true in every answer
set of P κ. Note that neither (abc, b) nor (abc, ac) is a HT-interpretation.

Hence, for a 1-to-1 characterization we have to resort to different structures. Sticking to the
requirement that, given a program P over Σ, pairs of two-valued interpretations over Σ should
serve as the underlying semantic structures, we say that a bi-interpretation of a program P over Σ
is any pair (I, J) of interpretations over Σ, and define:

Definition 4 (bi-model). Let φ be a formula over Σ, and let (I, J) be a bi-interpretation over Σ.
Then, (I, J) is a bi-model of φ, denoted (I, J) |=β φ, if

1. (I, J) |=β a if a ∈ I , for any atom a,

2. (I, J) 6|=β ⊥,

3. (I, J) |=β ¬φ if J 6|= φ,

4. (I, J) |=β φ ∧ ψ if (I, J) |=β φ and (I, J) |=β ψ,

5. (I, J) |=β φ ∨ ψ if (I, J) |=β φ or (I, J) |=β ψ,

6. (I, J) |=β φ→ ψ if (i) (I, J) 6|=β φ, or (ii) (I, J) |=β ψ and I |= φ.

Moreover, (I, J) is a bi-model of a program P , if (I, J) |=β φ, for all φ of the form (2.3)
corresponding to a rule r ∈ P .

Note that the only difference in the recursive definition of bi-models and HT-models is in
item 6, i.e., the case of implication. While HT-models require that the material implication φ→ ψ
holds in the there-world, bi-models miss such a connection between φ and ψ. This makes it
possible that a bi-interpretation (I, J) such that I ⊆ J is a bi-model but not an HT-model of
an implication (2.3); a simple example is given by (∅, a) and a → b. On the other hand, each
HT-model of an implication (2.3) is also a bi-model of it.

Similar to the condition for HT-models in Proposition 1, we can alternatively characterize
satisfaction of rules by bi-models as follows.

Proposition 4. Let r be a rule over Σ, and let (I, J) be a bi-interpretation over Σ. Then,
(I, J) |=β r if and only if B+(r) ⊆ I and J ∩ B−(r) = ∅ implies that I ∩ H(r) 6= ∅ and
I ∩B−(r) = ∅.

18

Proof. Let r be a rule over Σ, and let (I, J) be a bi-interpretation over Σ.
(⇐) Suppose that (I, J) satisfies (a), i.e.,B+(r) ⊆ I and J∩B−(r) = ∅ implies I∩H(r) 6= ∅

and I ∩B−(r) = ∅. We prove that (I, J) |=β r, considering three cases:

1) Assume that B+(r) 6⊆ I . Then (I, J) 6|=β a, for some atom a ∈ B+(r), and thus (I, J) 6|=β

B(r) which implies (I, J) |=β r.

2) Assume that J ∩ B−(r) 6= ∅, Then (I, J) 6|=β ¬a, for some atom a ∈ B−(r), and thus
(I, J) 6|=β B(r) which implies (I, J) |=β r.

3) Assume that B+(r) ⊆ I and J ∩B−(r) = ∅. Then, since (I, J) satisfies (a), it also holds that
I ∩H(r) 6= ∅ and I ∩ B−(r) = ∅. From B+(r) ⊆ I and I ∩ B−(r) = ∅, we conclude that
I |= B(r). Moreover, I ∩H(r) 6= ∅ implies (I, J) |=β H(r). Thus, (I, J) |=β r.

By our assumption, one of these three cases applies for (I, J), proving the claim.
(⇒) Suppose that (I, J) |=β r. We prove that (I, J) satisfies (a), distinguishing two cases:

1) Assume that (I, J) 6|=β B(r). Then either (I, J) 6|=β a, for some atom a ∈ B+(r), or
(I, J) 6|=β ¬a, for some atom a ∈ B−(r). Hence, B+(r) 6⊆ I or J ∩ B−(r) 6= ∅, which
implies that (I, J) satisfies (a).

2) Assume that (I, J) |=β H(r) and I |= B(r). Then I ∩ H(r) 6= ∅ and I ∩ B−(r) = ∅, and
thus (I, J) satisfies (a).

By our assumption, one of the two cases applies for (I, J), which proves the claim. 2

We now link bi-interpretations to interpretations of the extended signature Σκ and the epistemic
transformation of a program P , respectively. To every bi-model of a program P , we associate a
corresponding interpretation (I, J)κ over Σκ by (I, J)κ = I∪{Ka | a ∈ J}. Conversely, given an
interpretation Iκ over Σκ its associated bi-interpretation β(Iκ) is given by (Iκ∩Σ, {a | Ka ∈ Iκ}).

For illustration consider the following example.

Example 20. Let P = {a ← b; b ← ∼b}. Its bi-models are all pairs (I, J), where I ∈
{∅, {a}, {a, b}} and J ∈ {{b}, {a, b}}. Then for (∅, b), we have (∅, b)κ = {Kb}, and for (a, ab)
we have (a, ab)κ = {a,Ka,Kb}. Conversely, for Iκ = {a,Kb} we have β(Iκ) = (a, b).

In order to relate these constructions to models of the epistemic transformation P κ, which
builds on additional atoms of the form λr,i, we construct an interpretation (I, J)κ,P of P κ from a
given bi-interpretation (I, J) of P as follows:

(I, J)κ,P = (I, J)κ ∪ {λr,i | r ∈ P,B−(r) 6= ∅, ai ∈ I, I |= B(r), J |= B−(r) },

where r is of the form (2.1).

Example 21 (continued). Reconsider P = {a ← b; b ← ∼b} in Example 20 and (∅, b). Then
(∅, b)κ,P = (∅, b)κ ∪ {λr2,1} = {Kb, λr2,1}, as the rule b ← ∼b fulfills the conditions for I = ∅
and J = {b}.

19

We now can establish the following correspondence between bi-models of a program P and
models of the epistemic transformation P κ.

Proposition 5. Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P , then (I, J)κ,P |= P κ;

(2) if M |= P κ then β(M ∩ Σκ) is a bi-model of P .

Proof. Let P be a program over Σ. Part (1). First, let (I, J) be a bi-model of P . We prove that
(I, J)κ,P |= P κ.

Towards a contradiction assume the contrary. Then there exists a rule r′ in P κ, such that
(I, J)κ,P 6|= r′. Suppose that r′ is not transformed, i.e., r′ ∈ P andB−(r′) = ∅. Since (I, J) |=β r

′,
by Proposition 4 we conclude that B+(r′) ⊆ I implies I ∩H(r′) 6= ∅ (recall that B−(r′) = ∅).
By construction (I, J)κ,P restricted to Σ coincides with I . Therefore, B+(r′) ⊆ (I, J)κ,P implies
(I, J)κ,P ∩H(r′) 6= ∅, i.e., (I, J)κ,P |= r′, a contradiction.

Next, suppose that r′ is obtained by the epistemic transformation of a corresponding rule
r ∈ P of the form (1), and consider the following cases:

– r′ is of the form (3): then {b1, . . . , bm} ⊆ (I, J)κ,P , which implies B+(r) ⊆ I . Moreover,
H(r′) ∩ (I, J)κ,P = ∅ by the assumption that (I, J)κ,P 6|= r′. By construction of (I, J)κ,P , this
implies J ∩ B−(r) = ∅. Since (I, J) |=β r, we also conclude that I ∩ H(r) 6= ∅ and that
I ∩ B−(r) = ∅. Consequently, J |= B−(r), ai ∈ I for some ai ∈ H(r), and I |= B(r). Note
also, that B−(r) 6= ∅ by definition of the epistemic transformation. According to the construction
of (I, J)κ,P , it follows that λr,i ∈ (I, J)κ,P , a contradiction to H(r′) ∩ (I, J)κ,P = ∅.
– r′ is of the form (4): in this case, (I, J)κ,P 6|= r′ implies λr,i ∈ (I, J)κ,P and ai 6∈ (I, J)κ,P .
However, by construction λr,i ∈ (I, J)κ,P implies ai ∈ I; from the latter, again by construction,
we conclude ai ∈ (I, J)κ,P , a contradiction.

– r′ is of the form (5): in this case, (I, J)κ,P 6|= r′ implies λr,i ∈ (I, J)κ,P and bj ∈ (I, J)κ,P .
Note that bj ∈ (I, J)κ,P iff bj ∈ I . A consequence of the latter is that I 6|= B(r), contradicting a
requirement for λr,i ∈ (I, J)κ,P (cf. the construction of (I, J)κ,P).

– r′ is of the form (6): by the assumption that (I, J)κ,P 6|= r′, it holds that λr,k ∈ (I, J)κ,P

and ai ∈ (I, J)κ,P , but λr,i 6∈ (I, J)κ,P . From the latter we conclude, by the construction of
(I, J)κ,P , that ai 6∈ I , since all other requirements for the inclusion of λr,i (i.e., r ∈ P , B−(r) 6= ∅,
I |= B(r), and J |= B−(r)) must be satisfied as witnessed by λr,k ∈ (I, J)κ,P . However, if
ai 6∈ I , then ai 6∈ (I, J)κ,P (again by construction), contradiction.

This concludes the proof of the fact that if (I, J) is a bi-model of P , then (I, J)κ,P |= P κ.
Part (2). Let M be a model of P κ. We prove that β(M ∩ Σκ) = (I, J) is a bi-model of P .

Note that by construction I = M ∩Σ and J = {a | Ka ∈M}. First, we consider any rule r in P
such that B−(r) = ∅. Then r ∈ P κ, J ∩B−(r) = ∅ and I ∩B−(r) = ∅. Hence, by Proposition 4,
we need to show that B+(r) ⊆ (M ∩ Σ) implies (M ∩ Σ) ∩ H(r) 6= ∅. Since r ∈ P κ, this
follows from the assumption, i.e., M |= P κ implies M |= r, and therefore if B+(r) ⊆M , then
M ∩H(r) 6= ∅. Since r is over Σ, this proves the claim for all r ∈ P such that B−(r) = ∅.

20

It remains to show that (I, J) |=β r for all r ∈ P such thatB−(r) 6= ∅. Towards a contradiction
assume that this is not the case, i.e., (i) B+(r) ⊆ (M ∩ Σ), (ii) J ∩ B−(r) = ∅, and either
(iii) (M ∩Σ)∩H(r) = ∅ or (iv) (M ∩Σ)∩B−(r) 6= ∅ hold for some r ∈ P of the form (1), such
that B−(r) 6= ∅. Conditions (i) and (ii), together with M |= P κ, imply that λr,i is in M , for some
1 ≤ i ≤ l (cf. the rule of the form (3) in the epistemic transformation of r). Consequently, ai is in
M (cf. the corresponding rule of the form (4) in the epistemic transformation of r), and hence
ai ∈ (M ∩Σ). This rules out (iii), so (iv) must hold, i.e., bj ∈ (M ∩Σ), for some m+ 1 ≤ j ≤ n.
But then, M satisfies the body of a constraint in P κ (cf. the corresponding rule of the form (5) in
the epistemic transformation of r), contradicting M |= P κ. This proves that there exists no r ∈ P
such that B−(r) 6= ∅ and (I, J) 6|=β r, and thus concludes our proof of (I, J) |=β r. Since r ∈ P
was arbitrary, it follows that β(M ∩ Σκ) is a bi-model of P . 2

Based on bi-models, we obtain a 1-to-1 characterization of semi-stable models by imposing
suitable minimality criteria.

Theorem 1. Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P such that (i) (I ′, J) 6|=β P , for all I ′ ⊂ I , (ii) (I, J ′) 6|=β P ,
for all J ′ ⊂ J , and (iii) there is no bi-model (I ′, J ′) of P that satisfies (i) and gap(I ′, J ′) ⊂
gap(I, J), then (I, J)κ ∈ SST (P);

(2) if Iκ ∈ SST (P), then β(Iκ) is a bi-model of P that satisfies (i)-(iii).

Let P be a program over Σ. The proof uses the following lemmas.

Lemma 1. If M ∈ AS(P κ), then β(M ∩ Σκ) satisfies (i).

Proof. Towards a contradiction assume that M ∈ AS(P κ) and β(M ∩ Σκ) = (I, J) does not
satisfy (i). Then, there exists a bi-model (I ′, J) of P , such that I ′ ⊂ I . By Proposition 5,
(I ′, J)κ,P |= P κ. Note that (I ′, J)κ ⊂ (M ∩ Σκ). Let S ′ = {λr,i | λr,i ∈ (I ′, J)κ,P} and let
S = {λr,i | λr,i ∈ M}. We show that S ′ ⊆ S. Suppose that this is not the case and assume that
λr,i ∈ S ′ and λr,i 6∈ S, for some r ∈ P of the form (1) and 1 ≤ i ≤ l. By the construction of
(I ′, J)κ,P , we conclude that ai ∈ I ′, I ′ |= B(r), and J |= B−(r). Since I ′ ⊂ I , it also holds that
ai ∈ I and that I |= B+(r). Consider the rule of the form (3) of the epistemic transformation of r.
We conclude that {b1, . . . , bm} ⊆M (due to I |= B+(r)), and that M 6|= Kc1 ∨ . . . ∨Kcn (due
to J |= B−(r)). But M |= P κ, hence λr,k is in M , for some 1 ≤ k ≤ l. However, considering the
corresponding rule of the form (6) of the epistemic transformation of r, we also conclude that
λr,i ∈M , a contradiction. Therefore S ′ ⊆ S holds, and since (I ′, J)κ ⊂ (M ∩ Σκ), we conclude
that (I ′, J)κ,P ⊂M . The latter contradicts the assumption that M is an answer-set, i.e., a minimal
model, of P κ. This concludes the proof of the lemma. 2

Lemma 2. If (I, J) is a bi-model of P that satisfies (i) and (ii), then there exists some M ∈
AS(P κ), such that β(M ∩ Σκ) = (I, J).

21

Proof. Let (I, J) be a bi-model of P that satisfies (i) and (ii). If (I, J)κ,P ∈ AS(P κ), then (c)
holds since β((I, J)κ,P ∩ Σκ) = (I, J). If (I, J)κ,P 6∈ AS(P κ), then there exists a minimal
model, i.e. an answer set, M ′ of P κ, such that M ′ ⊂ (I, J)κ,P . Let (I ′, J ′) = β(M ′ ∩ Σκ).
Then I ′ ⊆ I and J ′ ⊆ J holds by construction and the fact that M ′ ⊂ (I, J)κ,P . Towards a
contradiction, assume that I ′ ⊂ I . We show that then (I ′, J) is a bi-model of P . Suppose that
(I ′, J) is not a bi-model of P . Then, by Proposition 4, there exists r ∈ P , such that B+(r) ⊆ I ′,
J ∩ B−(r) = ∅, and either I ′ ∩ H(r) = ∅ or I ′ ∩ B−(r) 6= ∅. Note that B+(r) ⊆ I ′ implies
B+(r) ⊆ I , and since (I, J) is a bi-model of P , we conclude I ∩H(r) 6= ∅ and I ∩B−(r) = ∅.
The latter implies I ′ ∩B−(r) = ∅, hence I ′ ∩H(r) = ∅ holds. If B−(r) = ∅, then r is in P κ and
M ′ 6|= r, contradiction. Thus, B−(r) 6= ∅. However, in this case the epistemic transformation of
r is in P κ. Since J ∩ B−(r) = ∅ and J ′ ⊆ J together imply J ′ ∩ B−(r) = ∅, we conclude that
for the rule of the form (3) of the epistemic transformation of r, it holds that {b1, . . . , bm} ⊆M ′

(due to B+(r) ⊆ I ′), and that M ′ 6|= Kc1 ∨ . . . ∨ Kcn (due to J ′ ∩ B−(r) = ∅). Moreover
M ′ |= P κ, hence λr,i is in M ′, for some 1 ≤ i ≤ l. Considering the corresponding rule of the
form (4) of the epistemic transformation of r, we also conclude that ai ∈M ′, a contradiction to
I ′ ∩H(r) = ∅. This proves that (I ′, J) is a bi-model of P , and thus contradicts the assumption
that (I, J) satisfies (i). Consequently, I ′ = I . Now if J ′ ⊂ J , then we obtain a contradiction with
the assumption that (I, J) satisfies (ii). Therefore also J ′ = J , which concludes the proof of the
Lemma. 2

The proof of Theorem 1 is then as follows.

Proof. Part (1). Let (I, J) be a bi-model of P that satisfies (i)-(iii). We prove that (I, J)κ ∈
SST (P). By Lemma 2, we conclude that there exists someM ∈ AS(P κ) such that β(M ∩ Σκ) =
(I, J). It remains to show that M is maximal canonical. Towards a contradiction assume the
contrary. Then, there exists M ′ ∈ AS(P κ) such that gap(M ′) ⊂ gap(M). Let (I ′, J ′) =
β(M ′ ∩ Σκ). By Lemma 1, (I ′, J ′) satisfies (i), and by construction since gap(M ′) ⊂ gap(M),
it holds that J ′ \ I ′ ⊂ J \ I . However, this contradicts the assumption that (I, J) satisfies (iii).
Therefore, M is maximal canonical, and hence (I, J)κ ∈ SST (P).

Part (2). Let Iκ ∈ SST (P). We show that β(Iκ) is a bi-model of P that satisfies (i)-(iii). Let
(I, J) = β(Iκ) and let M be a maximal canonical answer set of P κ corresponding to Iκ. Then,
β(M ∩ Σκ) = (I, J) by construction, and (I, J) satisfies (i) by Lemma 1.

Towards a contradiction first assume that (I, J) does not satisfy (iii). Then there exists a
bi-model (I ′, J ′) of P such that (I ′, J ′) satisfies (i) and J ′ \ I ′ ⊂ J \ I . Let M ′ = (I ′, J ′)κ,P and
note that if M ′ ∈ AS(P κ), we arrive at a contradiction to M ∈ mc(AS(P κ)), since gap(M ′) ⊂
gap(M). Thus, there exists M ′′ ∈ AS(P κ), such that M ′′ ⊂ M ′. Let (I ′′, J ′′) = β(M ′′ ∩ Σκ).
We show that (I ′′, J ′) is a bi-model of P , and thus by (i) it follows that I ′′ = I ′. Towards a
contradiction, suppose that (I ′′, J ′) is not a bi-model of P . Then, by Proposition 4, there exists
r ∈ P , such that B+(r) ⊆ I ′′, J ′ ∩ B−(r) = ∅, and either I ′′ ∩ H(r) = ∅ or I ′′ ∩ B−(r) 6= ∅.
Note that B+(r) ⊆ I ′′ implies B+(r) ⊆ I ′, and since (I ′, J ′) is a bi-model of P , we conclude
I ′∩H(r) 6= ∅ and I ′∩B−(r) = ∅. The latter implies I ′′∩B−(r) = ∅, hence I ′′∩H(r) = ∅ holds.
If B−(r) = ∅, then r is in P κ and M ′′ 6|= r, contradiction. Thus, B−(r) 6= ∅. However, in this
case the epistemic transformation of r is in P κ. Since J ′∩B−(r) = ∅ and J ′′ ⊆ J ′ together imply

22

J ′′ ∩B−(r) = ∅, we conclude that for the rule of the form (3) of the epistemic transformation of
r, it holds that {b1, . . . , bm} ⊆M ′′ (due to B+(r) ⊆ I ′′), and that M ′′ 6|= Kc1 ∨ . . . ∨Kcn (due
to J ′′ ∩B−(r) = ∅). Moreover M ′′ |= P κ, hence λr,i is in M ′′, for some 1 ≤ i ≤ l. Considering
the corresponding rule of the form (4) of the epistemic transformation of r, we also conclude that
ai ∈ M ′′, a contradiction to I ′′ ∩H(r) = ∅. This proves that (I ′′, J ′) is a bi-model of P . From
the assumption that (I ′, J ′) satisfies (i), it follows that I ′′ = I ′. Therefore gap(M ′′) ⊆ gap(M ′)
holds, which implies gap(M ′′) ⊂ gap(M), a contradiction to M ∈ mc(AS(P κ)). This proves
(I, J) satisfies (iii).

Next assume that (I, J) does not satisfy (ii). Then, there exists a bi-model (I, J ′) of P , such
that J ′ ⊂ J . We show that (I, J ′) satisfies (i). Otherwise, there exists a bi-model (I ′, J ′) of P ,
such that I ′ ⊂ I; but then also (I ′, J) is a bi-model of P . To see the latter, assume that there exists
a rule r ∈ P , such that B(r) ⊆ I ′, J ∩ B−(r) = ∅ and either I ′ ∩H(r) = ∅ or I ′ ∩ B−(r) 6= ∅.
Since J ′ ⊂ J , it then also holds that J ′ ∩B−(r) = ∅. This contradicts the assumption that (I ′, J ′)
is a bi-model of P , hence (I ′, J) |=β P . The latter is a contradiction to the assumption that
(I, J) satisfies (i), proving that (I, J ′) satisfies (i). Since (I, J) satisfies (iii), we conclude that
J ′ \ I = J \ I . Now let S ′ = {λr,i | λr,i ∈ (I, J ′)κ,P} and let S = {λr,i | λr,i ∈ M}. It holds
that S ′ 6⊆ S (otherwise (I, J ′)κ,P ⊂M , a contradiction to M ∈ AS(P κ)), i.e., there exists r ∈ P
of the form (1) and 1 ≤ i ≤ l, such that λr,i ∈ S and λr,i 6∈ S ′. From the former, since M is a
minimal model of P κ, we conclude that I |= B+(r), ai ∈ I , and J ∩B−(r) = ∅. Since J ′ ⊂ J ,
also J ′ ∩ B−(r) = ∅. This implies that λr,k ∈ S ′, for some 1 ≤ k 6= i ≤ l (otherwise (I, J ′)κ,P

does not satisfy the rule of form (3) corresponding to r in P κ, a contradiction to (I, J ′)κ,P |= P κ).
However, since ai ∈ I , and thus ai ∈ (I, J ′)κ,P , and since λr,k ∈ (I, J ′)κ,P , we conclude that
λr,i ∈ (I, J ′)κ,P (cf. the respective rule of form (6) of the epistemic transformation of r). This
contradicts λr,i 6∈ S ′, and thus proves that (I, J) satisfies (ii). 2

Intuitively, Conditions (i) and (ii) filter bi-models that uniquely correspond to (some but not
all) answer sets of P κ: due to minimality every answer set satisfies (i); there may be answer sets of
P κ that do not satisfy (ii), but they are certainly not maximal canonical. Eventually, Condition (iii)
ensures that maximal canonical answer sets are selected. More formally, the proof of this theorem
builds on the following relationship between bi-models of P and answer sets of P κ.

Corollary 1. Let P be a program over Σ. If M ∈ AS(P κ), then β(M ∩ Σκ) satisfies (i). If
(I, J) is a bi-model of P that satisfies (i) and (ii), then there exists M ∈ AS(P κ), such that
β(M ∩ Σκ) = (I, J).

For illustration, we consider the following example.

Example 22 (continued). Recall that P = {a ← b; b ← ∼b} has as bi-models all pairs (I, J)
where I ∈ {∅, {a}, {a, b}} and J ∈ {{b}, {a, b}}. Condition (i) of Theorem 1 holds for bi-models
such that I = ∅, and Condition (ii) holds only if J = {b}. Thus, {Kb} is the unique semi-stable
model of P .

The examples given so far also exhibit some anomalies of the semi-stable semantics with
respect to basic rationality properties considered in epistemic logics. In particular, knowledge
generalization (or necessitation, resp. modal axiom N) is a basic principle in respective modal
logics. For a semi-stable model Iκ, it would require that

23

Property N: a ∈ Iκ implies Ka ∈ Iκ, for all a ∈ Σ.

This property does not hold as witnessed by Example 19.
Another basic requirement is the distribution axiom (modal axiom K). Assuming that we

belief the rules of a given program (which might also be seen as the consequence of adopting
knowledge generalization) the distribution property can be paraphrased for a rule of the form (2.1)
as follows:

Property K: If Iκ |= Kb1 ∧ . . .∧Kbm and Iκ 6|= Kc1 ∨ . . .∨Kcn, then Iκ |= Ka1 ∨ . . .∨Kal.

Note that this does not hold for the rule a← b in Example 20, as the single semi-stable model of
the program P is {Kb} (see Example 22).

Arguably, these anomalies should be avoided. This leads us to propose an amendment to the
semi-stable model semantics, which we present in the next section.

2.4.2 Semi-Equilibrium Models
In this section, we define and characterize an alternative paracoherent semantics which is called
semi-equilibrium semantics (for reasons which will become clear immediately). The aim for
semi-equilibrium models is to enforce Properties N and K on them.

Let us start considering bi-models of a program P which satisfy these properties. It turns out
that such structures are exactly given by HT-models.

Proposition 6. Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P , such that (I, J)κ satisfies Property N and Property K, for all
r ∈ P , then (I, J) is an HT-model of P ;

(2) if (H,T) is an HT-model of P , then (H,T)κ satisfies Property N and Property K, for all
r ∈ P .

Proof. Let P be a program over Σ.
Part (1). Let (I, J) be a bi-model of P , such that (I, J)κ satisfies Property N and Property K,

for all r ∈ P . We show that (I, J) is an HT-model of P . Since (I, J)κ satisfies Property N, it
holds that a ∈ I implies a ∈ J , therefore I ⊆ J , i.e., (I, J) is an HT-interpretation. For every rule
r ∈ P , (I, J) |=β r implies (I, J) 6|=β B(r), or (I, J) |=β H(r) and I |= B(r). First suppose
that (I, J) 6|=β B(r). Then (I, J) 6|= B(r) (note that for a conjunction of literals, such as B(r),
the satisfaction relations do not differ). Moreover, since (I, J)κ satisfies Property K for r, it holds
that J |= r. To see the latter, let Kr denote the rule obtained from r by replacing every a ∈ Σ
occurring in r by Ka, and let KJ denote the set {Ka ∈ (I, J)κ | a ∈ Σ}. Then, (I, J)κ satisfies
Property K for r iff KJ |= Kr. Observing that KJ = {Ka | a ∈ J}, we conclude that J |= r.
This proves (I, J) |= r, if (I, J) 6|=β B(r). Next assume that (I, J) |=β H(r) and I |= B(r). We
conclude that (I, J) |= H(r) (the satisfaction relations also coincide for disjunctions of atoms).
As (I, J)κ satisfies Property K for r, it follows J |= r. This proves (I, J) |= r , for every r ∈ P ;
in other words, (I, J) is an HT-model of P .

24

Part (2). Let (H,T) be an HT-model of P . We show that (H,T)κ satisfies Property N and
Property K, for all r ∈ P . As a consequence of H ⊆ T , for every a ∈ (H,T)κ such that a ∈ Σ, it
also holds that Ka ∈ (H,T)κ, i.e., (H,T)κ satisfies Property N. Moreover, (H,T) |= P implies
T |= r, for all r ∈ P . Let KT = {Ka | a∈T} and let Kr as above; T |= r implies KT |= Kr,
for all r ∈ P . By construction of (H,T)κ and definition of Property K for r, we conclude that
(H,T)κ satisfies Property K for all r ∈ P . 2

In order to define semi-equilibrium models, we follow the basic idea of the semi-stable
semantics and select subset minimal models that are maximal canonical. For any program P ,
let us define HT κ(P) = {(H,T)κ | (H,T) |= P} and denote by MM (HT κ(P)) the minimal
elements of HT κ(P) with respect to subset inclusion.

Definition 5 (semi-equilibrium models). Let P be a program over Σ. An interpretation Iκ

over Σκ is a semi-equilibrium (SEQ) model of P , if Iκ ∈ mc(MM (HT κ(P))). The set of
semi-equilibrium models of P is denoted by SEQ(P).

Let us revisit some examples from the previous section.

Example 23. For P = {a ← ∼a}, its semi-stable-model {Ka} corresponds to the HT-inter-
pretation (∅, a); thus {Ka} is the single minimal element of HT κ(P) and the single SEQ-model
of P .

For the program P = {a; b; c; d← ∼a, ∼b; d← ∼b, ∼c} in Example 19, every HT-model of
P must be of the form (X, Y) such that {a, b, c} ⊆ X; hence, {a, b, c,Ka,Kb,Kc} is the single
minimal element of HT κ(P) and the single semi-equilibrium model of P .

Finally, for the program P = {a ← b; b ← ∼b} in Example 20, by the rule b ← ∼b every
HT-model (X, Y) of P must fulfill b ∈ Y , and thus by the rule a ← b also a ∈ Y ; the single
minimal element of HT κ(P) is then {Ka,Kb}, which is also the single SEQ-model of P .

A model-theoretic characterization for the semi-equilibrium semantics is obtained as before,
by replacing bi-models with HT-models and dropping Condition (ii). Intuitively, Condition (ii)
is not needed as it is subsumed by Condition (iii) (i.e., Condition (ii′) below) if Property N and
Condition (i) hold.

To formulate the result, we extend the notion of gap from Σκ-interpretations to HT-interpretations
as follows. For any HT-interpretation (X, Y), let gap(X, Y) = Y \ X , i.e., gap(X, Y) =
gap(β((X, Y)κ)) = {a | Ka ∈ gap((X, Y)κ)}.

Theorem 2. Let P be a program over Σ. Then,

(1) If (H,T) is an HT-model of P such that (i′) (H ′, T) 6|= P , for all H ′ ⊂ H , and (ii′) no HT-
model (H ′, T ′) of P exists that satisfies (i′) and gap(H ′, T ′) ⊂ gap(H,T), then (H,T)κ ∈
SEQ(P);

(2) if Iκ ∈ SEQ(P), then β(Iκ) is an HT-model of P that satisfies (i′) and (ii′).

Proof. Let P be a program over Σ.

25

Part (1). Let (H,T) be an HT-model of P that satisfies (i′) and (ii′). We show that (H,T)κ ∈
SEQ(P). Towards a contradiction, first assume that (H,T)κ 6∈ MM (HT κ(P)). Then, there
exists an HT-model (H ′, T ′) of P , such that H ′ ⊆ H , T ′ ⊆ T , and at least one of the inclusions
is strict. Suppose that H ′ ⊂ H . Then (H ′, T) is an HT-model of P (by a well-known property of
HT), a contradiction to the assumption that (H,T) satisfies (i′). Hence, H ′ = H and T ′ ⊂ T must
hold. Moreover, by the same argument (H ′, T ′) also satisfies (i′). But, since T ′ \H ′ ⊂ T \H ,
this is in contradiction to the assumption that (H,T) satisfies (ii′). Consequently, (H,T)κ ∈
MM (HT κ(P)). We continue the indirect proof assuming that (H,T)κ 6∈ mc(MM (HT κ(P))),
i.e., there exists an HT-model (H ′, T ′) of P , such that T ′ \ H ′ ⊂ T \ H and (H ′, T ′)κ ∈
MM (HT κ(P)). The latter obviously implies that (H ′, T ′) satisfies (i′). Again, this contradicts
that (H,T) satisfies (ii′), which proves that (H,T)κ ∈ SEQ(P).

Part (2). Let Iκ ∈ SEQ(P). We show that β(Iκ) is an HT-model of P that satisfies (i′)
and (ii′). Let β(Iκ) = (H,T). Towards a contradiction first assume that (H,T) is not an HT-
model of P . Then by the definition of SEQ(P), and the fact that Iκ uniquely corresponds to
sets H and T , we conclude that Iκ 6∈ mc(MM (HT κ(P))), i.e., Iκ 6∈ SEQ(P); contradiction.
Next, suppose that (H,T) does not satisfy (i′). Then, Iκ 6∈ MM (HT κ(P)), as witnessed by
(H ′, T)κ for an HT-model (H ′, T) such that H ′ ⊂ H , which exists if (H,T) does not satisfy (i′).
Therefore, Iκ 6∈ mc(MM (HT κ(P))), i.e., Iκ 6∈ SEQ(P); contradiction. Eventually assume that
(H,T) does not satisfy (ii′). Then, Iκ 6∈ mc(MM (HT κ(P))), as witnessed by (H ′, T ′)κ for an
HT-model (H ′, T ′), such that T ′\H ′ ⊂ T \H and (H ′, T ′) satisfies (i′)—note that (H ′, T ′) exists
if (H,T) does not satisfy (ii′). To see that (H ′, T ′)κ is a witness for Iκ 6∈ mc(MM (HT κ(P))),
observe that either (H ′, T ′)κ ∈ MM (HT κ(P)) or there exists an HT-model (H ′, T ′′), such that
(H ′, T ′′)κ ∈ MM (HT κ(P)) and T ′′ ⊂ T ′ (which implies T ′′ \ H ′ ⊂ T ′ \ H ′ ⊂ T \ H). This
proves that Iκ 6∈ SEQ(P), again a contradiction. This concludes the proof that β(Iκ) is an
HT-model of P that satisfies (i′) and (ii′). 2

We refer to the condition (i′) as h-minimality and to the condition (i′′) as gap-minimality
of an HT-model of a program P . Informally, this characterization says that the SEQ-models
are obtained by relaxing the condition for EQ-models in that a globally smallest set of atoms,
expressed by gap-minimality, may be believed true without further justification, where justification
is expressed by h-minimality. Note that the EQ-models are obtained if we just would require that
H = T .

Like semi-stable models, semi-equilibrium models may be computed as maximal canonical
answer sets, i.e., equilibrium models, of an extension of the epistemic program transformation.

Definition 6 (PHT). Let P be a program over Σ. Then its epistemic HT-transformation PHT is
defined as the union of P κ with the set of rules:

Ka← a,

Ka1 ∨ . . . ∨Kal ∨Kc1 ∨ . . . ∨Kcn ← Kb1, . . . , Kbm,

for a ∈ Σ, respectively for every rule r ∈ P of the form (2.1).

The extensions of the transformation naturally ensure Properties N and K on its models and
its maximal canonical answer sets coincide with semi-equilibrium models.

26

Theorem 3. Let P be a program over Σ, and let Iκ be an interpretation over Σκ. Then, Iκ ∈
SEQ(P) if and only if Iκ ∈ {M ∩ Σκ |M ∈ mc(AS(PHT))}.

Let P be a program over Σ, and let Iκ be an interpretation over Σκ. The proof uses the
following lemmas.

Lemma 3. If M |= PHT , then β(M ∩ Σκ) is an HT-model of P .

Proof. Let (I, J) = β(M ∩ Σκ). Since M |= P κ, (I, J) is a bi-model of P by Proposition 5.
Moreover, M ∩ Σκ = (I, J)κ and (I, J)κ satisfies Property N, otherwise there is an atom a ∈M
such that Ka 6∈ M , a contradiction to M |= Ka ← a. Also, (I, J)κ satisfies Property K
for all r ∈ P ; otherwise, if Property K does not hold for some r ∈ P of the form (1), then
M |= Kb1 ∧ . . . ∧ Kbm and M 6|= Ka1 ∨ . . . ∨ Kal ∨ Kc1 ∨ . . . ∨ Kcn, i.e., M 6|= PHT ;
contradiction. Hence by Proposition 6, (I, J) is a HT-model of P . 2

Next, we prove:

Lemma 4. If (H,T) is an HT-model of P , then (H,T)κ,P |= PHT .

Proof. Note that every HT-model of P is a bi-model of P . Assume the contrary; then (H,T) |= r
and (H,T) 6|=β r, for some r ∈ P . Then, H 6|= B(r), while (H,T) |= B(r), must hold. However,
(H,T) |= B(r) implies B+(r) ⊆ H and B−(r)∩H = ∅, and therefore H |= B(r); contradiction.
This proves that (H,T) is a bi-model of P . Consequently, (H,T)κ,P |= P κ by Proposition 5.
Moreover, since (H,T) is an HT-model, (H,T)κ satisfies Property N (and Property K for all
r ∈ P) by Proposition 6. Because (H,T)κ,P ∩ Σκ = (H,T)κ, this implies that (H,T)κ,P |= r,
for all rules of the form Ka ← a in PHT \ P κ (this is an obvious consequence of Property N).
For the remaining rules r in PHT \ P κ, (H,T)κ,P |= r is a simple consequence of T |= P . This
proves (H,T)κ,P |= PHT . 2

Lemma 5. For every M ∈ AS(PHT), β(M ∩ Σκ) satisfies (i′) in Theorem 2.

Proof. Towards a contradiction assume the contrary. Then there exists an HT-model (H ′, T) of
P such that H ′ ⊂ H . Note that M ∈ AS(PHT) implies M = β(M ∩ Σκ)κ,P . Since the latter
is a model of PHT by Lemma 4, M must be a subset thereof; however it obviously cannot be a
strict subset on Σκ. By construction of β(M ∩ Σκ)κ,P and the rules of form (6) of the epistemic
transformation, we also conclude that λr,i ∈ β(M ∩ Σκ)κ,P implies λr,i ∈M , for any r ∈ P of
the form (1) and 1 ≤ i ≤ l. This proves M = β(M ∩ Σκ)κ,P . Now consider M ′ = (H ′, T)κ,P .
Then, M ′ ⊂ M by construction, and M ′ |= PHT by Lemma 4. This is a contradiction to the
assumption that M ∈ AS(PHT), and thus proves that β(M ∩ Σκ) satisfies (i′). 2

Lemma 6. For every HT-model (H,T) of P that satisfies (i′) of Theorem 2, there exists some
M ∈ AS(PHT) such that gap(M) ⊆ gap((H,T)κ).

27

Proof. Since (H,T)κ,P |= PHT by Lemma 4, there exists M ∈ AS(PHT), such that M ⊆
(H,T)κ,P . To prove the lemma, it suffices to show that M ∩ Σ = H . Assume the contrary; then
by (d) there exists an HT-model (H ′, T ′) of P , such that H ′ ⊂ H and T ′ ⊆ T . However, then
(H ′, T) |= P , which contradicts the assumption that (H,T) satisfies (i′). 2

The proof of Theorem 3 is then as follows.

Proof. (⇐) Suppose that Iκ ∈{M ∩ Σκ | M ∈mc(AS(PHT))}. We prove Iκ ∈ SEQ(P) via
Theorem 2. LetM ∈ mc(AS(PHT)), such that Iκ = M∩Σκ, and let (I, J) = β(M ∩ Σκ). Then,
(I, J) is an HT-model of P by Lemma 3 and (I, J) satisfies (i′) in Theorem 2 by Lemma 5. We
prove that (I, J) satisfies (ii′) in Theorem 2. Towards a contradiction, assume that this is not the
case, then there exists an HT-model (H,T) of P , such that T \H ⊂ J \ I and (H,T) satisfies (i′).
According to Lemma 6, there exists M ′ ∈ AS(PHT), such that gap(M ′) ⊆ gap((H,T)κ),
which implies gap(M ′) ⊂ gap(M) due to T \H ⊂ J \ I . This contradicts the assumption that
M ∈ mc(AS(PHT)), and thus proves that (I, J) satisfies (ii′) in Theorem 2. We conclude that
Iκ ∈ SEQ(P).

(⇒) Suppose that Iκ ∈ SEQ(P). We prove Iκ ∈{M ∩ Σκ | M ∈ mc(AS(PHT))}. Let
(H,T) = β(Iκ). By Theorem 2, (H,T) is an HT-model of P that satisfies (i′) and (ii′). We show
that there exists M ∈ mc(AS(PHT)) such that β(M ∩ Σκ) = (H,T). Since (H,T)κ,P |= PHT ,
there exists M ∈ AS(PHT) such that M ⊆ (H,T)κ,P . Since (H,T) satisfies (i′), it holds that
M ∩ Σ = H . Moreover, M ∩ Σκ ⊂ (H,T)κ contradicts the fact that (H,T) satisfies (ii′),
because then β(M ∩ Σκ) = (H,T ′) is an HT-model of P , such that T ′ \ H ⊂ T \ H and
(H,T ′) satisfies (i′) due to Lemma 5. Hence, β(M ∩ Σκ) = (H,T). It remains to show that
M ∈ mc(AS(PHT)). If this is not the case, then some HT-model (H ′, T ′) of P exists such
that T ′ \ H ′ ⊂ T \ H . Since (H ′, T ′) = β(M ′ ∩ Σκ) for some M ′ ∈ AS(PHT), we conclude
by Lemma 5 that (H ′, T ′) satisfies (i′), which again leads to a contradiction of the fact that
(H,T) satisfies (ii′). This proves that M ∈ mc(AS(PHT)). As M ∩ Σκ = Iκ, we conclude that
Iκ ∈ {M ∩ Σκ |M ∈ mc(AS(PHT))}. 2

We note at this point that an alternative, less involving encoding of semi-equilibrium models
can be found in Chapter 6.

The resulting semantics is classically coherent, i.e., fulfills property (D3) from the Introduction.

Proposition 7. Let P be a program over Σ. If P has a classical model, then it has a semi-
equilibrium model.

Proof. Let P be a program over Σ. If P has a model M , then (M,M) is an HT-model of P .
Therefore HT κ(P) 6= ∅, which implies MM (HT κ(P)) 6= ∅, and thus mc(MM (HT κ(P))) 6= ∅.
We conclude that SEQ(P) 6= ∅, i.e., P has a semi-equilibrium model. 2

Another simple property is a 1-to-1 correspondence between answer sets and semi-equilibrium
models.

Proposition 8. Let P be a coherent program over Σ. Then,

(1) if Y ∈ AS(P), then (Y, Y)κ is a semi-equilibrium model of P ;

28

(2) if Iκ is a semi-equilibrium model of P , then β(Iκ) is an equilibrium model of P , i.e., β(Iκ)
is of the form (Y, Y) and Y ∈ AS(P).

Proof. Let P be a coherent program over Σ, and let Y ∈ AS(P). Then (Y, Y) is an HT-model
of P that satisfies (i′) in Theorem 2, since it is in equilibrium. Moreover, it trivially satisfies also
(ii′) because Y \ Y = ∅. Hence, (Y, Y)κ ∈ SEQ(P).

As P is coherent, there exists (T, T) ∈ HT (P) that satisfies (i′) in Theorem 2 and (triv-
ially) (ii′). Hence, gap(Iκ) = ∅ for all Iκ ∈ SEQ(P). Moreover, β(Iκ) is of the form (Y, Y),
and Y ∈ AS(P). 2

An illustration of the 1-to-1 relationship between answer sets and semi-equilibrium models
is given by Example 19, which we reconsidered in Example 23. Note that this example also
gave evidence that semi-stable models do not satisfy Property N, which in contrast is the case for
semi-equilibrium models.

From Propositions 7 and 8, we thus obtain that semi-equilibrium models behave similarly as
semi-stable models with respect to the properties (D1)-(D3) in the Introduction.

Proposition 9. The SEQ-models semantics, given by SEQ(P) for arbitrary programs P , satisfies
properties (D1)-(D3).

Furthermore, an immediate consequence of Proposition 8 is the following property.

Corollary 2. For every positive program P , SEQ(P) = {(X, Y)κ | (X, Y) ∈ EQ(P)} = {(M,
M)κ |M ∈ MM (P)}.

As a consequence of Property K, semi-equilibrium semantics differs from semi-stable seman-
tics not only with respect to believed consequences.

Example 24. Consider the program P = {a ← b; b ← ∼b; c ← ∼a}, which extends the
program in Example 20 with the rule c ← ∼a. The single semi-stable model of P is {c,Kb}
(which corresponds to the bi-model (c, b)), while the single SEQ-model is {Ka,Kb} (which
corresponds to the HT-model (∅, ab)). Thus while c is true under SST -model semantics, it is
false under SEQ-model semantics: due to lacking belief propagation, the CWA assigns a false in
the SST -model which in turn causes c to get true; in the SEQ-model, as a is believed to be true
the rule with c in the head is defeated. As there is no other way to derive c, the CWA assigns it
false.

Convention. As each SEQ-model Iκ of P is uniquely determined by the HT-model β(Iκ), we
shall in the rest of this thesis also identify these models and refer to the set {β(Iκ) | Iκ ∈ SEQ(P)}
as the SEQ-models of P and denote it in abuse of notation by SEQ(P). For illustration, the
programs in Example 23 have the SEQ-models {Ka}, {a, b, c,Ka,Kb,Kc}, and {Ka,Kb},
respectively, which are identified with the HT-models (∅, a), (abc, abc), and (∅, ab), respectively.

29

Chapter 3

Split Semi-Equilibrium Semantics

Different from equilibrium models, semi-equilibrium models do in general not obey a well-known
syntactic modularity property that allows one to build all models of a program by extending the
models of a bottom part to the rest of the program. More precisely, splitting sets [42], the major
tool for modularity in ASP, can not be blindly used to decompose an arbitrary program under
semi-equilibrium semantics. This shortcoming affects in fact two aspects: (1) program evaluation,
which for answer set programs in practice proceeds from bottom to top modules, and (2) problem
modelling, where user-defined subprograms are hierarchically organized.

To address this, in this chapter, we define split SEQ-models, where a concrete sequence
S = (S1, . . . , Sn) of splitting sets Si, called splitting sequence, is used to decompose the program
into hierarchically organized subprograms P1, . . . , Pn that are evaluated bottom up (Sections 3.2-
3.1).

In general, the resulting split SEQ-models depend on the particular splitting sequence. This
is a drawback, as e.g. in program evaluation a solver may use one of many splitting sequences.
In order to make the semantics robust, we thus introduce canonical splitting sequences, with
the property that the models are independent of any particular member from a class of splitting
sequences, and thus obtain canonical models. We concentrate on program evaluation and show that
for programs P with a benign form of constraints, the class derived from the strongly connected
components (SCCs) of P warrants this property, as well as modularity properties. For arbitrary
programs, independence is held by a similar class derived from the maximal joined components
(MJCs) of P , which intuitively merge SCCs that are involved in malign constraints (Section 3.3).

Finally, a compact summary of the relationships of the different notions of models is shown in
Figure 3.1 (Section 3.4).

Preliminary considerations. While the SEQ-semantics has nice properties and fulfills the
properties (D1)-(D3) from the Introduction, it does not ensure the modularity property of answer
sets respectively equilibrium models that is expressed by Equation (2.2). To illustrate this, consider
the following examples.

Example 25. Recall the party program from Example 3:

30

P =


go(John)← ∼go(Mark);

go(Peter)← go(John), ∼go(Bill);
go(Bill)← go(Peter)

.

The semi-equilibrium models of P are Iκ1 = {Kgo(Mark)} and Iκ2 = {go(John), Kgo(John),
Kgo(Bill)}, or written as HT-models, M1 = (∅, {go(Mark)}), and M2 = ({go(John)},
{go(John), go(Bill)}). None of the two models provides a fully coherent view (on the other
hand, the program is incoherent, having no answer set). Nevertheless, M2 appears preferable
over M1, since, according with a layering (stratification) principle, which is widely agreed in
Logic Programming, one should prefer go(John) rather than go(Mark), as there is no way to
derive go(Mark) (which does not appear in the head of any rule of the program). We remark that
according to the well-founded semantics of P , go(Mark) is false and go(John) is true, while all
other atoms are undefined; the SEQ-model M2 is more informative since it tells us in addition
that go(Peter) is false.

Example 26. Consider the following simplistic program capturing knowledge about workers in a
company:

P =



← employee(X), ∼has_social_sec(X), core_staff (X);
← ssnr(X, Y), ∼#int(Y);
has_social_sec(X)← employee(X), ssnr(X, Y);
employee(X)← manager(X);
core_staff (X)← manager(X);
manager(sam)


.

Informally, the rules state that employees with a social security registry number (SSNR) have
social security, that managers are employees and core staff, and that Sam is a manager. The
constraints enforce that all core staff employees must have social security, and that SSNRs
range over integers, where #int is a builtin predicate. This program has (over its Herbrand
universe1) no answer set: while employee(sam) and core_staff (sam) can be proven from the
rules, this is not the case for has_social_sec(sam), and thus the constraint in P is violated.
The program has the SEQ-model Iκ = {manager(sam), employee(sam), core_staff (sam),
Khas_social_sec(sam)} in which Sam is believed to have social security.

It is not hard to see that

S = {manager(sam), employee(sam), ssnr(sam, sam), has_social_sec(sam)},

is a splitting set for P . The bottom part bS(P) has the single answer set (thus single SEQ-model)
M = {manager(sam), employee(sam)}, according to which ssnr(sam, sam), has_social_
sec(sam) are false. Based on this, in the top part tS(P) we obtain that core_staff (sam) is
true; however, this means that the constraint← employee(sam), ∼has_social_sec(sam), core_
staff (sam), is violated. Consequently, no SEQ-model for the top part exists and Equation (2.2)
(adapted for SEQ-models) is violated.

1To keep the example and the universe simple, we avoid to introduce number ranges here.

31

Modularity via rule dependency as it emerges from Equation (2.2) is widely used in ASP for
two related but different purposes: (1) for efficient evaluation of programs by ASP solvers and
(2) for problem modelling, where a program is structured into modules that are organized in a
hierarchical fashion.

As for (1), program decomposition is in fact crucial for efficient answer set computation in
practice. For the program P above, advanced answer set solvers like DLV, CLASP and WASP

immediately set go(Mark) to false, as go(Mark) does not occur in any rule head. In a customary
bottom up computation along program components, solvers gradually extend answer sets until
the whole program is covered, or an incoherence is detected at some component (in our example
for the last two rules). But rather than to abort the computation, we would like to switch to a
paracoherent mode and continue with building semi-equilibrium models, as an approximation
of answer sets. Such a behavior would be desirable, as computationally, we do not waste effort
for obtaining such an approximation, and conceptually, we relax the equilibrium condition under
Occam’s razor as little as possible along the hierarchy of components.

As regards (2), it is customary and natural in modelling that a program P is divided into
subprograms P1, . . . , Pm which serve to define the values of specific sets of atoms respectively
properties in a way such that each subprogram Pi is considered as a module whose rules should
be evaluated en bloc. These modules are then evaluated bottom-up exploiting Equation (2.2)
repeatedly to obtain the answer sets of the program P . For example, the program in Example 3,
possibly extended to further persons, could be the bottom part of a program P ′ that based on the
go predicate determines which location to pick for the party, e.g. using

← balcony ,#count({X : go(X)}) > 3; balcony ∨ living_room;

here #count({X : go(X)}) > 3 is an aggregate that evaluates to true if more than 3 persons go
to the party.

Similarly, we can imagine that the last three rules of the program in Example 26 form a
subprogram about employees and staff, and the other rules cover social security aspects on top of
it. The single SEQ-model Iκ of P is in fact compatible with this view, and would be an intuitive
result.

To overcome this limitation, we introduce a refined paracoherent semantics, called split semi-
equilibrium semantics. It coincides with the answer sets semantics in case of coherent programs,
and it selects a subset of the SEQ-models otherwise based on a given splitting sequence that
induces a modular decomposition of a program at hand. The main results of this section are two
model-theoretic characterizations which identify necessary and sufficient conditions for deciding
whether a SEQ-model is selected according to a splitting sequence. As it turns out (and can be
seen from the examples above), different splitting sequences can yield different selection results,
which is not the case for EQ-models. Based on the results of this section, we will present in
Section 3.3 canonical SEQ-models that are independent of a particular splitting sequence. The
canonical SEQ-models ensure robustness of modular evaluation, as like for the EQ-models the
concrete bottom-up evaluation order taken by a solver does not matter; furthermore, the notion can
be easily generalized to programs that are hierarchically organized in user-defined subprograms,
which we shall briefly address in Section 7.2.

32

3.1 Split Semi-Equilibrium Models
We now introduce the notion of SEQ-models relative to a splitting set. First given a splitting set
S for a program P and an HT-interpretation (I, J) for bS(P), we let

P S(I, J) = P \ bS(P) ∪ {a | a ∈ I} ∪ {← ∼a | a ∈ J} ∪ {← a | a ∈ S \ J}. (3.1)

Informally, the bottom part of P w.r.t. S is replaced with rules and constraints which fix in any
SEQ-model of the remainder (= tS(P)) the values of the atoms in S to (I, J).

Definition 7 (Semi-equilibrium models relative to a splitting set). Let S be a splitting set of a
program P . Then the semi-equilibrium models of P relative to S are defined as

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS(P))

SEQ(P S(I, J))
)
. (3.2)

Example 27. Reconsider the party program in Example 3, P = {b ← ∼a; d ← b, ∼c; c ← d},
where a, b, and c, d stand for go(Mark), go(John), go(Bill), and go(Peter), respectively. We
have SEQ(P) = { (∅, a), (b, bc) }, where (b, bc) is more appealing than (∅, a) because a is not
derivable, as no rule has a in the head. Moreover, intuitively, P1 = {b ← ∼a} is a lower
(coherent) part feeding into the upper part P2 = {d← b, ∼c; c← d}. This is formally captured
by the splitting set S = {a, b}, which yields bS(P) = P1 and SEQ(bS(P)) = {(b, b)}. Hence,
P S(b, b) = {d← b, ∼c; c← d; b; ← a} and SEQS(P) = SEQ(P S(b, b)) = {(b, bc)}.

In what follows, we establish a semantic characterization of the SEQ-models relative to a
splitting set as those SEQ-models of the program that extend SEQ-models of the bottom part.
Notation. For any HT-model (X, Y) and set S of atoms, we define the restriction of (X, Y) to S
as (X, Y)|S = (X ∩ S, Y ∩ S).

Proposition 10. Let S be a splitting set of a program P . If (X, Y)∈SEQS(P), then (X, Y)|S ∈
SEQ(bS(P)).

Proof. If (X, Y) ∈ SEQS(P), then there exists some (I, J) ∈ SEQ(bS(P)) such that (X, Y) ∈
SEQ(P S(I, J)). We will prove that (I, J) = (X, Y)|S . Obviously I ⊆ J ⊆ S. Moreover
because (X, Y) |= a for each a ∈ I , we have a ∈ X for all a ∈ I , so I ⊆ X; because (X, Y) |=
{← ∼a | a ∈ J}, then a ∈ Y for all a ∈ J , so J ⊆ Y ; and because (X, Y) |= {← a | a ∈ S \ J},
then a 6∈ Y for all a ∈ S \ J , so (S \ J) ∩ Y = ∅. In particular we obtain that I ⊆ X ∩ S and
J ⊆ Y ∩ S. We know that (X, Y) |= P S(I, J). So if we consider a ∈ X ∩ S, then a ∈ H(r) for
some rule r ∈ P \ bS(P) ∪ {a | a ∈ I}. But because a ∈ S, it follows that r 6∈ P \ bS(P), so
r ∈ {a | a ∈ I}. Therefore a ∈ I , that is I = X ∩S. Moreover if we consider an atom a ∈ Y ∩S,
then a ∈ Y and a ∈ S, and because (S \ J)∩ Y = ∅, we obtain that a ∈ J , that is J = Y ∩ S. In
conclusion, we have that (X ∩ S, Y ∩ S) = (I, J) is a semi-equilibrium model of bS(P). 2

The following result shows that each semi-equilibrium model relative to a given splitting set
is always a semi-equilibrium model of the program.

33

Proposition 11 (Soundness). Let S be a splitting set of a program P . If (X, Y)∈SEQS(P), then
(X, Y) ∈ SEQ(P).

Proof. Let (X, Y) ∈ SEQS(P). Then there exists (I, J) ∈ SEQ(bS(P)) such that (X, Y) ∈
SEQ(P S(I, J)). By Lemma 7, (X, Y) is an HT-model of P . So, by definition of semi-equilibrium
model, remains to prove the h-minimality and the gap-minimality of (X, Y). Suppose by con-
tradiction that there exists some (X ′, Y) |= P with X ′ ⊂ X . So that (X ′, Y) |= tS(P) and
(X ′, Y) |= bS(P). By this last sentence we also obtain that (X ′ ∩ S, Y ∩ S) |= bS(P), but by
Proposition 10, (X ∩ S, Y ∩ S) ∈ SEQ(bS(P)). So by the h-minimality of the semi-equilibrium
model (X ∩ S, Y ∩ S) of the bottom of P , we have that (X ′ ∩ S) 6⊂ (X ∩ S). But because
X ′ ⊂ X implies that (X ′ ∩ S) ⊆ (X ∩ S), then necessarily X ′ ∩ S = X ∩ S. So that
(X ′ ∩ S, Y ∩ S) = (X ∩ S, Y ∩ S) = (I, J). Therefore

(X ′ ∩ S, Y ∩ S) |= {a | a ∈ I} ∪ {← ∼a | a ∈ J} ∪ {← a | a ∈ S \ J}.

In particular (X ′, Y) |= {a | a ∈ I} ∪ {← ∼a | a ∈ J} ∪ {← a | a ∈ S \ J}. And because
(X ′, Y) |= tS(P), we conclude that (X ′, Y) |= P S(I, J) against the h-minimality of (X, Y)
respect to P S(I, J). Similarly, suppose by contradiction that there exists some (X ′, Y ′) |= P and

(1) there is no (X ′′, Y ′) |= P such that X ′′ ⊂ X ′ and
(2) Y ′ \X ′ ⊂ Y \X .

Moreover, we suppose that
(3) gap(X, Y) is minimal among the gaps of the HT-models that satisfy (1) and (2).
Because (X ′, Y ′) |= P , it holds that (X ′, Y ′) |= tS(P) and (X ′, Y ′) |= bS(P). From this we

obtain that (X ′ ∩ S, Y ′ ∩ S) |= bS(P) and by condition (2) we obtain that

(Y ′ ∩ S) \ (X ′ ∩ S) = (Y ′ \X ′) ∩ S ⊆ (Y \X) ∩ S = (Y ∩ S) \ (X ∩ S).

Moreover (X ′, Y ′)|S satisfies the h-minimality with respect to bS(P). In fact if by contradiction
there exists (I ′, Y ′ ∩ S) |= bS(P), such that I ′ ⊂ X ′ ∩ S, then (I ′ ∪ (X ′ \ S), Y ′) |= P
and I ′ ∪ (X ′ \ S) ⊂ (X ′ ∩ S) ∪ (X ′ \ S) = X ′ against the condition (1). By Proposition 10,
(X∩S, Y ∩S) ∈ SEQ(bS(P)), so we have necessarily that (Y ′∩S)\(X ′∩S) = (Y ∩S)\(X∩S) =
J \ I . Otherwise (X, Y)|S could not be a semi-equilibrium model of bS(P), because (X ′, Y ′)|S
contradicts the gap-minimality of (X, Y)|S . Therefore (X ′, Y ′)|S ∈ SEQ(bS(P)), because if there
exists (Î , Ĵ) |= bS(P), that satisfies the h-minimality property and Ĵ \ Î ⊂ (Y ′∩S)\(X ′∩S), then
Ĵ \ Î ⊂ (Y ∩ S) \ (X ∩ S), and therefore (X, Y)|S 6∈ SEQ(bS(P)), contrary to what is assumed.
Now we show that (X ′, Y ′) must be a semi-equilibrium model of P S(X ′ ∩ S, Y ′ ∩ S). First since
(X ′, Y ′) |= tS(P) and (X ′, Y ′)|S ∈ SEQ(bS(P)), it follows that (X ′, Y ′) |= P S(X ′ ∩ S, Y ′ ∩ S).
We prove the h-minimality of (X ′, Y ′) with respect to P S(X ′∩S, Y ′∩S). If by contradiction there
exists (X̂, Y ′) |= P S(X ′ ∩ S, Y ′ ∩ S) with X̂ ⊂ X ′, then, by Lemma 7, (X̂, Y ′) |= P against the
hypothesis (1). Finally we prove the gap-minimality of (X ′, Y ′) respect to P S(X ′ ∩S, Y ′ ∩S). If
by contradiction there exists (X̂, Ŷ) |= P S(X ′∩S, Y ′∩S), that satisfies the h-minimality property
and, moreover, Ŷ \ X̂ ⊂ Y ′ \X ′, then there exists (X̂, Ŷ) |= P (by Lemma 7) that satisfies the
h-minimality property and Ŷ \ X̂ ⊂ Y ′ \X ′, against the hypothesis (3). In conclusion we have
proved that (X ′, Y ′) ∈ SEQ(P S(X ′ ∩ S, Y ′ ∩ S)) and since hypothesis (2), Y ′ \X ′ ⊂ Y \X , it

34

follows that (X, Y) would not be a semi-equilibrium model relative to S. And so we come to a
contradiction, so a supposed (X ′, Y ′) can not exist. Therefore (X, Y) satisfies the gap-minimality
property respect to P , so that (X, Y) ∈ SEQ(P). 2

This result is proven by establishing first that HT-models of the program P S(I, J) are HT-
models of the program P , and then the h-minimality and gap-minimality of (X, Y). More
precisely, the first step uses the following lemma:

Lemma 7. Let S be a splitting set of a program P and let (I, J) ∈ SEQ(bS(P)). If (X, Y) is an
HT-model of P S(I, J), then (X, Y) is an HT-model of P .

Proof. Suppose that (X, Y) is an HT-model of P S(I, J). Hence, (X, Y) |= P \bS(P). It remains
to show that (X, Y) |= r for every r ∈ bS(P). Suppose that r has the form (2.1). By assumption
(I, J) ∈ SEQ(bS(P)), hence we conclude that (I, J) |= bS(P).

If (I, J) |= ai for some ai ∈ H(r), then ai ∈ I and because (X, Y) |= P S(I, J), we have
(X, Y) |= ai, i.e. (X, Y) |= r.

If we assume that (I, J) 6|= b1 ∧ ... ∧ bm ∧ ¬c1 ∧ ... ∧ ¬cn, then there exists some bj ∈ B+(r)
such that (I, J) 6|= bj or some ck ∈ B−(r) such that (I, J) 6|= ¬ck, that is, by definition of
HT-satisfaction that bj 6∈ I respectively ck ∈ J .

In the first case, bj is not in the head of any other rule in P \ bS(P), for which bj 6∈ X and so
(X, Y) |= r.

In the second case, we have in P S(I, J) the rule← ∼ck; this implies ck ∈ Y , and therefore,
also in this case, (X, Y) |= r. 2

However, the converse of Proposition 11 does not hold in general; in fact if we consider the
program of Example 27 and the splitting set S = {a, b} we have SEQS(P) = {(b, bc)}, while
SEQ(P) = {(∅, a), (b, bc)}. Clearly, SEQS(P) depends on the choice of S; in fact if we choose
S = ∅, then SEQ∅(P) = SEQ(P).

Moreover for Proposition 11 to hold, the selection of maximal canonical HT-models is
necessary.

Example 28. For P = {a← ∼b; b← ∼a; c← b, ∼c} and the splitting set S = {a, b}, we have
SEQ(bS(P)) = {(a, a), (b, b)}; hence SEQ(P S(a, a))∪SEQ(P S(b, b)) = {(a, a), (b, bc)}, while
SEQ(P) = {(a, a)}.

So far, we have presented two properties of an HT-model that are necessary conditions to
qualify as a SEQ-model relative to a given splitting set. The natural question is whether these
conditions are also sufficient; this is indeed the case.

Proposition 12 (Completeness). Let S be a splitting set of a program P . If (X, Y) ∈ SEQ(P)
and (X, Y)|S ∈ SEQ(bS(P)), then (X, Y) ∈ SEQS(P).

Proof. Let (X, Y) ∈ SEQ(P) and (X, Y)|S ∈ SEQ(bS(P)). To demonstrate that (X, Y) ∈
SEQS(P), first we will prove that (X, Y) is a semi-equilibrium model of P S(X ∩ S, Y ∩ S).
Since (X, Y) ∈ SEQ(P), we obtain in particular that (X, Y) |= tS(P). Now because X ∩S ⊆ X
then (X, Y) |= {a | a ∈ X ∩ S}, because Y ∩ S ⊆ Y then (X, Y) |= {← ∼a | a ∈ Y ∩ S},

35

and because (S \ (Y ∩ S)) ∩ Y = ∅ then (X, Y) |= {← a | a ∈ S \ (Y ∩ S)}. So that
(X, Y) is an HT-model of P S(X ∩ S, Y ∩ S). So it remains to prove the h-minimality and the
gap-minimality of (X, Y) as regards to P S(X ∩ S, Y ∩ S). If, by contradiction, we suppose
that there exists X ′ such that X ′ ⊂ X and (X ′, Y) |= P S(X ∩ S, Y ∩ S), then, by Lemma 7,
(X ′, Y) |= P and this contradicts the h-minimality of (X, Y) as regards to P . Similarly if,
by contradiction, we assume that there exists (X ′, Y ′) |= P S(X ∩ S, Y ∩ S) that satisfies the
h-minimality property and Y ′ \X ′ ⊂ Y \X , then by Lemma 7, we obtain that (X ′, Y ′) |= P and
this contradicts the gap-minimality of (X, Y) as regards to P . Finally, it must be shown that there
is no (X̂, Ŷ) ∈ SEQ(P S(I, J)) with (I, J) ∈ SEQ(bS(P)), such that gap(X̂, Ŷ) ⊂ gap(X, Y).
In fact if, by contradiction, there exists such a (X̂, Ŷ), then (X̂, Ŷ) |= P (by Lemma 7), (X̂, Ŷ)
satisfies the h-minimality property respect to P and gap(X̂, Ŷ) ⊂ gap(X, Y); i. e. (X, Y)
does not satisfy the gap-minimality property respect to P , against the hypothesis. Therefore, in
conclusion, (X, Y) ∈ SEQS(P). 2

Putting the results above together, we obtain the following semantic characterization of
SEQ-models relative to a splitting set.

Theorem 4. Let S be a splitting set of a program P . Then (X, Y) ∈ SEQS(P) iff (X, Y) ∈
SEQ(P) and (X, Y)|S ∈ SEQ(bS(P)).

Proof. The only-if direction follows from Propositions 10 and 11; the if direction holds by
Proposition 12. 2

Like the ordinary SEQ-models, also the split SEQ-models coincide with the answer sets of a
program if some answer set exists.

Corollary 3. Let P be a program such that EQ(P) 6= ∅. Then for every splitting set S of P ,
SEQS(P) = EQ(P); in particular, if P is positive, then SEQS(P) = {(M,M) |M ∈ MM (P)}.

Proof. By Theorem 4, SEQS(P) = {(X, Y) ∈ SEQ(P) | (X, Y)|S ∈ SEQ(bS(P))}. As
SEQ(P) 6= ∅, by Proposition 8 SEQ(P) = EQ(P), and SEQ(bS(P)) = EQ(bS(P)); by Proposi-
tion 2 and the identity (2.2) (i.e., by identity (3.4), it follows that SEQS(P){(X, Y) ∈ EQ(P) |
(X, Y)|S ∈ EQ(bS(P))} = EQ(P). As for any positive program P , EQ(P) = {(M,M) | M ∈
MM (P)}, the result follows. 2

We observe that a program which has some model does not necessarily have split semi-
equilibrium models (but always semi-equilibrium models) as seen in Example 26. We give
another example of a much simpler program.

Example 29. Let us consider P = {← b; b ← ∼a} and the splitting set S = {a}. Then we
obtain SEQ(bS(P)) = {(∅, ∅)} and so SEQS(P) = ∅. However (a, a) and (∅, a) are HT-models
of P .

Note that occurrence of a constraint in the previous example is not accidental; in fact,

Proposition 13. For every constraint-free program P and splitting set S of P , it holds that
SEQ(P S) 6= ∅.

36

Proof. If P is constraint-free, then P has some model, hence also bS(P) (⊆ P) has some model,
and thus by Proposition 7, SEQ(bS(P)) 6= ∅. For any (I, J) ∈ SEQ(bS(P)), the program
P S(I, J) also has a model, e.g. J ∪ (Σ \ S). Thus, SEQ(P S(I, J)) 6= ∅ by Proposition 7, and
hence it follows SEQ(P S) 6= ∅. 2

In summary, the split SEQ-models have the following profile with respect to the properties
(D1)-(D3).

Proposition 14. The split SEQ-models semantics of a program P relative to a splitting set S of
P , given by SEQS(P), satisfies properties (D1)-(D2), and if P is constraint-free, also (D3).

3.2 Split Sequence Semi-Equilibrium Models
Now we generalize the use of splitting sets to SEQ-models of a program via splitting sequences.
To this end, we naturally reduce a splitting sequence to its head and its remainder and apply
splitting sets recursively.

Definition 8 (Semi-equilibrium models relative to a splitting sequence). Let S = (S1, . . . , Sn),
n ≥ 1, be a splitting sequence for a program P . Then, the semi-equilibrium models of P relative
to S are given by

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS1 (P))

SEQS′(P S1(I, J))
)
, (3.3)

where S ′ = (S2, ..., Sn) and SEQ()(P) = SEQ(P) (recall that P S1(I, J) adds rules to P that fix
the truth values of all atoms in S1 according to (I, J)).

Example 30. Reconsider the program in Examples 3 and 27, P = {b← ∼a; d← b, ∼c; c← d}.
Then S = ({a}, {a, b}, {a, b, c, d}) is a splitting sequence for P , and we obtain that SEQS(P) =
{(b, bc)}. Indeed bS1(P) = ∅ and thus SEQ(bS1(P)) = {(∅, ∅)}; for the remainder sequence
S ′ = ({a, b}, {a, b, c, d}) and P ′ = P S1(∅, ∅) = P ∪ {← a}, we get bs′1(P

′) = {b← ∼a, ← a}
and thus SEQ(bS′1(P

′)) = {(b, b)}. Finally, for S ′′ = ({a, b, c, d}) and P ′′ = P S′1(b, b) = P ∪{←
a; b←}, we obtain bS′′1 (P ′′) = P ′′ and thus SEQ(bS′′1 (P ′′) = {(b, bc}), which is the final result.

The SEQ-models relative to a splitting sequence can be characterized similarly as those
relative to a splitting set, namely as SEQ-models of the program that remain by filtering the
SEQ-models along the splitting sequence.

To ease presentation, for a given program P and splitting sequence S = (S1, ..., Sn), we let
P0 = P and Pk = (Pk−1)

Sk(Ik, Jk), where (Ik, Jk) ∈ SEQ(bSk(Pk−1)), k = 1, ..., n; that is, Pk
is not uniquely defined but ranges over a set of programs.

The main result of this section is now as follows.

Theorem 5. Let S= (S1, ..., Sn) be a splitting sequence of a program P . Then (X, Y) ∈
SEQS(P) iff (X, Y) ∈ SEQ(P) and (X, Y)|Sk ∈ SEQ(bSk(Pk−1)), for some Pk, for k = 1, ..., n.

37

The following proof proceeds by induction using Theorem 4. Corollary 3 of Theorem 4 also
generalizes to splitting sequences.

Proof. We proceed by induction on the length n ≥ 1 of the splitting sequence. If n = 1, then
we have S = (S1) and S ′ = ∅, so SEQS(P) = SEQS1(P) and, by Theorem 4, we obtain that
(X, Y) ∈ SEQS(P) if and only if (X, Y) ∈ SEQ(P) and (X, Y)|S ∈ SEQ(bS(P)), that is
(X, Y)|S1 ∈ SEQ(bS1(P)). We assume that the statement is valid for a splitting sequence of
length n−1 and consider a splitting sequence S = (S1, ..., Sn) of length n. As usual, we put S ′ =
(S2, . . . , Sn). Then (X, Y) ∈ SEQS(P) if and only if there exists (I1, J1) ∈ SEQ(bS1(P)) such
that (X, Y) ∈ SEQS′(P1) and (X, Y) is a maximal canonical HT-interpretation. Applying the
induction hypothesis to (X, Y) ∈ SEQS′(P1), we know that (X, Y) ∈ SEQ(P1) and (X, Y)|Sk ∈
SEQ(bSk(Pk−1)), for k = 2, . . . , n. Now (X, Y) ∈ SEQ(P1) with (I1, J1) ∈ SEQ(bS1(P))
and (X, Y) is a maximal canonical HT-interpretation is equivalent, by definition, to (X, Y) ∈
SEQS1(P). So that, by Theorem 4, (X, Y) ∈ SEQ(P) and (X, Y)|S1 ∈ SEQ(bS1(P)). In
conclusion we have demonstrated that (X, Y) ∈ SEQS(P) if and only if (X, Y) ∈ SEQ(P) and
(X, Y)|Sk ∈ SEQ(bSk(Pk−1)), for some Pk−1, for k = 1, . . . , n. 2

Corollary 4. Let P be a program such that EQ(P) 6= ∅. Then for every splitting sequence S of P ,
SEQS(P) = EQ(P); in particular, if P is positive, then SEQS(P) = {(M,M) |M ∈ MM (P)}.

Sketch. Using Theorem 5, this can be shown by induction, using Corollaries 2 and 3. 2

Another consequence of Theorem 5 is that, written in other form, the split sequence SEQ-
models of a program can be bottom up constructed, taking into account that at each stage only the
respective rules (i.e., bSj+1

(P) \ bSj(P)) need to be considered. More formally,

Corollary 5. For every splitting sequence S = (S1, . . . , Sn) of a program P , it holds that
SEQS(P) = Sn, where for j = n, . . . , 1 we have

Sj = mc(
⋃

(X,Y)∈Sj−1
SEQ(Qj(X, Y))),

where Qj = bSj+1
(P) \ bSj(P) with bSn+1(P) = P and S0 = SEQ(bS1(P)).

This form is in fact a suitable starting point for computation; we refer to Subsection 3.3.1 for
further discussion.

Regarding the existence of split sequence SEQ-models, we obtain a generalization of Proposi-
tion 13.

Proposition 15. For every splitting sequence S of a constraint-free program P , it holds that
SEQ(P S) 6= ∅.

Sketch. This can be shown by an inductive argument, along the lines of the proof of Proposition 13,
using Propositions 7 and 13. 2

In particular, we obtain from this the following result for stratified programs.

Corollary 6. For every splitting sequence S of a stratified program P that is constraint-free, it
holds that SEQS(P) = EQ(P).

38

Proof. This is immediate from Proposition 15 and Corollary 4, given that as well-known EQ(P) 6=
∅ for every stratified program. 2

In conclusion, we obtain the following profile of split sequence SEQ-models with respect to
the properties (D1)-(D3).

Proposition 16. The split sequence SEQ-models semantics of a program P relative to a splitting
sequence S of P , given by SEQS(P), satisfies properties (D1)-(D2), and if P is constraint-free,
also (D3).

3.3 Canonical Semi-Equilibrium Models
As we have pointed out in the discussion at the beginning of the previous section, the split
semi-equilibrium semantics depends in general on the choice of the particular splitting sequence.
For illustration, let us revisit the examples there.

Example 31. In the party program of Example 3, we obtain the first SEQ-model of P with
respect to the splitting set S = {go(Mark)}, but not the second SEQ-model. Similarly, in the
company Example 26 we obtained with respect to the considered splitting set S no SEQ-model,
while we obtain the single SEQ-model of the program with respect to S ′ = {manager(sam),
employee(sam), core_staff (sam, sam)}. This behaviour is unfortunate, the more as in program
evaluation, it is not known which splitting sequence is actually used by a solver for the evaluation,
and this aspect should not matter from user perspective. Likewise, it should not matter in which
order independent subprograms of a program are evaluated.

We thus consider a way to obtain a refined split SEQ-semantics that is independent of a
particular splitting sequence, but imposes conditions on sequences that come naturally with the
program and can be easily tested. Along with this the question rises what information about the
splitting sequences that are (potentially) used for evaluation is available. If we just have a plain
program P and no further information, in principle any splitting sequence needs to be considered;
if the program P is composed of subprograms P1, . . . , Pm, then only splitting sequences that are
“compatible” with the hierarchical ordering of the subprograms need to be respected.

We base our development on the first setting, as it is at the core of program evaluation, and
moreover a generalization to the setting with subprograms is not hard to accomplish, once the
notions and results for this setting are established; we shall address this in Section 7.2.

The smallest possible splitting sets of a program are strongly connected components (SCCs) of
the program, which are at the heart of bottom up evaluation algorithms in ASP systems. Thus in
lack of further information on program decomposition, we shall base our development on splitting
sequences that are formed from SCCs of the program.

We then get the desired independence of a particular splitting sequence, such that we can then
talk about the SCC-models of a program.

Example 32. The program in the party Example 3 has two SCCs, namely C1 = {go(Mark)} and
C2 = {go(John), go(Bill), go(Peter)}), which form a single splitting sequence S = (C1, C2);
thus, the model Iκ1 is selected as the single SCC-model of the program.

39

However, a closer look reveals that independence might fail in presence of certain constraints
that join information in unrelated SCCs of a program. An illustration is given by the company
program in Example 26.

Example 33. The SCCs of the program in Example 26 are all singleton sets {a} where a is a
ground atom. For the emerging splitting sequences S = (S1, . . . , Sn) where core_staff (sam)
occurs before has_social_sec(sam) (i.e., core_staff (sam) ∈ Si and has_social_sec(sam) ∈
Sj \Si with i < j), we obtain no SEQ-model, but we obtain the single SEQ-model Iκ in the other
cases. Intuitively, the constraint in P accesses unrelated information from independent SCCs; if
has_social_sec(sam) has already been evaluated (to false), no beliefs help to make the constraint
body false; otherwise, believing that has_social_sec(sam) is true achieves this.

For this reason, we present a split SEQ-model semantics where the selected SEQ-models are
truly independent of the concrete admissible splitting sequence. The semantics is the maximal
joinable components (MJC) model semantics, which results by a lean merging of SCCs that
violate independence due to interaction with constraints. In the company example, the SCCs
{core_staff (sam)} and {has_social_sec(sam)} will be merged; this prevents that the constraint
on social security is considered only after has_social_sec(sam) has already been decided. The
singleMJC-model of the program is then its single SEQ-model.

3.3.1 SCC-split Sequences and Models
We start with recalling further notions. The supergraph of a program P is the graph SG(P) =
〈VSG , ESG〉, whose nodes VSG are the SCCs of P and with an edge from an SCC C to a distinct
SCCC ′ iff the dependency graph of P has an edge from some atom inC to one inC ′; i.e., formally
VSG = SCC(P) and ESG = {(C,C ′) | C 6= C ′ ∈ SCC(P),∃a ∈ C, ∃b ∈ C ′, (a, b) ∈ EDG}.

Note that SG(P) is a directed acyclic graph (dag); recall that a topological ordering of a dag
G = 〈V,E〉 is an ordering v1, v2, ..., vn of its vertices, denoted ≤, such that for every (vi, vj) ∈ E
we have i > j. Such an ordering always exists, and the set O(G) of all topological orderings of G
is nonempty. Any such ordering of SG(P) naturally induces a splitting sequence as follows.

Definition 9. Let P be a program and let ≤ = (C1, ..., Cn) be a topological ordering of SG(P).
Then the splitting sequence induced by≤ is S≤ = (S1, ..., Sn), where S1 = C1 and Sj = Sj−1∪Cj ,
for j = 2, ..., n.

We call any such S≤ a SCC-splitting sequence; note that S≤ is indeed a splitting sequence of
P .

We now show that for constraint-free programs, the split SEQ-models relative to SCC-split
sequence are independent of the concrete such sequence; in fact, we establish this result for
programs in which certain constraints do not occur.

Definition 10. A constraint r in P is a cross-constraint, if r intersects distinct SCCs Ci, Cj in
SCC(P) that are incomparable in SG(P), i.e., Ci ∩ At(r) 6= ∅, Cj ∩ At(r) 6= ∅, and SG(P) has
topological orderings of the forms (. . . , Ci, . . . , Cj, . . .) and (. . . , Cj, . . . , Ci, . . .).

40

For example, the constraint ← b in the program P of Example 29 is trivially not a cross-
constraint, and likewise an additional constraint← a, b. However, an additional constraint← b, c
would be a cross-constraint. Intuitively, a cross-constraint joins information from different parts
Ci and Cj of the program that might be evaluated in either order under EQ-model semantics. If
under SEQ-model semantics the literals in the constraint over Ci evaluate to true, then making
some atoms in Cj believed true may effect that the constraint body becomes false, and we thus
obtain a SEQ-model; if we proceed in the other order and start with Cj , those atoms might be
simply set to false and then there is no chance to arrive at a SEQ-model when processing Ci. We
illustrate this on a simple example.

Example 34. Consider the program P = { b; ← b, ∼a }. It has the SCCs {a} and {b} which are
incomparable in the supergraph SG(P); we may now set Ci = {a} and Cj = {b}. If we evaluate
P along the SCC-sequence S = ({a}, {b}), we obtain no SEQS-model; however, if we evaluate
P along S ′ = ({b}, {a}), then we obtain the (single) SEQS′-model (b, ba).

We obtain the following result.

Theorem 6. Let P be a program without cross-constraints. Then for every ≤,≤′∈ O(SG(P)),
we have that SEQS≤(P) = SEQS≤′ (P).

The proof uses the following lemmas.

Lemma 8. Let P be a program and let S = (S1, ..., Sn) be a splitting sequence of P . We let as
above P0 = P and Pk = (Pk−1)

Sk(Ik, Jk), where (Ik, Jk) ∈ SEQ(bSk(Pk−1)), with k = 1, ..., n.
Furthermore, we let Ak = {a|a ∈ Ik} ∪ {← ∼a|a ∈ Jk} ∪ {← a|a ∈ Sk \ Jk}. Then

Pk = P \ bSk(P) ∪ Ak

for k = 1, ..., n.

Proof . We will prove this statement by induction on k ≥ 1. If k = 1, we obtain by definition that

P1 = (P0)
S1(I1, J1) = P0 \ bS1(P0) ∪ A1 = P \ bS1(P) ∪ A1.

We assume that the statement is true for k = j− 1 and consider Pj . By definition we have that
Pj = (Pj−1)

Sj(Ij, Jj) = Pj−1 \ bSj(Pj−1) ∪ Aj . Now we can applying the inductive hypothesis
on Pj−1 and we obtain that

Pj = (P \ bSj−1
(P) ∪ Aj−1) \ bSj(P \ bSj−1

(P) ∪ Aj−1) ∪ Aj.

Since Sj−1 ⊆ Sj , we have that bSj(Aj−1) = Aj−1, and so

Pj = (P \ bSj−1
(P) ∪ Aj−1) \ (bSj(P \ bSj−1

(P)) ∪ Aj−1) ∪ Aj
= (P \ bSj−1

(P)) \ bSj(P \ bSj−1
(P)) ∪ Aj.

Moreover since bSj−1
(P) ⊆ bSj(P), we can conclude that

Pj = (P \ bSj−1
(P)) \ (bSj(P) \ bSj−1

(P)) ∪ Aj = P \ bSj(P) ∪ Aj.
2

41

Lemma 9. Let P be a program. Let S = (S1, ..., Sn) be a splitting sequence of P . Let P0 = P
and let Pk and (Ik, Jk) for k = 1, ..., n− 1 be defined as above. If (X, Y) ∈ SEQ(Sk+1,...,Sn)(Pk),
then Ik ⊆ X , Jk ⊆ Y and (Sk \ Jk) ∩ Y = ∅ for k = 1, ..., n− 1.

Proof . Let (X, Y) ∈ SEQ(Sk+1,...,Sn)(Pk). We remember that Pk = (Pk−1)
Sk(Ik, Jk), where

(Ik, Jk) ∈ SEQ(bSk(Pk−1)), for k = 1, ..., n and P0 = P . By Theorem 5 we have that (X, Y) ∈
SEQ(Pk) and by Lemma 8,

Pk = P \ bSk(P) ∪ {a | a ∈ Ik} ∪ {← ∼a | a ∈ Jk} ∪ {← a | a ∈ Sk \ Jk}.

So that Ik ⊆ X , Jk ⊆ Y and (Sk \ Jk) ∩ Y = ∅. 2

Lemma 10. Let P be a program. Let S = (S1, ..., Sn) be a splitting sequence of P such that
At(P) = Sn. If (X, Y) ∈ SEQ(S1,...,Sn)(P), then there exists (Ik, Jk) ∈ SEQ(bSk(Pk−1)) for
k = 1, ..., n such that

(X, Y) = (I1 ∪ (I2 \ I1) ∪ ... ∪ (In \ In−1), J1 ∪ (J2 \ J1) ∪ ... ∪ (Jn \ Jn−1))

with (Ik \ Ik−1) ⊆ (Jk \ Jk−1) ⊆ (Sk \ Sk−1), for k = 2, ..., n.

Proof . We proceed by induction on the length n ≥ 1 of the splitting sequence. If n = 1, then
At(P) = S1 and (X, Y) ∈ SEQS1(P) imply that there exists some (I1, J1) ∈ SEQ(bS1(P)) such
that (X, Y) ∈ SEQ(P S1(I1, J1)), but P S1(I1, J1) = P \ bS1(P) ∪ A1 = A1, so that

SEQ(P S1(I1, J1)) = SEQ(A1)

= SEQ({a | a ∈ I1} ∪ {← ∼a | a ∈ J1} ∪ {← a | a ∈ S1 \ J1})
= {(I1, J1)},

that is (X, Y) = (I1, J1).
Now we suppose that the statement is valid for splitting sequence of length n − 1 and

we consider (X, Y) ∈ SEQ(S1,...,Sn)(P). Then there exists (I1, J1) ∈ SEQ(bS1(P)) such
that (X, Y) ∈ SEQ(S2,...,Sn)(P1) and At(P1) = Sn, so by the inductive hypothesis there ex-
ists (Ik, Jk) ∈ SEQ(bSk(Pk−1)) for k = 2, ..., n such that (X, Y) = (I2 ∪ (I3 \ I2) ∪ ... ∪
(In \ In−1), J2 ∪ (J3 \ J2) ∪ ... ∪ (Jn \ Jn−1)) with Ik \ Ik−1 ⊆ Jk \ Jk−1 ⊆ Sk \ Sk−1, for
k = 3, ..., n. Moreover, by Lemma 9, I1 ⊆ X , J1 ⊆ Y and (S1 \ J1) ∩ Y = ∅ and because
(I2, J2) ∈ SEQ(bS2(P1)) we obtain that I1 ⊆ I2, J1 ⊆ J2 and (S1 \ J1) ∩ J2 = ∅. These last
results imply that I2 \ I1 ⊆ J2 \ J1 ⊆ S2 \ S1. 2

Lemma 11. Let P be a program and let S ⊆ At(P) such that both S and At(P) \ S are splitting
sets of P . If for each constraint r, At(r) ⊆ S or At(r) ⊆ At(P) \ S, then

SEQ(P) = SEQS(P).

42

Proof . The inclusion SEQS(P) ⊆ SEQ(P) follows from Proposition 11. So we have just to
prove that SEQ(P) ⊆ SEQS(P).

Let (X, Y) ∈ SEQ(P). We want to prove that (X ∩ S, Y ∩ S) ∈ SEQ(bS(P)).
We know that (X, Y) |= bS(P). As S is a splitting set of P , At(bS(P)) ⊆ S and so

(X ∩ S, Y ∩ S) |= bS(P).
Now we prove the claim showing that (X∩S, Y ∩S) satisfies h-minimality and gap-minimality.
If by contradiction some I ⊂ X ∩ S exists such that (I, Y ∩ S) |= bS(P), then X ′ =

I ∪ (X ∩ (At(P) \ S)) ⊂ X and (X ′, Y) |= P which contradicts the h-minimality of (X, Y).
Similarly, if by contradiction, some (I, J) |= bS(P) exists such that (I, J) satisfies h-

minimality and J \ I ⊂ (Y ∩ S) \ (X ∩ S), then having set X ′ = I ∪ (X ∩ (At(P) \ S))
and Y ′ = J ∪ (Y ∩ (At(P) \ S)), we obtain that (X ′, Y ′) |= P , satisfies the h-minimality and
Y ′ \X ′ ⊂ Y \X in contradiction to the gap-minimality of (X, Y).

Therefore (X ∩ S, Y ∩ S) ∈ SEQ(bS(P)). Then, by Theorem 4, (X, Y) ∈ SEQS(P); hence
SEQ(P) = SEQS(P). 2

For any setsM andM′ of HT-models, define their productM×M′ as the set of HT-models
given byM×M′ = {(X ∪X ′, Y ∪ Y ′) | (X, Y) ∈M, (X ′, Y ′) ∈M′}.

Lemma 12. Let P be a program in which each constraint r fulfills either At(r) ⊆ S or At(r) ⊆
At(P) \ S. If both S and At(P) \ S are splitting sets of P , then

SEQS(P) = SEQ(bS(P))× SEQ(tS(P)).

Proof . If SEQ(bS(P)) = ∅, then

SEQ(bS(P))× SEQ(tS(P)) = ∅

and
SEQS(P) = mc

(⋃
(I,J)∈SEQ(bS(P))

SEQ(P S(I, J))
)

= ∅.

Let (I, J) ∈ SEQ(bS(P)). For each rule r ∈ bS(P), no atom of r is in some rule of tS(P)
and vice versa, that is At(bS(P)) ∩ At(tS(P)) = ∅. Hence

SEQ(tS(P) ∪ {a | a ∈ I} ∪ {← ∼a | a ∈ J} ∪ {← a | a ∈ S \ J})
= {(X, Y) | X = X1 ∪ I, Y = Y1 ∪ J, (X1, Y1) ∈ SEQ(tS(P))}
= SEQ(tS(P))× {(I, J)}.

Then

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS(P))

SEQ(tS(P))× {(I, J)}
)

= mc (SEQ(bS(P))× SEQ(tS(P)))

= SEQ(bS(P))× SEQ(tS(P)).

2

43

Proposition 17. Let P be a program in which each constraint r fulfills either At(r) ⊆ S or
At(r) ⊆ At(P) \ S. If S ⊆ At(P) is such that both S and At(P) \ S are splitting sets of P , then

SEQ(P) = SEQ(bS(P))× SEQ(tS(P)).

Proof. Follows immediately from Lemmas 11 and 12. 2

Lemma 13. Let P be a program without cross-constraints. Let (C1, ..., Cn) and (C1, ..., Ci−1,
Ci+1, Ci, Ci+2, ..., Cn) be two topological orderings of SCC(P). If we put Sk = C1 ∪ ... ∪Ck for
k = 1, ..., n and S ′i = Si−1 ∪ Ci+1 then

bS′i(P \ bSi−1
(P)) = bSi+1

(P \ bSi(P)).

Proof . In general we know that bSi(P) \ bSi−1
(P) = bSi(P \ bSi−1

(P)). Hence it is sufficient to
prove that bSi+1

(P) \ bSi(P) = bS′i(P) \ bSi−1
(P).

Let r ∈ P , and assume that r ∈ bSi+1
(P) and r 6∈ bSi(P). If r is a constraint, then

At(r) ∩ Ci+1 6= ∅. As P has no cross-constraints, it follows that At(r) ∩ Ci = ∅. If r is not a
constraint, then there exists some a ∈ H(r) such that a ∈ Ci+1. But because there is no edge
between Ci and Ci+1, we obtain again that At(r) ∩ Ci = ∅. Therefore r ∈ bSi−1∪Ci+1

(P) and
clearly r 6∈ bSi−1

(P).
Conversely, assume that r ∈ bSi−1∪Ci+1

(P) and r 6∈ bSi−1
(P). Then r ∈ bSi−1∪Ci+1

(P) ⊆
bSi+1

(P). Moreover r ∈ bSi−1∪Ci+1
(P) implies that At(r) ∩ Ci = ∅, and because r 6∈ bSi−1

(P), it
follows that r 6∈ bSi(P). 2

Lemma 14. Let P be a program without cross-constraints. Let (C1, ...Cn) and (C1, ..., Ci−1, Ci+1,
Ci, Ci+2, ..., Cn) be two topological orderings of SCC(P). If we put Sk = C1 ∪ ... ∪ Ck for
k = 1, ..., n and S ′i = Si−1 ∪ Ci+1 then

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P) = SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P).

Proof . Let (X, Y) ∈ SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P). Since At(P) = C1 ∪ ... ∪ Cn = Sn, by
Lemma 10 we obtain that

(X, Y) = (I1 ∪ (I2 \ I1) ∪ ... ∪ (In \ In−1), J1 ∪ (J2 \ J1) ∪ ... ∪ (Jn \ Jn−1))

where (Ik, Jk) ∈ SEQ(bSk(Pk−1)) for k = 1, ..., n, with

(Ik \ Ik−1) ⊆ (Jk \ Jk−1) ⊆ (Sk \ Sk−1) = Ck

for k = 2, ..., n.
First we show that

(X, Y)|S′i ∈ SEQ(bS′i(Pi−1)).

We know that

(X, Y)|S′i = (X, Y)|Si−1∪Cj+1
= (Ii−1 ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji+1 \ Ji)).

44

Moreover, using Lemma 13, we obtain

bS′i(Pi−1) = bSi−1∪Cj+1
(Pi−1) = bSi−1∪Ci+1

(P \ bSi−1
(P) ∪ Ai−1)

= bSi−1∪Ci+1
(P \ bSi−1

(P)) ∪ Ai−1
= bSi+1

(P \ bSi(P)) ∪ Ai−1.

And we note that

bSi+1
(Pi) = bSi+1

(P \ bSi(P) ∪ Ai)
= bSi+1

(P \ bSi(P)) ∪ Ai−1 ∪ (Ai \ Ai−1).

Now in the program bSi+1
(Pi) both Si−1 ∪ Ci+1 and Ci are splitting sets and in particular

bSi−1∪Ci+1
(bSi+1

(Pi)) = bSi+1
(P \ bSi(P)) ∪ Ai−1

and
bCi(bSi+1

(Pi)) = Ai \ Ai−1.

Therefore by Proposition 17 we obtain that

SEQ(bSi+1
(Pi)) = SEQ(bSi+1

(P \ bSi(P)) ∪ Ai−1)× SEQ(Ai \ Ai−1).

So we have that

SEQ(bSi+1
(Pi)) = SEQ(bSi−1∪Cj+1

(Pi−1))× {(Ii \ Ii−1, Ji \ Ji−1)},

and since

(X, Y)|Si+1
= (Ii−1 ∪ (Ii \ Ii−1)∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji \ Ji−1)∪ (Ji+1 \ Ji)) ∈ SEQ(bSi+1

(Pi)),

it follows
(Ii−1 ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji+1 \ Ji)) ∈ SEQ(bSi−1∪Cj+1

(Pi−1)).

By Theorem 5, we know that if (X, Y) ∈ SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P), then

(X, Y) ∈ SEQ(P), (X, Y)|S1 ∈ SEQ(bS1(P)), . . . , (X, Y)|Si−1
∈ SEQ(bSi−1

(Pi−2)),

(X, Y)|Si ∈ SEQ(bSi(Pi−1)), (X, Y)|Si+1
∈ SEQ(bSi+1

(Pi)),

(X, Y)|Si+2
∈ SEQ(bSi+2

(Pi+1)), . . . (X, Y)|Sn ∈ SEQ(bSn(Pn−1)),

We want to prove that (X, Y) ∈ SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P). That is, by Theorem 5:

(X, Y) ∈ SEQ(P), (X, Y)|S1 ∈ SEQ(bS1(P)), . . . (X, Y)|Si−1
∈ SEQ(bSi−1

(Pi−2)),

(X, Y)|S′i ∈ SEQ(bS′i(Pi−1)), (X, Y)|Si+1
∈ SEQ(bSi+1

(P \ bS′i(P) ∪ Ai−1 ∪ (Ai+1 \ Ai))),
(X, Y)|Si+2

∈ SEQ(bSi+2
(Pi+1)), . . . , (X, Y)|Sn ∈ SEQ(bSn(Pn−1)),

45

So it remains to prove that

(X, Y)|Si+1
∈ SEQ(bSi+1

(P \ bS′i(Pi−1) ∪ Ai−1 ∪ (Ai+1 \ Ai))).

We know that

bSi+1
(P\bS′i(P) ∪ Ai−1 ∪ (Ai+1 \ Ai))

= bSi+1
(P \ bSi−1∪Ci+1

(P)) ∪ Ai−1 ∪ (Ai+1 \ Ai)
= bSi(P \ bSi−1

(P)) ∪ Ai−1 ∪ (Ai+1 \ Ai)
= bSi(P \ bSi−1

(P)) ∪ Ai−1) ∪ (Ai+1 \ Ai)
= bSi(Pi−1) ∪ (Ai+1 \ Ai).

Now in this program both Si and Ci+1 are splitting sets and in particular

bSi(bSi(Pi−1) ∪ (Ai+1 \ Ai)) = bSi(Pi−1)

and
bCi+1

(bSi(Pi−1) ∪ (Ai+1 \ Ai)) = Ai+1 \ Ai.

Therefore by Proposition 17 we obtain that

SEQ(bSi+1
(P\bS′i(Pi−1) ∪ Ai−1 ∪ (Ai+1 \ Ai)))

= SEQ(bSi(Pi−1))× SEQ(Ai+1 \ Ai)
= SEQ(bSi(Pi−1))× {(Ii+1 \ Ii, Ji+1 \ Ji)}.

Now since (Ii, Ji) ∈ SEQ(bSi(Pi−1)), we obtain that

(Ii+1, Ji+1) = (X, Y)|Si+1
∈ SEQ(bSi+1

(P \ bS′i(Pi−1) ∪ Ai−1 ∪ (Ai+1 \ Ai))).

In conclusion, we have proved that

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P) ⊆ SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P).

The proof of the reverse inclusion is similar. 2

Theorem 6 is then proven as follows.

Proof. Let (Ci1 , ..., Cin) ∈ O(SG(P)). We define a function

t(Ci1 ,...,Cin) : O(SG(P)) −→ O(SG(P)).

Let (Cj1 , ..., Cjn) ∈ O(SG(P)). If Cir = Cjr for r = 1, ..., l, Cil+1
6= Cjl+1

and there exists
k + 1 > l + 1 such that Cjk+1

= Cil+1
, then

t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = t(Ci1 ,...,Cin)(Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cjk , Cil+1
, Cjk+2

, ..., Cjn)

= (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn),

46

else t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Cj1 , ..., Cjn) = (Ci1 , ..., Cin). This function is well-defined be-
cause there are no edges from Cim to Cil+1

form = l+2, ..., n. That is there are no edges from Cjk
to Cil+1

, therefore (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn) is another topological
ordering of SCC(P). Moreover for each (Cj1 , ..., Cjn) ∈ O(SG(P)), there exists some finite N
such that

tN(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin).

During the proof, in order not to introduce additional symbols, we shall denote the splitting
sequence Si with (Ci1 , ..., Cin) and Sj with (Cj1 , ..., Cjn).

Let N be such that tN(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin). We will prove the theorem using
induction on N . If N = 1, then t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin), i.e. (Cj1 , ..., Cjn) and
(Ci1 , ..., Cin) differ at most by the exchange of two consecutive strongly connected components.
Then, by Lemma 14, SEQ(Ci1 ,...,Cin)(P) = SEQ(Cj1 ,...,Cjn)(P). Now we suppose that the theorem
is valid for topological orderings (Cs1 , ..., Csn) such that tN−1(Ci1 ,...,Cin)

(Cs1 , ..., Csn) = (Ci1 , ..., Cin).
We consider (Cj1 , ..., Cjn) such that tN(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin). By definition of
the function t(Ci1 ,...,Cin), we know that

t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn).

Therefore, by Lemma 14, we have that

SEQ(Cj1 ,...,Cjn)(P) = SEQt(Ci1 ,...,Cin)(Cj1 ,...,Cjn)(P).

But now tN−1(Ci1 ,...,Cin)
(t(Ci1 ,...,Cin)(Cj1 , ..., Cjn)) = (Ci1 , ..., Cin) such that, by the induction hypoth-

esis, we obtain that

SEQt(Ci1 ,...,Cin)(Cj1 ,...,Cjn)(P) = SEQ(Ci1 ,...,Cin)(P).

In conclusion, we have proved that SEQ(Cj1 ,...,Cjn)(P) = SEQ(Ci1 ,...,Cin)(P). 2

Corollary 7. For every constraint-free program P , the SEQ-models of P relative to an SCC-split
sequence S are independent of the choice of S.

The proof of Theorem 6 is technically involving as it needs to be shown that changes in the
ordering of the SCCs do not matter in the end. It uses a series of lemmas which assert certain
properties of semi-equilibrium models (Ik, Jk) of the programs Pk that emerge in the bottom up
characterization of Theorem 5, and independence properties in certain cases; in particular, where
for any setsM andM′ of HT-models, their product is given byM×M′ = {(X ∪X ′, Y ∪ Y ′) |
(X, Y) ∈M, (X ′, Y ′) ∈M′}, as stated in Proposition 17.

Theorem 6 is an analog of the Stratification Theorem [5, 59] which states that the perfect
(stratified) model of a logic program relative to a stratification is independent of the concrete
stratification, and thus one can simply refer to the perfect model of a stratified program; similarly,
we thus can define the strongly connected components models of a program as follows.

Definition 11 (SCC-models). For every program P without cross-constraints, the SCC-models of
P are given as M SCC(P) = SEQS≤(P) for an arbitrary topological ordering ≤ of SG(P).

47

Let us consider some examples.

Example 35. The party program P in the Example 27 is constraint-free; hence, it has some
SCC-model. The splitting sequence S for P given in Example 29 is in fact an SCC-splitting
sequence, and thus the single SEQS-model (b, bc) is the singe SCC-model of P .

Example 36. The program P = {← b; b ← ∼a} in Example 29 is cross-constraint free. It
has the SCCs {a} and {b}, and for the single SCC-split sequence S = ({a}, {a, b}), no split
sequence SEQ- model exists; does P has no SCC-model. As this example shows, SCCs may be
too fine-grained sometimes to obtain modular SEQ-models in the presence of constraints. This
can be remedied by using coarser modules that are defined by the user (cf. Section 7.2).

Example 37. Consider the program

P =

{
← a, d; a← c, ∼a; a← ∼b; b← ∼e; b← f ;
c← ∼d; c← g, ∼h; f ← b, ∼f ; g ← h; h← c, g

}
.

Its SCCs are C1 = {a}, C2 = {b, f}, C3 = {c, g, h}, C4 = {d} and C5 = {e}; as a depends on
d, the single constraint← a, d is not a cross-constraint. For the ordering ≤ = (C4, C5, C3, C2, C1),
we obtain that

SEQS≤(P) = SEQ(S2,S3,S4,S5)(P S1(∅, ∅)) = SEQ(S3,S4,S5)(P S2
1 (∅, ∅))

= SEQ(S4,S5)(P S3
2 (c, c)) = SEQ(S5)(P S4

3 (bc, bcf)) = {(bc, abcf)};

hence M SCC(P) = {(bc, abcf)}. For ≤′= (C5, C2, C4, C3, C1), we obtain SEQS≤′ (P) =
{(bc, abcf)}, in line with Theorem 6. Note that SEQ(P) = {(bc, abcf), (b, bdf), (ac, ace)}.

Regarding the properties (D1)-(D3) of a paracoherent semantics in the Introduction, we obtain
from Proposition 16 immediately

Corollary 8. The SCC-models semantics, given by M SCC(P) for programs P without cross-
constraints, satisfies properties (D1)-(D2), and it satisfies (D3) for programs without constraints.

As for the properties of SCC-models, we focus here on a particular aspect that is important
with respect to an envisaged exploitation for paracoherent answer set construction; computational
aspects are considered in Chapter 4.

Modularity of SCC-models. In the definition of split SEQ-models, we made use of splitting
sets as a major tool for modular computation of equilibrium models (answer sets) of a logic
program. Indeed, for any splitting set S of P , as follows from [42] we have that

EQ(P) =
⋃

(X,X)∈EQ(bS(P))

EQ(tS(P) ∪ {a | a ∈ X} ∪ {← a | a ∈ S \X}). (3.4)

Note the similarity to the equation in (3.2) which we used to define SEQ-models of a program
relative to a splitting set; the major difference is that we use the mc(·) operator to single out

48

smallest gaps at a global level. And, in general for different S we shall obtain different SEQ-
models from (3.2). However, if we confine to SCC-models, then an analog to (3.4) and its
generalization to splitting sequences holds.

That is, if we replace in Equation (3.3) SEQ, SEQS , and SEQS′ all byMSCC , then the resulting
equation hold.

Theorem 7. Let S be a splitting set of a program P without cross-constraints. Then

M SCC(P) = mc
(⋃

(I,J)∈MSCC(bS(P))

M SCC(P S(I, J))
)
. (3.5)

Proof. First we observe that for every splitting set S of a program P , we can always write
S as the union of some SCCs of P . More in detail, if SCC(P) = {C1, ..., Cn}, then we can
assume that S = C1 ∪ ... ∪ Ck, where C1, ..., Ck are consecutive in some topological ordering
(C1, ..., Ck, ..., Cn) of SCC(P).

By definition, we have that

M SCC(P) = SEQ(S1,...,Sn)(P),

where Sj = ∪ji=1Ci, for 1 ≤ j ≤ n; note that S = Sk.
If we explicate the computation of SEQ(S1,...,Sn)(P) up to k-th union, we obtain

M SCC(P) = mc
(⋃
Mk∈Mk

SEQ(Sk+1,...,Sn)(P \ bSk(P) ∪Mk)
)

(3.6)

whereMk is last in a sequenceMi, 1 ≤ i ≤ k of setsMi of HT-models Mi = (Ii, Ji), over
Si, such thatM1 = SEQ(bS1(P)) andMi+1 = mc(

⋃
Mi∈Mi

SEQ((bSi+1
(P) \ bSi(P)) ∪Mi),

1 ≤ i < k, where in abuse of notation ”∪Mi” stands for ∪{a | a ∈ Ii} ∪ {← ∼a | a ∈ Ji} ∪ {←
a | a ∈ Si \Ji}. Note that all Mi 6= M ′

i ∈Mi have incomparable gaps, i.e., gap(Mi) 6⊆ gap(M ′
i).

Now we show that the setMk coincides with M SCC(bS(P)). Indeed, by definition, we know
that

M SCC(bS(P)) = SEQ(S1,...,Sk)(bS(P)).

Therefore, applying k-times the definition of semi-equilibrium models relative to a splitting
sequence, we obtain

SEQ(S1,...,Sk)(bS(P)) = mc
(⋃
M ′k∈M

′
k

SEQ(bS(P) \ bSk(P) ∪M ′
k)
)

(3.7)

where M′
k and M ′

k are analogously defined to Mk and Mk using bS(P) instead of P , i.e.,
M′

1 = SEQ(bS1(bS(P))) and M′
i+1 = mc(

⋃
M ′i∈M′i

SEQ((bSi+1
(bS(P)) \ bSi(bS(P))) ∪M ′

i),
1 ≤ i < k. As bSi(bS(P)) = bSi(P) for each i, theMi and theM′

i coincide; as bS(P) = bSk(P),
we thus obtain from (3.7)

SEQ(S1,...,Sk)(bS(P)) = mc
(⋃
Mk∈Mk

SEQ(Mk)
)

=
⋃

Mk∈Mk

Mk =Mk;

49

here we use that the Mk have incomparable gaps. This proves the claim thatMk = M SCC(bS(P)).
To prove the result, it remains by (3.6) to show that for each Mk ∈Mk,

SEQ(Sk+1,...,Sn)(P \ bS(P) ∪Mk) = M SCC(P \ bS(P) ∪Mk).

We observe that the programs Q = P \ bS(P) ∪Mk and P have the same atoms but in general
different SCCs. However it is easy to see that every atom in a ∈ Sk induces a SCC Ca = {a}
w.r.t. Q, and thus Sk = Ca1 ∪ · · · ∪ Ca` where Sk = {a1, . . . , a`}. Furthermore, Q contains only
constraints r such that either At(Q) ⊆ Sk or At(Q) ∩ Sk = ∅. As (Ca1 , ..., Ca` , Ck+1, ...Cn) is a
topological ordering of SCC(Q), we obtain

M SCC(Q) = SEQ(Sa1 ,...,Sa` ,Sk+1,...,Sn)(Q) = SEQ(Sk+1,...,Sn)(Q).

where Sai =
⋃
j≤iCaj . The last equality can be seen by noting that, for each j = 1, ..., `, we have

SEQ(bSaj (Q)) = {Mk|Saj } (where Mk|Saj denotes the restriction of Mk to Saj) and thus for each
(Xj, Yj) ∈ SEQ(bSaj (Q)),

Q \ bSaj (Q) ∪ (Xj, Yj) = (Q \Mk|Saj) ∪ (Xj, Yj) = Q.

In conclusion, by replacing in Equation (3.6) Mk ∈ Mk with (I, J) ∈ M SCC(bSk(P)) and
SEQ(Sk+1,...,Sn)(P \ bSk(P) ∪Mk) with M SCC(P \ bSk(P) ∪ (I, J)) and reminding that Sk = S
and P S(I, J) = P \ bSk(P) ∪ (I, J), we have proved that

M SCC(P) = mc
(⋃

(I,J)∈MSCC(bS(P))

M SCC(P \ bS(P) ∪ (I, J))
)
.

2

Thanks to this result, we can compute the SCC-models of a given program modularly bottom
up along an arbitrary splitting sequence (using always M SCC); in particular, if an algorithm has
processed a bottom part bS(P) of a program P and found equilibrium models (answer sets) for
it, and it encounters that an extension of these equilibrium models using (3.4) does not yield
any answer set, then it can switch to a “paracoherent mode” and apply (7); as MSCC(bS(P)) =
EQ(bS(P)), we obtain the same result as if we would compute the SCC-models of P from scratch.
That is, no backtracking or restarting of the computation is necessary.

We note none of the occurrences of M SCC in the equation (3.5) can be replaced with SEQ
or an arbitrary SEQS′ in general, that is compute and use simply the semi-equilibrium models
respectively the split semi-equilibrium models of the bottom part and/or the remainder of the
program relative to S ′; in addition to all SCC-models, we might get some semi-equilibrium models
of the program P where the particular splitting sequence S ′ matters. Formally, the following
property holds, which is an easy consequence of Theorem 5.

Proposition 18. Let S be a splitting sequence of a program P without cross-constraints. Then

M SCC(P) ⊆ SEQS(P) and M SCC(P) =
⋂

S∈SQ(P)

SEQS(P),

where SQ(P) is the set of all splitting sequences of P .

50

Proof. Suppose that S = (S1, . . . , Sn), where n ≥ 1. Then there exists a splitting sequence
S ′≤ = (S ′1, . . . , S

′
n) induced by some topological ordering ≤ of SG(P) such that Si = S ′ki , for

some 1 ≤ ki ≤ n′, for every 1 ≤ i ≤ n; such a sequence can be obtained by refining Si\Si−1, 1 ≤
i ≤ n where S0 = ∅ along strongly connected components in SG(P) to Si,1, . . . , Si,ji such that
Si,ji = Si. As M SCC(P) = SEQS′(P), the inclusion M SCC(P) ⊆ SEQS(P) is then an immediate
consequence of Theorem 5 (for given (X, Y), S ′ imposes more conditions for membership in
SEQS′(P) than S for membership in SEQS(P)); the equation M SCC(P) =

⋂
S∈SQ(P) SEQ

S(P)

follows as S ′ ∈ SQ(P). 2

3.3.2 MJC-split Sequences and Models
Unfortunately, Theorem 6 fails if we allow arbitrary constraints in P , as witnessed e.g. by the
programs in Examples 34 and 26. To deal with this situation, different ways are possible.

(1) One way is to exclude constraints (or less restrictive, cross-constraints), and resort instead
to the usage of rules which create unstable negation; that is

← Body (3.8)

is replaced with
f ← Body , ∼f, (3.9)

where f is a fresh atom. Indeed, on some (early) implementations of answer set solvers constraints
have been provided in this way. The SEQ-model semantics is able to distinguish between (3.8)
and (3.9); this can be exploited to use (3.9) as a soft constraint that may intuitively be violated
if needed to achieve an EQ-model resp. answer set; indeed, this rule can always be satisfied by
considering f as believed true.

(2) Another possibility is to remedy situations in which constraints are not embedded in ordered
SCCs. To this end, we consider merging of SCCs in such a way that (i) independence of concrete
topological orderings is preserved and, furthermore, (ii) merging is performed conservatively, that
is only if it is deemed necessary. This is embodied by the maximal joinable components of a
program, which lead to so calledMJC-split sequences and models. Informally, relevant SCCs
that are incomparable (thus unproblematic in evaluation if we disregard cross-constraints) are
merged if they both intersect with a constraint. The merging is repeated until no cross-constraint
violation exists with respect to the new (merged) components. In the rest of this subsection, we
formalize this approach on a declarative basis.

We start with introducing the notions of related pairs and joinable pairs of SCCs. We call a
pair (K1, K2) of SCCs of P a related pair, if either K1 = K2 or some constraint r ∈ P intersects
both K1 and K2, i.e., At(r) ∩K1 6= ∅ and At(r) ∩K2 6= ∅. By C(K1,K2)(P) we denote the set of
all such constraints r.
Definition 12. A related pair (K1, K2) is a joinable pair, if K1 = K2 or some ordering (C1, . . . ,
Cn) in O(SG(P)) exists such that (i) K1 = Cs and K2 = Cs+1 for some 1 ≤ s < n,
(ii) (K2, K1) /∈ ESG and (iii) some r ∈ C(K1,K2)(P) exists such that At(r) ⊆ C1 ∪ ... ∪Cs+1. By
JP(P) we denote the set of all joinable pairs of P .

51

Intuitively item (i) states that in some topological ordering K1 immediately precedes K2; item
(ii) states that no atom in K2 directly depends on an atom from K1. If this does not hold, joining
K1 and K2 to achieve independence is not necessary as their ordering is fixed. Finally item (iii)
requires that some constraint must access the two SCCs (which thus must be a cross-constraint)
and appear in the evaluation in the bottom of the program computed so far.

Example 38. Reconsider the program P = { b; ← b, ∼a } in Example 34 with the incomparable
SCCs {a}, {b} and the cross-constraint← b, ∼a. The pair (K1, K2) for K1 = {a} and K2 =
{a, b} is related and also joinable.

Example 39. For P = {← b, ∼a; ← b, ∼c; d ← ∼a; c ← ∼e; b ← c}, we have SCC(P) =
{{a}, {b}, {c}, {d}, {e}}. We observe that ({c}, {b}) is a related, but not a joinable pair, because
({c}, {b}) satisfies conditions (i) and (iii), but not (ii). On the other hand, ({a}, {b}) is a joinable
pair.

Example 40. Reconsider the company program P in Example 26, and recall that the SCCs (of the
ground version) of P are all sets {a}, where a is a ground atom; for brevity, we abbreviate predicate
names to the first letter. In the supergraph SG(P), we then have the edges ({c(sam)}, {m(sam)}),
({e(sam)}, {m(sam)}), ({h(sam)}, {e(sam)}), and ({h(sam)}, {s(sam, sam)}).2 For K1 =
{c(sam)} and K2 = {h(sam)}, we obtain that (K1, K2) is a related and also joinable pair.
Similarly, ({c(sam)}, {e(sam)}) is a related and joinable pair; while ({h(sam)}, {e(sam)}) is
a related pair, it is not joinable (condition (ii) fails).

We now extend joinability from pairs to any number of SCCs.

Definition 13. Let P be a program. Then K1, ..., Km ∈ SCC(P) are joinable, if m = 2 and some
K ∈ SCC(P) exists such that (K1, K), (K,K2) ∈ JP(P), or otherwise Ki, Kj are joinable for
each i, j = 1, ...,m. We let JC (P) = {

⋃m
i=1Ki | K1, ..., Km ∈ SCC(P) are joinable} and call

MJC(P) = {J ∈ JC (P) | ∀J ′ ∈ JC (P) : J 6⊂ J ′}

the set of all maximal joined components (MJCs) of P .

Note that (K1, K2) ∈ JP(P) implies that K1 and K2 are joinable (choose K = K1).

Example 41 (continued). The program P = { b; ← b, ∼a } has the single joinable pair ({a}, {b})
and thus the single maximal joined component {a, b}.

Example 42 (continued). In Example 39, ({a}, {b}) is the only nontrivial joinable pair; hence
MJC(P) = {{a, b}, {c}, {d}, {e}}.

2Fixed builtin predicates like #int(·) can be disregarded in dependency analysis.

52

Example 43 (continued). For the company program P in Example 26, the nontrivial join-
able components are ({c(sam)}, {h(sam)}) and ({c(sam)}, {e(sam)}); hence MJC(P) =
{{e(sam), h(sam), c(sam)}, {m(sam)}, {s(sam)}}.

As easily seen,MJC(P) is a partitioning of At(P) that results from merging SCCs. We
define a dependency graph on them, called the MJC graph of P and denoted JG(P), that
is analogous to the supergraph on the SCCs. Formally, JG(P) = 〈VJG , EJG〉, where VJG =
MJC(P) and EJG = {(J, J ′) | J 6= J ′ ∈ MJC(P), ∃a ∈ J,∃b ∈ J ′, (a, b) ∈ EDG}. Note
that JG(P) is like SG(P) a directed acyclic graph, and hence admits a topological ordering; we
denote by O(JG(P)) the set of all such orderings. We thus define

Definition 14. Let P be a program and ≤ = (J1, ..., Jm) be a topological ordering of JG(P).
Then the splitting sequence induced by≤ is S≤ = (S1, ..., Sm), where S1 = J1 and Sk = Sk−1∪Jk,
for k = 2, . . . ,m.

The sequence S≤ is again indeed a splitting sequence, which we call a MJC-splitting
sequence. We obtain a result analogous to Theorem 6, but in presence of constraints.

Theorem 8. Let P be a program. For every ≤,≤′∈ O(JG(P)), we have SEQS≤(P) =
SEQS≤′ (P).

The proof of this result is similar to the one of Theorem 6, but uses the following lemmas.

Lemma 15. Let P be a program. Let MJC(P) = {J1, ..., Jm}. Let (J1, ..., Ji−1, Ji, Ji+1,
Ji+2, ..., Jm) and (J1, ..., Ji−1, Ji+1, Ji, Ji+2, ..., Jm) be two topological orderings. If we put
Sk = J1 ∪ ... ∪ Jk for k = 1, ...,m and S ′i = Si−1 ∪ Ji+1 then

bS′i(P \ bSi−1
(P)) = bSi+1

(P \ bSi(P)).

Proof . In general we know that bSi(P) \ bSi−1
(P) = bSi(P \ bSi−1

(P)). So that is sufficient to
prove that bSi+1

(P) \ bSi(P) = bS′i(P) \ bSi−1
(P).

Let r ∈ P . We assume that r ∈ bSi+1
(P) and r 6∈ bSi(P).

If r is not a constraint, then there exists some a ∈ H(r) such that a ∈ Ji+1. But because there
is no edge among Ji and Ji+1, we obtain that At(r) ∩ Ji = ∅. Therefore r ∈ bSi−1∪Ji+1

(P) and
clearly r 6∈ bSi−1

(P).
If r is a constraint then there exists a ∈ (B+(r) ∪ B−(r)) ∩ Ji+1. If, by contradiction, we

assume that there exists some b ∈ (B+(r) ∪ B−(r)) ∩ Ji, then there exist Ki, Ki+1 ∈ SCC(P)
such that Ki+1 ⊆ Ji+1 and Ki ⊆ Ji with r ∈ CKi,Ki+1

(P). But because there is no edge among
Ji and Ji+1, then there exists a topological ordering of strongly connected components of P that
are in Ji and Ji+1, such that Ki precedes Ki+1. So there exists (C1, ..., Cn) ∈ O(P) in which
Cl = Ki and Cl+1 = Ki+1 for some l = 1, ..., n− 1 and moreover At(r) ⊆ C1 ∪ ...∪Cl+1. Then
(Ki, Ki+1) is a joinable pair and therefore Ki, Ki+1 are joinable components, but this contradicts
the maximality of Ji and Ji+1. So that (B+(r) ∪B−(r)) ∩ Ji = ∅. That is r ∈ bSi−1∪Ji+1

(P) and
clearly r 6∈ bSi−1

(P).
Conversely we assume that r ∈ bSi−1∪Ci+1

(P) and r 6∈ bSi−1
(P). Then r ∈ bSi−1∪Ci+1

(P) ⊆
bSi+1

(P). Moreover r ∈ bSi−1∪Ci+1
(P) implies that At(r) ∩ Ci = ∅, and because r 6∈ bSi−1

(P),
then r 6∈ bSi(P). 2

53

Lemma 16. Let P be a program. Let MJC(P) = {J1, ..., Jm}. Let (J1, ..., Ji−1, Ji, Ji+1,
Ji+2, ..., Jm) and (J1, ..., Ji−1, Ji+1, Ji, Ji+2, ..., Jm) be two topological orderings. If we put
Sk = J1 ∪ ... ∪ Jk for k = 1, ...,m and S ′i = Si−1 ∪ Ji+1 then

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sm)(P) = SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sm)(P).

Proof . The proof is mutatis mutandis the same as that of Lemma 14, and one identifies bS′i(P \
bSi−1

(P)) and bSi+1
(P \ bSi(P)) using Lemma 15 instead of Lemma 11. 2

Similarly as SCC-models, we thus can define theMJC-models of a program.

Definition 15 (MJC-models). For any program P , theMJC-models of P are given as MMJC

(P) = SEQS≤(P) for an arbitrary topological ordering ≤ of JG(P).

Example 44 (continued). Reconsider P in Example 39. Then for the ordering ≤= ({a}, {d},
{e}, {c}, {b}) we obtain SEQS≤(P) = ∅, while for ≤′= ({e}, {c}, {b}, {a}, {d}) we obtain
SEQS≤′ (P) = {(bc, abc)}. On the other hand, JG(P) has the single topological ordering
≤= ({e}, {c}, {a, b}, {d}), and SEQS≤(P) = {(bc, abc)}; hence MMJC(P) = {(bc, abc)}.
Note that SEQ(P) = {(bc, abc), (d, de)}.

The problem in Subsection 3.3.2 disappears when we use the MJCs.

Example 45 (continued). For P = { b; ← b, ∼a } in Example 34, the graph JG(P) has the single
node {a, b} and SEQS(P) = {(b, ab)} for S = {a, b}. Thus the singleMJC-model of P is
(b, ab), as desired.

Example 46 (continued). For the company program P in Example 26, the join graph JG(P) has
the edges ({e(sam), h(sam), c(sam)}, {m(sam)}) and ({e(sam), h(sam), c(sam)}, {s(sam)}).
Thus two MJC-split sequences are possible, viz. S = (S1, S2, S3) where S1 = {m(sam)},
S2 = {m(sam), s(sam)}, and S3 = {m(sam), s(sam), e(sam), h(sam), c(sam)}; and
S ′ = (S ′1, S

′
2, S

′
3) where S ′1 = {s(sam)}, and S ′2 = S2, and S ′3 = S3. Both SEQS(P) and

SEQS′(P) have the single SEQ-model Iκ = {m(sam), e(sam), c(sam), Kh(sam)}, which is
then the singleMJC-model of P .

Note that trivially, theMJC- and the SCC-semantics coincide for constraint-free programs
(in fact, also in absence of cross-constraints). As for the properties (D1)–(D3), again from
Proposition 16 we obtain:

Corollary 9. TheMJC-models semantics, given by MMJC(P) for any program P , satisfies
(D1)-(D2), and if P is cross-constraint-free, also (D3).

Program coherence (D3) is not ensured byMJC-models, due to lean component merging
that fully preserves dependencies. To obtain a SEQ-model, blurring strict dependencies can be
necessary, where two aspects need to taken into account.

(A1) Inconsistency may still emerge from cross-constraints.

54

Example 47. Consider the program P = {← b, ∼a; b; b ← a}. It has the SCCs {a} and
{b}; as they are not joinable,MJC(P) = {{b}, {a}}. The singleMJC-splitting sequence is
({a}, {a, b}), which however does not admit a split SEQ-model; consequently, P has noMJC
model.

This can be remedied by suitably merging components that intersect the same constraint.
(A2) A second, orthogonal aspect is dependence.

Example 48. The program P = { ← b; b← ∼a } has noMJC-model, as theMJC-splitting
sequence S = ({a}, {a, b}) admits no split SEQ-model; the culprit is a, which does not occur in
the constraint.

Clearly, the problem extends to dependence via an (arbitrarily long) chain of rules; e.g. change
in Example 48 the rule b ← ∼a to b ← c1, c1 ← c2, . . . , cn−1 ← cn, cn ← ∼a. Again, this can
be remedied by merging components. Many merging policies to ensure (D3) are conceivable;
however, such a policy should ideally not dismiss structure unless needed, and it should be
efficiently computable; we defer a discussion to Chapter 6, as the complexity results in the next
chapter will provide useful insight for it.

Modularity of MJC-models. A naive generalization of the modularity property of SCC-
models in Theorem 7 fails, as it does not hold for arbitrary splitting sets. To wit, for P = {b; ←
b, ∼a} and the splitting set S = {a}, the modular computation (similar as in the right hand side of
(3.5)) yields no models, while MMJC(P) = {(b, ba)}. However, if we properly restrict S, then
the generalization holds.

Theorem 9. Let S be a splitting set of a program P such that S =
⋃
M for someM⊆MJC(P).

Then
MMJC(P) = mc

(⋃
(I,J)∈MMJC(bS(P))

MMJC(P S(I, J))
)
. (3.10)

Proof. The proof is very similar to the one of Theorem 7: under the premise, the MJCs which
form S respectively the SCCs constituting them are in the initial segment of some topologic
ordering, like the SCCs in the proof of Theorem 7. Thus the same line of argumentation applies.
2

Thus, the same evaluation strategy as for SCC-models can be applied. Furthermore, we have
an analogue to Proposition 18. We say that a split-sequence S = (S1, . . . , Sn) of a program P is
MJC-compatible, if for every J ∈MJC(P) and 1 ≤ i ≤ n, either J ⊆ Si or J ∩Si = ∅ holds;
intuitively, no maximal joint component of P is split across different layers of S. Then,

Proposition 19. Let S be anMJC-compatible splitting sequence of a program P . Then

MMJC(P) ⊆ SEQS(P) and MMJC(P) =
⋂

S∈MSQ(P)

SEQS(P),

whereMSQ(P) is the set of allMJC-compatible splitting sequences of P .

55

M SCC(P)

SEQS(P)

SEQ(P)

MMJC(P)EQ(P)AS(P)

SST (P)

⊆ ⊆

⊆⊆⊆

⊆
=

⊆

Figure 3.1: Inclusion between different semantics, where S is an arbitrary split sequence. M SCC(P) applies
only to cross-constraint free P and coincides with MMJC(P) on them; M SCC(P) (resp., MMJC(P))
coincides with SEQS for any S induced by a topological sort of the strongly connected components of P
(resp., the maximal joined components of P). MMJC(P) is included in SEQS(P) forMJC-compatible
S (dashed symbol). All semantics coincide if EQ(P) 6= ∅.

Proof. The proof is analogous to the one of Proposition 18. Similarly, for everyMJC-compatible
split sequence S = (S1, . . . , Sn), n ≥ 1, anMJC-split sequence S ′≤ = (S ′1, . . . , S

′
n) induced

by some topological ordering ≤ of JG(P) exists such that Si = S ′ki , for some 1 ≤ ki ≤ n′, for
every 1 ≤ i ≤ n; we can obtain S ′ by refining Si \ Si−1, 1 ≤ i ≤ n where S0 = ∅ along maximal
joined components in JP(P) to Si,1, . . . , Si,ji such that Si,ji = Si. As MMJC(P) = SEQS′(P),
MMJC(P) ⊆ SEQS(P) follows from Theorem 5, and MMJC(P) =

⋂
S∈MSQ(P) SEQ

S(P)

follows as S ′ ∈MSQ(P). 2

3.4 Summary of model relationships
At the end of this chapter, we summarize the relationships between the various semantics intro-
duced in this thesis. Figure 3.1 shows the inclusion relation between different notions of models,
viewed as HT-models respectively bi-models. Notably all inclusions collapse if the program has
equilibrium models (EQ(P) 6= ∅); otherwise, the semi-stable (SST) models are in general incom-
parable to the semi-equilibrium (SEQ) models and any of its refinements, as can be seen e.g. from
Example 24. The SCC-models are only defined for programs without cross-constraints; each of
them is a split SEQ-model with respect to an arbitrary splitting sequence; in fact, the SCC-models
are exactly the HT-models which are split models under every splitting sequence. Furthermore,
they coincide with theMJC-models, which for programs with cross-constraints may not all be
split SEQ-models with respect to an arbitrary splitting sequence. However, the inclusion holds for
MJC-compatible splitting sequences (dashed symbol), and theMJC-models are exactly the
HT-models which are split models under everyMJC-compatible splitting sequence.

56

Chapter 4

Computational Complexity

In this chapter, we turn to the computational complexity of the paracoherent model semantics that
we have considered in the previous sections. In this, we deal with the SEQ-model and the split
SEQ-model semantics in detail, while we treat the SST -model semantics more in passing; the
reason is that the complexity of SST -model semantics has been elucidated in more detail in [21],
while the SEQ-model semantics has been only briefly considered there.

Regarding SEQ-model semantics, we study the following major reasoning tasks:

(MCH) Given a program P and an HT-interpretation (X, Y), decide whether (X, Y)∈ SEQ(P).

(INF) Given a program P , an atom a and v ∈ {t, f ,bt}, decide whether a is a brave [resp.
cautious] SEQ-consequence of P with value v, denoted P |=b,v

SEQ a [resp. P |=c,v
SEQ a], i.e.,

a has value v in some (every) (X, Y) ∈ SEQ(P) value v.

(COH) Given a program P , decide whether SEQ(P) 6= ∅.

The generalizations of these problems to split SEQ-semantics, where in addition a split
sequence S is part of the input and SEQ is replaced with SEQS , are denoted with MCH-S,
INF-S, and COH-S, respectively. We consider all problems for several classes of programs, viz.
normal, disjunctive, stratified, and headcycle-free programs1 and the split SEQ-models problems
also for SCC- andMJC-splitting sequences S,

The attentive reader might ask why positive programs are not considered here; they are of
less interest, as the (split sequence) SEQ-models coincide with the minimal models of P (see
Corollaries 2 and 4). Furthermore, we note that hcf-programs are under SEQ-semantics sensitive
to body shifts; e.g., P = {a ∨ b; a ← ∼a; b ← ∼b} has the SEQ-models (a, ab) and (b, ab),
while its shift P→ = {a← ∼b; b← ∼a; a← ∼a; b← ∼b} has the single SEQ-model (∅, ab).
Thus results for hcf-programs do not immediately carry over to normal program.

1Note that [21] did not consider stratified and hcf-programs.

57

4.1 Overview of complexity results
Our complexity results are summarized in Tables 4.1 and 4.2. They show that SEQ-model
semantics is with respect to model checking (MCH) and inference (INF) one level higher up in the
polynomial hierarchy than the EQ-model (i.e., answer set) semantics; this is not surprising as the
characterization of a SEQ-model in Theorem 2 involves besides h-minimality also gap-minimality,
while the EQ-model definition involves only h-minimality. As gap-minimality is a global property
and has to be checked across all h-minimal HT-models of a program, intuitively an (additional)
quantifier is needed to express that no h-minimal HT-model with smaller gap exists; in particular,
this causes SEQ-model checking for normal programs to become intractable. The additional
quantifier is then also needed for brave and cautious reasoning, where we need to find a suitable
SEQ-model that establishes respectively refutes the query atom, with one exception (this will be
discussed below). For the coherence problem, however, the complexity is different compared to
the EQ-models semantics as it resorts to classical coherence, and thus to SAT; for some programs
it is lower (e.g., for programs without constraints, where EQ-model existence is NP-complete resp.
Σp

2-complete, while COH is polynomial), while for others it is higher (e.g., for normal stratified
programs with constraints COH is NP-complete, while EQ-model existence is polynomial).

The results in Table 4.2 show that split SEQ-models have the same complexity as SEQ-models
(i.e., structural information does not affect complexity) except on Problem COH, which is harder.
Problems MCH and INF do not become harder, as MCH reduces to polynomially many MCH
instances without splitting; the hardness results for arbitrary splitting sequences are inherited from
respective results without splitting.

The reason for the complexity increase of COH is that coherence (D3) no longer holds for split
SEQ-model semantics. In particular, this means that imposing a structural condition on building
SEQ-models along SCCs may eliminate such models. The increase in complexity has a further
important implication. Namely, that under usual complexity hypotheses, no polynomial-time
method µ exists that associates with P a splitting sequence S = µ(P), using a polynomial-time
checkable criterion on P , such that (i) µ respects structure and does not become trivial, i.e.,
µ(P) 6= (At(P)) if SEQS(P) 6= ∅ for some S 6= (At(P)), and (ii) µ preserves coherence, i.e.,
SEQ(P) 6= ∅ implies SEQS(P) 6= ∅. This negative result holds even if the method µ is allowed
to be nondeterministic, i.e., can for example “guess” a suitable splitting sequence S for P . In
other words, the price for ensuring coherence of a splitting sequence with tractable (or NP) effort
is to merge sometimes more components than necessary.

For SCC andMJC splitting sequences, we obtain analogous results; informally, the problems
do not get easier as splitting (which is a purely syntactic notion) can be blocked by irrelevant
rules.

For semi-stable models, similar results hold as for SEQ-models in Table 4.1. The reason is
that model checking for semi-stable models amounts, by the characterization of Theorem 1, to a
test that is similar to the one for SEQ-models according to Theorem 2: testing (I, J) |=β P is
like testing (I, J) |= P feasible in polynomial time, and the conditions (i) and (ii) are analog to
the conditions (i′) and (ii′). Similar arguments as for SEQ-models establish then the membership
results for SST -models. The matching hardness results are derived, however, using different
reductions, which can be found in [21]. Noticeably, the proofs there establish hardness also under

58

Table 4.1: Complexity of SEQ-models (completeness results). The same results hold for SST models.

Problem / Program P : norm., strat. norm., hcf disj. strat., disj.
(MCH) Model checking: (X, Y)∈SEQ(P)? coNP-c Πp

2-c

(INF) Brave reasoning: P |=b,v
SEQ a? Σp

2-c Σp
3-c

Cautious reasoning: P |=c,v
SEQ a? Πp

2-c Πp
3-c

(COH) Existence: SEQ(P) 6= ∅? NP-c NP-c

Table 4.2: Complexity of split SEQ-models (completeness results). The same results hold for canonical
models (SCC-,MJC-split sequences S).

Problem / Program P : norm., strat. norm., hcf disj. strat., disj.

(MCH-S) Model checking: (X, Y)∈SEQS(P)? coNP-c Πp
2-c

(INF-S) Brave reasoning: P |=b,v

SEQS a? Σp
2-c Σp

3-c

Cautious reasoning: P |=c,v

SEQS a? Πp
2-c Πp

3-c

(COH-S) Existence: SEQS(P) 6= ∅ ? Σp
2-c Σp

3-c

the restrictions to hcf, stratified normal, and disjunctive stratified programs; for hcf-programs,
membership of model checking in coNP follows from the fact that deciding item (i) in Theorem 1
is feasible in polynomial time: as easily seen, this test amounts to deciding whether I ∈ MM (P J);
as P J is hcf and minimal model checking for hcf programs is polynomial [9], the tractability
follows.

4.2 Derivation of the results
In the following, we formally state and derive the results in Tables 4.1 and 4.2. We exploit that in
most cases the split-variant Π-S of a problem Π features its full complexity already for the trivial
split sequence S = (At(P)); thus Π-S and Π have the same complexity.

Theorem 10. Given a program P , a splitting sequence S and an HT-interpretation (X, Y) recog-
nizing if (X, Y) ∈ SEQS(P) is

(i) coNP-complete for each of normal, stratified, and headcycle free P , and

(ii) Πp
2-complete for disjunctive and stratified disjunctive P .

In all cases, coNP- resp. Πp
2-hardness holds for S = (Σ), i.e., SEQ-model semantics.

Proof. The membership parts for MCH can be derived as follows. Given an HT-interpretation
(X, Y) of a program P , we can verify by Theorem 2 whether it is a SEQ-model of P by checking
that (X, Y) |= P , which obviously is feasible in polynomial time, and proving h-minimality (item

59

(i′)) and gap-minimality (item (ii′)) of (X, Y); as for (i′), a guess for a HT-model (X ′, Y) of P
such that X ′ ⊂ X can be verified in polynomial time; thus h-minimality can be tested in coNP.
Condition (ii′) on top can be decided using an oracle for Πp

2 that no h-minimal model (X ′, Y ′)
with gap(X ′, Y ′) ⊂ gap(X, Y) exists; this establishes membership in Πp

2. In case that P is hcf or
normal, deciding h-minimality is polynomial, since (i′) amounts to X ∈ MM (P Y); if P is hcf
then also P Y is hcf, and minimal model checking for such programs is polynomial [9]; if P is
normal, then P Y is Horn and minimal model checking is well-known to be polynomial.

As for split SEQ-models, by Theorem 5 deciding whether (X, Y) is a SEQ-model of P w.r.t.
S = (S1, ..., Sn) reduces to checking whether (X, Y) and all (X, Y)|Sk are SEQ-models of P
resp. bSk(Pk−1), for k = 1, . . . , n. Each program bSk(Pk−1) is normal (stratified normal, hcf,
stratified disjunctive) if P has this property. Hence the already established membership results for
SEQ-models generalize to the case of splitting sequences.

The matching hardness results for item (ii) and SEQ-models are proved in Subsection 4.2.1;
for stratified normal programs, which covers also normal and hfc-programs, we give a sim-
ple reduction from minimal model checking of positive programs P (which is well-known
to be coNP-complete, cf. [20]). For any rule r, let cs(r) be its constraint rewriting, i.e.,
cs(r) = ← B+(r), ∼B−(r), ∼H(r), and let cs(P) = {cs(r) | r ∈ P}. Then M ∈ MM (P)
iff (∅,M) ∈ SEQ(cs(P)). All hardness results trivially extend to arbitrary splitting sequences,
which establishes the result. 2

Theorem 11. Given a program P , a splitting sequence S, an atom a and a value v ∈ {t, f ,bt},
deciding whether

(i) P |=b,v

SEQS a is Σp
2-complete for each of normal, stratified normal, and hcf P and Σp

3-complete
for disjunctive and stratified disjunctive P ;

(ii) P |=c,v

SEQS a is Πp
2-complete for each of normal, normal stratified, and hcf P and Πp

3-complete
for disjunctive and stratified disjunctive P .

In all cases, Σp
2/Πp

2- resp. Σp
3/Πp

3-hardness holds for S = (Σ), i.e., SEQ-model semantics.

Proof. Membership of brave (resp. cautious) reasoning from SEQ-models w.r.t. S in Σp
3 (resp.

Πp
3) for disjunctive programs follows from Theorem 10, and similarly membership for normal,

normal stratified and hcf-programs in Σp
2 [resp. Πp

2]. The Σp
3/Πp

3-hardness for brave [resp. cautious]
reasoning from SEQ-models from stratified disjunctive programs is proven in Subsection 4.2.1
resp. 4.2.2. The Σp

2/Π
p
2-hardness for stratified normal programs (and thus for normal and hcf-

programs) follows by a reduction from brave (resp. cautious) reasoning from positive disjunctive
programs P , which is Σp

2- resp. Πp
2-hard (see Subsection 4.2.1). For every such P and atom a,

we have that a ∈M for some M ∈ MM (P) iff cs(P) |=b,bt
S a (resp. P |=f

c a iff cs(P) |=c,f
SEQ a);

indeed, the SEQ-models of P and cs(P) are the HT-models (M,M) resp. (∅,M), where M ∈
MM (P). 2

Notably brave reasoning has the same complexity in all cases, if we fix the truth value v
arbitrarily, already for S = At(P) (i.e., for SEQ-models). For cautious reasoning, this similarly
holds, except that for v = bt and S = At(P), the complexity drops to coNP resp. ΠP

2 (see
Subsection 4.2.2).

60

Theorem 12. Given a program P and a splitting sequence S, deciding whether SEQS(P) 6= ∅ is

(i) Σp
2-complete for each of normal, stratified normal, and hcf P ; and

(ii) Σp
3-complete for stratified disjunctive and disjunctive P ; and

(iii) NP-complete for all program classes considered, if S = (Σ) (i.e., for SEQ in place of
SEQS).

Proof. The membership parts of (i) and (ii) follow easily from the results for MCH in Theorem 10,
as a candidate SEQ-model of P w.r.t. S can be guessed and checked with an NP resp. Σp

2 oracle
in polynomial time. The hardness parts of (i) and (ii) can be obtained via a reduction from brave
reasoning P |=v

b a in Problem INF. The Σp
3-hard (resp. Σp

2-hard) instances are of a form such that
P |=v

b a iff some SEQ-model (X, Y) of P exists with a ∈ Y . Let b be a fresh atom and define
then P ′ = P ∪ {← b; b ← ∼a}. Then P ′ has a SEQ-model w.r.t. S = (At(P), At(P ′)) iff
P |=v

b a; this proves the Σp
3- (resp. Σp

2-) hardness.
The result in (iii) is an immediate consequence of the NP-completeness of SAT (satisfiability

of a clause set) in propositional logic and the classical coherence property (D3) of SEQ-model
semantics. 2

Canonical split SEQ-semantics. For SCC- andMJC-splitting sequences, we have

Theorem 13. The results on Problems MCH, INF and COH in Table 4.2 continue to hold if S is
restricted to SCC- (resp.MJC-) splitting sequences.

Proof. Indeed, the respective hardness proofs are extended to this setting. For a program P , let
p be a fresh atom and let Pcl = P ∪ {a← a, p; p← p, a | a ∈ Σ}. Clearly, P and Pcl have the
same SEQ-models, and Pcl has the single SCC Σ′ = Σ ∪ {p}. Exploiting this, the programs for
MCH and INF have the single splitting sequence S = (Σ′) and those for Problem COH have
S ′ = (Σ′,Σ′ ∪ {b}); these are SCC- andMJC-splitting sequences. Furthermore, from S ′ we
conclude that no method µ as in Section 4.1 exists (under usual complexity hypotheses). 2

4.2.1 Hardness results for semi-equilibrium semantics
Several results about Problem MCH and INF for disjunctive program under semi-equilibrium
model semantics (S = (At(P))) can be shown using a reduction from deciding the validity of a
quantified Boolean formula (QBF) of the form

Φ = ∃Z∀Y ∃X.E(X, Y, Z)

where X = {x1 . . . xr}, Y = {y1 . . . ys} and Z = {z1 . . . zt} We may assume without loss of
generality that E(X, Y, Z) =

∧m
i=1(li1 ∨ li2 ∨ li3) where each lij is a literal over X ∪ Y ∪ Z (i.e.,

3-CNF form). We define a program P0 with the following rules:

1. p← l∗i1, l
∗
i2, l
∗
i3, where l∗ij =

{
v, if lij = v
v, if lij = ¬v and v ∈ X ∪ Y ∪ Z;

61

2. x← p and x← p for each x ∈ X;

3. y ∨ y for each y ∈ Y ;

4. x ∨ x for each x ∈ X .

We assume for the moment that Z is void (i.e., Z = ∅); then one can show the following property
[20]:

Some M ∈ MM (P0) exists s.t. p ∈M iff ¬(∀Y ∃X.E(X, Y)) is true. (4.1)

As P0 is positive, SEQ(P0) = {(M,M) | M ∈ MM (P0)}; it follows from this that brave
reasoning from the SEQ-models of a positive disjunctive program, i.e., deciding P |=b,t

SEQ p, is
ΣP

2 -hard; furthermore, cautious reasoning P |=c,f
SEQ p, is ΠP

2 -hard.
Now we construct a new program P1 that is obtained by adding a fresh atom q in each rule

head of P0 and the following rules:

5. p′ ← p and

6. ← ∼p′.

It is easy to see that {q} is a minimal model of P1. Now the following property holds:

({q} , {q, p′}) ∈ SEQ(P1) if and only if ∀Y ∃X.E(X, Y) is true. (4.2)

Clearly, the program is stratified; consequently, Problem MCH under SEQ-semantics is ΠP
2 -hard

for disjunctive and stratified disjunctive programs, which proves the hardness part of item (ii) in
Theorem 10.

Eventually, we consider the target case in which Z 6= ∅. We construct a final program P given
by the union of P1 with the following rules:

7. z ∨ z for each z ∈ Z and

8. ← z, ∼bz and← z, ∼bz for each z ∈ Z where bz and bz are fresh atoms.

Intuitively, the effect of these rules is that in each SEQ-model (I, J), either bz or bz but not both
must be contained in gap(I, J), for each z ∈ Z; this serves to emulate quantification over Z. For
each Z ′ ⊆ Z, the HT-interpretation (IZ , JZ) = ({bz | z ∈ Z ′} ∪ {q}, {q, p′} ∪ {bz | z ∈ Z \Z ′})
is a HT-model of P ; it will be a SEQ-model of P precisely if ∀Y ∃X.E(X, Y, Z = Z ′) is true.
Formally, one can show:

Some (I, J) ∈ SEQ(P) exists s.t. p′ ∈ J \ I iff Φ = ∃Z∀Y ∃X.E(X, Y, Z) is true. (4.3)

Note that the program P is stratified; it follows that brave reasoning under SEQ-semantics is
ΣP

3 -hard for disjunctive and stratified disjunctive programs; this proves the respective hardness
parts of item (i) in Theorem 11. For cautious reasoning from disjunctive and stratified disjunctive
programs under SEQ-semantics, ΠP

3 -hardness of item (ii) in Theorem 11 is shown by a slight
extension of the reduction, which is carried out in Subsection 4.2.2 to derive this result for fixed
truth value v.

62

4.2.2 Hardness results for Problem INF with fixed truth value
The construction in Section 4.2 for normal, stratified normal and hcf programs uses bt, but in
no SEQ-model any atom is true (all rules are constraints); thus we can add b← ∼a and ask for b
about the truth value f , and add further c← ∼b and ask for c about the truth value t.

Brave reasoning. For disjunctive programs, we consider the ΣP
3 -hardness proof for brave

reasoning under SEQ-semantics in Section 4.2.1. Then for the program P constructed from the
QBF Φ and the particular atom q, we have that P |=b,t

SEQ q iff the QBF Φ evaluates to true, and
P |=b,t

SEQ q is equivalent to P |=b,bt
SEQ p

′. Furthermore, q has never value bt in the SEQ-models of
the program P ; if we let P ′ = P ∪ {q′ ← ∼q}, then P ′ |=b,f

SEQ q
′ iff P |=b,t

SEQ q. So for each fixed
value v, brave inference from the SEQ-models of a (stratified) disjunctive program is ΣP

3 -hard;
this trivially generalizes to SEQ-models relative to arbitrary splitting sequences S.

Cautious reasoning. For fixed truth value v = bt, the cautious inference problem is for
SEQ-models easier than for a truth value given in the input:

Proposition 20. Given a program P and an atom a, deciding whether P |=c,bt
SEQ a is (i) in coNP

for each of normal, normal stratified, and hcf P and (ii) in Πp
2 for disjunctive P .

This holds because in this case, P 6|=c,bt
SEQ a iff some h-minimal HT-model (X, Y) of P exists

such that a /∈ Y \X; such a h-minimal model can be guessed and verified in polynomial time in
case (i) resp. in polynomial time with an NP oracle in case (ii).

For the other truth values, the construction in Section 4.2 for normal, stratified normal and hcf
programs uses truth value f for cautious reasoning, and as in no SEQ-model any atom is true, we
can add b← ∼a and ask whether b has cautiously value t; if we add another split layer with a rule
b← ∼b, ∼a (such that S = (S1, S2) and b ∈ S2 \ S1), then we can ask whether b has cautiously
value bt.

Regarding disjunctive programs, we had above in the programs P and P ′ for brave reasoning
with fixed truth values t and f query atoms q resp. q′ whose truth values are opposite in the
SEQ-models of P ′ and always true or false; so we immediately obtain the ΠP

3 -hardness for
cautious reasoning. If we add another split layer with b← ∼b, p similarly as above, then we can
ask whether b has cautiously value bt.

4.3 Constructing and recognizing canonical splitting sequences
It is well-known that SCC(P) and SG(P) are efficiently computable from P (using Tarjan’s [66]
algorithm even in linear time); hence, it is not hard to see that one can recognize a SCC-splitting
sequence S in polynomial time, and that every such S can be (nondeterministically) generated in
polynomial time (in fact, in linear time). We obtain similar tractability results forMJC(P) and
MJC-splitting sequences. To this end, we first note the following useful proposition.

63

Proposition 21. Let P be a program and let K1, K2 ∈ SCC(P). Then K1 and K2 satisfy (i) and
(ii) of Definition 12 iff they are disconnected in SG(P), i.e., no path from K1 to K2 and vice
versa exists.

Proof. Let P be a program. First we prove that conditions (i) and (ii) in Definition 12 imply
that there is no path from K1 to K2 and vice versa. By contradiction, first suppose that there
is a path from K1 to K2, i.e., there exist K ′1, . . . , K

′
m ∈ SCC(P) such that such that K1 =

K ′1, K
′
m = K2 and (K ′i, K

′
i+1) ∈ ESG for 1 ≤ i < m. As in each topological ordering

(C1, . . . , Cn) ∈ O(SG(P)) K ′i+1 must precede K ′i, for 1 ≤ i < m, it follows that K2 precedes
K1, which contradicts condition (i). Otherwise, suppose that there exists some path from K2 to
K1. Let K ′1, . . . , K

′
m ∈ SCC(P) be an arbitrary such path, i.e., K ′1 = K2, (K ′i, K

′
i+1) ∈ ESG for

1 ≤ i < m and K ′m = K1. By condition (ii) we know that (K2, K1) 6∈ ESG . Hence m > 2 and
K ′m−1 6= K1, K ′m−1 6= K2; thus in every topological ordering (C1, . . . , Cn) ∈ O(SG(P)), K1

precedes K ′m−i and K ′m−i precedes K2, which contradicts condition (i).
Now we prove that the disconnectedness hypothesis implies conditions (i) and (ii). As there

is no path from K2 to K1, condition (ii) trivially holds. Moreover for each topological ordering
of SCC(P) there exist maximal (possibly empty) sets Ai ⊆ SCC(P) such that for each K ′i ∈ Ai,
K ′i precedes Ki, i = 1, 2. Because there is no path from K1 to K2, it follows that K2 6∈ A1 and
because there is no path from K2 to K1, it follows that K1 6∈ A2. Therefore we can construct a
topological ordering in which all strongly connected components in A1 ∪ A2 precede K1 (this
is possible because if there exists some K ∈ A2 such that K1 precedes K, then K1 precedes K
and K precedes K2; this contradicts the hypothesis that no path from K2 to K1 exists), and K1

precedes immediately K2, i.e., condition (i) holds (this is possible because there is no K ∈ A1

such that K2 precedes K). 2

Based on this proposition, we can characterize the joinable pairs that are witnessed by a
constraint from r as follows. As usual, let us call a SCC Ci in a set C ⊆ SCC(P) of SCCs
maximal, if no Cj in C exists that is comparable to Ci in SG(P) and ordered after Ci, i.e., every
topological ordering of SG(P) is of the form (. . . , Cj, . . . , Ci, . . .).

Corollary 10. Given a constraint r ∈ P , let C1, . . . , Cl be the maximal SCCs C of P in SG(P)
such that At(r) ∩ C 6= ∅. Then (K1, K2) where K1 6= K2 is a joinable pair of P witnessed by r
(i.e., satisfies (iii) for r) iff K1, K2 ∈ {C1, . . . , Cl}.

Proof. (⇒) If (K1, K2) is a joinable pair witnessed by r, then by Proposition 21 K1 and K2 are
disconnected in SG(P); i.e., they are incomparable in the partial order on SCC(P) induced by
SG(P). By condition (iii), At(r) ⊆ C1 ∪ · · · ∪ Cs+1 holds with Cs = K1 and Cs+1 = K2; as
every SCC C 6= K1, K2 such that At(r) ∩ C 6= ∅ occurs in C1, . . . , Cs−1, no path in SG(P)
from C can reach K1 or K2; consequently, K1 and K2 are maximal SCCs in SG(P) such that
At(r) ∩ C 6= ∅

(⇐) Suppose without loss of generality that K1 = C1 and K2 = C2. Then, K1 and K2

must be disconnected; hence by Proposition 21, K1 and K2 satisfy condition (i) and (ii) of
a joinable pair. Furthermore, as all Ci, Cj , 1 ≤ i 6= j ≤ l, must be pairwise disconnected,
by extending the argument in the proof of Proposition 21, we can build from a topological

64

ordering ≤= (C1, . . . , Cn) of SG(P) another topological ordering of SG(P) in which all
SCCs in A =

⋃l
i=1Ai ∪ {C3, . . . , Cl} precede K1 and K1 immediately precedes K2, where

Ai = {K ∈ SCC(P) | K < Ci}; this is possible since no K ∈ A exists such that K2 precedes K.
As A ∪ {C1, C2} must contain all SCCs C such that At(r) ∩ C 6= ∅, it follows that condition (iii)
holds; hence (K1, K2) is a joinable pair. 2

By exploiting this characterization, we can constructMJC(P) and furthermore JG(P) by
the following steps:

1. compute DG(P), SCC(P) and SG(P);

2. for every constraint r ∈ P , determine all maximal Cr
1 , . . . , C

r
l in SCC(P) such that Cr

i ∩
At(r) 6= ∅;

3. let Cr = Cr
1 ∪ · · · ∪ Cr

l , and set MC := {Cr | r ∈ P,H(r) = ∅} and NMI := SCC(P) \
{Cr

1 , . . . , C
r
l | r ∈ P,H(r) = ∅};

4. merge J1, J2 ∈ MC such that J1 ∩ J2 6= ∅ (i.e., set MC := (MC \ {J1, J2}) ∪ {J1 ∪ J2})
until no longer possible;

5. set MJC(P) := MC ∪ NMI and JG(P) = (VJG , EJG) where VJG = MJC(P) and
EJG = {(J1, J2) | J1 6= J2 ∈MJC(P),∃a ∈ J1, ∃b ∈ J2, (a, b) ∈ EDG}.

Example 49. Reconsider the program P from Example 39, which contains the constraints
r1: ← b, ∼a and r2: ← b, ∼c. We recall that SCC(P) = {{a}, {b}, {c}, {d}, {e}}. In Step 2
of the procedure, the maximal SCCs of r1 are {a}, {b} and the single maximal one of r2 is {b};
thus in Step 3, we have MC = {{a, b}, {b}} and NMI = {{c}, {d}, {e}}. In Step 4, {a, b}
and {b} are merged, resulting in MC = {{a, b}}. Finally, in Step 5 MJC(P) is assigned
MC ∪ NMI = {{a, b}, {c}, {d}, {e}}; this is the correct result.

The following result states the correctness of the procedure and that it can be implemented to
run in bilinear time.

Theorem 14. Given a program P , MJC(P) and JG(P) are computable in time O(cs·‖P‖),
where cs = |{r ∈ P | H(r) = ∅}| is the number of constraints in P and ‖P‖ is the size of P .

Proof. By Corollary 10, the joinable pairs (K1, K2), K1 6= K2 witnessed by constraint r are
given by all Cr

i , C
r
j from Cr

1 , . . . , C
r
l computed in Step 2, 1 ≤ i 6= j ≤ l; hence, this collection is

joinable, if l > 1; if l = 1, K1 = Cr
1 , K2 = Cr

1 is trivially joinable. Thus, in Step 3 Cr ∈ JC (P)
holds. Furthermore, merging J1 and J2 in Step 4 results in a set J1∪J2 ∈ JC (P): by an inductive
argument, all Cri

ji
that have been merged into Ji, i = 1, 2 are joinable; thus if J1 ∩ J2 6= ∅,

then some J ∈ J1 ∩ J2 exists such that all (Cr1
j1
, C) and (C,Cr2

j2
) are joinable pairs; hence all

Cr
j merged into J1 ∪ J2 are joinable and J1 ∪ J2 ∈ JC (P). Finally, suppose that after Step 4
MJC(P) 6= MC ∪ (SCC(P) \ NMI); by construction of MC and the maximality condition
onMJC(P), it follows that some J ′ ∈ MJC(P) and J ∈ MC ∪ (SCC(P) \ NMI exist such
that J ⊂ J ′. From Corollary 10, it follows that all SCCs C merged into J ′ are joinable and that

65

J ∈ MC must hold; otherwise, J is a non-joinable SCC, which implies J = J ′. Furthermore,
some SCC Cr

j merged into J must be joinable to some SCC C merged into J ′ but not into J ;
as the joinable pair (Cr

j , C) is witnessed by some constraint r′, Cr
j , C were merged into some

J ′′inMC ; but this means J ∩ J ′′ 6= ∅, and hence Step 4 for MC would not have been completed,
a contradiction. ThusMJC(P) = MC ∪NMI holds. The correctness of the constructed JG(P)
is then obvious.

Regarding the time complexity, we note the following:
In Step 1, DG(P), SCC(P) and SG(P) are constructable in linear time;
We can compute the SCCs Cr

1 , . . . , C
r
l efficiently, e.g. by using a stratified program P r with

the following rules:

1. rj ← , for each Cj ∈ VSG such that Cj ∩ At(r) 6= ∅;

2. rj ← ri and n_max_rj ← ri, for each (Ci, Cj) ∈ ESG ;

3. max_rj ← rj, ∼n_max_rj , for each Ci ∈ VSG .

Informally, the atom rj encodes reachability of the component Cj in the SCC-graph from a
component that contains atoms from the constraint r; max_rj and n_max_rj are used to single
out the topmost (maximal) reached components using double negation. The single answer set of
Pr yields then the desired maximal components Cr

1 , . . . , C
r
l ; as Pr can be built and evaluated in

linear time, Step 2 is feasible in linear time for each r.
Step 3 is clearly feasible in linear time; also Step 4 (iterative merging the J1, J2) is feasible (if

properly done) in linear time, and similarly Step 5 givenMJC(P) and SG(P).
Thus in total,MJC(P) and JG(P) are computable in time O(cs·‖P‖), which proves the

result. 2

In particular, the algorithm runs in linear time if the number of constraints is bounded by a
constant. It remains as an interesting open issue whether the same time bound is feasible without
this constraint.

66

Chapter 5

Computation and Implementation

In this chapter, we consider different algorithms to compute semi-stable and semi-equilibrium
models, implementing and integrating them into an answer set building framework. Then, we
report results of experimental activity conducted on benchmarks from ASP competitions [17],
identifying the more efficient algorithm.

In the following, we refer to semi-stable models or semi-equilibrium models as paracoherent
answer sets. Moreover, we consider the computation of one paracoherent answer set, which is
a functional problem. From Chapter 4, it is clear that this task is in FΣP

3 , and actually in FΘP
3

(functional polynomial time with a logarithmic number of calls to a ΣP
2 -complete oracle), because

for computing one paracoherent answer set it is sufficient to solve a cardinality-optimization
problem.

5.1 Computation
In this section, we propose different algorithms to compute one paracoherent answer set. The
algorithms take as input a program Π = P χ ∪ Pg, where P χ is a generic epistemic transformation
of the ASP program P and Pg is the following set of rules capturing the notion of gap:

gap(Ka)← Ka, ∼a; ∀a ∈ At(P) (5.1)

Proposition 22. Let gap(I) = {gap(Ka) | gap(Ka) ∈ I}, for a set I of atoms. An answer set
M of Π is a paracoherent answer set if, and only if, there exists no answer set M1 of Π such that
gap(M1) ⊂ gap(M).

Example 50. Consider the program P = {b ← ∼a; c ← ∼b; a ← c; d ← ∼d}. Its epistemic
κ-transformation is P κ = {λ1 ∨ Ka; b ← λ1; ← a, λ1; λ1 ← b, λ1; λ2 ∨ Kb; c ← λ2; ←
b, λ2; λ2 ← c, λ2; a ← c; λ3 ∨ Kd; d ← λ3; ← d, λ3; λ3 ← d, λ3; }, which has the answer
sets M1 = {Ka,Kb,Kd}, M2 = {λ1, b,Kb,Kd}, and M3 = {Ka, λ2, a, c,Kd}. Then, Π is the
union of P κ with the following set of rules:

gap(Ka)← Ka, ∼a; gap(Kb)← Kb, ∼b;
gap(Kc)← Kc, ∼c; gap(Kd)← Kd, ∼d;

67

Algorithm 1: Filtering
1 M := nextAnswerSet(Π,⊥); Mw := M ;
2 Mw := nextAnswerSet(Π,Mw);
3 if Mw =⊥ then return M ;
4 if gap(Mw) ⊂ gap(M) then M := Mw;
5 goto 2;

Algorithm 2: Guess&Check
1 M =⊥;
2 M = nextAnswerSet(Π,M);
3 Mw = nextAnswerSet(Π ∪ ΠM ,⊥);
4 if Mw =⊥ then return M ;
5 else goto 2;

which admits the answer sets M ′
1 = M1 ∪ {gap(Ka), gap(Kb), gap(Kd)}, M ′

2 = M2 ∪
{gap(Kd)}, and M ′

3 = M3 ∪ {gap(Kd)}. Then, gap(M ′
1) = {gap(Ka), gap(Kb), gap(Kd)},

gap(M ′
2) = gap(M ′

3) = {gap(Kd)}, thus M ′
2 and M ′

3 are paracoherent answer sets.

The output of the algorithms is one semi-stable model of P (if χ = κ) or one semi-equilibrium
model of P (if χ = HT). In the following, without loss of generality we assume that Π admits
at least one paracoherent answer set. In fact, by properties of semi-stable and semi-equilibrium
models, this kind of programs admit always a paracoherent answer set.

Moreover, in order to ease the description of the algorithms presented in this section, we
introduce the enumeration function nextAnswerSet, that takes as input the program Π and an
answer set M of Π, and returns as output the next one according to some internal criteria or ⊥ if
no other answer set exists. We abuse of the notation using M =⊥ to indicate that the function
computes the first answer set.

Filtering. An immediate algorithm for finding a paracoherent answer set is Filtering, Algo-
rithm 1. The underlying idea is to enumerate all answer sets of Π and to store the one that
is subset-minimal with respect to gap atoms. The algorithm first finds an answer set M of Π.
Then, another answer set Mw is searched (line 2). If gap(Mw) is a subset of gap(M) then M is
replaced with Mw. Subsequently, the algorithm continues the search until all answer sets have
been enumerated. Intuitively, at each step of the computation M is a subset-minimal answer
set with respect to the answer sets enumerated so far. Thus, when all answer sets have been
enumerated then M is a paracoherent answer set.

Example 51. Consider again program Π of Example 50. The first call to nextAnswerSet returns
M ′

1 that is stored in M . The second call to nextAnswerSet returns M ′
2, gap(M

′
2) is a subset of

gap(M ′
1) therefore M is replaced by M ′

2. The third call of nextAnswerSet returns M ′
3 and M is

68

not modified since gap(M ′
3)
′ is not a subset of gap(M). No other answer sets can be enumerated,

thus the algorithm terminates returning M .

The main drawback of Algorithm 1 is that it always computes all answer sets of Π, a potentially
exponential number in the size of the atoms of the original program.

In the following we present different algorithms for addressing this inefficiency.

Guess&Check. This algorithm, Algorithm 2, improves Algorithm 1 by reducing the number of
computed answer sets.

In order to ease the description of the remaining algorithms we introduce the following.

Definition 16. Given a program Π defined as above. Let M be a model of Π, then ΠM is the
following set of constraints:

← gap(M); (5.2)
← gap(Ka); ∀gap(Ka) ∈ At(Π) \M. (5.3)

Note that (5.2) contains all atoms in gap(M).

Theorem 15. Let P be a logic program, let Π be defined as above, and let M ∈ AS(Π). Then,
AS(Π ∪ ΠM) 6= ∅ if, and only if, M is not a paracoherent answer set of P .

Example 52. Consider again program Π of Example 50. ΠM ′1
is composed by the following set

of constraints:
← gap(Ka), gap(Kb), gap(Kd); ← gap(Kc);

whereas ΠM ′2
is composed by the following set of constraints:

← gap(Kd); ← gap(Ka); ← gap(Kb); ← gap(Kc).

Note that AS(Π ∪ ΠM ′1
) = {M ′

2,M
′
3} and AS(Π ∪ ΠM ′2

) = ∅.

The Guess&Check algorithm finds an answer set M of Π. Subsequently, an answer set of the
program Π ∪ ΠM is sought. If such an answer set does not exist then M is a paracoherent answer
set and the algorithm terminates returning M . Otherwise, the algorithm iterates the computation
until a paracoherent answer set is found.

Example 53. Consider again program Π of Example 50. The first answer set computed by
nextAnswerSet is M ′

1. The subsequent check is performed on the program Π ∪ ΠM ′1
, that is

coherent. Thus, M ′
1 is not a paracoherent answer set. Then, nextAnswerSet is called again and

it returns M ′
2. At this point, Π ∪ ΠM ′2

is incoherent, therefore the algorithm terminates returning
M ′

2.

Algorithm 2 terminates as soon as a paracoherent answer set of P is found. However, in the
worst case, it still needs to enumerate all answer sets.

69

Algorithm 3: Minimize
1 M := nextAnswerSet(Π,⊥);
2 Π := Π ∪ ΠM ;
3 Mw := nextAnswerSet(Π,⊥);
4 if Mw =⊥ then return M ;
5 else M := Mw;
6 goto 2;

Algorithm 4: Split
1 M := nextAnswerSet(Π,⊥); C := gap(M);
2 if C = ∅ then return M ;
3 Π := Π ∪ ΠM ; a := OneOf(C);
4 Mw := nextAnswerSet(Π ∪ {← a},⊥);
5 if Mw =⊥ then {Π := Π ∪ {← ∼a}; C := C \ {a};};
6 else {M := Mw; C := gap(Mw);};
7 goto 2;

Minimize. The next algorithm is called Minimize and it is reported as Algorithm 3. The idea
is to compute an answer set M of Π and then to search for another answer set Mw such that
gap(Mw) ⊂ gap(M). This property is enforced by the constraints of ΠM that are added to the
program Π (line 2). If Π admits an answer set, say Mw, then M is replaced by Mw and the
algorithm iterates minimizing M . Otherwise, if Π admits no answer set, M is a paracoherent
answer set and the algorithm terminates returning M .

Example 54. Consider again program Π of Example 50. The first answer set computed by
nextAnswerSet is M ′

1. Thus, the constraints of ΠM ′1
are added to Π. The subsequent check on

Π returns an answer set, say M ′
2, and then Π is modified by adding the constraints of ΠM ′2

. At this
point, Π is incoherent, therefore the algorithm terminates returning M ′

2.

Algorithm 3 computes at most |At(P)| answer sets.

Split. Another algorithm for computing a paracoherent answer set is called Split, Algorithm 4.
The algorithm first computes an answer set M of Π and creates a set C of gap atoms that are
included in M . Then, the program Π is modified by adding the constraints of ΠM . Moreover,
one of the atoms in C is selected by the procedure OneOf , say a. Subsequently, an answer set
of Π ∪ {← a} is searched. If such an answer set does not exist then a must be included in the
paracoherent answer set and thus Π is modified by adding the constraint← ∼a and a is removed
from the set C. Otherwise, if Π ∪ {← a} admits an answer set, say Mw, then M is replaced by
Mw and the set C is replaced by the gap atoms that are true in Mw. The algorithm then iterates
until the set C is empty, returning M that corresponds to the paracoherent answer set.

Example 55. Consider again program Π of Example 50. The first answer set computed by
nextAnswerSet is M ′

1. Thus, C is set to {gap(Ka), gap(Kb), gap(Kc)} and the constraints of

70

ΠM ′1
are added to Π. Then, function OneOf selects one of the atoms in C, say gap(Ka). The

subsequent check on Π ∪ {← gap(Ka)} returns an answer set, say M ′
2. Therefore, C is set to

gap(Kd) and Π is modified by adding the constraints of ΠM ′2
. Then, the function OneOf selects

gap(Kd) and the subsequent check on Π∪{← gap(Kd)} returns⊥. Subsequently, Π is modified
by adding the constraint← ∼gap(Kd) and C is updated by removing gap(Kd). At this point, C
is empty, therefore the algorithm terminates returning the latest computed answer set, i.e. M ′

2.

Note that Algorithm 4 requires to compute at most |At(P)| answer sets.

Weak constraints. All the algorithms presented above require the modification of an ASP
solver to be implemented. An alternative approach is based on the observation that the gap
minimality can be obtained adding to Π the following set of weak constraints, say W :

;gap(Ka); ∀a ∈ At(P). (5.4)

The answer set of the extended program is then an answer set of Π such that a minimal number of
weak constraints in W is violated. This means that this answer set that is cardinality minimal with
respect to the gap atoms. Therefore, it is also subset minimal with respect to the gap atoms, and
so, it is a paracoherent answer set of P .

Theorem 16. Let P be a program, let Π and W be defined as above. If M ∈ ASO(Π ∪W), then
M \ gap(M) is a paracoherent answer set of P .

Note that, the reverse statement does not hold in general. For example, consider the program
P = {b ← ∼a; c ← a; d ← b, ∼d}. Its semi-equilibrium models are {b,Kd} and {Ka,Kc}.
However, {Ka,Kc, gap(Ka), gap(Kc)} is not an optimum answer set of Π ∪W .

Remarks on the computation tecniques. Our approach to the computation of paracoherent
answer sets is related to the computation of minimal models of propositional theories. The
first approaches on this topic date back to the nineties, and were proposed for implementing
circumscriptive reasoning (cfr. [28]). Later the attention shifted to the computation of minimal
models of first-order clauses [49, 34]. [49] proposed a tableaux-based method where candidate
models are generated and then tested for minimality. [34] proposed a method able to reduce
minimality tests on candidate models. The usage of hyperresolution for minimal models of
first-order clauses was presented in [13] and implemented in Prolog. As observed in [40] these
approaches do not take profit of modern non-chronological-backtracking-based solving technology.
This limit was overcome in [40] by an algorithm for computing minimal models of SAT formulas
that is based on the same principle as the Minimize algorithm. The computation of minimal
models of SAT formulae can be reduced to computing a Minimal Set over a Monotone Predicate
(MSMP) [38]. Thus algorithms for MSMP such as those described in [47] could be adapted (by
properly taking into account the jump in computational complexity) for computing paracoherent
answer sets. Efficient polynomial algorithms for a subclass of positive CNF theories was proposed
in [4]. That method cannot be applied directly to find a model of Π that is minimal on the extension
of gap predicate. To the best of our knowledge, the Split algorithm has no related counterpart in
the literature concerning the computation of minimal models.

71

Semi-stable semantics Semi-equilibrium semantics
Problems # Filt G&C Minim Split Weak Filt G&C Minim Split Weak
KnightTour 26 0 0 0 0 0 0 0 0 0 0
MinDiagn 64 0 37 47 47 0 0 0 8 13 0
QualSpatReas 61 0 26 26 26 10 0 0 0 0 0
StableMarriage 1 0 0 0 0 0 0 0 0 0 0
VisitAll 5 0 5 5 5 5 0 5 5 5 5
Total 157 0 68 78 78 15 0 5 13 18 5

Table 5.1: Number of instances solved within the allotted time.

P P κ ∪ Pg PHT ∪ Pg
Problems # avg #atoms avg #rules avg #atoms avg #rules avg #atoms avg #rules
KnightTour 26 101 480 474 852 358 035 655 709 358 035 1 238 936
MinDiagn 64 238 677 654 412 1 214 042 1 579 409 1 214 042 2 549 729
QualSpatReas 61 11 774 735 317 68 793 789 642 68 793 1 542 607
StableMarriage 1 649 326 110 536 185 - - - -
VisitAll 5 3 820 64 234 13 926 72 776 13 926 140 881

Table 5.2: Impact of epistemic transformations P κ and PHT .

5.2 Implementation and Experiments
We implemented the algorithms presented in the previous section, and we report on an experiment
comparing their performance.

Implementation. The computation of a paracoherent answer set is obtained in two steps. First
a Java rewriter computes the epistemic transformations P κ and PHT of a propositional ASP
program. Then the output of the rewriter is fed in input to a variant of the state-of-the-art ASP
solver WASP [3]. WASP is an open-source ASP solver, winner of the latest ASP competition [31],
that we modified by implementing the algorithms presented in the previous section.1

Benchmarks settings. Experiments were run on a Debian Linux system with 2.30GHz Intel
Xeon E5-4610 v2 CPUs and 128GB of RAM. Execution time and memory were limited to 1200
seconds and 3 GB, respectively. We use benchmark instances from the latest ASP competition [31]
collection. We consider all the incoherent instances that do not feature in the encoding neither
aggregates, nor choice rules, nor weak constraints, since such features are not currently supported
by the paracoherent semantics considered. This resulted in instances from the following domains:

1The tools will be made publicly available, the binaries used for this experiment are provided as supplementary
material.

72

0 200 400 600 800
0

200

400

600

800

Minimize

Sp
lit

Figure 5.1: Instance by instance comparison between Minimize and Split on semi-stable semantics.

Knight Tour, Minimal Diagnosis, Qualitative Spatial Reasoning, Stable Marriage and Visit All.
Instances were grounded with GRINGO (from http://potassco.sourceforge.net/). Grounding times,
the same for all compared methods, are not reported.

Results of the experiments. A summary of the result is reported in Table 5.1, where the number
of solved instances for each considered semantics is reported. In the table, Filt is WASP running
Algorithm 1, G&C is WASP running Algorithm 2, Minim is WASP running Algorithm 3, Split is
WASP running Algorithm 4, and Weak is WASP running the algorithm based on weak constraints.

As a general comment, the algorithm based on the enumeration of answer sets is highly
inefficient solving no instances at all. The Guess&Check algorithm outperforms the Filtering
algorithm demonstrating that in many cases the enumeration of all answer sets is not needed. The
best performing algorithms are Minimize and Split solving both the same number of instances.
The performance of the two algorithms are similar also considering the running times. In fact, this
is evident by looking at the instance-wise comparison reported in the scatter plot of Figure 5.1.
A point (x,y) in the scatter plot is reported for each instance, where x is the solving time of
the algorithm Minimize whereas y is the solving time of the algorithm Split. Concerning the
algorithm based on weak constraints, it can be observed that its performance is better than the one
of algorithm Filtering. However, it does not reach the efficiency of the algorithms Guess&Check,
Minimize and Split.

Concerning the semi-equilibrium semantics, it can be observed that the performance of all
algorithms deteriorates. This can be explained by looking at the number of rules introduced by

73

the epistemic HT-transformation, reported in Table 5.2. In fact, the epistemic HT-transformation
introduces approximately twice the number of rules introduced by the epistemic κ-transformation.
Moreover, we observe that also in this case the best performing algorithms are Minimize and Split.
The latter is slightly more efficient solving 5 more instances than the former.

Focusing on the performance of the algorithms on the different benchmarks, it can be ob-
served that none of the algorithms was effective on the problems KnightTour and StableMarriage.
Concerning KnightTour, we observed that WASP is not able to find any answer set of the epistemic
transformations for 12 out of 26 instances. Basically, no algorithm can be effective on such 12
instances, and the remaining ones are hard due to the subsequent checks. Concerning Stable-
Marriage, we observed that java rewriter could not produce the epistemic transformation within
the allotted time, because the unique instance of this domain features more than 100 millions
rules. The presented algorithms (but Filtering) are able to solve all the considered instances of
VisitAll problem. Note that, in this latter case the epistemic transformations results in a very
limited number of atoms and rules (see Table 5.2).

74

Chapter 6

Related Work

In this chapter, we first review some general principles for logic programs with negation, and we
then consider the relationship of semi-stable and semi-equilibrium semantics to other semantics
of logic programs with negation. Finally, we address some possible extensions of our work.

6.1 General principles
In the context of logic programs with negation, several principles have been identified which a
semantics desirably should satisfy. Among them are:

• the principle of minimal undefinedness [72], which says that a smallest set of atoms should
be undefined (i.e., neither true nor false);

• the principle of justifiability (or foundedness) [72]: every atom which is true must be derived
from the rules of the program, possibly using negative literals as additional axioms.

• the principle of the closed world assumption (CWA), for models of disjunctive logic pro-
grams (Eiter et al. [23]): “If every rule with an atom a in the head has a false body, or its
head contains a true atom distinct from a w.r.t. an acceptable model, then a must be false in
that model.”

It can be shown that both the semi-stable and the semi-equilibrium semantics satisfy the first
two principles (properly rephrased and viewing bt as undefined), but not the CWA principle; this
is shown by the simple program P = {a← ∼a} and the acceptable model {Ka}. However, this
is due to the particular feature of making, as in this example, assumptions about the truth of atoms;
if the CWA condition is restricted to atoms a that are not believed by assumption, i.e., Iκ(a) 6= bt
in a semi-stable resp. semi-equilibrium model Iκ, then the CWA property holds.

We eventually remark that Property N can be enforced on semi-stable models by adding
constraints← a, ∼a for all atoms a to the (original) program. However, enforcing Property K
on semi-stable models is more involved and efficient encodings seem to require an extended
signature.

75

6.2 Related semantics
In this section, we relate the semi-stable and semi-equilibrium semantics to several semantics in
the literature that allow for models even if a no answer set of a program exists.

6.2.1 Evidential Stable Models
Motivated by the fact that a disjunctive deductive database (DDDB) may lack stable models or
even P-stable models, Seipel [64] presented a paracoherent semantics, called the evidential stable
model (ESM) semantics, which assigns some model to every DDDB (that is, to every constraint-
free disjunctive logic program), such that the properties (D1)-(D3) in the Introduction are satisfied.
Similar to [62], but guided by slightly different intuition, he defined the evidential stable models of
a program P in a two-step process. First P is transformed into a positive disjunctive program P E ,
called the evidential transform of P , whose answer sets, i.e., its minimal models are considered.
Among them are in the second step those selected that are informally preferred according to the
amount of reasoning by contradiction that they involve. While Seipel did not consider constraints,
his approach naturally extends to programs with constraints, and we consider this extension in the
sequel.

Formally, for a given Σ let ΣE = Σ ∪ {Ea | a ∈ Σ}, where Ea intuitively means that there
is evidence that a is true. Given a program P , its evidential transformation P E consists of the
following rules:

1. H(r) ∪ EB−(r)← B+(r) and

2. EH(r) ∪ EB−(r)← EB+(r), for each rule r ∈ P of form (2.1), and

3. Ea← a, for each a ∈ Σ.

where for every set S ⊆ Σ of atoms, ES = {Ea | a ∈ S}. Intuitively, the rules in (2) and
(3) correspond to the rules that are added to Sakama and Inoue’s program P κ in the epistemic
transformation to ensure the Properties N and K (see Definition 6); the rules in (2), however,
are quite different from P κ. They intuitively infer evidence for the truth of some atom bj under
negation (m < j ≤ n) from the violation of the positive part of the rule (i.e., if all bj , 1 ≤ j ≤ m
are true and no ai, 1 ≤ i ≤ l is true).

An interpretation I over ΣE is an evidential stable model, if (1) I is a minimal model of P E ,
and (2) I has among all minimal models of P E a ⊆-minimal E-violation set VE(I), which is
defined as V(I) = {a ∈ Σ | Ea ∈ I, a /∈ I}.

Now the following can be shown. For every bi-interpretation (X, Y) let (X, Y)E = X ∪ EY ,
and for every I ⊆ ΣE , let β(I) be the inverse of ·E , i.e., β(I) = (X, Y) such that (X, Y)E = I .

Theorem 17. Let P be a program over Σ. Then for every bi-interpretation (X, Y) over Σ, it
holds that (X, Y) ∈ SEQ(P) iff (X, Y)E is an evidential stable model of P .

76

Proof. The proof proceeds as follows. We first show that (1) the models of P E correspond to
the HT-models (X, Y) of P via ·E ; next, we establish that (2) for every minimal model P E , the
corresponding HT-model of P is h-minimal and (3) that every SEQ-model of P is among the
models in (2), i.e., {(X, Y)E | (X, Y) ∈ SEQ(P)} ⊆ MM (P E). As the E-violation set V(I) of
any model I = (X, Y)E of P E corresponds to the gap of (X, Y) (precisely, V(I) = Egap(X, Y)),
it follows that I ∈ MM (P E) has a ⊆-minimal E-violation set, i.e., is an evidential stable model
of P , iff (X, Y) is a SEQ-model of P .

As for (1), it is readily seen that for every HT-model (X, Y) of P , I = (X, Y)E = X ∪ EY is
a model of P E : all rules (2) are satisfied as Y |= P , and all rules (3) as X ⊆ Y . Finally for the
rules (1), as (X, Y) |= r, either H(r) ∩X 6= ∅, or B+(r) 6⊆ Y (which implies B+(r) 6⊆ X), or
B−(r) ∩ Y 6= ∅; hence I satisfies the rules (1). The proof of the converse, for every model I of
P E , β(I) is a HT-model of P , is similar.

Regarding (2), if I ∈ MM (P E), in particular no model J ⊂ I of P E exists such that
I \ Σ = J \ Σ; thus if β(I) = (X, Y), no HT-model (X ′, Y) of P exists such that X ′ ⊂ X .

As for (3), towards a contradiction assume that some (X, Y) ∈ SEQ(P) fulfills I =
(X, Y)E /∈ MM (P E). Hence, some J = (X ′, Y ′)E ∈ MM (P E) exists such that J ⊂ I . As
X ′ ⊆ X , Y ′ ⊆ Y , and (X, Y) is h-minimal, it follows that Y ′ ⊂ Y . As P Y ⊆ P Y ′ it fol-
lows that X ′ |= P Y ; since X ∈ MM (P Y) and X ′ ⊆ X , it follows X ′ = X . Therefore,
gap(X ′, Y ′) ⊂ gap(X, Y); as by (2) (X ′, Y ′) is h-minimal, (X, Y) /∈ SEQ(P), which is a
contradiction. This proves the result. 2

Thus the SEQ-model semantics coincides with the evidential stable model semantics for
disjunctive logic programs. The theorem above gives a characterization of evidential stable
models in terms of HT-logic, and in turn we obtain with P E a simpler program to describe
the SEQ-models than the epistemic transformation P κ in Section 2.4.2. Note, however, that
the program is not a straightforward encoding of the semantic characterization of SEQ-models
in Theorem 2; the class of P E-models does not contain all h-minimal HT-models of P , but
sufficiently many to single out all the SEQ-models by gap minimization.

6.2.2 CR-Prolog
In order to deal with inconsistency in answer set programs, Balduccini and Gelfond introduced
CR-Prolog [6] as a declarative approach for inconsistency removal from program. Roughly
speaking, each program P is equipped with a further set of rules CR of the form

r : h1 or . . . or hk
+← l1, . . . , lm, ∼lm+1, . . . , ∼ln.

where intuitive reading is: if l1, . . . , lm are accepted beliefs while lm+1, . . . , ln are not, then one
of h1, . . . , hk “may possibly” be believed. In addition, a preference relation on the rules may be
provided.

Rules from this pool CR can be added to restore consistency of the program P if no answer
set exists, applying Occam’s razor. Informally, a subset-minimal set R ⊆ CR of rules is chosen
such that P ′ = P ∪R′ is coherent, where R′ is R cast to the ASP syntax; the answer sets of P ′ are
then accepted as CR-answer sets of P . Formally, P and CR are compiled into a single abductive
logic program where an abducible atom appl(r) is used for the each rule r from CR to control

77

(and be aware of) its applicability; a minimal set of abducibles may be assumed to be true without
further justification. For simplicity, however, we use the abstract description from above.

The CR-Prolog approach is different from semi-stable and SEQ-model semantics in several
respects. First, it provides a (syntactic) inconsistency management strategy, not a semantic
treatment of incoherence at the semantic level of interpretations. Second, it remains with the user
to ensure coverage of all cases of incoherence; this bears risk that some cases are overlooked. On
the other hand, depending on the application it might be preferred that this is pointed out.

Even if CR consists of all atoms in P , CR-answer sets and SEQ-models may disagree, as
adding facts, as done in this case by CR-Prolog, is stronger than blocking negated atoms as in
semi-stable and SEQ-models semantics (which then admits more answer sets).

Example 56. Consider the program P = {a← ∼a; c← ∼b; b ∨ c← a}. This program has the
unique SEQ-model (c, ac); i.e., c is true, b is false, and a is believed true.

Let CR = {ra : a
+←; rb : b

+←; rc : c
+←} and assume that there are no preferences.

Then R′ = {ra} is the single minimal subset of CR such that P ′ = P ∪ R′ is coherent, and
P ′ = {a← ∼a; c← ∼b; b ∨ c← a; a←} has two answer sets, viz. {a, c} and {a, b}, which are
then both CR answer sets.

The program in the previous example shows that adding a as a fact is stronger than blocking
the use of a under negation. We remark that this similarly applies to the generalised stable model
semantics [39], in which abducible facts may be added to the program P in order to obtain a
stable model.

6.2.3 Well-founded Semantics
The most prominent approximation of the stable semantics is the well-founded semantics (WFS)
[68]. It assigns each normal logic program P , in our terminology, an HT-model WF (P) = (I, J)
(called the well-founded model) such that all atoms in I are regarded as being true and all atoms not
in J being false; all the remaining atoms (i.e., those in gap(WF (P))) are regarded as undefined
(rather than possibly true, as in HT-logic). Intuitively, the false atoms are those which can
never become true, regardless of how the undefined atoms will be assigned. Extending WFS to
disjunctive program is non-trivial and many proposals have been made, but there is no general
consensus on the “right” such extension (see [70, 15] for more recent proposals); we comment on
the proposal of Cabalar et al. [15] in the subsection on partial stable models below.

The well-founded semantics has many different characterizations; among them is the well-
known alternating fixpoint-characterization, cf. [69, 7]: for normal constraint-free programs P ,
the operator γP (X) = LM (PX), X ⊆ Σ is anti-monotonic, where LM (Q) denotes the unique
minimal model of Q (which for Q = PX exists). We then have WF (P) = (I, J) where I is the
least fixpoint of the monotonic operator γ2P (X) = γP (γP (X)), and J = γP (I). Furthermore, the
well-founded model is the least partial stable model (see Subsection 6.2.4 below); it has been
characterized in the logic HT2 (a generalization of HT-logic) in terms of the partial equilibrium
model that leaves the most atoms undefined [16].

With regard to Section 6.1, WFS does not satisfy minimal undefinedness, but justifiability
and naturally the CWA principle. It does not satisfy answer set coverage (D1) nor congruence

78

(D2) (even if a single answer set exists), but coherence (D3). Roughly speaking, the well-founded
model remains agnostic about atoms that are involved in cycles through negation whose truth
value can not be determined from other parts of the program, and it propagates undefinedness.
This may effect that all atoms remain undefined; e.g., the program in Example 24 has this property.

It is well-known that the well-founded model WF (P) = (I, J) approximates the answer
sets of P in the sense that I ⊆ M ⊆ J for each answer set M of P ; it is thus geared towards
approximating cautious inference of literals from all answer sets of P , rather than towards
approximating individual answer sets. If no answer set exists, WFS avoids trivialization and still
yields a model; however, the notion of undefinedness and the associated propagation may lead to
less informative results, as shown in Example 5.

SEQ-refinement of the WFS. A closer look at the WFS reveals that the SEQ-model semantics
refines it in the following sense.
Notation. Let for HT-interpretations M = (X, Y) and M ′ = (X ′, Y ′) denote M v M ′ that
X ′ ⊆ X and Y ⊆ Y ′, i.e., M is a refinement of M ′ that results by assigning atoms in gap(M ′)
either true of false.1

Recall that an HT-interpretation (X, Y) of a program P is h-minimal, if no HT-model (X ′, Y)
exists such that X ′ ⊂ X; for normal P , this means that X is the least model of P Y .

Proposition 23. Let M = (X, Y) be an h-minimal model of a (constraint-free) normal program
P . If gap(M) ⊆ gap(WF (P)), then M vWF (P), i.e., M is a refinement of the well-founded
model of P .

Note that this proposition is not immediate as we just compare gaps, not models themselves.
The result follows from some well-known properties of WF (P) and its relationship to the answer
set semantics.

First, as already mentioned above, WFS is an approximation of the stable semantics:

Lemma 17. For every equilibrium (stable) model M = (Y, Y) of P , it holds that M vWF (P).

Furthermore, WF is such that by making yet unassigned atoms true, the values of the already
assigned atoms are not affected. That is,

Lemma 18. For every set G ⊆ gap(WF (P)), it holds that WF (P ∪G) vWF (P).

Intuitively, this is because for each atom a outside gap(WF (P)), a rule already fires resp. all
rules are definitely not applicable. Next, h-minimality allows for unsupported atoms (the gap). By
making them facts, we get an answer set:

Lemma 19. If M = (X, Y) is a h-minimal model of P , then M ′ = (Y, Y) is an answer set of
P ′ = P ∪ gap(M).

Indeed, X is the least model of P Y , so each atom in X can be derived from P Y ; by adding
gap(M) = Y − X , all atoms of Y can be derived from P Y ∪ gap(M) = P ′Y , and clearly no
proper subset can be derived.

Armed with these lemmas, we now prove the proposition.
1That is, M vM ′ iff M ′ ≤p M , where ≤p is the precision ordering.

79

Proof of Proposition 23. Let M = (X, Y) be a h-minimal model of P such that gap(M) ⊆
gap(WF (P)), and let WF (P) = (I, J). By Lemma 19, N = (Y, Y) is an answer set of
P ′ = P ∪ gap(M). By Lemma 17, N vWF (P ′), and by Lemma 18, WF (P ′) vWF (P). As
refinement is transitive, we obtain N vWF (P); it follows that Y ⊆ J .

Regarding X , by the alternating fixpoint characterization of WF (P) we have I = LM (P J),
and thus WF (P) is a h-minimal model of P ; as M is a h-minimal model of P , we have
X = LM (P Y). As γP (I) = LM (P I) is anti-monotonic and Y ⊆ J , it follows that X ⊇ I .

Thus, we get M = (X, Y) v (I, J) = WF (P). This proves the proposition. 2

From this proposition, we obtain a refinement result for arbitrary normal programs, i.e.,
programs that may contain constraints. For such a program P , we define its well-founded model
as WF (P) = WF (P ′), where P ′ is the constraint-free part of P , if WF (P ′) |= P \P ′; otherwise,
WF (P) does not exist. Note that each constraint r in P must have a false body in WF (P), i.e.,
either some bi ∈ B+(r) is false in WF (P) or some cj ∈ B−(r) is true in WF (P) (this can be
seen from the alternating fixpoint characterization).

Corollary 11 (of Proposition 23). Every normal program P such that WF (P) exists has a SEQ-
model M such that M v WF (P). In fact, every SEQ-model M of P such that gap(M) ⊆
gap(WF (P)) satisfies M vWF (P).

Proof. Indeed, SEQ-models are special h-minimal models (global gap-minimization), so the
result follows from Proposition 23 and the fact that WF (P) = WF (P ′) = (I, J) is h-minimal
(as I = LM (P J) = LM (P ′J)), where P ′ is the constraint-free part of P . 2

Note, however, that not every SEQ-model refines the well-founded model. E.g., take P =
{a ← ∼a, ∼b}. Then WF (P) = (∅, {a}) but the SEQ-models are M1 = (∅, {a}) and M2 =
(∅, {b}), and M2 has a gap outside the gap of WF (P).

If desired, one can easily restrict the SEQ-models of a program P to those which refine its
well-founded model WF (P) = (I, J), by replacing P with

Pwf = P ∪ I ∪ {← A | A ∈ Σ \ J}.

Note that WF (Pwf) exists whenever WF (P) exists. We then obtain the following result.

Proposition 24. For every normal program P such that WF (P) exists, SEQ(Pwf) = {M ∈
SEQ(P) | gap(M) ⊆ gap(WF (P))}.

Proof. (⊆) If M = (X, Y) is a SEQ-model of Pwf , then M is a h-minimal model of Pwf and
gap(M) ⊆ gap(WF (Pwf)) = gap(WF (P)). Corollary 11 implies that M v WF (Pwf)) =
WF (P) = (I, J), and thus Y ⊆ J . By antimonotonicity of γP (.), we have γP (Y) ⊇ γP (J) = I ,
and thus γPwf (Y) = γP (Y) ∪ I = γP (Y) = X . Thus M is also a h-minimal model of P . If
M were not a SEQ-model of P , then by Corollary 11 some refinement M ′ of WF (P) with
gap(M ′) ⊂ gap(M) would be a SEQ-model of P . But M ′ would then be a h-minimal model of
Pwf and contradict that M is a SEQ-model of Pwf . Thus M is a SEQ-model of P .

(⊇). Let M be a SEQ-model of P such that gap(M) ⊆ gap(WF (P)). Then by Corollary 11
M refines WF (P) and thus is clearly a model of Pwf , and moreover h-minimal. If M were not

80

a SEQ-model of Pwf , then some SEQ-model M ′ of Pwf with smaller gap exists; we can then
as in the case (⊆) infer that M ′ is also a h-minimal model of P , which contradicts that M is a
SEQ-model of P . 2

By combining Corollary 11 and Proposition 24, we get a paracoherent way to refine the
well-founded semantics for query answering, which coincides with the answer set semantics for
coherent programs and provides in general more informative results and reasoning by cases (see
Examples 5 and 6).

6.2.4 Partial Stable Model Semantics
P-stable (partial stable) models, which coincide with the 3-valued stable models of [60], are one of
the best known approximation of answer sets. Like the well-founded model, P-stable models can
be characterized in several ways (cf. [23]); with respect to equilibrium logic, Cabalar et al. [16]
semantically characterized P-stable models in the logic HT2 in terms of partial equilibrium models.
For the concerns of our discussion, we use here a characterization of P-stable models (X, Y) in
terms of the multi-valued operator γ̂P (X) = MM (PX) as the HT-interpretations (X, Y) such
that Y ∈ γ̂P (X) and X ∈ γ̂P (Y); this characterization is easily obtained from [23]. In particular,
for normal programs WF (P) is a P-stable model of P (and in fact the least refined such model
w.r.t. v), and every answer set M of P (as M = LM (PM)) amounts to a P-stable model (M,M)
of P ; in this vein, according to Cabalar et al. [15, 16] the well-founded models of a disjunctive
program P are the least refined P-stable models M of P (i.e., no P-stable model M ′ 6= M of P
exists such that M vM ′); however, no well-founded model might exist.

The P-stable models, while more fine-grained than the well-founded model, behave similarly
with regard to the properties in Section 6.1 and the properties (D1)–(D3) in the Introduction.
Among the refinements of P-stable models in [23], the one that is closest in spirit to semi-stable
and SEQ-models are the L-stable models, which are the P-stable models that leave a minimal set
of atoms undefined.

In fact, L-stable models satisfy all properties in Section 6.1 and (D1)–(D3), with the exception
that coherence (D3) fails for disjunctive programs, as such programs may lack a P-stable model,
and thus also an L-stable model.

Example 57. The program

P = {a← ∼b; b← ∼c; c← ∼a; a ∨ b ∨ c } (6.1)

has no P-stable models, while it has multiple SEQ-models, viz. (a, ac), (b, ab), and (c, bc), which
coincide with the SST -models. Intuitively, one of the atoms in the disjunctive fact a ∨ b ∨ c, say
a, must be true; then c must be false and in turn b must be true. The resulting (total) interpretation
(ab, ab), however, does not fulfill that {a, b} is a minimal model of P {a,b} = {b ←; a ∨ b ∨ c}.
With a symmetric argument for b and c, we conclude that no P-stable model of P exists. However,
by adopting in addition that c is believed true, we arrive at the SEQ-model (a, ac).

The main difference between that L-stable semantics and semi-stable resp. semi-equilibrium
semantics is that the former takes —like P-stable semantics—a neutral position on undefinedness,
which in combination with negation may lead to weaker conclusions.

81

For example, the program P in Example 5 has a single P-stable model, and thus P has a single
L-stable model which coincides with its well-founded model; thus we can not conclude under
L-stable semantics from P that visits_barber(joe) is false.

Also the program in Example 24 has a single P-stable (and L-stable) model in which all atoms
are undefined, while c is true under SEQ-model semantics. Similarly, the program

P = {a← ∼b; b← ∼c; c← ∼a} (6.2)

has a single P-stable (and thus L-stable) model in which all atoms are undefined; if we add the
rules d← a, d← b, and d← c to P , the new program cautiously entails under both semi-stable
and SEQ-model semantics that d is true, but not under L-stable semantics.

Possible SEQ-refinement of the L-stable semantics. As the SEQ-semantics refines the WFS
as shown in Subsection 6.2.3, the natural question is whether a similar refinement property
holds for L-stable models. Unfortunately this is not the case, even for normal programs without
constraints (which always possess L-stable models); this is witnessed e.g. by the following
example.

Example 58. Consider the program

P =

{
a← ∼b, d; b← ∼a, d; c← ∼c
d← ∼c; d← ∼a, ∼e; d← ∼b, ∼e

}
∪ {e← ∼a, ∼b.}.

Intuitively, the rules with heads a and b make a guess a or b, if d is true; c must be undefined as
there is no other way to derive c than from its negation; d is true if one of a and b is false but not
both, i.e., we have a guess for a and b. Thus proper guessing on a and b makes the gap smallest.

Under WFS, all atoms must be undefined as each atom occurs in P only on cycles with
negation. Furthermore, N1 = (ad, acd) and N2 = (bd, bcd) are L-stable models, because they
are partially stable and no smaller gap than gap(N1) = gap(N2) = {c} is possible. There is no
further L-stable model (d would need to be true in it, which means that e must be false and hence
either a false or b false; thus we end up with N1 or N2), and actually also no other P-stable model.

As one can check, M = (e, ec) is a h-minimal model of P , and gap(M) = {c}. Thus M is
an ”additional” h-minimal model of P , and M does neither refine N1 nor N2.

If we slightly extend P in (6.2) to

P ′ = P ∪ {c′ ← ∼c, ∼c′}, (6.3)

then we get a similar situation. Again, as c only occurs in the head of the rule c ← ∼c, it must
be undefined in each partial stable model, and hence the same follows also for c′. Thus we
obtain that N ′1 = (ad, acc′d) and N ′2 = (bd, bcc′d) are the L-stable models of P ′, and they have
gap(N ′1) = gap(N ′2) = {c, c′}. On the other hand, M is also an h-minimal model of P ′, and
gap(M) = {c}; thus M is the unique SEQ-model of P ′, and the models are unrelated.

82

Possible SEQ-refinement of disjunctive P-stable models. The previous example showed that
SEQ-models with smaller gaps than L-stable models do not necessarily refine them. However,
as they refine always some P-stable model (the WFM) of a normal program, it does not rule out
that they refine some P-stable model of a disjunctive program P , and in particular a well-founded
model (i.e., a least refined (w.r.t. v) P-stable model). It appears that this refinement property does
not hold.

Example 59. Consider the following variant of the program on line (6.1) in Example 57:
P = {a← ∼b; b← ∼c; c← ∼a; a ∨ b ∨ c← d; d ∨ e; d← e, ∼d }.

By the disjunctive fact d ∨ e, either d or e must be true in each h-minimal model (and thus in
each P-stable resp. SEQ-model of P). If d is true, then the clauses containing a, b, c, do not admit
a P-stable model; if e is true, the single P-stable model is M = (e, abcde). On the other hand,
the SEQ-models of P are M1 = (ad, acd), M2 = (bd, abd), and M3 = (cd, bcd); note that each
h-minimal model of P in which e is true must have d and some atom from a, b, c believed true
but not true, and thus can not be gap-minimal. As each Mi has smaller gap than M but does not
refine it, the refinement property does not hold.

Note that the example shows even more: different from normal programs, for disjunctive
programs the SEQ-models do not refine the intersection of all P-stable models (i.e., the HT-
interpretation (X, Y) where X resp. Σ\Y is what is true resp. false in every P-stable model of P).
Thus in conclusion, for disjunctive programs, P-stable and SEQ-models are in general unrelated.

6.2.5 Further Semantics
The regular model semantics [72] is another 3-valued approximation of answer set semantics
that satisfies least undefinedness and foundedness, but not the CWA principle. However, it is
classically coherent (satisfies (D3)). For the odd loop program P in (6.2) the regular models
coincide with the L-stable models; the program P ′ in (6.3) has the regular models {a}, {b}, and
{c}. While regular models fulfill answer set coverage, they do not fulfill congruence. For more
discussion of 3-valued stable and regular models as well as many other semantics coinciding with
them, see [23].

Revised stable models [56] are a 2-valued approximation of answer sets; negated literals
are assumed to be maximally true, where assumptions are revised if they would lead to self-
incoherence through odd loops or infinite proof chains. For example, the odd-loop program P in
(6.2) has three revised stable models, viz. {a, b}, {a, c}, and {b, c}. The semantics is only defined
for normal logic programs, and fulfills answer set coverage (D1) but not congruence (D2), cf.
[56]. Similarly, the so called pstable models in [52], which should not be confused with P-stable
models, have a definition for disjunctive programs however, satisfy answer set coverage (D1) (but
just for normal programs) and congruence (D2) fails. Moreover, every pstable model of a program
is a minimal model of the program, but there are programs, e.g. P in (6.2) again, that have models
but no pstable model, thus classical coherence does not hold.

83

6.3 Modularity
To our knowledge, modularity aspects of paracoherent semantics have not been studied exten-
sively. A noticeable exception is [23], which studied the applicability of splitting sets for several
partial models semantics, among them the P-stable and the L-stable semantics that were already
considered above. While for P-stable models a splitting property similar to the one of answer
sets holds, this is not the case for L-stable models, due to global gap-minimization however, an
analogue to Theorem 7, with L-stable models in place of SCC-models is expected to hold.

Huang et al. [36] showed that hybrid knowledge bases, which generalize logic programs, have
modular paraconsistent semantics for stratified knowledge bases; however, the semantics aims
at dealing with classical contradictions and not with incoherence in terms of instability through
cyclic negation.

Pereira and Pinto [58], using a layering notion that is similar to SCC-split sequences, introduce
layered models (LM) semantics which is an alternative semantics that extends the stable models
semantics for normal logic programs. The layered models of a program P are a superset of its
answer sets, and this inclusion can be strict even if P is coherent; thus, property (D2) does not
hold. In a sense, the CWA is relaxed more than necessary in the model construction process.

Faber et al. [24] introduced a notion of modularity for answer set semantics, based on syntactic
relevance, which has paracoherent features. However, this notion was geared towards query
answering rather than model building, and did not incorporate gap minimization at a semantic
level.

Finally, we look at models related to a splitting sequence. Not every SEQ-model of P that is a
refinement of WF (P) is a SCC-model of P ; we might “lose” SEQ-models by splitting. E.g.,

P = { a← ∼a; b← ∼b, ∼a; c← ∼b, ∼c }

has the SCCs C1 = {a}, C2 = {b} and C3 = {c}, and WF (P) = (∅, abc); the single SCC-model
of P is M = (∅, ac), while P has a further SEQ-model M ′ = (∅, ab); the latter is lost along the
splitting sequence S = (a, ab, abc), as restricted to C1, M has smaller gap (viz. {a}) than M ′

(whose gap is {a, b}). However, we get an analogue to Corollary 11 (recall that normal programs
with constraints lack a well-founded model if the constraints are violated).

Proposition 25. Let P be a normal program (possibly containing constraints) such that WF (P)
exists and let S be an arbitrary splitting sequence of P . Then P has some SEQS-model M such
that M vWF (P), and moreover every SEQS-model M of P such that gap(M) ⊆ gap(WF (P))
satisfies M vWF (P).

The reason is that the well-founded semantics satisfies modularity with respect to splitting
sequences. This is a consequence of the following lemma.

Lemma 20. For every splitting set S of a normal program P (possibly containing constraints)
such that WF (P) exists, it holds that

1. WF (P)|S is a partial stable model of bS(P) (recall that |S denotes restriction to S), and

84

2. WF (P) = WF (tS(P) ∪ I ∪ {A← ∼A | A ∈ J \ I}), where WF (bS(P)) = (I, J).

This lemma in turn follows from Proposition 12 in [23], which states this property for partial
stable models of constraint-free (even disjunctive) programs, and WF (P) is the least partial
stable model; note also that constraints in P merely determine the existence of WF (P) but do
not influence the truth valuation of atoms.

The proof of Proposition 25 is then as follows.

Proof. Consider any splitting sequence S = (S1, S2, ...) of the program P and let M = (X, Y)
be any SEQ-model of P such that M v WF (P) (by Corollary 11 such an M exists). Let
M1 = M |S1 and P1 = bS1(P).

Then, M1 is a HT-model of P1 and moreover h-minimal for P1 (for otherwise, M would not
be h-minimal for P : we could make X on S1 smaller, as we can keep the same valuation for the
atoms in Σ \ S1; note that P Y is positive and atoms from S1 occur in tS1(P) only in rule bodies).
Furthermore, we have M1 vWF (P)|S1 . Now some SEQ-model N1 = (X1, Y1) of P1 must exist
such that gap(N1) ⊆ gap(M1); as gap(M1) ⊆ gap(WF (P)|S1), Corollary 11 and Lemma 20
imply that N1 vWF (P1) (observe that WF (P)|S1 = WF (P1), which follows from items 1 and
2 of Lemma 20).

If we consider the program P2 = P S1(X1, Y1), then by an inductive argument on the length
of the splitting sequence it has some SCC-model N2 w.r.t. S ′ = (S2, ..., Sn) such that N2 v
WF (P2), provided WF (P2) exists; however, P S1(X1, Y1) adds a constraint ← ∼a for each
a ∈ Y1 \X1, and as a does not occur in any rule head of P2, WF (P2) does not exist if X1 ⊂ Y1.
To address this, we use in the argument a variant of the transformation P S1(X1, Y1), denoted
P̂ S1(X1, Y1), that adds a rule a ← ∼a for each a ∈ Y1 to P S1(X1, Y1); clearly, P S1(X1, Y1)
and P̂ S1(X1, Y1) have the same splitting sets and the same SEQ-models w.r.t. any splitting
sequence; let P̂2 = P̂ S1(X1, Y1), Then we claim that WF (P̂2) exists and WF (P̂2) v WF (P)
holds. Indeed, consider the constraint-free part P ′ of P ; then WF (P ′) = WF (P) and, if
Q′ denotes the (constraint-free) program for P ′ according to item 2 of Lemma 20, we have
WF (Q′) = WF (P ′) = WF (P). If we add to Q′ all constraints of P , then the resulting program
Q fulfills WF (Q) = WF (P). If we modify Q by (i) adding from P̂ S1(X1, Y1) all facts a ∈ X1

and all constraints {a← ∼a | a ∈ Y1} ∪ {← a | a ∈ S1 \ Y1}, and (ii) remove all rules a← ∼a
such that a ∈ S1 \ Y1, the resulting program Q′′ is such that WF (Q′′) vWF (Q) = WF (P) if
WF (Q′′) exists, as assigning any atoms in gap(WF (P)) true or false does not affect the already
assigned atoms. But as every constraint r in P has some body literal that is false in WF (P), this
holds also for Q′′, and thus WF (Q′′) exists. Now we note that Q′′ = P̂2; this proves the claim.

Consequently, N2 is an SCC-model of P̂2 and N2 v WF (P̂2) v WF (P) holds. Now the
SEQS-models of P are, by definition,

SEQS(P) = mc
(⋃

(X,Y)∈SEQ(bS1 (P))

SEQS′(P S1(X, Y)
)

= mc
(⋃

(X,Y)∈SEQ(bS1 (P))

SEQS′(P̂ S1(X, Y)
)
.

85

If the model N2 appears in this set, then it is an SEQS-model of P that refines WF (P) and
proves the first claim of the proposition. Otherwise, some SEQS-model N ′ of P must exist
such that gap(N ′) ⊂ gap(N2); as N ′ is a SEQ-model of P and gap(N ′) ⊆ gap(WF (P)), it
follows from Corollary 11 that N ′ v WF (P), and also in this case an SEQS-model of P that
refines WF (P) exists; this proves the first claim of the proposition. As for the second claim, by
Corollary 11 every SEQ-model M of P , and thus in particular every SEQS-model M of P such
that gap(M) ⊆ gap(WF (P)) satisfies M v WF (P); thus if we let M in the argument above
be an arbitrary SEQS-model of P , we arrive at N2 = M and thus the second claim holds. This
proves the result. 2

An immediate corollary to Proposition 25 is that normal programs P for which the well-
founded model exists and the SCC-model semantics is applicable have some SCC-model that
refines the well-founded model WF (P), and moreover that every SCC-model of P which adopts
some the undefined atoms in WF (P) as believed true refines WF (P); the same holds forMJC-
models.

We finally note that we can, as in the case of all SEQ-models of P , restrict the split SEQ-
models of P to those which refine WF (P) by adding respective constraints; recall that Pwf =
P ∪ I ∪ {← A | A /∈ J} where WF (P) = (I, J).

Proposition 26. Let P be a normal program (possibly containing constraints) such that WF (P)
exists. Then for every splitting sequence S of P , it holds that SEQS(Pwf) = {M ∈ SEQS(P) |
gap(M) ⊆ gap(WF (P))}.

Sketch. By Proposition 24, SEQ(Pwf) = {M ∈ SEQ(P) | gap(M) ⊆ gap(WF (P))}. The
result can then be shown by induction along the split sequence S, using Theorem 5 and Lemma 20.
2

As a consequence of Propositions 25 and 26, in particular the SCC- andMJC-models of
a normal program can be easily restricted such that they refine its well-founded semantics in a
paracoherent manner, as discussed at the end of Subsection 6.2.3.

86

Chapter 7

Further Issues

In this chapter, we consider possible extensions of SEQ-semantics. Firstly, we briefly comment on
infinite splitting sequences (Section 7.1). Secondly, we propose a generalization to user-defined
subprograms of the notions and main results for SCC-models (Section 7.2). Then, a discussion of
how the work extends to strong negation and non-ground programs is given (Section 7.3). Finally,
a parametric approach that merges more SCCs is provided (Section 7.4).

7.1 Infinite splitting sequences
As mentioned earlier, we concentrate in this work on finite splitting sequences; however split
SEQ-models can be easily extended to infinite splitting sequences S = (S1, S2, . . . , Si, . . .).
To this end, we can define the split-SEQ models of P relative to a splitting sequence S by
SEQS(P) =

⋂∞
i≥1 SEQ

S[1..i](P), where S[1..i] = (S1, . . . , Si) is the initial segment of S of
length i. Indeed, any extension of the finite sequence S[1..i] by some Si+1 may lead to the loss of
SEQ-models; on the other hand, after passing Si, no new model candidates relative to Si will be
encountered.

7.2 User-defined subprograms and focusing
In the previous chapters, we were considering the issue of paracoherence at a principled level
without further input from the user. Important such input could be, for example, an intended
modular structure of the program and/or a focus of attention when looking for a paracoherent
model. As we briefly discuss, our notions and results can be easily extended to such settings.

7.2.1 User-defined subprograms
In the design of an ASP program, users often proceed by definining (implicitly) subprograms that
are composed in a hierarchically manner to a global program. That is, the latter is of the form
P = P1 ∪ · · · ∪ Pm where each Pi is a subprogram that “defines” atoms in a signature Σi, such
that Σ = Σ1 ∪ · · · ∪Σm, where the Σi are pairwise disjoint, and S = (S1, . . . , Sm), Si =

⋃
j≤i Σj ,

87

1 ≤ i ≤ m, is a splitting sequence of P .1 A particular example are stratified logic programs,
where each Pi is meant to define atoms Σi that form the i-th layer.

Example 60. A more elaborated version of the company program in Example 26 could have
more complex subprograms that define different categories of workers (core staff, employees),
and social security regulations; the current program P just contains single-rule definitions of the
concepts. Note that P is stratified, and it is reasonable to expect that more elaborated versions
will also have this property.

However, the programs Pi may, in general, also include unstratified negation.

Example 61. The barber program in Example 4, extended with a rule shaved(X)← shaves(Y,X)
might be a subprogram P1 defining shaved , and P2 a subprogram on top that classifies persons,
e.g., with rules

boy(X)← male(X), ∼shaved(X); adult(X)← shaved(X).

Example 62. As mentioned earlier in Section 3, the program P composed of P1 being the
party program in Example 3 and P2 = {← balcony ,#count({X : go(X)}) > 3; balcony ∨
living_room} could be used to determine the location for the party. Each of the SEQ-models of
the given P1 would be extended to two SEQ-models of P , one with balcony true and one with
living_room true, as the constraint is not violated.

Exploiting the notions of Section 3, we can readily define the SEQ-models of P , viewing
subprograms as atomic blocks, as the SEQS-models of P for the sequence S above. However,
if subprograms Pi and Pj are mutually independent, i.e., Σi has empty intersection with each
rule body in Pj and vice versa, the order of Pi and Pj may matter for the result. As in the
case of SCCs, we can make the semantics robust by requiring that SEQS(P) = SEQSπ(P) for
every Sπ = (Sπ(1), . . . , Sπ(m)) where π(1), π(2), . . . , π(m) is a permutation of 1, . . . ,m, and
Sπ(i) = Σπ(1) ∪ · · · ∪ Σπ(i), 1 ≤ i ≤ m; then, every constraint-free program P has well-defined
subprogram SEQ-models that are induced by {Σ1, . . . ,Σm}. Furthermore, this can be extended
to programs P that have no cross-module constraints, i.e., no constraints r that have nonempty
intersection with “incomparable”2 Σi and Σj , and one can define maximal joinable subprograms
SEQ-models analogous as for SCCs.

Note that the SCCs C1, . . . , Cm of a program P can be viewed as atom sets Σi = Ci defined
by subprograms Pi that contain all rules r from P with nonempty head contained in Σi. The
subprogram SEQ-models of P induced by {C1, . . . , Cm} coincide then with the SCC-models of
P . Thus, we can view the “syntactic” SCC-models as extremal case of a user definition with no
information about modules.

Furthermore, we can reduce the subprogram semantics of program P w.r.t. Σ1, . . . ,Σm to
SCC-semantics of another program P ′ by a simple rewriting. For each Pi, we use a fresh atom pi
and let P ′i = P ∪ {a← pi, a; pi ← pi, a | a ∈ Σi}. Clearly, the rules added to Pi are tautologic
and thus have no semantic effect on Σi; however they enforce that all atoms in Σi are in the same
SCC of P ′ = P ′1 ∪ · · · ∪ P ′m.

1For technical reasons, we assume here w.l.o.g. that in each constraint r in Pi some atom from Σi occurs.
2That is, Σi ⊆ Sπ(k) ∧ Σj 6⊆ Sπ(k) and Σj ⊆ Sπ′(k′) ∧ Σi 6⊆ Sπ′(k′) for some π, π′, k, k′.

88

7.2.2 Focusing
Another aspect is focusing the use of paracoherence at the semantic level. One natural way to
incorporate this is to constrain the atoms that can be believed true without further justification to a
set B of atoms. This corresponds to adopting a set of assumptions or hypotheses in abduction.
The effect of such focusing is that simply all SEQ-models (X, Y) of a program are pruned which
do not satisfy gap(X, Y) ⊆ B.

Example 63. Let us reconsider the party visit program in Example 3 again. It may perfectly make
sense to question for each person whether we are comfortable with adopting an unjustified belief.
If we require provable evidence for Mark and Peter , then B = {go(John), go(Bill)} and from
the original SEQ-models M2 = ({go(John)}, {go(John), go(Bill)}) remains. If on the other
hand, we would simply require provable evidence for all persons but Mark , then the SEQ-model
M1 = (∅, {go(Mark)}) remains.

Example 64. In the company Example 26, it is natural to put a focus on B = {has_social_
sec(sam)}, as it does not make sense to believe the (syntactic) atom ssnr(sam, sam); furthermore,
even if we would have considered a modelling in which realistic social security numbers are
considered, to believe any particular social security number (SSNR) out of a (big) range might
be too strong an assumption; believing has_social_sec(sam), which would be implied by the
former releases us from adopting a particular SSNR.

In general, such pruning can be easily accomplished. The computational complexity of the
reasoning tasks that we considered in Chapter 4 (Tables 4.1 and 4.2) remains the same except that
Problem COH is Σp

2-complete for disjunctive and disjunctive stratified programs (the problem
amounts to deciding whether some h-minimal HT-model (X, Y) of the program P exists such
that gap(X, Y) ⊆ B, which is in Σp

2; the matching hardness follows immediately from the results
on answer set existence in [20]).

7.3 Strong negation and non-ground programs
As already mentioned, semi-stable semantics has originally been developed as an extension to p-
minimal model semantics [62], a paraconsistent semantics for extended disjunctive logic programs,
i.e., programs which besides default negation also allow for strong (classical) negation. A
declarative characterization of p-minimal models by means of frames was given by Alcantara et al.
[1], who coined the term Paraconsistent Answer-set Semantics (PAS) for it. This characterization
has been further simplified and underpinned with a logical axiomatization in [50] by using Routley
models, i.e., a simpler possible worlds model.

Our characterizations for both, semi-stable models and semi-equilibrium models, can be easily
extended to this setting if they are applied to semantic structures which are given by quadruples
of interpretations rather than bi-interpretations, respectively to Routley here-and-there models
rather than HT-models. Intuitively, this again amounts to considering two ‘worlds’, each of which
consists of a pair of interpretations: one for positive literals (atoms), and one for negative literals
(strongly negated atoms). The respective epistemic transformations are unaffected except for the

89

fact that literals are considered rather than atoms. One can also show for both semantics that
there is a simple 1-to-1 correspondence to the semi-stable (resp. semi-equilibrium) models of a
transformed logic program without strong negation: A given extended program P is translated
into a program P ′ over Σ ∪ {a′ | a ∈ Σ} without strong negation by replacing each negative
literal of the form −a by a′. If (I, J) is a semi-stable (semi-equilibrium) model of P ′, then

(I ∩ Σ, {−a | a′ ∈ I}, J ∩ Σ, {−a | a′ ∈ J})

is a semi-stable (semi-equilibrium) model of P . Note that semi-stable (semi-equilibrium) models
of extended logic programs obtained in this way generalize the PAS semantics, which means that
they are paraconsistent as well as paracoherent. Logically this amounts to distinguishing nine
truth values rather than three, with the additional truth values undefined, believed false, believed
inconsistent, true with contradictory belief, false with contradictory belief, and inconsistent. The
computational complexity for extended programs is the same.

Compared to [62], we have confined here to propositional programs, as opposed to programs
with variables (non-ground programs). However, respective semantics for non-ground programs
via their grounding are straightforward. Alternatively, in case of semi-equilibrium models one can
simply replace HT-models by Herbrand models of quantified equilibrium logic [54]. Similarly for
the other semantics, replacing interpretations in the semantic structures by Herbrand interpretations
over a given function-free first-order signature, yields a characterization of the respective models.

Finally, as equilibrium logic is a conservative extension of answer sets of programs consisting
of rules to the full propositional language, the notion of SEQ-model immediately extends to richer
classes of programs with propositional connectives, e.g., to programs with negation in the head
[45] and nested logic programs [44]. Furthermore, it can also be easily extended to programs
with weight constraints [26], aggregates [25], or more general external atoms [22], and to hybrid
knowledge bases [19] (for the latter, see [27]).

7.4 Parametric merging semantics
By the results of Chapter 4, tractable merging policies that ensure classical coherence (D3)
will sometimes merge more components than necessary. To deal with the issues (1) and (2)
in Subsection 3.3.2, i.e., with all cross-constraints and dependence, a parametric approach that
gradually merges more SCCs seems attractive. We briefly outline here one possible such approach,
which merges components within bounded distance.

Denote for every C ∈ SCC(P) by Dk(C) the set of all descendants of C in SG(P) within
distance k ≥ 0; then we may proceed as follows.

1. create a graph Gk with a node vr for each constraint r in P , which is labeled with the set

λ(vr) = clp

(⋃
{Dk(Ci) | Ci ∈ SCC(P), Ci ∩ At(r) 6= ∅}

)
of SCCs; that is, all SCCs within distance k to a SCC Ci that intersects with r are collected
into one set, and on the resulting collection D of SCCs a function clp(D) is applied. The

90

latter closes D with respect to SCCs C that are on some path between members C1 and C2

of D in SG(P).

2. Merge then nodes vr and vr′ (and their labels, using clp) such that λ(vr) ∩ λ(v′r) 6= ∅ as
long as possible.

3. After that, create a node v for each SCC C that does not occur in any label of the graph,
and set λ(v) = {C};

4. add an edge from v to v′, if v 6= v′ and SG(P) has some edge (Ci, Cj) where Ci ∈ λ(v)
and Cj ∈ λ(v′).

The resulting graph Gk is acyclic and distinct nodes have disjoint labels. Similar as for JG(P),
any topological ordering≤ of Gk induces a splitting sequence S≤ (via the node labels λ(v), which
are taken as union

⋃
λ(v) of the SCCs they contain); thanks to an analog of Theorem 8, one can

define theMk-models of P asMk(P) = SEQS≤(P) for an arbitrary ≤.
For k = 0, we have Dk(C) = {C} and thus the node vr in the initial graph G0 contains in

its label λ(vr) the SCCs that intersect r; the final graph G0 is such that each Jx <∈ MJC(P)
is included in some node label (i.e., J ⊆ λ(v) for some node v). Hence, MMJC(P) ⊆ M0(P)
holds. As clearlyMk(P) ⊆Mk+1(P) holds for every k ≥ 0, andMk(P) = SEQ(P) for large
enough k; as holds, we have a hierarchy of models between MMJC(P) and SEQ(P) which
eventually establishes (D3); however, the results of Chapter 4 imply that predicting the least k
such thatMk(P) 6= ∅ is intractable.

Other relaxed notions of models (using different parameters for cross-constraints and direct
dependency) are conceivable; we leave this for future study.

91

Chapter 8

Conclusion and Main Publications

In this dissertation, we have studied paracoherent semantics for answer set programs, that is,
semantics that ascribes models to (disjunctive) logic programs with non-monotonic negation
even if no answer set (respectively stable model) exists, due to a lack of stability in models
caused by cyclic dependency through negation, or due to constraints. Ideally, such a semantics
approximates the answer set semantics faithfully and delivers models whenever possible, as
expressed by the properties (D1)–(D3); this can be beneficially exploited in scenarios where
unexpected inconsistency arises and one needs to stay operational, such as in inconsistency
tolerant query answering. Among few well-known semantics which feature these properties are
the semi-stable model semantics [62], and the novel semi-equilibrium model semantics, which
amends the semi-stable model semantics by eliminating some anomalies. For both semantics,
which are defined by program transformations, model-theoretic characterizations in terms of
bi-models and HT-models, respectively, have been given in [21]; in particular, semi-equilibrium
models relax the notion of equilibrium models, which reconstruct answer sets in HT-logic, by
allowing for minimal sets of unsupported assumptions.

We have then refined the semi-equilibrium model semantics with regard to modular program
structure, by defining models via splitting sets and splitting sequences; this constrains the set of
semi-equilibrium models, in a way that is amenable to modular bottom up evaluation of programs.
For that, we have presented canonical semi-equilibrium models for which, in analogy to the
classical Stratification Theorem for logic programs, the particular evaluation order does not
matter, and we have identified modularity properties for these semantics that allow for flexible
rearrangement in evaluation.

Furthermore, we have characterized the complexity of major reasoning tasks of all these
semantics, and we have compared semi-equilibrium semantics to related proposals for paraco-
herent semantics and approximations of answer sets in the literature. Notably, it appeared that
semi-equilibrium models coincide with evidential stable models in [64]; our semantic and compu-
tational results thus carry over to them. Different from other formalisms such as CR-Prolog [6] or
generalized stable models [39], unsupported assumptions in semi-stable and semi-equilibrium
models serve to block rules but not to establish positive evidence for deriving atoms from rules.
Furthermore, we have shown that the well-founded model of a normal logic program is re-
fined by semi-equilibrium models, and that the program can be easily modified such that all

92

semi-equilibrium models refine the well-founded model; the same holds also for canonical semi-
equilibrium models. This provides a paracoherent way to refine the well-founded semantics for
inconsistency-tolerant query answering, which coincides with the answer set semantics for coher-
ent programs and is in general more informative than the well-founded semantics and supports
reasoning by cases, being as close to answer sets as possible.

As for computation, we have considered different algorithms to compute semi-stable and semi-
equilibrium models, implementing and integrating them into an answer set building framework.
Then, we have reported results of experimental activity conducted on benchmarks from ASP
competitions [17], identifying the more efficient algorithm. Moreover, an attractive feature is
that canonical semi-equilibrium semantics allows for easy switching from a coherent (answer
set) mode to a “paracoherent” evaluation mode in the bottom up evaluation of a program, if
incoherence is encountered. And notably, this is possible also for disjunctive logic programs.

8.1 Open issues and outlook
Several issues remain for future work and investigations. A natural issue is to introduce para-
coherence for further language extensions besides strong negation and non-ground programs.
Fortunately, the generic framework of equilibrium logic makes it easy to define SEQ-semantics
for many such extensions, among them those mentioned in Section 7.3. It remains to consider
modularity in these extensions and to define suitable refinements of SEQ-models. Particularly in-
teresting are modular logic programs [37, 18], where modules can be organized non-hierarchically
and explicit (by module encapsulation) and implicit modularity (by splitting sets) occur at the
same time. Related to the latter are multi-context systems [11], in which knowledge bases ex-
change beliefs via non-monotonic bridge rules; based on ideas and results of this dissertation,
paracoherent semantics for certain classes of such multi-context systems may be devised.

Besides language extensions, another issue is generalizing the model selection. To this end,
preference in gap minimization may be supported, especially if domain-specific information is
available; subset-minimality is a natural instance of Occam’s razor in lack of such information.
Furthermore, preference of higher over lower program components may be considered; however,
this intuitively requires more guessing and hinders bottom up evaluation.

We have considered paracoherence based on program transformation, as introduced by Inoue
and Sakama [62]. Other notions, like forward chaining construction and strong compatibility
[71, 46] might be alternative candidates to deal with paracoherent reasoning in logic programs;
this remains to be explored.

Finally, another issue is to investigate the use of paracoherent semantics in AI applications
such as diagnosis, where assumptions may be exploited to generate candidate diagnoses, in the
vein of the generalised stable model semantics [39], or in systems for planning and reasoning
about actions based on ASP, where emerging incoherence should be meaningfully tolerated.

93

8.2 Main publications
During my doctorate study, I have dealt also with other issues related to ASP. A complete list of
achievements is given below.

• Amendola G., Eiter T., Leone N. Modular paracoherent answer sets. In Proceedings of
Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014, pages 457–471, 2014.

• Amendola G., Eiter T., Fink M., Leone N, Moura J. Semi-equilibrium models for paraco-
herent answer set programs. Artificial Intelligence Journal, 234:219-271, 2016.

• Amendola G., Greco G., Leone N., and Veltri P. Modeling and reasoning about NTU
games via answer set programming. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, July 9-15, 2016,
pages 38–45, 2016.

• Amendola G., Dodaro C., Ricca F. ASPQ: an ASP-based 2QBF solver. In Proceedings of
the 4th International Workshop on Quantified Boolean Formulas, QBF 2016, Bordeaux,
France, July 4, 2016, pages 49–54, 2016.

• Amendola G., Dodaro C., Leone N., Ricca F. On the application of answer set programming
to the conference paper assignment problem. In Proceedings of the Advances in Artificial
Intelligence - XVth International Conference of the Italian Association for Artificial In-
telligence, AI*IA 2016, Genova, Italy, November 28-December 1, 2016, pages 164–178,
2016.

• Alviano M., Amendola G., Peñaloza R. Minimal undefinedness for fuzzy answer sets. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, San
Francisco, California, USA, February 4-9, 2017, to appear.

• Amendola G., Dodaro C., Faber W., Leone N., Ricca F. On the computation of paracoherent
answer sets. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI 2017, San Francisco, California, USA, February 4-9, 2017, to appear.

94

Bibliography

[1] João Alcântara, Carlos Viegas Damásio, and Luís Moniz Pereira. A declarative characteriza-
tion of disjunctive paraconsistent answer sets. In ECAI 2004, pages 951–952, 2004.

[2] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca.
WASP: A native ASP solver based on constraint learning. In LPNMR 2013, pages 54–66,
2013.

[3] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in WASP.
In LPNMR 2015, pages 40–54, 2015.

[4] Fabrizio Angiulli, Rachel Ben-Eliyahu, Fabio Fassetti, and Luigi Palopoli. On the tractability
of minimal model computation for some CNF theories. Artif. Intell., 210:56–77, 2014.

[5] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In Minker
[48], pages 89–148.

[6] Marcello Balduccini and Michael Gelfond. Logic programs with consistency-restoring rules.
In International Symposium on Logical Formalization of Commonsense Reasoning, AAAI
2003 Spring Symposium Series, pages 9–18, 2003.

[7] C. Baral and V. S. Subrahmanian. Dualities between alternative semantics for logic program-
ming and nonmonotonic reasoning. J. Automated Reasoning, 10(3):399–420, 1993.

[8] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge, 2003.

[9] R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

[10] Howard A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theor. Comput.
Sci., 68(2):135–154, 1989.

[11] Gerd Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context
systems. In AAAI ’07, pages 385–390, 2007.

[12] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103, 2011.

95

[13] François Bry and Adnan H. Yahya. Positive unit hyperresolution tableaux and their applica-
tion to minimal model generation. J. Autom. Reasoning, 25(1):35–82, 2000.

[14] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by
constraints. IEEE Trans. Knowl. Data Eng., 12(5):845–860, 2000.

[15] Pedro Cabalar, Sergei P. Odintsov, and David Pearce. Logical foundations of well-founded
semantics. In Proceedings, Tenth International Conference on Principles of Knowledge
Representation and Reasoning, pages 25–35, 2006.

[16] Pedro Cabalar, Sergei P. Odintsov, David Pearce, and Agustín Valverde. Partial equilibrium
logic. Ann. Math. Artif. Intell., 50(3-4):305–331, 2007.

[17] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. Design and
results of the fifth answer set programming competition. Artif. Intell., 231:151–181, 2016.

[18] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Modular non-
monotonic logic programming revisited. In ICLP 2009, pages 145–159. Springer, 2009.

[19] Jos de Bruijn, David Pearce, Axel Polleres, and Agustín Valverde. A semantical framework
for hybrid knowledge bases. Knowl. Inf. Syst., 25(1):81–104, 2010.

[20] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence, 15(3/4):289–323,
1995.

[21] Thomas Eiter, Michael Fink, and Joao Moura. Paracoherent answer set programming. In
KR 2010, pages 486–496. AAAI Press, 2010.

[22] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer set programming.
In IJCAI-05, pages 90–96, 2005.

[23] Thomas Eiter, Nicola Leone, and Domenico Saccà. On the partial semantics for disjunctive
deductive databases. Annals of Mathematics and Artificial Intelligence, 19(1/2):59–96, 1997.

[24] Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic sets and their application to
data integration. J. Comput. Syst. Sci., 73(4):584–609, 2007.

[25] Paolo Ferraris. Answer sets for propositional theories. In LPNMR 2005, pages 119–131,
2005.

[26] Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. TPLP,
5(1-2):45–74, 2005.

[27] Michael Fink. Paraconsistent hybrid theories. In KR 2012, pages 391–401, 2012.

96

[28] Dov M. Gabbay, Christopher J. Hogger, J. A. Robinson, and Jörg H. Siekmann, editors.
Handbook of Logic in Artificial Intelligence and Logic Programming. 1994.

[29] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012.

[30] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp : A
conflict-driven answer set solver. In LPNMR 2007, pages 260–265, 2007.

[31] Martin Gebser, Marco Maratea, and Francesco Ricca. The design of the sixth answer set
programming competition - report -. In LPNMR 2015, pages 531–544, 2015.

[32] Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-programming
technique for debugging answer-set programs. In AAAI 2008, pages 448–453, 2008.

[33] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

[34] Ryuzo Hasegawa, Hiroshi Fujita, and Miyuki Koshimura. Efficient minimal model genera-
tion using branching lemmas. In CADE-17, 2000, pages 184–199, 2000.

[35] Arend Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, 16(1):42–56, 1930.

[36] Shasha Huang, Qingguo Li, and Pascal Hitzler. Reasoning with inconsistencies in hybrid
MKNF knowledge bases. Logic Journal of the IGPL, 21(2):263–290, 2013.

[37] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects
of disjunctive stable models. J. Artif. Intell. Res. (JAIR), 35:813–857, 2009.

[38] Mikolás Janota and Joao Marques-Silva. On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell., 233:73–83, 2016.

[39] Antonis C. Kakas and Paolo Mancarella. Generalized stable models: A semantics for
abduction. In ECAI 1990, pages 385–391, 1990.

[40] M. Koshimura, H. Nabeshima, H. Fujita, and R. Hasegawa. Minimal model generation with
respect to an atom set. In FTP 2009, CEUR 556, 2009.

[41] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499–562, 2006.

[42] V. Lifschitz and H. Turner. Splitting a logic program. In ICLP-94, pages 23–38. MIT-Press,
1994.

97

[43] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2(4):526–541, 2001.

[44] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Ann. Math. Artif. Intell., 25(3-4):369–389, 1999.

[45] Vladimir Lifschitz and Thomas Y. C. Woo. Answer sets in general nonmonotonic reasoning
(preliminary report). In KR 1992, pages 603–614, 1992.

[46] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel. Logic programs, well-orderings,
and forward chaining. Annals of Pure and Applied Logic, 96(1-3):231–276, 1999.

[47] João Marques-Silva, Mikolás Janota, and Anton Belov. Minimal sets over monotone
predicates in boolean formulae. In CAV 2013, pages 592–607, 2013.

[48] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan
Kaufman, Washington DC, 1988.

[49] Ilkka Niemelä. A tableau calculus for minimal model reasoning. In TABLEAUX 1996, pages
278–294, 1996.

[50] Sergei P. Odintsov and David Pearce. Routley semantics for answer sets. In LPNMR 2005,
pages 343–355, 2005.

[51] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Stepwise debugging of description-logic
programs. In Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz,
pages 492–508, 2012.

[52] Mauricio Osorio, José R. Arrazola Ramírez, and José Luis Carballido. Logical weak
completions of paraconsistent logics. J. Log. Comput., 18(6):913–940, 2008.

[53] David Pearce. Equilibrium logic. Annals of Mathematics and Artificial Intelligence, 47(1-
2):3–41, 2006.

[54] David Pearce and Agustín Valverde. Quantified equilibrium logic and foundations for answer
set programs. In ICLP, pages 546–560, 2008.

[55] Luís Moniz Pereira, José Júlio Alferes, and Joaquim Nunes Aparício. Contradiction removal
semantics with explicit negation. In Logic at Work, pages 91–105, 1992.

[56] Luís Moniz Pereira and Alexandre Miguel Pinto. Revised stable models - a semantics for
logic programs. In EPIA 2005, pages 29–42, 2005.

[57] Luís Moniz Pereira and Alexandre Miguel Pinto. Approved models for normal logic
programs. In LPAR, pages 454–468, 2007.

[58] Luís Moniz Pereira and Alexandre Miguel Pinto. Layered models top-down querying of
normal logic programs. In PADL 2009, pages 254–268, 2009.

98

[59] Theodor C. Przymusinski. On the declarative semantics of deductive databases and logic
programs. In Minker [48], pages 193–216.

[60] Theodor C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 9:401–424, 1991.

[61] Domenico Saccà and Carlo Zaniolo. Partial models and three-valued stable models in logic
programs with negation. In LPNMR 1991, pages 87–101, 1991.

[62] Chiaki Sakama and Katsumi Inoue. Paraconsistent stable semantics for extended disjunctive
programs. J. Log. Comput., 5(3):265–285, 1995.

[63] Chiaki Sakama and Katsumi Inoue. An abductive framework for computing knowledge base
updates. Theory and Practice of Logic Programming, 3(6):671–713, May 2003.

[64] Dietmar Seipel. Partial evidential stable models for disjunctive deductive databases. In
LPKR 1997, pages 66–84, 1997.

[65] Tommi Syrjänen. Debugging inconsistent Answer-Set Programs. In Proceedings of the 11th
International Workshop on Nonmonotonic Reasoning, (NMR 2006), pages 77–83. University
of Clausthal, Department of Informatics, Technical Report, IfI-06-04, 2006.

[66] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[67] Hudson Turner. Strong equivalence made easy: nested expressions and weight constraints.
TPLP, 3(4-5):609–622, 2003.

[68] A. van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

[69] Allen van Gelder. The alternating fixpoint of logic programs with negation. J. Comput. Syst.
Sci., 47(1):185–221, 1993.

[70] Kewen Wang and Lizhu Zhou. Comparisons and computation of well-founded semantics
for disjunctive logic programs. ACM Trans. Comput. Log., 6(2):295–327, 2005.

[71] Yisong Wang, Mingyi Zhang, and Jia-Huai You. Logic programs, compatibility and forward
chaining construction. J. Comput. Sci. Technol., 24(6):1125–1137, 2009.

[72] J.-H. You and L.Y. Yuan. A three-valued semantics for deductive databases and logic
programs. Journal of Computer and System Sciences, 49:334–361, 1994.

99

