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Sommario

La Programmazione Logica Disgiuntiva (PLD, o DLP, all’inglese), è un ap-
proccio dichiarativo alla programmazione, che è stato proposto di recente nell’area
del ragionamento non monotono e della programmazione logica. Può essere an-
che vista come una alternativa di programmazione logica alla programmazione
basata su SAT, che è largamente usata, e con successo, nell’area dell’Intelligenza
Artificiale [Kautz and Selman, 1992].

La DLP è molto ‘‘espressiva’’: cattura interamente, sotto la semantica degli
Answer Set (o Modelli Stabili), l’intera classe ΣP

2 (NPNP). Tuttavia, il suo alto
potere espressivo comporta un elevato costo sul piano computazionale, e questo,
per molti anni, ha comportato il fatto che la ricerca sulla DLP stessa è stata con-
dotta sostanzialmente sul solo piano teorico, e la difficoltà nella valutazione dei
programmi logici disgiuntivi ha scoraggiato a lungo l’implementazione di sistemi
reali.

Sono stati fatti molti sforzi nell’intento di realizzare sistemi DLP efficienti, e
dopo alcuni lavori pionieristici [Bell et al., 1994; Subrahmanian et al., 1995], di-
versi moderni sistemi sono ormai disponibili. Tra questi, il sistema DLV consente
di sfruttare la DLP per risolvere problemi reali in diverse aree applicative, come ad
esempio la pianificazione, la schedulazione (scheduling), la correzione automat-
ica di dati da censimento, la manipolazione di dati complessi [Eiter et al., 2000;
Simons, 2000; Franconi et al., 2001].

Tuttavia, applicazioni pratiche in diverse aree emergenti, come la gestione
della conoscenza (Knowledge Management) o l’integrazione delle informazioni
(Information Integration), richiedono prestazioni sempre più elevate. Di con-
seguenza, la progettazione e l’implementazione di appropriate tecniche di ottimiz-
zazione sono fondamentali per l’efficienza di sistemi come DLV. Senza contare
che, nonostante il già citato potere espressivo della DLP, ci sono alcuni tipi di
problemi che non possono essere codificati in modo naturale, e pertanto i pro-
grammi risultanti sono spesso complicati e macchinosi.

In questa tesi ci concentriamo sulle questioni succitate: da un lato proponiamo
nuove tecniche mirate ad aumentare l’efficienza del sistema DLV; e dall’altro
proponiamo nuove estensioni della Programmazione Logica Disgiuntiva che ne
aumentano le capacità di modellare conoscenza.

Qui di seguito riportiamo brevemente i principali contributi di questa tesi.

1. Studiamo la DLP e ne analizziamo la complessità e l’utilizzo per la rappre-
sentazione della conoscenza e il ragionamento non monotono.
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2. Studiamo i metodi di ‘‘taglio’’ (‘‘pruning’’) dello spazio di ricerca, aspetto
cruciale per l’efficienza dei sistemi DLP. Analizziamo due operatori per
il pruning, con riferimento alla loro efficienza ed efficacia. Mettiamo a
punto una strategia efficiente per combinare i due operatori, che consente di
sfruttare i vantaggi di entrambi.

3. Progettiamo algoritmi molto efficienti per l’implementazione delle strategie
suddette, e, contestualmente, studiamo nuove tecniche per la maggiore ‘‘lo-
calizzazione’’ possibile del calcolo delle ‘‘parti’’ di un programma logico
davvero utili per raggiungere una soluzione. Implementiamo l’approccio
presentato nel sistema DLV e conduciamo diversi esperimenti.

4. Introduciamo un framework formale, per favorire l’introduzione di predicati
esterni nella DLP, chiamato DLP-EX. Questo consente di definire funzioni
aggregate estese ‘‘esterne’’ al sistema stesso (non predefinite), definibili
dall’utente finale e raggruppabili in librerie, e la cui estensione non è spe-
cificata per mezzo di un programma logico, bensı̀ calcolata attraverso del
codice esterno.

5. Integriamo il framework DLP-EX stesso nel sistema DLV, e conduciamo
alcuni esperimenti; mostriamo inoltre come DLP-EXfaciliti l’applicazione
della Programmazione Logica Disgiuntiva in alcuni ambiti di rilievo e, cosa
molto importante, come apra la strada ad un modo per simulare i simboli di
funzione in uno scenario in cui la nozione di termine rimane semplice.

6. Introduciamo il paradigma ‘‘template’’ nella DLP. L’estensione proposta è
chiamata DLPT . Il framework proposto introduce il concetto di predicato
‘‘template’’, la cui definizione può essere sfruttata dovunque sia necessario
o desiderato, attraverso il ‘‘binding’’ con predicati usuali, permettendo cosı̀
di definire moduli riutilizzabili, nuovi costrutti e/o aggregati, e senza alcuna
limitazione sintattica.

7. Implementiamo il paradigma ‘‘template’’ all’interno del sistema DLV; tut-
tavia, esso non si basa su caratteristiche specifiche di DLV, ed è facilmente
generalizzabile ad altri sistemi. Esso garantisce l’aumento della dichiara-
tività del codice, la possibilità di raggruppare i template in librerie, la ca-
pacità di introdurre velocemente nuovi costrutti predefiniti e di ottenere una
prototipazione rapida di nuove estensioni.
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Abstract

Disjunctive Logic Programming (DLP) is a declarative approach to program-
ming, which has been recently proposed in the area of nonmonotonic reasoning
and logic programming. It can be view also as a logic programming alternative
to SAT-based programming, which is successfully and widely used in the area of
Artificial Intelligence [Kautz and Selman, 1992].

DLP is very expressive: it allows to express every property of finite structures
that is decidable in the complexity class ΣP

2 (NPNP). However, the high expres-
siveness of Disjunctive Logic Programming comes at the price of a high compu-
tational cost. For many years the research on DLP has been carried out only on
the theoretical side, because the hardness of the evaluation of DLP programs has
discouraged the implementation of DLP engines for quite some time.

Several efforts have been made in the direction of implementing efficient DLP
systems. After some pioneering work on stable model computation [Bell et al.,
1994; Subrahmanian et al., 1995], a number of modern DLP systems are now
available. Among them, the DLV system allows to use DLP for solving real-
world problems in a number of application areas, including planning, scheduling,
automatic correction of census data, as well as for complex data manipulations
[Eiter et al., 2000; Simons, 2000; Franconi et al., 2001].

However, practical applications in many emerging areas, such as Knowledge
Management or Information Integration, require always higher performances, and
therefore the design and the implementation of suitable optimization techniques
are fundamental for the efficiency of systems like DLV. Moreover, despite the
high expressive power of DLP, there are some kinds of problems that cannot be
encoded in a natural way and then the resulting programs are often complex and
tricky.

In this thesis we focus on the issues above: from the one hand we propose
new techniques aiming at improving the efficiency of DLV; on the other hand,
we propose new extensions of Disjunctive Logic Programming for enhancing its
knowledge modelling abilities.

Briefly, the main contributions of the thesis are the following:

1. We study DLP, analyze its complexity and its exploitation for knowledge
representation and reasoning.

2. We describe the main steps of the computational process performed by DLP
systems with a focus on search space pruning, which is crucial for effi-
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ciency. We analyze the properties of the disjunctive extensions of two well-
known pruning operators for logic programming. We design an intelligent
strategy for combining the two pruning operators cited above, which ex-
ploits the advantages of both.

3. We implement our approach in the DLV system, taking care of efficiency
issues and respecting the known complexity bounds, and reporting experi-
mental results on a number of benchmark problems to assess the impact of
our approach.

4. We introduce a formal framework, for accommodating external predicates
in the context of Disjunctive Logic Programming. We show that the frame-
work enhances the applicability of DLP to a variety of problems such as
string and algebraic manipulation.

5. We discuss implementation issues, and show how we have integrated the
support for external predicate in the DLV system, which is, this way, en-
abled with the possibility of using external sources of computation.

6. We introduce the template paradigm into DLP, providing syntax and giv-
ing a clear operational semantics. We discuss theoretical properties of the
extension and its main advantages.

7. We extend the DLV system with the capability to support the template
paradigm.



Introduction

Disjunctive Logic Programming

Disjunctive Logic Programming (DLP) is a declarative approach to programming,
which has been recently proposed in the area of nonmonotonic reasoning and
logic programming. It can be view also as a logic programming alternative to
SAT-based programming, which is successfully and widely used in the area of
Artificial Intelligence [Kautz and Selman, 1992]. In SAT-based programming, a
given computational problem P is encoded as a propositional CNF formula the
models of which correspond to solutions of P ; a SAT solver is then used to find
such models (and thus solutions of P ). In Disjunctive Logic Programming, a
given computational problem P is represented by a DLP program whose stable
models correspond to solutions; a DLP system is then used to find such solutions
to P [Lifschitz, 1999].

One of the main features of Disjunctive Logic Programming is the higher ex-
pressiveness of its language, which enjoys the knowledge modeling power of logic
programming features like variables, negation as failure, and disjunction. Indeed,
the knowledge representation language of DLP consists of function-free logic pro-
grams where disjunction is allowed in the heads and nonmonotonic negation may
occur in the bodies of the rules. The DLP language supports the representation of
problems of high computational complexity, and, importantly, the DLP encoding
of a large variety of problems is often very concise, simple, and elegant [Eiter et
al., 2000].

Such encodings are now widely recognized as a valuable tool for knowl-
edge representation and commonsense reasoning [Baral and Gelfond, 1994; Lobo
et al., 1992; Wolfinger, 1994; Eiter et al., 1999; Gelfond and Lifschitz, 1991;
Lifschitz, 1996; Minker, 1994; Baral, 2002]. For instance, one of the attractions
of Disjunctive Logic Programming (DLP) is its capability of allowing the natural
modeling of incomplete knowledge [Baral and Gelfond, 1994; Lobo et al., 1992].

9
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Much research has been spent on the semantics of disjunctive logic programs,
and several alternative semantics have been proposed [Brass and Dix, 1995; Eiter
et al., 1997e; Gelfond and Lifschitz, 1991; Minker, 1982; Przymusinski, 1990;
1991; 1995; Ross, 1990; Sakama, 1989] (see [Apt and Bol, 1994; Dix, 1995;
Lobo et al., 1992; Minker, 1994; 1996] for comprehensive surveys). The most
widely accepted semantics is the answer sets semantics proposed by Gelfond and
Lifschitz [Gelfond and Lifschitz, 1991], as an extension of the stable model se-
mantics of normal logic programs [Gelfond and Lifschitz, 1988]. According to
this semantics, a disjunctive logic program may have several alternative models
(but possibly none), called answer sets, each corresponding to a possible view of
the world.

Disjunctive Logic Programming under answer sets semantics (also called An-
swer Set Programming (ASP)) is very expressive. It has been shown ([Eiter et
al., 1997c; Gottlob, 1994]) that, under this semantics, disjunctive logic programs
capture the complexity class ΣP

2 (i.e., they allow us to express, in a precise math-
ematical sense, every property of finite structures over a function-free first-order
structure that is decidable in nondeterministic polynomial time with an oracle in
NP). As Eiter et al. [Eiter et al., 1997c] showed, the expressiveness of Disjunctive
Logic Programming has practical implications, since relevant practical problems
can be represented by disjunctive logic programs, while they cannot be expressed
by logic programs without disjunctions, given current complexity beliefs. In ad-
dition, even problems of lower complexity can be often expressed more naturally
by disjunctive programs than by programs without disjunction.

The DLV System

Several efforts have been made in the direction of implementing efficient DLP sys-
tems. After some pioneering work on stable model computation [Bell et al., 1994;
Subrahmanian et al., 1995], a number of modern DLP systems are now available.
The most widespread DLP systems are DLV [Leone et al., 2005], GnT [Janhunen
et al., 2005], and recently also Cmodels-3 [Lierler, 2005]. Many other systems
support various fragments of the DLP language [Anger et al., 2001; Aravindan
et al., 1997; Babovich, since 2002; Chen and Warren, 1996; Cholewiński et al.,
1996; 1999; East and Truszczyński, 2000; 2001b; 2001a; Egly et al., 2000; Lierler
and Maratea, 2004; Lin and Zhao, 2004; McCain and Turner, 1998; Niemelä and
Simons, 1997; Rao et al., 1997; Seipel and Thöne, 1994; Simons et al., 2002].

In this thesis we focus on the DLV system, which is generally recognized to
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be the state-of-the-art implementation of Disjunctive Logic Programming. DLV
is widely used by researchers all over the world, and it is competitive, also from
the viewpoint of efficiency, with the most advanced systems in this area.

The development of DLV started in 1996 at the Vienna University of Technol-
ogy, in a research project funded by the Austrian Science Funds (FWF); at present,
DLV is the subject of an international cooperation between the University of Cal-
abria and the Vienna University of Technology. It is widely used for educational
purposes in courses on databases and on AI, both in European and American uni-
versities, and has been employed at CERN, the European Laboratory for Particle
Physics located near Geneva, for an advanced deductive database application that
involves complex knowledge manipulation on large-sized databases.

The industrial exploitation of DLV in the emerging areas of Knowledge Man-
agement and Information Integration has been the subject of two international
projects funded by the European Commission, namely, INFOMIX (Boosting In-
formation Integration, project IST-2002-33570) and ICONS (Intelligent Content
Management System, project IST-2001-32429).

We believe that the strengths of DLV – its expressivity and solid implementa-
tion – make it attractive for such hard applications.

Main Contribution

This thesis concerns the study and the extension of Disjunctive Logic Program-
ming, and the optimization of the DLV system, which implements the DLP itself.

Some evidence raised during our studies.

• in the latest years, the availability of reliable DLP systems induced many
people to start exploiting DLP in several application areas, but the current
systems are not efficient enough for many of these applications;

• despite its expressiveness, DLP is, in some relevant cases, still unable to
model knowledge in a natural way (for instance, is not capable to easily
deal with some data types).

Our work faces both the above issues, aiming at overcoming these limitations
by:

(i) increasing the efficiency of the DLP systems, and of the DLV system in
particular, through design and implementation of new optimization tech-
niques;
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(ii) extending DLP in order to enhance its knowledge modelling abilities.

Optimizing the Evaluation of Disjunctive Logic Programming. The core of
a DLP system is model generation, where a model of the program is produced,
which is then subjected to a model check. For the generation of models, DLP sys-
tems typically employ procedures which are similar to Davis-Putnam procedures
used in SAT solvers. As for SAT solvers, two factors are fundamentally important
for the efficiency of model generation in DLP: (i) the heuristic (branching rule)
for the selection of the branching literal, i.e., the criterion determining the literal
to be assumed true at a given stage of the computation; and (ii) the pruning op-
erator, i.e., the operator computing the consequences deterministically derivable
from the program rules and the interpretation at hand, which enlarges the set of
known facts pruning the search space.

Much work has to be done to make DLP systems fully satisfactory for modern
knowledge-based applications, and the design of new optimization techniques and
smart algorithms for the computation of DLP programs is of utmost importance.
Our work goes in this direction, focusing on search space pruning, an extremely
critical problem for the performance of DLP systems. Thus:

• We describe the main steps of the computational process performed by
DLP systems with a focus on search space pruning, which is crucial for
efficiency. We analyze the properties of the disjunctive extensions of two
well-known pruning operators for logic programming, Fitting’s operator
and the Well-founded operator. We carry out an in-depth discussion on their
strengths and weaknesses w.r.t. efficiency and effectiveness, deriving new
properties on these operators which are fundamental for their concrete ex-
ploitation in DLP systems.

• We design an intelligent strategy for combining these two pruning opera-
tors, which exploits the advantages of both, starting from several known
results established in previous works and focusing on modularity proper-
ties [Lifschitz and Turner, 1994; Eiter et al., 1997c; Leone et al., 1997],
head-cycle free programs [Ben-Eliyahu and Dechter, 1994], acyclic pro-
grams [Fages, 1994], disjunctive unfounded sets and complexity [Leone et
al., 1997], combining these in a smart way.

• We implement our approach in the DLV system, taking care of efficiency
issues and respecting the known complexity bounds. Indeed, the fixpoints
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of Fitting’s operator are computed in linear time, as are the Greatest Un-
founded Sets (which contribute the negative inferences in the Well-founded
operator).

• We report experimental results on a number of benchmark problems to as-
sess the impact of our approach. The experiments show that the choice
of the pruning operator has a strong influence on the performance of DLP
systems, and specifically that our techniques considerably improve the effi-
ciency of the DLV system.

Extending Disjunctive Logic Programming. Despite its high expressiveness,
there are several problems that DLP cannot encode in a natural way, and thus even
the state-of-the-art DLP systems hardly deal with these. For instance, it’s quite
artful to deal with data types such as strings, natural and real numbers. Although
simple, this data types bring two kinds of technical problems: first, they range
over infinite domains; second, they need to be manipulated with primitive con-
structs which can be encoded in logic programming at the cost of compromising
efficiency and declarativity. Furthermore, interoperability with other software is
nowadays important, especially in the context of those Semantic Web applications
aimed at managing external knowledge.

In addition, it is very likely that this new generation of DLP applications re-
quire the introduction of repetitive pieces of standard code. Indeed, a major need
of complex and huge DLP applications such as [Nogueira et al., 2001] is dealing
efficiently with large pieces of such a code and with complex data structures,
more sophisticated than the simple, native DLP data types. Indeed, the non-
monotonic reasoning community has continuously produced, in the past, several
extensions of nonmonotonic logic languages, aimed at improving readability and
easy programming through the introduction of new constructs, employed in or-
der to specify classes of constraints, search spaces, data structures, new forms
of reasoning, new special predicates [Cadoli et al., 1999; Eiter et al., 1997a;
Kuper, 1990], such as aggregate predicates [Calimeri et al., 2005]. Nonetheless,
code reusability has never been considered as a priority in the DLP field, despite
the fact that modular logic programming has been widely studied in the general
case [Bugliesi et al., 1994; Eiter et al., 1997d].

Our work tries to start filling these gaps.

• We introduce a formal framework, named DLP-EX, for accommodating ex-
ternal predicates in the context of Disjunctive Logic Programming.
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• DLP-EX includes the explicit possibility of invention of new values from ex-
ternal sources: since this setting could lead to non-termination of any con-
ceivable evaluation algorithm, we tailor specific cases where decidability is
preserved.

• We show that DLP-EX enhances the applicability of Disjunctive Logic Pro-
gramming to a variety of problems such as string and algebraic manipula-
tion. Also the framework paves the way for simulating function symbols
in a setting where the notion of term is kept simple (Skolem terms are not
necessary).

• We discuss implementation issues, and show how we have integrated DLP-
EX in the DLV system, which is, this way, enabled with the possibility of
using external sources of computation.

• We present the DLPT framework, which introduces the template paradigm
into DLP, providing syntax and giving a clear operational semantics through
a proper ‘‘explosion’’ pseudo-algorithm.

• We discuss theoretical properties of DLPT and its main advantages.

• We present an implementation of the DLPT language on top of the DLV
system.

Organization of the Thesis

This thesis consists of three parts. First, we introduce Disjunctive Logic Program-
ming, and then discuss points (i) and (ii) above. The organization of the thesis is
described more in details as follows.

[ I ] The first part introduces Disjunctive Logic Programming under the answer
sets semantics, analyzes its computational complexity and addresses some
knowledge representation issues.

[ II ] The second part describes the main steps of the computational process per-
formed by DLP systems, and the DLV system in particular, focusing on
search space pruning, and then provides new techniques aimed at improv-
ing the overall efficiency.
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[ III ] Finally, the third part presents two extensions of the DLP, namely template
predicates and external predicates, and the implementation of their support
into the DLV system.



Part I

Disjunctive Logic Programming

16
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In this part we present Disjunctive Logic Programming1. In particular, we first
define the syntax of this language and its associated semantics, the Answer Set
Semantics. This programming framework is also referred to as Answer Set Pro-
gramming (ASP). Then, we analyze the computation complexity of this language
and we illustrate the usage of Disjunctive Logic Programming for knowledge rep-
resentation and reasoning.

The part is organized as follows:

• Chapter 1 provides a formal definition of the syntax and the semantics of
Disjunctive Logic Programming2.

• In Chapter 2 we give a detailed analysis of the computational complexity of
disjunctive logic programs. We recall the main decisional problems arising
in the context of DLP and discuss their computational complexity.

• Finally, in Chapter 3, we illustrate the usage of this language for knowledge
representation and reasoning, describing a new declarative programming
methodology which allows one to encode complex problems (up to ∆P

3 -
complete problems) in a declarative fashion.

1From now on, when talking about DLP we actually refer to a rather recent extension of DLP
itself by weak constraints [Buccafurri et al., 2000] which are a powerful tool to express optimiza-
tion problems.

2The semantics presented here is a slight generalization of the original semantics proposed
for weak constraints in [Buccafurri et al., 2000]. In particular, the original definition of weak
constraints allowed only “prioritized weak constraints”, while here we allow both priority levels
(layers) and weights for weak constraints.



Chapter 1

The Language

In this chapter, we provide a formal definition of the syntax and the semantics of
Disjunctive Logic Programming. For further background, see [Lobo et al., 1992;
Eiter et al., 1997c; Gelfond and Lifschitz, 1991].

1.1 Syntax

A term is either a variable or a constant. An atom is an expression p(t1, . . .,tn),
where p is a predicate of arity n and t1,. . . ,tn are terms. A literal is a positive lit-
eral p or a negative literal not p, where p is an atom.

A disjunctive rule (rule, for short) r is a formula

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm. (1.1)

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The dis-
junction a1 v · · · v an is called head of r, while the conjunction b1, · · · , bk,

not bk+1, · · · , not bm is the body of r. We denote by H(r) the set {a1, ..., an}
of the head atoms, and by B(r) the set of the body literals. In particular, B(r) =

B+(r) ∪ B−(r), where B+(r) (the positive body) is {b1,. . . , bk} and B−(r) (the
negative body) is {bk+1, . . . , bm}. A rule having precisely one head literal (i.e.
n = 1) is called a normal rule. If the body is empty (i.e. k = m = 0), it is called
a fact, and we usually omit the “ :- ” sign.

An (integrity) constraint is a rule without head literals (i.e. n = 0)

:- b1, · · · , bk, not bk+1, · · · , not bm. (1.2)

A weak constraint wc is an expression of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l] (1.3)

18
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where for m ≥ k ≥ 0, b1, . . . , bm are atoms, while w (the weight) and l (the level,
or layer) are positive integer constants or variables. For convenience, w and/or l

might be omitted and are set to 1 in this case.
The sets B(wc), B+(wc), and B−(wc) of a weak constraint wc are defined in

the same way as for integrity constraints.
A disjunctive logic program (often simply DLP program) P is a finite set

of rules (possibly including integrity constraints) and weak constraints. WC(P)

denotes the set of weak constraints in P , and Rules(P) denotes the set of rules
(including integrity constraints) in P . A not-free program P (i.e., such that ∀r ∈
P : B−(r) = ∅) is called positive, and a v-free program P (i.e., such that ∀r ∈
P : |H(r)| ≤ 1) is called normal logic program. A program that does not contain
weak constraints (i.e., such that WC(P)=∅) is called regular.

A rule is safe if each variable in that rule also appears in at least one positive
literal in the body of that rule. A program is safe, if each of its rules is safe, and
in the following we will only consider safe programs.

A term (an atom, a rule, a program, etc.) is called ground, if no variable
appears in it. A ground program is also called a propositional program.

1.2 Semantics

The semantics provided in this section extends the Answer Set Semantics of regu-
lar disjunctive logic programs, originally defined in [Gelfond and Lifschitz, 1991],
to deal with weak constraints.

Let P be a disjunctive logic program. The Herbrand Universe of P , denoted
as UP , is the set of all constants appearing in P . In case no constant appears in P ,
an arbitrary constant ψ is added to UP . The Herbrand Base of P , denoted as BP ,
is the set of all ground atoms constructible from the predicate symbols appearing
in P and the constants of UP .

For any rule r, Ground(r) denotes the set of rules obtained by applying all
possible substitutions σ from the variables in r to elements of UP . In a similar
way, given a weak constraint w, Ground(w) denotes the set of weak constraints
obtained by applying all possible substitutions σ from the variables in w to ele-
ments of UP . For any program P , the ground instantiation Ground(P) is the set
GroundRules(P) ∪GroundWC(P), where

GroundRules(P) =
⋃

r∈Rules(P)

Ground(r)
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and

GroundWC(P) =
⋃

w∈WC(P)

Ground(w).

Note that for propositional programs, P = Ground(P) holds.

Answer Sets For every program P , we define its answer sets using its ground
instantiation Ground(P) in three steps:

First we define the answer sets of positive regular disjunctive logic programs,
then we give a reduction of disjunctive logic programs containing negation to pos-
itive ones and use it to define answer sets of arbitrary disjunctive logic programs.
Finally, we specify the way how weak constraints affect the semantics, defining
the semantics of general DLP programs.

An interpretation I is a set of ground atoms, i.e. I ⊆ BP w.r.t. a program
P . An interpretation X ⊆ BP is called closed under P (where P is a positive
disjunctive logic program), if, for every r ∈ Ground(P), H(r)∩X 6= ∅whenever
B(r) ⊆ X . An interpretation X ⊆ BP is an answer set for a positive disjunctive
logic program P , if it is minimal (under set inclusion) among all interpretations
that are closed under P .

Example 1.1 The positive program P1 = {a v b v c.} has the answer sets {a},
{b}, and {c}. Its extension P2 = {a v b v c. ; :- a.} has the answer sets {b} and
{c}. Finally, the positive program P3 = {a v b v c. ; :- a. ; b :- c. ; c :- b.} has
the single answer set {b, c}.

The reduct or Gelfond-Lifschitz transform of a ground program P w.r.t. a set
X ⊆ BP is the positive ground program PX , obtained from P by

• deleting all rules r ∈ P for which B−(r) ∩X 6= ∅ holds;

• deleting the negative body from the remaining rules.

An answer set of a program P is a set X ⊆BP such that X is an answer set of
Ground(P)X .

Example 1.2 Given the general program P4 = { a v b :- c. ; b :- not a, not c. ;

a v c :- not b.} and I = {b}, the reduct PI
4 is { a v b :- c. ; b. }. It is easy to see

that I is an answer set of PI
4 , and for this reason it is also an answer set of P4.

Now consider J = {a}. The reduct PJ
4 is {a v b :- c. ; a v c.} and it can be

easily verified that J is an answer set of PJ
4 , so it is also an answer set of P4.
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If, on the other hand, we take K = {c}, the reduct PK
4 is equal to PJ

4 , but
K is not an answer set of PK

4 : for the rule r : a v b :- c, B(r) ⊆ K holds, but
H(r) ∩ K 6= ∅ does not. Indeed, it can be verified that I and J are the only
answer sets of P4.

Given a ground program P with weak constraints WC(P), we are interested
in the answer sets of Rules(P) which minimize the sum of weights of the violated
(unsatisfied) weak constraints in the highest priority level,1 and among them those
which minimize the sum of weights of the violated weak constraints in the next
lower level, etc. Formally, this is expressed by an objective function HP(A) for P
and an answer set A as follows, using an auxiliary function fP which maps leveled
weights to weights without levels:

fP(1) = 1,
fP(n) = fP(n− 1) · |WC(P)| · wP

max + 1, n > 1,

HP(A) =
∑lPmax

i=1 (fP(i) ·∑w∈NP
i (A) weight(w)),

where wP
max and lPmax denote the maximum weight and maximum level over the

weak constraints inP, respectively; NP
i (A) denotes the set of the weak constraints

in level i that are violated by A, and weight(w) denotes the weight of the weak
constraint w. Note that |WC(P)| ·wP

max + 1 is greater than the sum of all weights
in the program, and therefore guaranteed to be greater than the sum of weights of
any single level.

Intuitively, the function fP handles priority levels. It guarantees that the viola-
tion of a single constraint of priority level i is more “expensive” then the violation
of all weak constraints of the lower levels (i.e., all levels < i).

For a DLP program P (possibly with weak constraints), a set A is an (optimal)
answer set of P if and only if (1) A is an answer set of Rules(P) and (2) HP(A)

is minimal over all the answer sets of Rules(P).

Example 1.3 Consider the following program Pwc, which has three weak con-
straints:

a v b.

b v c.

d v e :- a, c.

1Higher values for weights and priority levels mark weak constraints of higher importance.
E.g., the most important constraints are those having the highest weight among those with the
highest priority level.
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:- d, e.

:∼ b. [1 : 2]

:∼ a, e. [4 : 1]

:∼ c, d. [3 : 1]

Rules(Pwc) admits three answer sets: A1 = {a, c, d}, A2 = {a, c, e}, and
A3 = {b}. We have: HPwc(A1) = 3, HPwc(A2) = 4, HPwc(A3) = 13. Thus, the
unique (optimal) answer set is {a, c, d} with weight 3 in level 1 and weight 0 in
level 2.



Chapter 2

Computational Complexity

In this chapter, we analyze the computational complexity of Disjunctive Logic
Programming. We first provide some preliminaries on complexity theory. Then,
we define a couple of relevant syntactic properties of disjunctive logic programs,
which allow us to single out computationally simpler subclasses of the language.
Finally, we define the main computational problems under consideration and il-
lustrate their precise complexity.

2.1 Preliminaries

We assume here that the reader is familiar with the concepts of NP-completeness
and complexity theory and provide only a very short reminder of the complexity
classes of the Polynomial Hierarchy which are relevant to this chapter. For further
details, the reader is referred to [Papadimitriou, 1994].

The classes ΣP
k , ΠP

k , and ∆P
k of the Polynomial Hierarchy (PH, cf. [Johnson,

1990]) are defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P

and for all k ≥ 1, ∆P
k = PΣP

k−1 , ΣP
k = NPΣP

k−1 , ΠP
k = co-ΣP

k ,

where NPC denotes the class of decision problems that are solvable in polyno-
mial time on a nondeterministic Turing machine with an oracle for any decision
problem π in the class C. In particular, NP = ΣP

1 , co-NP = ΠP
1 , and ∆P

2 = PNP.
The oracle replies to a query in unit time, and thus, roughly speaking, models

a call to a subroutine for π that is evaluated in unit time.
Observe that for all k ≥ 1,

ΣP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1 ⊆ PSPACE

23
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where each inclusion is widely conjectured to be strict. By the rightmost inclusion
above, all these classes contain only problems that are solvable in polynomial
space. They allow, however, a finer grained distinction among NP-hard problems
that are in PSPACE.

2.2 Relevant Classes of Programs

In this section, we introduce syntactic classes of disjunctive logic programs with
interesting properties. First we need the following:

Definition 2.1 Functions || || : BP → {0, 1, . . .} from the Herbrand Base BP to
finite ordinals are called level mappings of P.

Level mappings give us a useful technique for describing various classes of pro-
grams.

Definition 2.2 A disjunctive logic program P is called (locally) stratified [Apt et
al., 1988; Przymusinski, 1988], if there is a level mapping || ||s of P such that, for
every rule r of Ground(P),

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;

2. For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s.

3. For any l, l′ ∈ H(r), ||l||s = ||l′||s.

Example 2.3 Consider the following two programs.

P1 : p(a) v p(c) :- not q(a). P2 : p(a) v p(c) :- not q(b).
p(b) :- not q(b). q(b) :- not p(a).

It is easy to see that program P1 is stratified, while program P2 is not. A suitable
level mapping for P1 is the following:

||p(a)||s = 2 ||p(b)||s = 2 ||p(c)||s = 2
||q(a)||s = 1 ||q(b)||s = 1 ||q(c)||s = 1

As for P2, an admissible level mapping would need to satisfy ||p(a)||s < ||q(b)||s
and ||q(b)||s < ||p(a)||s, which is impossible.

Another interesting class of problems consists of head-cycle free programs.
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Definition 2.4 A program P is called head-cycle free (HCF) [Ben-Eliyahu and
Dechter, 1994], if there is a level mapping || ||h of P such that, for every rule r of
Ground(P),

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||h ≤ ||l′||h;

2. For any pair l, l′ ∈ H(r) ||l||h 6= ||l′||h.

Example 2.5 Consider the following program P3.

P3 : a v b.
a :- b.

It is easy to see that P3 is head-cycle free; an admissible level mapping for P3 is
given by ||a||h = 2 and ||b||h = 1. Consider now the program

P4 = P3 ∪ {b :- a.}

P4 is not head-cycle free, since a and b should belong to the same level by Con-
dition (1) of Definition 2.4, while they cannot by Condition (2) of that definition.
Note, however, that P4 is stratified.

2.3 Main Problems Considered

Three important decision problems, corresponding to three different reasoning
tasks, arise in the context of Disjunctive Logic Programming:

Brave Reasoning. Given a program P , and a ground atom A, decide
whether A is true in some answer set of P (denoted P |=b A).

Cautious Reasoning. Given a program P , and a ground atom A, decide
whether A is true in all answer sets of P (denoted P |=c A).

Answer Set Checking. Given a program P , and a set M of ground literals
as input, decide whether M is an answer set of P .

We study the complexity of these decision problems for ground (i.e., proposi-
tional) DLP programs; we shall address the case of non-ground programs at the
end of this chapter.

An interesting issue is the impact of syntactic restrictions on the logic program
P . Starting from normal positive programs (without negation and disjunction), we
consider the effect of allowing the (combined) use of the following constructs:
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• stratified negation (nots),

• arbitrary negation (not),

• head-cycle free disjunction ( vh ),

• arbitrary disjunction ( v ),

• weak constraints (w).1

Given a set X of the above syntactic elements (with at most one negation and
at most one disjunction symbol in X), we denote by DLP[X] the fragment of
DLP where the elements in X are allowed. For instance, DLP[vh, nots] denotes
the fragment allowing head-cycle free disjunction and stratified negation, but no
weak constraints.

2.4 Complexity Results and Discussion

We report here, with the help of some tables, results proved in [Eiter et al., 1997c;
Gottlob, 1994; Buccafurri et al., 2000; Eiter et al., 1998; Eiter and Gottlob, 1995;
Perri, 2004; Leone et al., 2005].

It is worth that we consider the ground case, i.e., we assume that programs
and, unless stated otherwise, also atoms, literals etc. are ground. Furthermore,
for the sake of the presentations, we disregard integrity constraints in programs.
However, this is not significant since the results in presence of these constructs are
the same (see, e.g., [Buccafurri et al., 2000]). Some remarks on the complexity
and expressiveness of non-ground programs are then provided.

The complexity of Brave Reasoning and Cautious Reasoning from ground
DLP programs are summarized in Table 2.1 and Table 2.2, respectively. In Ta-
ble 2.3, we report the results on the complexity of Answer Set Checking.

The rows of the tables specify the form of disjunction allowed; in particular,
{} = no disjunction, {vh} = head-cycle free disjunction, and {v} = unrestricted
(possibly not head-cycle free) disjunction. The columns specify the support for
negation and weak constraints. For instance, {w, nots} denotes weak constraints

1Following [Buccafurri et al., 2000], possible restrictions on the support of negation affect
Rules(P), that is, the rules (including the integrity constraints) of the program, while weak con-
straints, if allowed, can freely contain both positive and negative literals in any fragment of DLP
we consider.
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{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P
2

{vh} NP ∆P
2 NP ∆P

2 NP ∆P
2

{v} ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Table 2.1: The Complexity of Brave Reasoning in fragments of DLP

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P co-NP ∆P
2

{vh} co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

{v} co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Table 2.2: The Complexity of Cautious Reasoning in fragments of DLP

and stratified negation. Each entry of the table provides the complexity of the
corresponding fragment of the language, in terms of a completeness result. For
instance, ({vh}, {nots}) is the fragment allowing head-cycle free disjunction and
stratified negation, but no weak constraints. The corresponding entry in Table 2.1,
namely NP, expresses that brave reasoning for this fragment is NP-complete. The
results reported in the tables represent completeness under polynomial time (and
in fact LOGSPACE) reductions. All results have either been proved in [Perri,
2004] or emerge from [Eiter et al., 1997c; Gottlob, 1994; Eiter et al., 1998; Eiter
and Gottlob, 1995; Buccafurri et al., 2000]. Note that the presence of weights
besides priority levels in weak constraints does not increase the complexity of the
language, and thus the complexity results reported in [Buccafurri et al., 2000]
remain valid also for our more general language. Furthermore, not all complexity
results in the quoted papers were explicitly stated for LOGSPACE reductions, but
can be easily seen to hold from (suitably adapted) proofs.

Looking at Table 2.1, we see that limiting the form of disjunction and nega-
tion reduces the respective complexity. For disjunction-free programs, brave rea-
soning is polynomial on stratified negation, while it becomes NP-complete if we
allow unrestricted (nonmonotonic) negation. Brave reasoning is NP-complete on
head-cycle free programs even if no form of negation is allowed. The complex-
ity jumps one level higher in the Polynomial Hierarchy, up to ΣP

2 -complexity, if
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{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P P co-NP

{vh} P co-NP P co-NP P co-NP

{v} co-NP ΠP
2 co-NP ΠP

2 co-NP ΠP
2

Table 2.3: The Complexity of Answer Set Checking in fragments of DLP

full disjunction is allowed. Thus, disjunction seems to be harder than negation,
since the full complexity is reached already on positive programs, even without
any kind of negation. Weak constraints are irrelevant, from the complexity view-
point, if the program has at most one answer set (if there is no disjunction and
negation is stratified). On programs with multiple answer sets, weak constraints
increase the complexity of reasoning moderately, from NP and ΣP

2 to ∆P
2 and ∆P

3 ,
respectively.

Table 2.2 contains results for cautious reasoning. One would expect its com-
plexity to be symmetric to the complexity of brave reasoning, that is, whenever
the complexity of a fragment is C under brave reasoning, one expects its com-
plexity to be co-C under cautious reasoning (recall that co-P = P, co-∆P

2 = ∆P
2 ,

co-ΣP
2 = ΠP

2 , and co-∆P
3 = ∆P

3 ).
Surprisingly, there is one exception: while full disjunction raises the complex-

ity of brave reasoning from NP to ΣP
2 , full disjunction alone is not sufficient to

raise the complexity of cautious reasoning from co-NP to ΠP
2 . Cautious reasoning

remains in co-NP if default negation is disallowed. Intuitively, to disprove that
an atom A is a cautious consequence of a program P , it is sufficient to find any
model M of P (which need not be an answer set or a minimal model) which does
not contain A. For not-free programs, the existence of such a model guarantees
the existence of a subset of M which is an answer set of P (and does not contain
A).

The complexity results for Answer Set Checking, reported in Table 2.3, help
us to understand the complexity of reasoning. Whenever Answer Set Checking for
weak constraint-free programs is co-NP-complete for a fragment F , the complex-
ity of brave reasoning jumps up to the second level of the Polynomial Hierarchy
(ΣP

2 ). In contrast, co-NP-completeness for Answer Set Checking involving weak
constraints causes only a modest increase for brave reasoning, which stays within
the same level (∆P

2 ). Indeed, brave reasoning on full DLP programs suffers from
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three sources of complexity:

(s1) the exponential number of answer set “candidates”,

(s2) the difficulty of checking whether a candidate M is an answer set (the min-
imality of M can be disproved by an exponential number of subsets of M ),
and

(s3) the difficulty of determining the optimality of the answer set w.r.t. the vio-
lation of the weak constraints.

Now, disjunction (unrestricted or even head-cycle free) or unrestricted nega-
tion preserve the existence of source (s1), while source (s2) exists only if full
disjunction is allowed (see Table 2.3). Source (s3) depends on the presence of
weak constraints, but it is effective only in case of multiple answer sets (i.e., only
if source (s1) is present), otherwise it is irrelevant. As a consequence, e.g., the
complexity of brave reasoning is the highest (∆P

3 ) on the fragments preserving
all three sources of complexity (where both full disjunction and weak constraints
are allowed). Eliminating weak constraints (source (s3)) from the full language,
decreases the complexity to ΣP

2 . The complexity goes down to the first level of
PH if source (s2) is eliminated, and is in the class ∆P

2 or NP depending on the
presence or absence of weak constraints (source (s3)). Finally, avoiding source
(s1) the complexity falls down to P, as (s2) is automatically eliminated, and (s3)
becomes irrelevant.

We close this section with briefly addressing the complexity and expressive-
ness of non-ground programs. A non-ground program P can be reduced, by naive
instantiation, to a ground instance of the problem. The complexity of this ground
instantiation is as described above. In the general case, where P is given in the
input, the size of the grounding Ground(P) is single exponential in the size
of P . Informally, the complexity of Brave Reasoning and Cautious Reasoning
increases accordingly by one exponential, from P to EXPTIME, NP to NEXP-
TIME, ∆P

2 to EXPTIMENP, ΣP
2 to NEXPTIMENP, etc. For disjunctive programs

and certain fragments of DLP, complexity results in the non-ground case have
been derived e.g. in [Eiter et al., 1997c; 1998]. For the other fragments, the re-
sults can be derived using complexity upgrading techniques [Eiter et al., 1997c;
Gottlob et al., 1999]. Answer Set Checking, however, increases exponentially up
to co-NEXPTIMENP only in the presence of weak constraints, while it stays in PH
if no weak constraints occur. The reason is that in the latter case, the conditions
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of an answer set can be checked using small guesses, and no alternative (perhaps
exponentially larger) answer set candidates need to be considered.



Chapter 3

Knowledge Representation

In this chapter, we illustrate the usage of Disjunctive Logic Programming for
knowledge representation and reasoning. We first present a new programming
methodology, which allows us to encode search problems in a simple and highly
declarative fashion; even optimization problems of complexity up to ∆P

3 can be
declaratively encoded using this methodology. Then, we illustrate this methodol-
ogy on a number of computationally hard problems.

3.1 The GCO Declarative Programming Methodology

Disjunctive Logic Programming can be used to encode problems in a highly
declarative fashion, following a Guess/Check/Optimize (GCO) paradigm, which
is an extension and refinement of the “Guess&Check” methodology in [Eiter et al.,
2000]. In this section, we will first describe the GCO technique and we will then
illustrate how to apply it on a number of examples. Many problems, also problems
of comparatively high computational complexity (ΣP

2 -complete and ∆P
3 -complete

problems), can be solved in a natural manner by using this declarative program-
ming technique. The power of disjunctive rules allows for expressing problems
which are more complex than NP, and the (optional) separation of a fixed, non-
ground program from an input database allows to do so in a uniform way over
varying instances.

Given a set F I of facts that specify an instance I of some problem P, a GCO
program P for P consists of the following three main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search space,
such that answer sets of G ∪ F I represent “solution candidates” for I .

31
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Checking Part The (optional) checking part C ⊆ P of the program filters the
solution candidates in such a way that the answer sets of G∪C∪F I represent
the admissible solutions for the problem instance I .

Optimization Part The (optional) optimization part O ⊆ P of the program al-
lows to express a quantitative cost evaluation of solutions by using weak
constraints. It implicitly defines an objective function f : AS(G∪C∪F I) →
N mapping the answer sets of G ∪ C ∪ F I to natural numbers. The seman-
tics of G ∪C ∪F I ∪O optimizes f by filtering those answer sets having the
minimum value; this way, the optimal (least cost) solutions are computed.

Without imposing restrictions on which rules G and C may contain, in the ex-
tremal case we might set G to the full program and let C be empty, i.e., checking
is completely integrated into the guessing part such that solution candidates are
always solutions. Also, in general, the generation of the search space may be
guarded by some rules, and such rules might be considered more appropriately
placed in the guessing part than in the checking part. We do not pursue this is-
sue further here, and thus also refrain from giving a formal definition of how to
separate a program into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules (and, for the opti-
mization part, weak constraints), and it depends on the complexity of the problem
at hand which kinds of rules are needed to realize these parts (in particular, the
checking part).

Problems in NP and ∆P
2

For problems with complexity in NP or, in case of optimization problems, ∆P
2 , of-

ten a natural GCO program can be designed with the three parts clearly separated
into the following simple layered structure:

• The guessing part G consists of disjunctive rules that “guess” a solution
candidate S.

• The checking part C consists of integrity constraints that check the admissi-
bility of S.

• The optimization part O consists of weak constraints.

Each layer may have further auxiliary predicates, defined by normal stratified
rules (see Section 2.2 for a definition of stratification), for local computations.
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The disjunctive rules define the search space in which rule applications are
branching points, while the integrity constraints prune illegal branches. The weak
constraints in O induce a modular ordering on the answer sets, allowing the user
to specify the best solutions according to an optimization function f .

Problems beyond ∆P
2

For problems which are beyond ∆P
2 , and in particular for ΣP

2 -complete problems,
the layered program schema above no longer applies. If G has complexity in
NP, which is the case if disjunction is just used for making the guess and the
layer is head-cycle free [Ben-Eliyahu and Dechter, 1994], then an answer set A of
G ∪F I can be guessed in polynomial time, i.e., nondeterministically created with
a polynomial number of steps. Hence, it can be shown easily that computing an
answer set of the whole program, G ∪ C ∪ F I ∪O, is feasible in polynomial time
with an NP oracle. Thus, applicability of the same schema to ΣP

2 -hard problems
would imply ΣP

2 ⊆ ∆P
2 , which is widely believed to be false.

Until now we tacitly assumed an intuitive layering of the program parts, such
that the checking part C has no “influence” or “feedback” on the guessing part G,
in terms of literals which are derived in C and invalidate the application of rules
in G, or make further rules in G applicable (and thus change the guess). This can
be formalized in terms of a “potentially uses” relation [Eiter et al., 1997c] or a
“splitting set” condition [Lifschitz and Turner, 1994]. Complexity-wise, this can
be relaxed to the property that the union of the program parts is head-cycle free.

In summary, if a program solves a ΣP
2 -complete problem and has guessing and

checking parts G and C, respectively, with complexities below ΣP
2 , then C must

either contain disjunctive rules or interfere with G (and in particular head-cycles
must be present in G ∪ C).

We close this section with remarking that the GCO programming methodology
has also positive implications from the Software Engineering viewpoint. Indeed,
the modular program structure in GCO allows for developing programs incremen-
tally, which is helpful to simplify testing and debugging. One can start by writing
the guessing part G and testing that G ∪ F I correctly defines the search space.
Then, one adds the checking part and verifies that the answer sets of G ∪ C ∪ F I

encode the admissible solutions. Finally, one tests that G ∪ C ∪ F I ∪O generates
the optimal solutions of the problem at hand.
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3.2 Applications of the GCO Programming Technique

In this section, we illustrate the declarative programming methodology described
in Section 3.1 by showing its application on a number of concrete examples.

3.2.1 Exams Scheduling

Let us start by a simple scheduling problem. Here we have to schedule the exams
for several university courses in three time slots t1, t2, and t3 at the end of the
semester. In other words, each course should be assigned exactly one of these
three time slots. Specific instances I of this problem are provided by sets F I of
facts specifying the exams to be scheduled. The predicate exam has four argu-
ments representing, respectively, the identifier of the exam, the professor who is
responsible for the exam, the curriculum to which the exam belongs, and the year
in which the exam has to be given in the curriculum.

Several exams can be assigned to the same time slot (the number of avail-
able rooms is sufficiently high), but the scheduling has to respect the following
specifications:

S1 Two exams given by the same professor cannot run in parallel, i.e., in the
same time slot.

S2 Exams of the same curriculum should be assigned to different time slots, if
possible. If S2 is unsatisfiable for all exams of a curriculum C, one should:

(S21) first of all, minimize the overlap between exams of the same year of
C,

(S22) then, minimize the overlap between exams of different years of C.

This problem can be encoded in DLP by the following GCO program Psch:

assign(Id, t1) v assign(Id, t2) v assign(Id, t3) :-
exam(Id, P, C, Y ).

}
Guess

:- assign(Id, T ), assign(Id′, T ),
Id <> Id′, exam(Id, P, C, Y ), exam(Id′, P, C ′, Y ′).

}
Check

:∼ assign(Id, T ), assign(Id′, T )
exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ), Id <> Id′. [: 2]

:∼ assign(Id, T ), assign(Id′, T )
exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ′), Y <> Y ′. [: 1]





Optimize
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The guessing part G has a single disjunctive rule defining the search space. It
is evident that the answer sets of G ∪F I are the possible assignments of exams to
time slots.

The checking part C consists of one integrity constraint, discarding the as-
signments of the same time slot to two exams of the same professor. The answer
sets of G ∪ C ∪ F I correspond precisely to the admissible solutions, that is, to all
assignments which satisfy the constraint S1.

Finally, the optimizing part O consists of two weak constraints with different
priorities. Both weak constraints state that exams of the same curriculum should
possibly not be assigned to the same time slot. However, the first one, which has
higher priority (level 2), states this desire for the exams of the curriculum of the
same year, while the second one, which has lower priority (level 1) states it for the
exams of the curriculum of different years. The semantics of weak constraints,
as given in Section 1.2, implies that O captures precisely the constraints S2 of
the scheduling problem specification. Thus, the answer sets of G ∪ C ∪ F I ∪ O
correspond precisely to the desired schedules.

3.2.2 Hamiltonian Path

Let us now consider a classical NP-complete problem in graph theory, namely
Hamiltonian Path.

Definition 3.1 (HAMPATH) Given a directed graph G = (V, E) and a node a ∈
V of this graph, does there exist a path in G starting at a and passing through each
node in V exactly once?

Suppose that the graph G is specified by using facts over predicates node

(unary) and arc (binary), and the starting node a is specified by the predicate start

(unary). Then, the following GCO program Php solves the problem HAMPATH
(no optimization part is needed here):

inPath(X, Y ) v outPath(X, Y ) :- start(X), arc(X, Y ).
inPath(X, Y ) v outPath(X, Y ) :- reached(X), arc(X, Y ).
reached(X) :- inPath(Y,X). (aux.)



 Guess

:- inPath(X,Y ), inPath(X, Y 1), Y <> Y 1.
:- inPath(X,Y ), inPath(X1, Y ), X <> X1.
:-node(X), not reached(X), not start(X).



 Check
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The two disjunctive rules guess a subset S of the arcs to be in the path, while the
rest of the program checks whether S constitutes a Hamiltonian Path. Here, an
auxiliary predicate reached is used, which is associated with the guessed predi-
cate inPath using the last rule. Note that reached is completely determined by
the guess for inPath, and no further guessing is needed.

In turn, through the second rule, the predicate reached influences the guess of
inPath, which is made somehow inductively: Initially, a guess on an arc leaving
the starting node is made by the first rule, followed by repeated guesses of arcs
leaving from reached nodes by the second rule, until all reached nodes have been
handled.

In the checking part, the first two constraints ensure that the set of arcs S

selected by inPath meets the following requirements, which any Hamiltonian
Path must satisfy: (i) there must not be two arcs starting at the same node, and (ii)
there must not be two arcs ending in the same node. The third constraint enforces
that all nodes in the graph are reached from the starting node in the subgraph
induced by S. A less sophisticated encoding can be obtained by replacing the
guessing part with the single rule

inPath(X, Y ) v outPath(X,Y ) :- arc(X,Y ).

that guesses for each arc whether it is in the path and by defining the predicate
reached in the checking part by rules

reached(X) :- start(X).
reached(X) :- reached(Y ), inPath(Y,X).

However, this encoding is less preferable from a computational point of view,
because it leads to a larger search space.

It is easy to see that any set of arcs S which satisfies all three constraints must
contain the arcs of a path v0, v1, . . . , vk in G that starts at node v0 = a, and passes
through distinct nodes until no further node is left, or it arrives at the starting node
a again. In the latter case, this means that the path is in fact a Hamiltonian Cycle
(from which a Hamiltonian path can be immediately computed, by dropping the
last arc).

Thus, given a set of facts F for node, arc, and start, the program Php ∪ F
has an answer set if and only if the corresponding graph has a Hamiltonian Path.
The above program correctly encodes the decision problem of deciding whether a
given graph admits a Hamiltonian Path or not.

This encoding is very flexible, and can be easily adapted to solve the search
problems Hamiltonian Path and Hamiltonian Cycle (where the result has to be a
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tour, i.e., a closed path). If we want to be sure that the computed result is an open
path (i.e., it is not a cycle), we can easily impose openness by adding a further
constraint :- start(Y ), inPath( , Y ). to the program (like in Prolog, the symbol
‘ ’ stands for an anonymous variable whose value is of no interest). Then, the set
S of selected arcs in any answer set of Php ∪ F constitutes a Hamiltonian Path
starting at a.

Hamiltonian Cycle

Let us show now another classical NP-complete problem which is very similar to
the one of Section 3.2.2.

Definition 3.2 (HAMCYCLE) Given an undirected graph G = (V,E), where V

is the set of vertices of G, and E is the set of edges, and a node a ∈ V of this
graph, does there exist a cycle of G containing a and passing through each node
in V exactly once?

Assuming that the graph G is specified by means of predicates vertex (unary)
and arc (binary). Please note that predicate arc is symmetric, since undirected
edges are bidirectional directed arcs. The starting node is specified by the pred-
icate start (unary). The following program PHC solves the problem HAMCY-
CLE:

inCycle(X,Y ) v outCycle(X, Y ):- start(X), arc(X, Y ).
inCycle(X,Y ) v outCycle(X, Y ):- onCycle(X), arc(X,Y ).

}
Guess

onCycle(Y ):- inCycle( , Y ).
% At most one ingoing/outgoing arc!
:- inCycle(X, Y ), inCycle(X, Y 1), Y <>Y 1.
:- inCycle(X, Y ), inCycle(X1, Y ), X<>X1.
% Each node has to be on the cycle.
:- vertex(X), not onCycle(X).





Check

The guessing part (first two rules) guess a subset of all given arcs, while the
rest of the program checks whether it is a Hamiltonian Cycle. The first two con-
straints in checking part ensure that in the set of arcs S selected by inCycle there
are not two arcs that start at the same node or end in the same node. The third con-
straint enforces that all nodes are reached from the starting node in the subgraph
induced by S, and ensures that this subgraph is connected (since it is a cycle)
through the auxiliary predicate onCycle defined by the third rule. Thus, given a
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set of facts F for vertex, arc, and start which specify the problem input, the pro-
gram PHC ∪F has a stable model if and only if the input graph has a Hamiltonian
Cycle.

It is worth noting that another solution to this problem could be easily obtained
just stripping off the literal not start(X) from the last constraint of the program
presented in Section 3.2.2.

3.2.3 Ramsey Numbers

In the previous examples, we have seen how a search problem can be encoded in
a DLP program whose answer sets correspond to the problem solutions. We next
see another use of the GCO programming technique. We build a DLP program
whose answer sets witness that a property does not hold, i.e., the property at hand
holds if and only if the DLP program has no answer set. Such a programming
scheme is useful to prove the validity of co-NP or ΠP

2 properties. We next apply
the above programming scheme to a well-known problem of number and graph
theory.

Definition 3.3 (RAMSEY) The Ramsey number R(k, m) is the least integer n

such that, no matter how we color the arcs of the complete undirected graph
(clique) with n nodes using two colors, say red and blue, there is a red clique
with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [Radziszowski,
1994]. We next show a program Pramsey that allows us to decide whether a given
integer n is not the Ramsey Number R(3, 4). By varying the input number n, we
can determine R(3, 4), as described below. Let F be the collection of facts for
input predicates node and arc encoding a complete graph with n nodes. Pramsey

is the following GCO program:

blue(X, Y ) v red(X,Y ) :- arc(X,Y ).
}

Guess

:- red(X, Y ), red(X, Z), red(Y, Z).

:- blue(X,Y ), blue(X, Z), blue(Y, Z),
blue(X,W ), blue(Y, W ), blue(Z,W ).



 Check

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint
eliminates the colorings containing a red clique (i.e., a complete graph) with 3
nodes, and the second constraint eliminates the colorings containing a blue clique
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with 4 nodes. The program Pramsey ∪F has an answer set if and only if there is a
coloring of the edges of the complete graph on n nodes containing no red clique of
size 3 and no blue clique of size 4. Thus, if there is an answer set for a particular
n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand, if Pramsey ∪ F
has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no answer set
is found is the Ramsey number R(3, 4).

The problems considered so far are at the first level of the Polynomial Hierar-
chy. We next show that also problems located at the second level of the Polynomial
Hierarchy can be encoded by the GCO technique.

3.2.4 Strategic Companies

A problem located at the second level of the Polynomial Hierarchy is the follow-
ing, which is known under the name Strategic Companies [Cadoli et al., 1997].

Definition 3.4 (STRATCOMP) Suppose that we have C = {c1, . . . , cm}, a col-
lection of companies ci owned by a holding, a set G = {g1, . . . , gn} of goods,
and for each ci we have a set Gi ⊆ G of goods produced by ci and a set Oi ⊆ C

of companies controlling (owning) ci. Oi is referred to as the controlling set of
ci. This control can be thought of as a majority in shares; companies not in C,
which we do not model here, might have shares in companies as well. Note that,
in general, a company might have more than one controlling set. Let the holding
produce all goods in G, i.e. G =

⋃
ci∈C Gi.

A subset of the companies C ′ ⊆ C is a production-preserving set if the fol-
lowing conditions hold: (1) The companies in C ′ produce all goods in G, i.e.,⋃

ci∈C′ Gi = G. (2) The companies in C ′ are closed under the controlling rela-
tion, i.e. if Oi ⊆ C ′ for some i = 1, . . . , m then ci ∈ C ′ must hold.

A subset-minimal set C ′, which is production-preserving, is called a strategic
set. A company ci ∈ C is called strategic, if it belongs to some strategic set of C.

This notion is relevant when companies should be sold. Indeed, intuitively,
selling any non-strategic company does not reduce the economic power of the
holding. Computing strategic companies is ΣP

2 -hard in general [Cadoli et al.,
1997]; reformulated as a decision problem (“Given a particular company c in the
input, is c strategic?”), it is ΣP

2 -complete. To our knowledge, it is one of the
rare KR problems from the business domain of this complexity that have been
considered so far.
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In the following, we adopt the setting from [Cadoli et al., 1997] where each
product is produced by at most two companies (for each g ∈ G |{ci | g ∈ Gi}| ≤
2) and each company is jointly controlled by at most three other companies, i.e.
|Oi| ≤ 3 for i = 1, . . . , m (in this case, the problem is still ΣP

2 -hard). Assume that
for a given instance of STRATCOMP, F contains the following facts:

• company(c) for each c ∈ C,

• prod by(g, cj, ck), if {ci | g ∈ Gi} = {cj, ck}, where cj and ck may possibly
coincide,

• contr by(ci, ck, cm, cn), if ci ∈ C and Oi = {ck, cm, cn}, where ck, cm, and
cn are not necessarily distinct.

We next present a program Pstrat, which solves this hard problem elegantly
by only two rules:

rs1 : strat(Y ) v strat(Z) :- prod by(X, Y, Z). } Guess

rs2 :
strat(W ) :- contr by(W,X, Y, Z), strat(X),

strat(Y ), strat(Z).

}
Check

Here strat(X) means that company X is a strategic company. The guessing part
G of the program consists of the disjunctive rule rs1, and the checking part C con-
sists of the normal rule rs2. The program Pstrat is surprisingly succinct, given that
STRATCOMP is a hard (ΣP

2 -hard) problem. To overcome the difficulty of the en-
coding, coming from the intrinsic high complexity of the STRATCOMP problem,
we next explain this encoding more in-depth, compared with the previous GCO
encodings.

The program Pstrat exploits the minimization which is inherent to the seman-
tics of answer sets for the check whether a candidate set C ′ of companies that
produces all goods and obeys company control is also minimal with respect to
this property.

The guessing rule rs1 intuitively selects one of the companies c1 and c2 that
produce some item g, which is described by prod by(g, c1, c2). If there were no
company control information, minimality of answer sets would naturally ensure
that the answer sets of F∪{rs1} correspond to the strategic sets; no further check-
ing would be needed. However, in case control information is available, the rule
rs2 checks that no company is sold that would be controlled by other companies in
the strategic set, by simply requesting that this company must be strategic as well.
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The minimality of the strategic sets is automatically ensured by the minimality of
answer sets.

The answer sets of Pstrat∪F correspond one-to-one to the strategic sets of
the holding described in F; a company c is thus strategic iff strat(c) is in some
answer set of Pstrat ∪F .

An important note here is that the checking “constraint” rs2 interferes with the
guessing rule rs1: applying rs2 may “spoil” the minimal answer set generated by
rs1. For example, suppose the guessing part gives rise to a ground rule rsg1

strat(c1) v strat(c2) :- prod by(g, c1, c2).

and the fact prod by(g, c1, c2) is given in F . Now suppose the rule is satisfied
in the guessing part by making strat(c1) true. If, however, in the checking part
an instance of rule rs2 is applied which derives strat(c2), then the application of
the rule rsg1 to derive strat(c1) is invalidated, as the minimality of answer sets
implies that strat(c1) cannot be derived from the rule rsg1, if another atom in its
head is true.

By the complexity considerations made in Subsection 3.1, such interference
is needed to solve STRATCOMP in the above way (without disjunctive rules in
the Check part), since deciding whether a particular company is strategic is ΣP

2 -
complete. If Pstrat is rewritten to eliminate such interference and layer the parts
hierarchically, then further disjunctive rules must be added. An encoding which
expresses the strategic sets in the generic GCO-paradigm with clearly separated
guessing and checking parts is given in [Eiter et al., 2000].

Note that, the program above cannot be replaced by a simple normal (non-
disjunctive) program. Intuitively, this is due to the fact that disjunction in the head
of rules is not exclusive, while at the same time answer sets are subset-minimal.
Using techniques like the ones in [Eiter et al., 2003a], Pstrat can be extended to
support an arbitrary number of producers per product and controlling companies
per company, respectively.

Preferred Strategic Companies

Let us consider an extension of Strategic Companies which also deals with pref-
erences. Suppose that the president of the holding desires, in case of options
given by multiple strategic sets, to discard those where certain companies are sold
or kept, respectively, by expressing preferences among possible solutions. For
example, the president might give highest preference to discard solutions where
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company a is sold; next important to him is to avoid selling company b while
keeping c, and of equal importance to avoid selling company d, and so on.

In presence of such preferences, the STRATCOMP problem becomes slightly
harder, as its complexity increases from ΣP

2 to ∆P
3 . Let us assume that the pres-

ident’s preferences are represented by a single predicate avoid(csell, ckeep, pr),
which intuitively states that selling csell while keeping ckeep should be avoided
with priority pr; in the above example, the preferences would be avoid(a, c>, top),
avoid(b, c, top−1), avoid(d, c>, top−1), . . . , where c> is a dummy company be-
longing to every strategic set, and top is the highest priority number. Then, we can
easily represent this more complicated problem, by adding the following weak
constraint to the original encoding for STRATCOMP:

:∼ avoid(Sell,Keep, Priority), not strat(Sell), strat(Keep). [: Priority]

The (optimal) answer sets of the resulting program then correspond to the solu-
tions of the above problem.



Part II

Optimizing the Evaluation of
Disjunctive Logic Programming
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In this part we explain the computational process commonly performed by
DLP systems, with a focus on search space pruning, which is crucial for the effi-
ciency of such systems.

We present two suitable operators for pruning (Fitting’s and Well-founded),
discuss their peculiarities and differences with respect to efficiency and effective-
ness. We design an intelligent strategy for combining the two operators, exploiting
the advantages of both. We implement our approach in the DLV system and per-
form some experiments. These experiments show interesting results, and evidence
how the choice of the pruning operator affects the performance of DLP systems.

The part is structured as follows.

• In Chapter 4 we introduce the DLV system and give an overview of its
architecture and implementation. The theoretical foundations of the imple-
mentation of DLV are also briefly discussed. The main procedure for the
computation of the answer set semantics is then described.

• In Chapter 5 we present two pruning operators for DLP: Fitting’s (ΦP) op-
erator, and the Well-founded (WP) operator, and then we analyze several
interesting properties of these pruning operators on some syntactically re-
stricted classes of DLP programs.

• In Chapter 6, we design our new method for the intelligent combination
of the pruning operators for DLP, and discuss some key issues for its im-
plementation in DLV. We then report the results of our experimentation
activity on a number of benchmark problems.

• Appendix A, at the end of the thesis, provides further details on the experi-
ments and problem encodings.
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The DLV System

In this chapter, we describe the general architecture of DLV, and give an overview
of the main techniques employed in the implementation.

4.1 The Architecture of DLV: an Overview

The system architecture of DLV is shown in Figure 4.1. The internal system
language is the one described in Chapter 1, i.e. Disjunctive Logic Programming
extended by weak constraints. The DLV Core (the shaded part of the figure) is
an efficient engine for computing answer sets (one, some, or all) of its input. The
DLV core has three layers (see Figure 4.1), each of which is a powerful subsystem
per se: The Intelligent Grounder (IG, also Instantiator) has the power of a deduc-
tive database system; the Model Generator (MG) is as powerful as a Satisfiabil-
ity Checker; and the Model Checker (MC) is capable of solving co-NP-complete
problems. In addition to its kernel language, DLV provides a number of appli-
cation front-ends that show the suitability of our formalism for solving various
problems from the areas of Artificial Intelligence, Knowledge Representation and
(Deductive) Databases. Currently, the DLV system has front-ends for inheritance
reasoning [Buccafurri et al., 2002], model-based diagnosis [Eiter et al., 1997b],
planning [Eiter et al., 2003b], and SQL3 query processing. Each front-end maps
its problem specific input into a DLV program, invokes the DLV kernel, and then
post-processes any answer set returned, extracting from it the desired solution;
furthermore, there is a Graphical User Interface (GUI) that provides convenient
access to some of these front-ends as well as the system itself.

45



Chapter 4. The DLV System 46

File
System Relational

Database
Relational
Database

Command−line
Interface

Diagnosis Frontend

Planning Frontend

...

Deduction (polynom.)

O
D

B
C ODBC

Generator
Output
(Filtering)

Model
Checker

Model
Grounding
Intelligent

WCH

Non-monotonic Inferences (NP / ∆P
2 )

Non-monotonic Inferences (full expressive power: ΣP
2 / ∆P

3 )

Figure 4.1: The System Architecture of DLV

4.2 Theoretical Foundations

The implementation of the DLV system is based on very solid theoretical foun-
dations, and exploits the results on the computational complexity discussed in
Chapter 2. Ideally, the performance of a system should reflect the complexity of
the problem at hand, such that “easy” problems (say, those of polynomial com-
plexity) are solved fast, while only harder problems involve methods of higher
run-time cost. Indeed, the DLV system is designed according to this idea, and
thrives to exploit the complexity results reported in Section 2.4.

For example, stratified normal programs (which have polynomial complexity,
as reported in Table 2.11) are evaluated solely using techniques from the field of
deductive databases, without employing the more complex techniques which are
needed to evaluate full DLV programs; in fact, such normal stratified programs
are evaluated without generating the program instantiation at all.

The architecture of the DLV Core closely reflects complexity results for var-
ious subsets of our language. As mentioned before, the Intelligent Grounding
(IG) module is able to completely solve some problems which are known to be of
polynomial time complexity (like normal stratified programs); the Model Gener-
ator (together with the Grounding) is capable of solving NP-complete problems.
Adding the Model Checker is needed to solve ΣP

2 -complete problems. The WCH
(Weak Constraints Handler) comes into play only in presence of weak constraints.
More precisely, referring to the notation of Section 2.2, we have the following five
disjoint language classes L1 – L5 for evaluation:

• L1 contains the programs included in the class 〈{}, {w, nots}〉, which all

1Note that the complexity of propositional DLV programs reported in Tables 2.1–2.3 coincides
with the data complexity of non-ground DLV programs.
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have polynomial complexity. They are completely evaluated by the IG mod-
ule, which runs in polynomial time (referring to propositional complexity).

• L2 contains the programs which are in the subclass corresponding to 〈{ vh },
{not}〉, but not in L1. The complexity of this fragment is NP, and the pro-
grams are evaluated by the MG module (besides the IG) with only a call to
the linear-time part of the MC module. Note that the MG implements a flat
backtracking algorithm and is suitable for solving NP-complete problems.

• L3 contains the DLV programs from 〈{ vh }, {not, w}〉 minus L1 ∪L2. The
complexity of this fragment is ∆P

2 . Here, also the WCH module is em-
ployed, which iteratively invokes the MG. Again, only the linear-time part
of the MC is invoked.

• L4 contains the programs from the subclass corresponding to 〈{ v }, {not}〉
minus L1∪L2∪L3. The complexity of this fragment is ΣP

2 , and the programs
are evaluated by the MG module (besides the IG) with calls to the full MC
module. Note that a flat backtracking algorithm is not sufficient to evaluate
ΣP

2 -complete problems, and such a nested evaluation scheme, with calls to
MC, is needed.

• Finally, L5 contains all other programs, i.e., those in the full class (corre-
sponding to 〈{ v }, {not, w}〉) which are not contained in L1∪L2∪L3∪L4,
where we have the full language complexity of ∆P

3 . The evaluation pro-
ceeds as for L4, but also the WCH module comes into play for handling the
weak constraints.

The three DLV modules, MG, MC, and WCH, thus deal with the three sources
of complexity denoted by (s1), (s2), and (s3) in Section 2.4; each of them is fully
activated only if the respective source of complexity is present in the program at
hand.

4.3 General Evaluation Strategy

We present next the evaluation flow of the DLV computation in some more detail.
It is worth noting that we describe the computational engine of the DLV system
[Faber et al., 1999; 2001], but also other systems (like Smodels [Niemelä and
Simons, 1996; Simons, 2000], for instance) employ very similar techniques.
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Upon startup, the DLV Core or one of the front-ends parses the input specified
by the user and transforms it into the internal data structures of DLV. In both
cases, this is done efficiently (requiring only linear memory and time). The input is
usually read from text files, but DLV also provides a bridge to relational databases
through an ODBC interface, which allows for retrieving facts stored in relational
tables.

Using differential and other advanced database techniques (see [Faber et al.,
1999; Leone et al., 2001]) and suitable data structures, the Intelligent Grounding
(IG) module then efficiently generates a ground instantiation Ground(P) of the
input that has the same answer sets as the full program instantiation, but is much
smaller in general. For example, in case of a stratified program, the IG module
already computes the single answer set, and does not produce any instantiation.

The heart of the computation is then performed by the Model Generator and
the Model Checker. Roughly, the former produces some “candidate” answer sets,
the stability of which is subsequently verified by the latter. In presence of weak
constraints, further processing is needed, which is performed under the control of
the WCH module. Since the handling of weak constraints is somehow orthogonal
to the rest of the computation, we first focus on the evaluation of standard disjunc-
tive logic programs, describing the processing of weak constraints later on.

Function ModelGenerator(var I: Interpretation): Boolean;
var inconsistency: Boolean;
begin

DetCons(I,inconsistency);
if inconsistency then return false;
if “no atom is undefined in I” then return IsStableModel(I);
Select an undefined ground atom A according to a heuristic;
if ModelGenerator(I ∪ {A}) then return true;
else return ModelGenerator(I ∪ {not A});

end;

Figure 4.2: Computation of Answer Sets

The hard part of the computation, on the ground program, is performed by the
Model Generator, which is sketched in Figure 4.2. For brevity, here P refers to
the (simplified) ground program.

Roughly, as already said, the Model Generator produces some “candidate”
answer sets. Each candidate I is then verified by the function IsStableModel(I),
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which checks whether I is a minimal model of the program PI obtained by ap-
plying the GL-transformation w.r.t. I . More details about the model checking will
follow below.

Initially, the ModelGenerator function is invoked with I set to the empty inter-
pretation (all atoms are undefined at this stage). If the program P has an answer
set, then the function returns true and sets I to the computed answer set; otherwise
it returns false. The Model Generator is similar to the Davis-Putnam procedure
in SAT solvers. It first calls a function DetCons, which extends I with those lit-
erals that can be deterministically inferred. This is similar to unit propagation as
employed by SAT solvers, but exploits the peculiarities of DLP for making fur-
ther inferences (e.g., it uses the knowledge that every stable model is a minimal
model).

If DetCons does not detect any inconsistency, an atom A is selected according
to a heuristic criterion and ModelGenerator is recursively called on both I ∪ {A}
and I∪{not A}. The atom A corresponds to a branching variable of a SAT solver;
it is said to be possibly-true [Leone et al., 1997]).

The computation proceeds by alternately selecting a possibly-true and recall-
ing ModelGenerator, until either a total model of Ground(P) is reached or two
contradictory literals are derived. If a model is found (there are no more unde-
fined literals), the Model Checker is called; otherwise, the function returns false
and backtracking is performed.

The Model Checker (MC) verifies whether the model M at hand is an answer
set for the input programP . In particular, the MC disregards weak constraints, and
verifies whether M is an answer set for Rules(P); the optimality of the models
w.r.t. the violation of weak constraints is handled by the WCH module. The task
performed by MC is very hard in general, because checking the stability of a
model is well-known to be co-NP-complete (cf. [Eiter et al., 1997c]). However,
for some relevant and frequently used classes of programs answer-set checking
can be efficiently performed (see Table 2.3 in Section 2.4).

The MC implements novel techniques for answer-set checking [Koch and
Leone, 1999], which extend and complement previous results [Ben-Eliyahu and
Dechter, 1994; Ben-Eliyahu and Palopoli, 1994; Leone et al., 1997]. The MC
fully complies with the complexity bounds specified in Chapter 2. Indeed, (a)
it terminates in polynomial time on every program where answer-set checking is
tractable according to Table 2.3 (including, e.g., HCF programs); and (b) it always
runs in polynomial space and single exponential time. Moreover, even on general
(non-HCF) programs, the MC limits the inefficient part of the computation to the
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subprograms that are not HCF. Note that it may well happen that only a very small
part of the program is not HCF [Koch and Leone, 1999].

Finally, once an answer set has been found, the control is returned to the front-
end in use, which performs post-processing and possibly invokes the MG to look
for further models.

In presence of weak constraints, after the instantiation of the program, the
computation is governed by the WCH and consists of two phases: (i) the first
phase determines the cost of an optimal answer set2, together with one “witness-
ing” optimal answer set and, (ii) the second phase computes all answer sets hav-
ing that optimal cost. It is worthwhile noting that both the IG and the MG also
have built-in support for weak constraints, which is activated (and therefore in-
curs higher computational cost) only if weak constraints are present in the input.
The MC, instead, does not need to provide any support for weak constraints, since
these do not affect answer-set checking at all.

Having a look at the process of model generation, it is clear that both the
choice of “good” possibly-trues at each step (i.e., a sequence of possibly-trues
that quickly leads to an answer set) as well as the implementation of DetCons is
very important. In particular, DetCons is crucial in two ways: it has to perform its
task as quickly as possible, while pruning the search space as much as possible.

2By cost of an answer set we mean the sum of the weights of the weak constraints violated by
the answer set, weighted according to their priority level – see Section 1.2.



Chapter 5

Pruning the Search Space

In this chapter we present two pruning operators for DLP (Fitting’s (ΦP) operator,
and the Well-founded (WP) operator), analyzing several interesting properties on
some syntactically restricted classes of DLP programs.

5.1 Pruning Operators

In this section we review two operators that are useful to implement DetCons
(see the previous chapter). As already mentioned, DetCons has to expand a given
interpretation as much as possible to reduce the search space, while ensuring that
such an expansion never causes any answer set1 to be missed. In other words, if an
interpretation I is contained in an answer set M , that answer set will also contain
the expansion of I computed by DetCons. We can state this “safety” property
formally.

Definition 5.1 A generic operator ΓP is said to be “safe” if, for each interpretation
I , and for each answer set M of a given program P , we have I ⊆ M iff ΓP(I) ⊆
M .

The two operators in question are the Fitting’s (ΦP) operator and the Well-
founded (WP) operator. Both have the property described above, and extend the
two corresponding operators defined for disjunction-free programs [Fitting, 1985;
Van Gelder et al., 1991] to the class of disjunctive logic programs. Both ΦP
and WP consist of two parts: The part drawing positive inferences (which is an

1It is worth remembering that under the answer set semantics Stable Models and Answer Sets
are synonims, and we can refer to a closed interpretation as to a model. The reader can find full
background in Chapter 1.
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extension of the immediate consequence operator TP , defined for three-valued
interpretations of normal logic programs [Van Gelder et al., 1991], to disjunctive
programs) is the same for both operators; they only differ in the way they perform
negative inferences.

Definition 5.2 Let P be a program, and I be an interpretation.
TP(I) = {a | ∃r ∈ P s.t. a ∈ H(r) : H(r)− {a} ⊆ not.I ∧B(r) ⊆ I} .

Thus, TP(I) derives an atom a from a rule r, if the body of r is true w.r.t. I

and, apart from a, all other atoms in the head of r are false w.r.t. I . Note that, in
order to be closed (i.e., a model), any interpretation extending I must necessarily
contain a, otherwise rule r is violated.

Example 5.3 Consider the following program P1:

{a v b. ; c :- not a. ; d :- e. ; e :- d. ; k :- not e.}

Suppose I = {not a}: Then b is derived via the first rule, and c via the second
(whose body is contained in I), so TP(I) = {b, c}.

Intuitively, given an interpretation I , TP derives a set of atoms that are strictly
needed to extend I to a model. Note that TP is deterministic, that is, its result is a
single set of literals.

5.1.1 Fitting’s (ΦP) Operator

We extend Fitting’s operator, which was originally defined in [Fitting, 1985], to
the disjunctive case. The way this operator makes negative inferences is described
and then combined with the TP operator.

Definition 5.4 Let P be a program, and I an interpretation.

γP(I) = {a ∈ BP | ∀r ∈ ground(P) s.t. a ∈ H(r) : H(r)− {a} is
true w.r.t. I, or B(r) is false w.r.t. I}.

Thus, γP(I) derives an atom a, if each rule with a in the head already has a
false body or a true head (the head being true by an atom different from a). Note
that all such a rules with a in the head are satisfied in I , and they remain satisfied
in all extensions of I even if a is set to false.
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Example 5.5 Consider the program P1 of Example 5.3, and the interpretation I

= {a}. Here γP(I) = {b, c}.

Intuitively, given an interpretation I , γP computes those atoms that will not
appear in any minimal model extending I since there is no rule left that could be
used to derive them (and “support” its introduction in the model).

We can now define a single step of Fitting’s operator ΦP and its least fixpoint
as follows:

Definition 5.6 Let P be a program, and I an interpretation.

ΦP(I) = TP(I) ∪ not.γP(I).

Starting from I we define the following sequence Fk:

F0 = I
Fk = Fk−1 ∪ ΦP(Fk−1), k > 0.

We now have a growing sequence whose n-th term is the n-fold application of
ΦP to I , and define the least fixpoint Φ∞

P (I) of ΦP containing I , as the limit to
which {Fn}n∈N converges.

Example 5.7 Consider the program P1 of Example 5.3, and the interpretation I

= {a}. It is easy to see that ΦP(I) = ∅ ∪ not.{b, c} = {not b, not c}.
We thus obtain:

F0 = I = {a}.
F1 = F0 ∪ {not b, not c} = {a, not b, not c}.
F2 = F1 ∪ ∅ = {a, not b, not c} = F1 = Φ∞

P (I)

Next we assert the already discussed “safety” property for ΦP .

Theorem 5.8 For every answer set M of a given program P , if an interpretation
I is contained in M , then Φ∞

P (I) ⊆ M .

Proof. It is enough to show that ΦP(I) ⊆ M for any I ⊆ M ; indeed, if this is the
case, we can take I ∪ ΦP(I) as another interpretation contained in M , and then
iteratively go on until the fixpoint is reached. We first show that the positive part
of ΦP(I) is contained in M ; then, we show that also its negative part is contained
in M .
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By definition, the positive part of ΦP(I) is TP(I). Let’s take a positive atom
a ∈ ΦP(I). Thus, there must exist a rule r ∈ P such that a ∈ H(r) with
H(r) − {a} ⊆ not.I and B(r) ⊆ I , i.e., the rest of the head of r is false while
its body is true w.r.t. I . But since I ⊆ M , this means that the body of r is true
w.r.t. M ; since M is an answer set, we must have a ∈ M , otherwise r would be
violated w.r.t. M , and M would not be an answer set.

The negative part of ΦP(I), again by definition, is γP(I). Let b be an atom
in γP(I). Suppose, by contradiction, that not b /∈ M ; then b ∈ M , as M is a
total interpretation. Since b ∈ γP(I), for each rule having b in the head, we have
that either H(r) − {b} is true w.r.t. I , or B(r) is false w.r.t. I; since I ⊆ M , this
means that all such rules are already satisfied (either by a true head or a false body)
also w.r.t. M , and cannot give “support” to b. Consequently, M contains atom b

which is not supported, contradicting the well-known “supportedness” property
of answer sets (see, e.g., [Gelfond and Leone, 2002]). ¤

Importantly, we have the following.

Proposition 5.9 Given a propositional program P and an interpretation I for it,
Φ∞
P (I) is linear-time computable.

Proof. Φ∞
P (I) is well-known to be linear-time computable for a non-disjunctive

P . This result was stated in [Berman et al., 1995], where it is attributed to “folk-
lore”.

It is easy to see that this result carries over to the disjunctive case by using a
suitable data structure for identifying atoms, which are derived by γP(I), in con-
stant time. One way of achieving this is to keep a counter of potentially supporting
rules for each atom b (i.e., rules having b in the head such that the body is not false
nor the head is made true by an atom different from b) – whenever such a counter
becomes zero, atom b is derived false by γP(I). ¤

Thus, the ΦP operator seems to be a good choice as a pruning operator: it is
“safe” (Theorem 5.8), has the capability to perform negative inferences (Defini-
tion 5.6), and its fixpoint Φ∞

P (I) is efficiently computable (Proposition 5.9).
Unfortunately, ΦP fails to derive all possible negative consequences. For in-

stance, in Example 5.7 it fails to derive d and e as false w.r.t. I while the only rules
having these atoms in the head will never have a true body. The Well-founded op-
erator presented in the following section is “stronger” in this respect.
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5.1.2 Well-founded (WP) Operator

The WP operator defined in [Leone et al., 1997] extends the operator defined in
[Van Gelder et al., 1991] (whose least fixpoint is the Well-founded model) to the
disjunctive case. It is defined by an extension of the notion of unfounded sets to
disjunctive logic programs.

Definition 5.10 Let I be an interpretation for a program P . A set X ⊆ BP of
ground atoms is an unfounded set for P w.r.t. I if, for each a ∈ X and for each
rule r ∈ ground(P) such that a ∈ H(r), at least one of the following conditions
holds:

1. B(r) ∩ not.I 6= ∅, that is, the body of r is false w.r.t. I .

2. B+(r) ∩X 6= ∅, that is, some positive body literal belongs to X .

3. (H(r) −X) ∩ I 6= ∅, that is, an atom in the head of r, distinct from a and
other elements in X , is true w.r.t. I .

Example 5.11 Considering the program P1 of Example 5.3 and the interpretation
I = {a}, we get GUSP(I) = {b, c, d, e}. b is added because of the third condition,
and c because of the first in Definition 5.10. Then d and e appear in the head
of only a single rule each and for both the second condition of Definition 5.10
holds. We obtain WP(I) = {not b, not c, not d, not e} and W0 = {a},W1 =

{a, not b, not c, not d, not e},W2 = {a, not b, not c, not d, not e, k}, W3 = W2 =

W∞
P (I).

While for non-disjunctive programs the union of unfounded sets is again an
unfounded set for all interpretations, this does not hold, in general, for disjunctive
programs.

Example 5.12 Given P = {a v b} and I = {a, b}, both {a} and {b} are un-
founded sets w.r.t. I; but their union {a, b} is not.

We thus denote by IP the set of all interpretations of P for which the union
of all unfounded sets for P w.r.t. I is an unfounded set for P w.r.t. I as well. In
analogy with traditional logic programming, given I ∈ IP , we call the union of all
unfounded sets for P w.r.t. I the greatest unfounded set of P w.r.t. I , and denote
it by GUSP(I).
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Because the existence of the greatest unfounded set is not guaranteed in gen-
eral, the question of how to decide whether an interpretation I is in IP naturally
comes up (also from the viewpoint of complexity, which we will deal with later
on). There is a class of interpretations, called unfounded-free interpretations,
which always have the greatest unfounded set.

Definition 5.13 Let I be an interpretation for a program P . I is unfounded-free
if I ∩X = ∅ for each unfounded set X for P w.r.t. I .

Unfounded-free interpretations have a nice semantic property, that, as we will
see in the next sections, has also a practical impact on the computation.

Proposition 5.14 [Leone et al., 1997] Let I be an unfounded-free interpretation
for a program P . Then

P has the greatest unfounded set GUSP(I) (i.e., I ∈ IP).

Thus, an unfounded-free interpretation always admits the greatest unfounded
set, and this set is efficiently computable. We can now introduce the Well-founded
operator.

Definition 5.15 Let P be a program, and I ∈ IP be an unfounded-free interpreta-
tion. We define the WP operator as follows:

WP(I) = TP(I) ∪ not.GUSP(I).

This definition extends the WP operator defined in [Van Gelder et al., 1991]
(whose least fixpoint is the Well-founded model) to the disjunctive case. Note
that, since WP is defined on the domain IP , each fixpoint of WP by definition
admits the greatest unfounded set (since each fixpoint of WP must belong to the
domain IP of WP).

Example 5.16 Consider the program P1 of Example 5.3, and the interpretation I

= {a}. Then, WP(I) = ∅ ∪ not.{b, c, d, e} = {not b, not c, not d, not e}.

Observe that, as Example 5.16, clearly shows, thanks to GUSP , WP derives
more negative information than ΦP , and therefore ensures a better pruning of the
search space.

Let us now define the least fixpoint W∞
P of the WP operator.
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Definition 5.17 Given a program P and an interpretation I , we define the follow-
ing sequence Wk:

W0 = I
Wk = Wk−1 ∪WP(Wk−1), k > 0

We have a growing sequence whose n-th term is the n-fold application of WP to
I , and define the least fixpoint W∞

P (I) of WP containing I , as the limit to which
{Wn}n∈N converges.

Example 5.18 Again considering the program P1 from Example 5.3 and starting
from the interpretation I = {a}, we have:

W0 = I = {a}.
W1 = W0 ∪ {not b, not c, not d, not e} = {a, not b, not c, not d, not e}.
W2 = W1 ∪ {k} = {a, not b, not c, not d, not e, k}.
W3 = W2 ∪ ∅ = W2 = W∞

P (I).

Next we state that the WP operator has the “safety” property previously dis-
cussed.

Proposition 5.19 [Leone et al., 1997] Let I be an interpretation for a program P ,
and let M be an answer set for P . If I ⊆ M , then

(a) I belongs to the domain IP of WP , and

(b) WP(I) ⊆ M .

The WP operator appears to be a good pruning operator: it is “safe”, and
performs more negative inferences than ΦP . A negative point of WP is that it
is applicable only on unfounded-free interpretations. According to the following
proposition, we cannot efficiently test whether I is indeed unfounded-free (unless
P = NP).

Proposition 5.20 [Leone et al., 1997] Let P be a propositional program and I be
an interpretation for P . Deciding whether I is unfounded-free is co-NP-complete.
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5.2 Pruning Operators on Syntactically Restricted
Classes of Programs

In this section, we explore several interesting properties of the pruning operators
on some syntactically restricted classes of programs. To this end, we introduce
dependency graphs which represent the dependencies of head predicates on the
positive body predicates of rules.

Definition 5.21 With every program P , we associate a directed graph DGP =

(N , E), called the dependency graph of P , where (i) each predicate of P is a
node in N , and (ii) there is an arc in E directed from node a to node b if there
is a rule r in P such that two predicates a and b appear in B+(r) and H(r),
respectively.

The dependency graph allows us to single out the recursive parts of the pro-
gram, and split the program into subprograms having different properties.

Definition 5.22 A component C of DGP is a maximal strongly connected subset
of nodes of DGP . The subprogram of C is the set of rules in P having a head
predicate in C, denoted by PC . The set of all components of DGP is denoted by
Comp(P).

Since there is a one-to-one correspondence between nodes in DGP and predi-
cates inP , we will often refer to components ofP (meaning components of DGP),
and identify Comp(P) as the components of P .

It is worthwhile noting that the same disjunctive rule may occur in the sub-
programs of two different components. For instance, the program consisting of
the single rule a v b., has two components: C1 = {a} and C2 = {b}. Rule a v b.

belongs to both subprograms PC1 and PC2 .
We are now in the position to define the concepts of (a)cyclicity and head-cycle

freeness, which play a very important role in our computational strategy.

Definition 5.23 Given a program P and its dependency graph DGP , we say that:

• a component C is cyclic if the related subprogram PC of P contains at least
one recursive rule (i.e., a rule r such that a head predicate and a positive
body predicate of r are in C); C is acyclic if it is not cyclic.
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Figure 5.1: The dependency graph DGP1 of program P1

• a component C is head-cycle-free (HCF ) iff the related subprogram PC

of P contains no rule r such that two predicates occurring in the head of r

belong to C.

DGP and P are cyclic if there is at least one cyclic component, otherwise they
are acyclic. They are HCF if all components are HCF .

Observe that acyclicity obviously implies head-cycle freeness; while an HCF
component might be cyclic (e.g., if it is not disjunctive) or acyclic.

Example 5.24 Consider the following program P1:

{ a v b. ; c :- a. ; c :- b. ; d v e :- a. ; d :- e. ; e :- d, not b. }

The dependency graph DGP1 of P1 is depicted in Figure 5.1. There are four com-
ponents: {a}, {b}, {c}, {d, e}. All of them are acyclic except for the last which
is also the only non-HCF component, as the head of d v e :- a. contains two
predicates belonging to the same cycle. The whole graph, and thus the program,
is cyclic but not HCF .

We next present a well-known theorem in DLP community about a class of
programs for which the operators Φ∞

P (I) and W∞
P (I) are equivalent. The impor-

tance of this theorem will become clear in the next section.

Theorem 5.25 Given a program P and an unfounded-free interpretation I , if P
is acyclic then WP(I) = ΦP(I).

Proof. Let I be an unfounded-free interpretation of an acyclic program P . The
positive parts of WP(I) and ΦP(I) coincide by definition, since both of them are
obtained by TP(I) (see Definition 5.6 and Definition 5.15).

We have to show that also GUSP(I) = γP(I) holds for acyclic programs. Let
A = γP(I) and B = GUSP(I). For each atom a ∈ A, the set {a} is an unfounded
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set for P w.r.t. I , as, by Definition of γP , all ground rules with a in the head satisfy
Condition 1 or Condition 3 of Definition 5.10. Therefore, for each a ∈ A, we have
that {a} is contained in the Greatest Unfounded Set B, that is, A ⊆ B. On the
other hand, we know that also B is an unfounded set for P w.r.t. I . Since P is
acyclic, we obtain that Condition 2 is superfluous for the unfoundedness of B,
the ground rules having an element from B in the head satisfy either Condition 1
or Condition 3 of Definition 5.10. Consequently, all elements from B belong to
γP(I), that is, B ⊆ A.

Hence, we have that A = B, that is, GUSP(I) = γP(I) holds. ¤

Thus, on the class of acyclic programs, one can conveniently use Fitting’s
pruning operator, which is efficiently computable and equivalent to WP on these
programs. The Well-founded operator, however, has a stronger inference power
than Fitting’s in the general case (see, e.g., Example 5.16, and the subsequent ob-
servation). To be able to exploit the WP operator in practice, we have to: (1) be
able to efficiently detect whether it is applicable or not (i.e., if the interpretation
at hand is unfounded-free or not – in general a co-NP-complete task, cf. Proposi-
tion 5.20), and (2) provide a concrete method for computing GUSP(I) efficiently.
The RP,I operator, defined next, will serve this purpose.

Definition 5.26 Let P be a program and I an interpretation. Then we define an
operator RP,I as follows:

RP,I : 2BP → 2BP

X 7→ {a ∈ X | ∀r ∈ ground(P) with a ∈ H(r),
B(r) ∩ (not.I ∪X) 6= ∅ or
(H(r)− {a}) ∩ I 6= ∅}

Given a set X ⊆ BP , the sequence R0 = X , Rn = RP,I(Rn−1) decreases mono-
tonically and converges finitely to a limit that we denote by Rω

P,I(X).

We next prove a lemma, which was not known so far, and is fundamental for
the concrete exploitation of the WP operator in DLP systems.

Lemma 5.27 LetP be a HCF program and I an interpretation. Rω
P,I(BP) is equal

to the union of all unfounded sets w.r.t. P and I .

Proof. Consider an arbitrary unfounded set X w.r.t. P and I . It is easy to see
that X ⊆ RP,I(X) and also X ⊆ Rω

P,I(BP), as also for any Y ⊇ X we have
Y ⊆ RP,I(Y ), so X ⊆ Rω

P,I(BP).
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On the other hand, we can show that any a ∈ Rω
P,I(BP) is contained in

some unfounded set. Observe that for each rule r ∈ P such that a ∈ H(r),
B(r) ∩ (¬.I ∪ Rω

P,I(BP)) 6= ∅ or (H(r) \ {a}) ∩ I 6= ∅ holds by definition of
RP,I . So in particular B(r) ∩ ¬.I 6= ∅ or B(r) ∩ Rω

P,I(BP) 6= ∅ hold. The only
reason why Rω

P,I(BP) itself might not be an unfounded set is if B(r) ∩ (¬.I ∪
Rω
P,I(BP)) = ∅ and (H(r) \ {a}) ∩ I ⊆ Rω

P,I(BP) holds for some rule, because
then (H(r) \ Rω

P,I(BP)) ∩ I = ∅ and consequently none of the three conditions
of Definition 5.10 hold for r.

If this is the case, we can construct an unfounded set, starting from X \ {b |
b ∈ H(r) \ {a}, a ∈ H(r)}. This however, may invalidate condition 2 of Defini-
tion 5.10 for some rule r1 with c ∈ H(r1) and c ∈ X1. Note that then c 6= a, as
P is HCF. Eliminating all such cs where also conditions 1 and 3 do not hold, may
again entail that condition 2 of Definition 5.10 becomes invalidated. However,
this process can be iterated. In this process, a is never eliminated (as the program
is HCF, so in the worst case we arrive at {a}).

More formally, we create a sequence as follows: Start at

X0 = X \ Y0where

Y0 = {b | b ∈ H(r) \ {a}, a ∈ H(r)}

Subsequently, for i > 0:

Xi = Xi−1 \ Yiwhere

Yi = {c | c ∈ H(r) ∩Xi−1, B
+(r) ∩X ⊆ Yi−1, B(r) ∩ not.I = ∅,

(H(r) \Xi−1) ∩ I = ∅}

Obviously this sequence converges, and the set which is the limit, is an un-
founded set w.r.t. I and P . ¤

The properties shown in the following theorem guarantee that theWP operator
can be efficiently used on head cycle free programs.

Theorem 5.28 Let P be a HCF ground program and I be an interpretation, then

1. detecting whether I is unfounded free is feasible in linear time,

2. if I is unfounded-free, GUSP(I) can be computed in linear time,

3. W∞
P (I) (if it is defined) is computable in quadratic time,



Chapter 5. Pruning the Search Space 62

all in the size of P .

Proof. From Lemma 5.27 it follows that I is unfounded-free iffRω
P,I(BP)∩I = ∅.

We refer to Section 6.1.2, in which a linear time implementation of Rω
P,I(X) is

described, so item 1 follows.
If I is unfounded-free, then GUSP(I) exists (cf. Proposition 5.14), and in fact

from Lemma 5.27 we get that GUSP(I) = Rω
P,I(BP), obtaining item 2.

Item 3 follows from item 2; a linear number of iterations is sufficient, each of
which consumes at most linear time, so in total at most quadratic time is spent. ¤

These theorems suggest us a direction to follow in order to improve the capa-
bility of pruning the search space in DLP systems.



Chapter 6

Optimizing the Pruning

In this chapter, we design our new method for the intelligent combination of the
pruning operators, and discuss some key issues for its implementation into the
DLV system. We then report the results of our experimentation activity on a
number of benchmark problems.

6.1 Efficient Combination Of Pruning Operators

We now show how to combine the ΦP and WP operators, resulting in an efficient
implementation of DetCons.

6.1.1 A Pondered Choice

From the previous sections, given a program P and an interpretation I , we know
that:

• the computation of Φ∞
P (I) is always very efficient (linear time computable);

• WP is “stronger” than ΦP (i.e., ΦP(I) ⊆ WP(I) for any interpretation I);

• the computation of WP is intractable in the general case (since deciding
whether an interpretation belongs to its domain is co-NP-hard);

• the computation of W∞
P (I) is tractable (quadratic) when P belongs to the

restricted class of head-cycle-free programs;

• ΦP is equivalent to WP when P belongs to the restricted class of acyclic
programs.
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Based on these observations, we have designed an approach which exploits the
positive aspects of both operators, including the efficiency of Fitting’s operator
wherever we are sure that it is equivalent to the Well-founded operator or that
the computation of the latter is intractable. On the other hand, our approach takes
advantage of the (potentially) stronger pruning of the Well-founded operator where
feasible. In particular, we treat each program component differently, and apply to
each component the most appropriate pruning operator.

Our implementation of DetCons is sketched in Figure 6.1. Functions Comput-
eFittingFixpoint(I, inconsistency) and ComputeWellFoundedFixpoint(I, inconsis-
tency) compute Φ∞

P (I) and W∞
P (I), respectively. They set the boolean variable

inconsistency to true if they detect a contradiction (e.g., a branching variable pre-
viously assumed true is proven to be false). Depending on the syntactical structure
of each component, we choose the more suitable of the two operators (Fitting’s
and Well-founded). In particular, we apply WP on cyclic and HCF components,
where it is stronger than ΦP but efficiently computable. On the other hand, we ap-
ply ΦP on acyclic components, where it is equivalent to WP and more efficiently
computable, and on cyclic and not-HCF components, where WP is intractable.

Thus, if the input program is acyclic, we always apply the linear operator
ΦP without any loss in pruning strength. If the program is cyclic, we limit the
application of WP to those components (cyclic and HCF) where it has potential
for pruning the search space and is efficiently computable.

Procedure DetCons(var I: Interpretation, var inconsistency: Boolean);
begin

inconsistency := false;
for each component C ∈ Comp(P) do
begin

switch classOf(C)
case acyclic: ComputeFittingFixpoint(I, inconsistency);
case cyclic-notHCF: ComputeFittingFixpoint(I, inconsistency);
case cyclic-HCF: ComputeWellFoundedFixpoint(I, inconsistency);

end;
if inconsistency then break;

end;
end;

Figure 6.1: The DetCons Procedure
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6.1.2 Implementation Issues

We conclude this section with some relevant implementation remarks. For better
understanding, DetCons has been presented in a simplified manner; for details we
refer to [Faber, 2002].

At the beginning of the DLP computation, we classify the components of the
program w.r.t. acyclicity and head-cycle freeness, since the DetCons procedure
needs this information. This classification is performed efficiently: We first build
the dependency graph DGP of P (in linear time); then, we compute the strongly
connected components of DGP applying the linear-time Tarjan algorithm [Tarjan,
1972], and we finally scan the components, checking whether they are acyclic or
HCF, also in linear time.

To implement the Well-founded operator, we have designed an algorithm com-
puting its negative part, i.e., GUSP,C(I) for an interpretation I and a cyclic HCF
component C of a program P (GUSP,C(I) denotes the union of all unfounded sets
of P w.r.t. I which are contained in component C). The efficient implementa-
tion of the positive part of the Well-founded operator is straightforward and has
already been implemented within DetCons, cf. [Faber, 2002]. The sketch of the
algorithm is depicted in Figure 6.2 (all implementation details can be found in
[Calimeri, 2001]).

Recall Definition 5.10 where three conditions account for cases in which a
set of atoms cannot be derived. Conditions (i) and (iii) basically correspond to
rule satisfaction (w.r.t. I and I − X , respectively), while condition (ii) is used to
detect positive cycles without foundation. The basic idea, given a component C,
is to compute C − GUSP,C(I) by incrementally deriving atoms in C which are
“founded”, i.e., which do not belong to GUSP,C(I). This means that we want to
build a finite sequence Y0, . . . , Yn, where Y0 = ∅ and Yn = C − GUSP,C(I). To
this end, we look for rules which do not satisfy any of the three conditions of Def-
inition 5.10 (the conditions are checked w.r.t. X set to Yi and the interpretation I).
Once one such a rule r is found, we derive that H(r)∩C (which is a single atom,
since C is HCF) is “founded” (more accurately, “not unfounded”), that is, it does
not belong to GUSP,C(I) and can thus be added to Yi+1. The “foundedness” of an
atom may imply the foundedness of further atoms; we proceed until a fixpoint is
reached.

There is yet more room for optimization. Observing Definition 5.10, one can
see that condition (1) does not involve the unfounded set X: it is therefore “static”
with respect to the narrowing process, and can be checked once before computing
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the Yis. In addition, for condition (3) a similar, less straightforward, argument
holds: if we take for each r the set {r | (H(r)− C) ∩ I = ∅}, then for each i we
have that (H(r)−(C−Yi))∩I 6= ∅ only if some a ∈ I and a ∈ Yi, but then there is
some other rule r1 satisfying (2) or (3), otherwise a ∈ Yi ⊆ C−GUSP,C(I) would
not hold (as the component C is HCF). So for creating the sequence Y0, . . . , Yn it
is sufficient to consider only rules for which (1) and (3) (with X = C) do not hold
(let us call these rules “active”). Thus, for i ≥ 0, we compute Yi+1 = Yi∪{a | a ∈
H(r), (B+(r) ∩ C) ⊆ Yi} where r is an “active” rule. We have implemented this
computation by a linear-time algorithm using a propagation queue and counters
which store |B+(r) ∩ Yi| for each “active” rule r.

At the end of the computation, all atoms in C−Yn are known to be unfounded,
and we set them to false in I . This can result in inconsistency if I ∩ (C−Yn) 6= ∅,
i.e., if an unfounded atom was set to true in I .

It is worthwhile noting that procedure computeGUS can be seen as a (lin-
ear time) implementation of the computation of the fixpoint of the R operator
for component C (i.e., Rω

PC ,I(C)). At each step, instead of explicitly computing
RPC ,I(X), the procedure computes its complement C − RPC ,I(X). The i-th el-
ement Yi of the above sequence corresponds to the element Xi = C − Yi. Thus,
in terms of the RPC ,I operator, the procedure computes the sequence X0 = C,
X1 = RPC ,I(X0) (X1 is the set of atoms of C which are not in FoundedAtoms
after the initialization phase of the procedure in Figure 6.2),..., Xn = GUSP,C(I).

We have designed a further optimization to the above algorithm, that we have
also incorporated in our actual implementation of DetCons in the DLV system.1

Frequently, all atoms in GUSP,C(I) happen to be already false w.r.t. I , and its
computation is completely useless. We would like to identify cases where this
condition can be recognized without actually computing GUSP,C(I). To this end,
at each step of DetCons (Figure 6.1), we propagate the deterministic consequences
over all components by means of Fitting’s operator, and subsequently invoke the
Well-founded operator only on some selected cyclic and HCF components instead
of all, as described below.

At the very beginning of the computation, the GUS-computation is applied on
each cyclic and HCF component. Later, we invoke the GUS-computation only on
components where some atom may have become unfounded by the most recent
propagation step. In order to do that, we store some further information during
the Fitting propagation.

1A similar technique, for the (smaller) class of disjunction-free programs, is implemented also
in Smodels [Simons, 2000].
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Procedure computeGUS (var C:Component, var I: Interpretation,
var inconsistency: Boolean)

var a,b : Atom;
var FoundedAtoms : Interpretation; % Stores the set of atoms of C which are

% proven to be “founded” (not unfounded).
var GUSqueue : Queue; % Stores the atoms whose “foundedness” is to be

% propagated; controls the fixpoint computation.
var r.counter : Integer; (∀r) % Stores the number of atoms of C in B+(r) which are

% not proved to be founded. If r.counter becomes zero,
% then the head of r gets founded.

inconsistency := false;
% Initialize the rules counters and the queue.
For each atom a ∈ C do

For each rule r such that (r is active and a ∈ H(r)) do
r.counter := |{b : b ∈ B+(r) ∩ C}|;
If r.counter = 0 then

FoundedAtoms.Add(a);
GUSqueue.Push(a);

EndIf;
EndFor;

EndFor;
% Fixpoint Computation.
While not GUSqueue.empty() do

a := GUSqueue.Pop();
For each rule r such that (r is active and a ∈ B+(r)) do

r.counter := r.counter - 1;
If r.counter = 0 then

Let b be the atom of C in H(r);
FoundedAtoms.Add(b);
GUSqueue.Push(b);

EndIf;
EndFor;

EndWhile;
% Set to false all atoms of C which are not in FoundedAtoms.
For each atom a ∈ C do

If a /∈ FoundedAtoms then
If a ∈ I then

inconsistency := true;
return;

else
I := I ∪ {not a};

EndIf;
EndIf;

EndFor;
EndProcedure;

Figure 6.2: The computeGUS procedure
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Basically, an atom A can become unfounded if it has lost a “potential sup-
port”, as some rule r containing A in the head has become satisfied during the
last propagation, i.e., either the body of r has become false or a head atom of r,
different from A, has become true (recall that a (disjunctive) rule can support only
one atom in its head). If no atom of a component C has lost any potential support,
then we know that GUSP,C(I) is unaltered, and its computation is superfluous.
To automatically recognize such superfluous computations, when a rule becomes
satisfied, we push the component of each atom that loses a potentially supporting
rule into a queue. We eventually launch the GUS-computation only for the com-
ponents stored in this queue, i.e. only for those cyclic and HCF components in
which at least one head atom lost a potentially supporting rule. We thus avoid a
lot of useless GUS computations.

It is worthwhile noting that the algorithms for computing both the Greatest
Unfounded Set (as described above) and Fitting’s operator are linear-time algo-
rithms; they use propagation queues and suitable counters à la Dowling and Gal-
lier [Dowling and Gallier, 1984; Minoux, 1988].

6.2 Comparisons and Benchmarks

In order to evaluate our intuitions, we have implemented two new pruning oper-
ators, based on the conclusions drawn in the previous section in the DLP system
DLV [Leone et al., 2005] and experimentally compared the new pruning opera-
tors against the original pruning operator employed by DLV. Next, we describe
the compared methods, the benchmark problems and instances, and then discuss
the results of the experiments.

6.2.1 Overview of the Compared Methods

To evaluate our proposed operators, we have implemented the following three
approaches on top of DLV and compared them by means of various benchmarks:

Old. The method originally employed by DLV. It always uses the generalization
of Fitting’s operator ΦP introduced in Section 5.1.1, which is efficiently com-
putable (a fixpoint is reached in linear time), but does not prune the search space
as much as WP .
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ifPoss. Based on the generalized Well-founded operator WP introduced in Sec-
tion 5.1.2, and exploiting observations from Section 6.1, this method avoids the
use of WP on those components where its computation is very expensive (since
deciding its applicability is intractable). It employs WP on all head-cycle free
components, while resorting to the generalization of Fitting’s operator ΦP on the
remaining (i.e., non-HCF) components.

ifNeed. This is the method described in Figure 6.1. It fully implements the the-
oretical results from Section 6.1, using both ΦP and WP where appropriate, and
is a refinement of method ifPoss. WP is only used for cyclic head-cycle free com-
ponents, whereas ΦP is applied on all acyclic components.

6.2.2 Benchmark Problems

To evaluate the pruning techniques described in the previous sections, we chose
three benchmark problems, namely Hamiltonian Path, Blocksworld Planning, and
Sokoban.

For the sake of readability, the full encodings used for the benchmarks are
reported in Appendix A.1.

Hamiltonian Path (HAMPATH) is a classical NP-complete problem (already
introduced in Chapter 3.1) from graph theory : Given an undirected graph G =

(V,E), where V is the set of vertices of G and E is the set of edges, and a node
a ∈ V of this graph, does there exist a path of G starting at a and passing through
each node in V exactly once?

This is almost the same problem as described in Chapter 3.2, but the path does
not have to be cyclic. The full encoding, almost the same as the one presented in
Chapter 3.1, is reported in Appendix A.1.1.

initial:

b
c
a

c
b
a

goal:

Figure 6.3: A Blocksword Instance
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Blocksworld (BW) is a classic problem from the planning domain, and one of
the oldest problems in AI: Given a table and a number of blocks in a (known)
initial state and a desired goal state, try to reach that goal state by moving one
block at a time such that each block is either on top of another block or the table
at any given time step. The encoding is reported in Appendix A.1.2.

Figure 6.3 shows a simple instance that can be solved in three time steps: First
we move block c to the table, then block b on top of a, and finally c on top of b.

Sokoban (SOKO) is a game puzzle developed by the Japanese company Think-
ing Rabbit, Inc. in 1982. Sokoban means “warehouse-keeper” in Japanese. Each
puzzle consists of a room layout (a number of square fields representing walls
or parts of the floor, some of which are marked as storage space) and a starting
situation (one sokoban and a number of boxes, all of which must reside on some
floor location, where one box occupies precisely one location and each location
can hold at most one box). The goal is to move all boxes onto storage locations.
To this end, the sokoban can walk on floor locations (unless occupied by some
box), and push single boxes onto unoccupied floor locations. Figure 6.4 shows a
typical configuration involving two boxes, where grey fields are storage fields and
black fields are walls.

Figure 6.4: A Sokoban Instance

We have written a DLV program, reported in Appendix A.1.3, which finds
solutions with a given number of push actions (where one push action can move a
box over a number of fields, but always in the same direction) for a given puzzle
together with a script which iteratively runs that DLV program with increasing
numbers of push actions (starting at one) until some solution is found. This finds
solutions with a minimal number of push actions.

The puzzle in Figure 6.4 is solvable with 6 push actions, so the script uses
DLV to prove that no solutions with 1 to 5 push actions exist, and then to compute
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a solution with 6 push actions.

6.2.3 Benchmark Data

We created random graph instances for HAMPATH using a tool2 by Patrik Simons
which has been used to compare Smodels against SAT solvers [Simons, 2000].
For each problem size n we generated ten instances, always assuming node 0 as
the starting node, and for each instance we stopped after the first solution had been
found.

The blocksworld problems P1 to P4 have been employed in [Erdem, 1999]
to compare DLP systems, and can be solved in 4, 6, 8 and 9 steps, respectively.
We augmented these by problems P5 and P6 which require 11 and 12 steps, re-
spectively. For each of these problems, we generated 8 random permutations of
the full input (including the encoding). In addition, we also tried to solve each of
these problems with one step less than required, which fails to produce any plan
but shows the minimality of the regular solutions. These instances are labeled
P1-1, P2-1 and so forth in Figure 6.6.

A vast amount of Sokoban puzzles is available on the Internet in a simple
ANSI text format. The examples we used for benchmarks are results of efforts to
automatically generate hard puzzles. One set has been created by Yoshio Murase3,
the other set is due to Jacques Duthen4. The puzzle in Figure 6.4 is number 2 of
Duthen’s instances.

6.2.4 Experimental Results

All reported experiments have been carried out on a Pentium III/1GHz machine
with 512MB of main memory, running SuSE GNU/Linux (kernel 2.4.21). The
different DLV executables have been built with the GCC compiler (version 3.2.2).

For each invocation of DLV we allowed a maximum run-time of 600 seconds.
For SOKO there may be several invocations per problem instance, so the total
reported time may be more than 600 seconds.

Results for HAMPATH are shown in Figure 6.5. It is easy to see that both
ifPoss and ifNeed perform similarly to Old for very small problem instances, but
scale tremendously better and are able to efficiently deal with graphs of 120 nodes,
whereas Old is not able to solve almost all problems with more than 60 nodes

2http://www.tcs.hut.fi/Software/smodels/misc/hamilton.tar.gz
3http://www.ne.jp/asahi/ai/yoshio/sokoban/auto52/
4http://hem.passagen.se/awl/ksokoban/sokogen-990602.skm
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Average Maxima
Old ifPoss ifNeed Old ifPoss ifNeed

10 0.02 0.02 0.04 0.02 0.03 0.10
20 0.05 0.06 0.05 0.07 0.08 0.05
30 0.08 0.09 0.09 0.15 0.12 0.09
40 0.12 0.14 0.13 0.13 0.16 0.14
50 55.59 0.20 0.19 443.58 0.23 0.20
60 11.52 0.29 0.27 86.54 0.32 0.29
70 - 0.38 0.35 - 0.42 0.37
80 - 0.50 0.47 - 0.54 0.50
90 - 0.66 0.60 - 0.80 0.65
100 - 0.83 0.85 - 1.09 1.11
110 - 1.02 1.01 - 1.25 1.22
120 - 17.77 16.86 - 116.62 110.32

Figure 6.5: Hamiltonian Path Running Times

within the allowed time. ifPoss and ifNeed scale much better, their behavior is
similar here, with ifNeed being slightly faster than ifPoss.

The programs for HAMPATH have highly cyclic HCF dependency graphs.
Thus, ifPoss and ifNeed can exploit the pruning power of the Well-founded oper-
ator, significantly outperforming Old which employs only Fitting’s operator. On
the other hand, the dependency graphs of these programs usually have one big
component containing nearly all atoms. Therefore, there are only few differences
(but still noticeable) between ifPoss and ifNeed, as the latter cannot avoid many
calls to the Well-founded operator.

For BW, Old, ifPoss and ifNeed are nearly equivalent, and all three approaches
seem to scale similarly. We explain this as follows: These programs have only
few cyclic HCF components while most components are acyclic. Moreover, these
few cyclic components are also very small, and the Well-founded operator does
not bring a relevant gain in terms of pruning compared to Fitting’s operator, so the
three implementations show essentially the same behavior.

SOKO, finally, shows that both ifPoss and ifNeed perform significantly better
than Old, which fails to solve more than 60% of all problems instances and usually
takes one or two orders of magnitude longer to solve the remaining ones (see
Figure 6.7).

As can be verified on the data reported in Appendix A.2, both for the Yoshio
Murase and the Jacques Duthen sets, ifNeed yields an average speedup of about
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Old ifPoss ifNeed
P1 -1 0.03 0.03 0.03
P2 -1 0.05 0.05 0.06
P3 -1 2.35 2.37 2.40
P4 -1 1.28 1.31 1.32
P5 -1 15.86 15.90 15.94
P6 -1 262.64 263.45 263.65
P1 0.04 0.04 0.04
P2 0.07 0.08 0.08
P3 5.97 5.99 5.99
P4 14.53 14.68 14.67
P5 259.65 261.40 261.96
P6 234.62 235.00 235.45

Figure 6.6: Blocksworld - Average Running Times

Yoshio Murase Jacques Duthen
solved unsolved solved unsolved

Old 9 43 36 42
ifPoss 40 12 68 10
ifNeed 40 12 68 10

Figure 6.7: Soko - Instances Solved

6% over ifPoss, the maximum speedup being about 10% (instances 14 and 33 for
Yoshio Murase and Jacques Duthen, respectively). For this class of benchmarks,
the potential gain brought about by avoiding useless calls to WP is evident.

In summary, the experiments show that both ifPoss and ifNeed are strictly
preferable to Old; and that of these two, ifNeed shows a measurable speedup on
a wide range of examples. Therefore, recent DLV releases employ ifNeed by de-
fault, even if a command-line option easily allows the user to switch it off, thus
making DLV use only the original implementation of Fitting’s operator.



Part III

Extending Disjunctive Logic
Programming
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In this part we present two extensions of DLP, namely Template Predicates
and External Predicates. Thus, the part is actually divided into two main pieces.
In the first, we introduce the template paradigm into DLP, providing syntax and
giving a clear operational semantics, and discussing theoretical properties of the
extension and its main advantages; in the second, we introduce a formal frame-
work for accommodating external predicates in the context of Disjunctive Logic
Programming, showing how it enhances the applicability of DLP to a variety of
problems.

More in details, the part is structured as follows.

• In Chapter 7 we introduce template predicates and provide the syntax of
the language DLPT . Then we show the features of DLPT , with the help of
some examples. The semantics of DLPT is formally introduced, and some
theoretical properties are discussed. We present also an implementation of
the DLPT language on top of the DLV system.

• Chapter 8 introduces external predicates, beside some example motivations.
Then formally present the framework, named DLP-EX, for accommodat-
ing external predicates in the context Disjunctive Logic Programming. We
present the semantics and discuss some theoretical properties of the DLP-
EX language; since it includes the explicit possibility of inventing new val-
ues from external sources, and this setting could lead to non-termination of
any conceivable evaluation algorithm, we tailor specific cases where decid-
ability is preserved. The chapter presents then our implementation of the
framework into the DLV system, and some experiments. An overview on
the related works in the literature is also given.



Chapter 7

Templates

Although current DLP systems have been extended in many directions, they still
miss features which may be helpful towards industrial applications, like the capa-
bility of quickly introducing new predefined constructs or of dealing with mod-
ules. Indeed, in spite of the fact that a wide literature about modular logic pro-
gramming is known, code reusability has never been considered as a critical point
in Disjunctive Logic Programming. We extend the Disjunctive Logic Program-
ming, under the answer set semantics, with the notion of ‘template’ predicates,
which are introduced in this chapter.

7.1 Introducing Templates

It is very likely that this new generation of DLP applications require the introduc-
tion of repetitive pieces of standard code. Indeed, a major need of complex and
huge DLP applications such as [Nogueira et al., 2001] is dealing efficiently with
large pieces of such a code and with complex data structures, more sophisticated
than the simple, native DLP data types.

Indeed, the non-monotonic reasoning community has continuously produced,
in the past, several extensions of nonmonotonic logic languages, aimed at im-
proving readability and easy programming through the introduction of new con-
structs, employed in order to specify classes of constraints, search spaces, data
structures, new forms of reasoning, new special predicates [Cadoli et al., 1999;
Eiter et al., 1997a; Kuper, 1990], such as aggregate predicates [Calimeri et al.,
2005].

Nonetheless, code reusability has never been considered as a priority in the
Answer Set Programming/DLP field, despite the fact that modular logic pro-
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gramming has been widely studied in the general case [Bugliesi et al., 1994;
Eiter et al., 1997d].

The language DLPT we propose here has basically two purposes. First, DLPT

moves the DLP field towards industrial applications, where code reusability is a
crucial issue. Second, DLPT aims at minimizing developing times in DLP system
prototyping. DLP systems developers wishing to introduce new constructs are
enabled to fast prototype their languages, make their language features quickly
available to the scientific community, and successively concentrate on efficient
(and long lasting) implementations. To this end, it is necessary a sound specifica-
tion language for new DLP constructs. DLP itself proves to fit very well for this
purpose.

The proposed framework introduces the concept of ‘‘template’’ predicate,
whose definition can be exploited whenever needed through binding to usual pred-
icates.

Template predicates can be seen as a way to define intensional predicates by
means of a subprogram, where the subprogram is generic and reusable. This eases
coding and improves readability and compactness of DLP programs:

Example 7.1 The following template definition

#template max[p(1)](1)
{
exceeded(X) :- p(X),p(Y), Y > X.
max(X) :- p(X), not exceeded(X).
}

introduces a generic template program, defining the predicate max, intended
to compute the maximum value over the domain of a generic unary predicate p.
A template definition may be instantiated as many times as necessary, through
template atoms, as in the following sample program.

:- max[weight(*)](M), M > 100. (a)
:- max[student(Sex,$,*)](M), M >25. (b)

Template definitions may be unified with a template atom in many ways. The
above program contains two invocations: a plain invocation (a), and a compound
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invocation (b). The latter allows to employ the definition of the template predicate
max on a ternary predicate, discarding the second attribute of student, and
grouping by values of the first attribute.

The operational semantics of the language is defined through a suitable algo-
rithm (actually, a pseudo-algorithm, as we will see in Chapter 7.4) which is able
to produce, from a set of nonrecursive template definitions and a DLPT program,
an equivalent DLP program. There are some important theoretical questions to
be addressed, such as the termination of the algorithm, and the expressiveness of
the DLPT language. Indeed, we prove that it is guaranteed that DLPT program
encodings are as efficient as plain DLP encodings, since unfolded programs are
just polynomially larger with respect to the originating program.

The DLPT language has been successfully implemented and tested on top of
the DLV system [Faber et al., 2001]. Anyway, the proposed paradigm does not
rely at all on DLV special features, and is easily generalizable. In sum, benefits
of the DLPT language are: improved declarativity and succinctness of the code;
code reusability and possibility to collect templates within libraries; capability to
quickly introduce new, predefined constructs; fast language prototyping.

7.2 Syntax of the DLPT language

A DLPT program is a DLP program where (possibly negated) template atoms may
appear in rules and constraints. Definition of template atoms is next provided.

Definition 7.2 A template definition D consists of:

- a template header,

#template nD[f1(b1) , ... , fn(bn)](bn+1)

where b1, . . . , bn+1 are (nonnegative) integer values, and f1, . . . , fn are pred-
icate names (formal predicates, from now on). nD is called template name;

- an associated DLPT subprogram enclosed in curly braces; nD may be used
within the subprogram as predicate of arity bn+1, whereas the predicates
fi, . . . , fn are intended to be of arity bi, . . . , bn, respectively. At least a rule
having nD within its head must appear in the subprogram.
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Example 7.3 Beside the one introduced in Example 7.1, another valid template
definition is the following:

#template subset[p(1)](1)
{
subset(X) v non_subset(X) :- p(X).

}

Intuitively, this defines a subset of the predicate ‘p’; such a subset is non-
deterministically chosen by means of disjunction.

Definition 7.4 A template atom t is of the form:

nt[p1(X1) , . . . , pn(Xn)](A)

where p1, . . . , pn are predicate names (namely, actual predicates), and nt is a
template name. Xi, . . . ,Xn are lists of special terms (referred in the following as
special lists of terms), where A is a list of standard terms.

A special term is either a standard term, or a dollar (‘$’) symbol (from now
on, projection term) or a star (‘*’) symbol (from now on, parameter term).

p1(Xi), . . . , pn(Xn) are called special atoms. A is called output list.
Given a template atom t, let D(t) be the corresponding template definition

having the same template name. It is assumed there is a unique definition for each
template name.

Example 7.5 Some template atoms are

max[company($,State,*)](Income). subset[node(*)](X).

Template atoms may “instantiate” template definitions as many times as nec-
essary.

Example 7.6 The following short piece of program contains multiple instantia-
tion of the ‘max’ template, whose definition has been introduced in Example 7.1:

:- max[weight(*)](M), M > 100.
:- max[student(Sex,$,*)](M), M > 25.
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Looking at Example 7.5 and Example 7.6, we can get some intuitions on (‘$’
and ‘*’ symbols). Basically, projection terms (‘$’ symbols) are intended to in-
dicate which attributes, among those belonging to an actual predicate, have to be
ignored. A standard term (a constant or a variable) within an actual atom indicates
a ‘group-by’ attribute, whereas parameter terms (‘*’ symbols) indicate which at-
tributes have to be considered as parameters.

Thus, the intuitive meaning of the first template atom of example 7.5 is to com-
pute the companies with the maximum value of the ‘income’ attribute (the third
attribute of the company predicate), grouped by the ‘state’ attribute (the second
one), ignoring the first attribute. The computed values of Income are returned
through the output list.

Example 7.7 Given a database by means of facts like

emp companyA("Jones",30000,35,"Accounting").
[...]

emp companyB("Miller",34000,29,"Marketing").

the following single-rule program

emp companyAB(Name) :- intersection[emp companyA](*,$,$,$),
emp companyB(*,$,$,$)](Name).

computes the employees working for both company A and company B. It exploits
the template ‘intersection’, defined in Section 7.3, and again shows how ‘$’ and
‘*’ symbols can be used. The last three attributes (name, salary, department) are
thus ignored, by meaning of ‘$’ symbols, while the first (name) is intended as
parameter, by meaning of ‘*’ symbol.

7.3 Knowledge Representation by DLPT

In this section we show by examples the main advantages of template program-
ming. Examples point out the provision of a succinct, elegant and easy-to-use way
for quickly introducing new constructs through the DLPT language.
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Aggregates. Aggregate predicates [Ross and Sagiv, 1997], allow to represent
properties over sets of elements. Aggregates or similar special predicates have
been already studied and implemented in several DLP solvers [Dell’Armi et al.,
2003; Simons, 2000]: the next example shows how to fast prototype aggregate se-
mantics without taking into account of the efficiency of a built-in implementation.
Here we take advantage of the template predicate max, defined in Example 7.1.
The next template predicate defines a general program to count distinct values of a
predicate p, given an order relation succ defined on the domain of p. We assume
the domain of integers is bounded to some finite value.

#template count[p(1),succ(2)](1)
{
partialCount(0,0).
partialCount(I,V) :- not p(Y), I=Y+1,
partialCount(Y,V).

partialCount(I,V2) :- p(Y), I=Y+1,
partialCount(Y,V), succ(V,V2).

partialCount(I,V2) :- p(Y),I=Y+1,
partialCount(Y,V), max[succ(*,$)](V2).

count(M) :- max[partialCount($,*)](M).
}

The above template definition is conceived in order to count, in a iterative-
like way, values of the p predicate through the partialCount predicate. A ground
atom partialCount(i, a) means that at the stage i, the constant a has been counted
up. The predicate count takes the value which has been counted at the highest
(i.e. the last) stage value. The above program is somehow involved and shows
how difficult could be to simulate aggregate constructs in Disjunctive Logic Pro-
gramming. Anyway, the use of templates allows to write it once, and reuse it as
many times as necessary.

It is worth noting how template max is employed over the binary predicate
partialCount, instead of an unary one. Indeed, the ‘$’ and ‘*’ symbols are
employed to project out the first argument of partialCount. The last rule is
equivalent to the piece of code:

partialCount’(X) :- partialCount(_,X).
count(M) :- max[partialCount’(*)](M).
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Definition of ad hoc search spaces. Template definitions can be employed to
introduce and reuse constructs defining the most common search spaces. This im-
proves declarativity of DLP programs to a larger extent. The next two examples
show how to define a predicate subset and a predicate permutation, rang-
ing, respectively, over subsets and permutations of the domain of a given predicate
p. Such kind of constructs enriching plain Datalog languages have been proposed,
for instance, in [Laenens et al., 1990; Cadoli and Schaerf, 2001].

#template subset[p(1)](1)
{
subset(X) v non_subset(X) :- p(X).
}

#template permutation[p(1)](2).
{
permutation(X,N) v npermutation(X,N) :- p(X),
#int(N), count[p(*),>(*,*)](N1), N<=N1.

:- permutation(X,A),permutation(Z,A), Z <> X.
:- permutation(X,A),permutation(X,B), A <> B.
covered(X) :- permutation(X,A).
:- p(X), not covered(X).
}

The explanation of the subset template predicate (already appeared in Ex-
ample 7.3 is quite straightforward. As for the permutation definition, a ground
atom permutation(x, i) tells that the element x (taken from the domain of p), is
in position i within the currently guessed permutation. The rest of the template
subprogram forces permutations properties to be met.

Next we show how count and subset can be exploited to succinctly en-
code the k-clique problem [Garey and Johnson, 1979], i.e., given a graph G (rep-
resented by predicates node and edge), find if there exists a complete subgraph
containing at least k nodes (we consider here the 5-clique problem):

in_clique(X) :- subset[node(*)](X).
:- count[in_clique(*),>(*,*)](K), K < 5.
:- in_clique(X),in_clique(Y), X <> Y,
not edge(X,Y).
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The first rule of this example guesses a clique from a subset of nodes. The
first constraint forces a candidate clique to be at least of 5 nodes, while the last
forces a candidate clique to be strongly connected. The permutation tem-
plate can be employed, for instance, to encode the Hamiltonian Path problem (see
Chapter 3.2.2): given a graph G, find a path visiting each node of G exactly once.

path(X,N) :- permutation[node(*)](X,N).
:- path(X,M), path(Y,N), not edge(X,Y),
M = N+1.

The following template may be employed in order to (non-deterministically)
select exactly one value from the domain of a predicate p. It is built on top of the
subset predicate.

#template any[p(1)](1)
{
any (X) :- subset[p(*)](X).
:- any(X), any(Y), X <> Y.
:- p(X), not any(X).
}

Handling of complex data structures. DLPT can be fruitfully employed to in-
troduce operations over complex data structures, such as sets, dates, trees, etc.

Sets: Extending Datalog with Set programming is another matter of interest
for the DLP field. This topic has been already discussed (e.g. in [Leone and Rullo,
1993; Kuper, 1990]), proposing some formalisms aiming at introducing a suitable
semantics with sets. It is fairly quick to introduce set primitives using DLPT ; a set
S is modeled through the domain of a given unary predicate s. Intuitive constructs
like intersection, union, or symmetricdifference, can be modeled
as follows.

#template intersection[a(1),b(1)](1).
{
intersection (X) :- a(X),b(X).
}
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#template union[a(1),b(1)](1).
{
union(X) :- a(X).
union(X) :- b(X).
}

#template symmetricdifference[a(1),b(1)](1)
{
symmetricdifference(X) :- union[a(*),b(*)](X),
not intersection[a(*),b(*)](X).

}

Dates: managing time and date data types is another important issue in engi-
neering applications of DLP. For instance, in [Ianni et al., 2003], it is very im-
portant to reason on compound records containing date values. The following
template shows how to compare dates represented through a ternary relation 〈day,
month, year〉.

#template before[date1(3),date2(3)](6)
{
before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),
date2(D1,M1,Y1), Y<Y1.

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),
date2(D1,M1,Y1), Y==Y1, M<M1.

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),
date2(D,M1,Y1), Y==Y1,M==M1,D<D1.

}

7.4 Semantics of the DLPT language

The semantics of the DLPT language is given through a suitable ‘‘explosion’’
algorithm.

Remark 7.8 It is worth noting that, as already briefly mentioned, and more deeply
discussed in Section 7.5, the ‘‘explosion’’ algorithm is actually a pseudo-algorithm,
since it might not terminate in some cases. Nevertheless, we do prefer to keep the
term algorithm also in the following.

It is given a DLPT program P . The aim of the Explode algorithm, introduced
next, is to remove template atoms from P . Each template atom t is replaced with
a standard atom, referring to a fresh intensional predicate pt. The subprogram dt,
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defining the predicate pt, is computed taking into account of the template defini-
tion Def(t) associated to t. Actually, many template atoms may be grouped and
associated to the same subprogram. The concept of atom signature, introduced
next, helps in finding groups of equivalent template atoms. The final output of
the algorithm is a DLP program P ′. Answer sets of the originating program P

are constructed, by definition, from answer sets of P ′. Throughout this section,
we will refer to Example 7.1 as running example. By little abuse of notation,
a ∈ P (resp. a ∈ r) means that the atom a appears in the program P (the rule r,
respectively).

Definition 7.9 Given a template atom t, the corresponding template signature
s(t) is obtained from t by replacing each standard term with a conventional (mute
variable) ‘ ’ symbol. Let Def(s(t)) be the template definition associated to the
signature s(t); Given a DLPT program P , let At(P ) be the set of template atoms
occurring in P . Let Sig(At(P )) be the set of signatures {s(t) : t ∈ At(P )}.

For instance, max[p(*,S,$)](M) and max[p(*,a, $)](H) have the
same signature, namely max[p(*, _,$)](_).

7.4.1 The Explode algorithm

The Explode algorithm (E in the following) is sketched in Figure 7.4.1. It is given
a DLPT program P and a set of template definitions T . The output of E is a DLP
program P ′. E takes advantage of a stack of signatures S, which contains the set
of signatures to be processed; S is initially filled up with each template signature
occurring within P .

The purpose of the main loop of E is to iteratively apply the U (Unfold) opera-
tion to P , until S is empty. Given a signature s, the U operation generates from the
template definition Def(s) a DLPT program P s which defines a fresh predicate
ts, where t is the template name of s. Then, P s is appended to P ; furthermore,
each template atom a ∈ P , such that a has signature s, is replaced with a suitable
atom as(X′). It is important pointing out that, if P s contains template atoms, the
unfolding operation updates S with new template signatures.

We show next how P s is constructed and template atoms are removed.
Let the header of Def(s) be

#template t[f1(b1) , . . . , fn(bn)](bn+1)
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Explode(Input: aDLPT program P ,a set of
template definitions T .

Outputs: an updated version of P ′

of P in DLP form.
Data Structures: a queue S )

begin
put each s ∈ Sig(At(P )) in S;
P ′ = P ;
while ( S is not empty ) do begin

extract a template signature s from S;

//Start of the U (Unfold) operation;
construct P s (see Subsection 7.4.2),

then set P = P ∪ P s;
put all the s′ ∈ Sig(At(P s)) in S;

for each template atom a ∈ P
if a has signature s

construct the standard atom
as(X′) (see Subsection 7.4.3);

replace a with as(X′) in P ;
//End of the U operation;

end;
end.

Figure 7.1: The Explode (E) Algorithm

Let s be of the form

t[p1(X1) , . . . , pn(Xn)](Xn+1)

Given a special list X of terms, let X[j] denote the jth term of X; let fr(X)

be a list of |X| fresh variables FX,1, . . . , FX,|X|; let st(X), pr(X) and pa(X) be
the sublist of (respectively) standard, projection and parameter terms within X.
Given two lists A and B, let A&B be the list obtained appending B to A.
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7.4.2 How P s is constructed.

The program P s is built in two steps. On the first step, P s is enriched with a set
of rules, intended in order to deal with projection variables.

For each pi ∈ s, we introduce a predicate ps
i and we enrich P s with the auxil-

iary rule ps
i (X

′
i) :- pi(X

′′
i ), where:

- X′′
i is built from Xi substituting pr(Xi) with fr(pr(Xi)), substituting

pa(Xi) with fr(pa(Xi)), and substituting st(Xi) with fr(st(Xi));
- X′

i is set to fr(st(Xi))&fr(pa(Xi)).

For instance, given the signature
s2 = max[student(,$, ∗)]( )

and the example template definition given in Example 7.1, let L be the list
〈_,$,*〉; it is introduced the rule:

students2(Fst(L),1, Fpa(L),1) : −student(Fst(L),1, Fpr(L),1, Fpa(L),1).

Note that projection variables are filtered out from students. In the second
step, for each rule r belonging to D(s), we create an updated version r′ to be put
in P s, where each atom a ∈ r is modified this way:

- if a is fi(Y) where fi is a formal predicate, it is substituted with the atom
ps

i (Y
′). Y′ is set to fr(st(Xi))&Y;

- if a is a either a standard (included atoms having t as predicate name) or a
special atom (in this latter case a occurs within a template atom) p(Y), it is
substituted with an atom ps(Y′), where

Y vect′ = fr(st(X1))& . . . &fr(st(Xn))&Y.

Example 7.10 For instance, consider the rule

max(X) :- p(X), not exceeded(X).

from Example 7.1, and the signature

s2 = max[student(_,$,*)](_);

let L be the special list 〈 , $, ∗〉; according to the steps introduced above, this
rule is translated to

maxs2(FL,1, X) :- students2(FL,1, X), not exceededs2(FL,1, X).
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7.4.3 How template atoms are replaced

Consider a template1 atom in the form

t[p1(X1) , . . . , pn(Xn)](Xn+1).

It is substituted with

ts(X′)

where

X′ = st(X1)& . . . &st(Xn)&Y.

Example 7.11 The complete output of E on the constraint

:-max[student( , $, ∗)](M),M > 25.

coupled with the template definition of max given in Example 7.1 is:

students2(S1, P1) :- student(S1, , P1).
exceededs2(FL,1, X) :- students2(FL,1, X),

students2(FL,1, Y ),
Y > X.

maxs2(FL,1, X) :- students2(FL,1, X),
not exceededs2(FL,1, X).

:- maxs2(Sex, M),M > 25.

We are now able to give the formal semantics of DLPT . It is important high-
lighting that answer sets of a DLPT program are, by definition, constructed in
terms of answer sets of an equivalent DLP program.

Definition 7.12 Given a DLPT program P , and a set of template definitions T , let
P ′ the output of the Explode algorithm on input 〈P, T 〉. Let H(P ) be the Herbrand
base of P ′ restricted to those atoms having predicate name appearing in P . Given
an answer set m ∈ M(P ′), then we define H(P ) ∩m as an answer set of P .

Note that the Herbrand base of a DLPT program is defined in terms of the Herbrand
base of a DLP program which is not the output of E .

1Depending on the form of D(s), some template atom might not to be allowed, since some
atom with same predicate name but with mismatched arities could be generated.
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7.5 Theoretical properties of DLPT

The explosion algorithm replaces template atoms from a DLPT program P , pro-
ducing a DLP program P ′. It is very important to investigate about two theoretical
issues:

- Finding whether and when E terminates; in general, we observe that E might
not terminate, for instance, in case of recursive template definitions. Anyway, we
prove that it can be decided in polynomial time whether E terminates on a given
input.

- Establishing whether DLPT programs are encoded as efficiently as DLP pro-
grams. In particular, we are able to prove that P ′ is polynomially larger than P .
Thus DLPT keeps the same expressive power as DLP. This way, we are guaran-
teed that DLPT program encodings are as efficient as plain DLP encodings, since
unfolded programs are always reasonably larger with respect to the originating
program.

Definition 7.13 It is given a DLPT program P , and a set of template definitions
T . The dependency graph GT,P = 〈V, E〉 of T and P is a graph encoding depen-
dencies between template atoms and template definitions, and it’s built as follows.
Each template definition t ∈ T will be represented by a corresponding node vt of
V . V contains a node vP associated to P as well. E will contain a direct edge
(vt, vt′) if the template t contains a template atom referring to the template t′ in-
side its subprogram (as for the node referred to P , we consider the whole program
P ). Let GT,P (u) ⊆ GT,P be the subgraph containing nodes and arcs of GT,P

reachable from u.

Lemma 7.14 It is given a DLPT program P , and a set of template definitions
T . Let vP the node of GT,P corresponding to P . If GT,P (vP ) is acyclic then E
terminates whenever applied to P and T .

Proof. We assume GT,P (vP ) = 〈N, E〉 is acyclic. we can state a partial ordering
À between its nodes, such that for each v, v′ ∈ N, v À v′ iff either (v, v′) ∈ E or
there is a v′′ such that v À v′′ and v′′ À v.

We can build a total ordering Â by extending À in a way that, whenever
neither v À v′ nor v À v′ holds, it is chosen appropriately whether v Â v′ or
v′ Â v holds. This can be done, for instance, by performing an in-depth visit of
GT,P (vP ) and taking the resulting order of visit.

Let level(v) be defined as follows:
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• level(v) = 0 if there is no v′ such that v′ Â v;

• for i > 0, level(v) = i if i is the maximum value such that there is a v′ such
that level(v′) = i− 1 and v Â v′.

Note that level(v) > level(v′) iff v Â v′.
Given a queue S of signatures, let level(S) be maxDef(s)|s∈S level(vDef(s)).
We will assume S is managed as a priority queue such that an element s ∈ S

having better value of level(vDef(s)) is extracted first2.
Note that E has a main loop where at each iteration a signature s is popped

from S, whereas a new set of signatures S ′ is put in S. A new signature s′ ∈ S ′ can
be put on S iff Def(s) Â Def(s′). This means that level(S) is non-increasing
from one iteration to another.

level(S) can stay unchanged from one iteration i to the next iteration i + 1

only if there is some s′ such that Def(s) = Def(s′) still in S at the beginning of
iteration i + 1. But, in this case, during iteration i + 1, the cardinality of the set
{s′ s.t. Def(s) = Def(s′)} is decreased by 1, since a new signature referring to
the same template definition (and having same level) will be extracted from S.

Thus, there exists an iteration j, such that the difference j − i has a maximum
value bounded by |{s′ s.t. Def(s) = Def(s′)}|, where s is the signature extracted
at iteration i.

E will terminate once level(S) is 0 and S is emptied up. ¤

Theorem 7.15 It is given a DLPT program P , and a set of template definitions
T . It can be decided in polynomial time whether E terminates when P and T are
taken as input.

Proof. We observe that GT,P can be built in polynomial time. By Lemma 7.14 we
can show that E terminates if GT,P (uP ) is acyclic. Vice versa E does not terminate
if we assume there is a cycle in GT,P (uP ).

In order to show this, assume there is a cycle C = {ut0 , ut1 , . . . , utk , ut0}, with
k ≥ 0 in GT,P (uP ) = 〈N, E〉.

Since any node of N is reachable from uP , we can assume that E either loops
infinitely or does not terminate until some node ut such that (ut, ut0) ∈ E is
reached, i.e. until E does not enters C or a similar cycle. This means that E will

2Although this assumption can be relaxed, we prefer to introduce it in order to keep the line of
reasoning of this proof clearer.
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extract, during some iteration j, a signature s, such that Def(s) = t, from S, and
then at least one s′ such that Def(s′) = t0 and s′ ∈ Sig(At(P s)) is added to S.

We can prove that starting from the iteration j there is no iteration j′ > j such
that S = ∅ at its beginning. j′ can exist only if at the iteration j′ − 1 a remaining
signature slast is extracted and nothing else is added to S. Define SC as the set
of signatures such that Def(s) ∈ {t0, . . . , tk}, that is, SC is the set of signatures
corresponding to nodes appearing in C. slast cannot be member of SC , because, in
this case, an slast will generate new signatures to be added in S. However, once C

is reached, S will always contain, at the beginning of any iteration j′ > j, at least
one element of SC . Indeed, it cannot be avoided that once an element s′ ∈ SC is
extracted, new elements of SC are inserted during the iteration j′. ¤

Definition 7.16 A set of template definitions T is said nonrecursive if for any
DLPT program P , the subgraph GT,P (vP ) is acyclic.

It is useful to deal with nonrecursive sets of template definitions, since they
may be safely employed with any program. Checking whether a set of template
definitions is nonrecursive is quite easy.

Proposition 7.17 A set T of template definitions is nonrecursive iff GT,∅ is acyc-
lic.

Proposition 7.18 Given a DLPT program P and a nonrecursive set of template
definitions T , the number of arcs of GT,P (uP ) is bounded by the overall size of T

and P , i.e., it is O(|T |+ |P |).

Theorem 7.19 Given a DLPT program P and a nonrecursive set of template def-
initions T , the output P ′ of E on input 〈P, T 〉 is polynomially larger than P and
T .

Proof. We first observe that each execution of U adds to P a number of rules
(or constraints) whose overall size is clearly bounded by the size of T (see Fig-
ure 7.4.1). According to Lemma 7.14, if T is nonrecursive, the number of U
operations carried out by E is bounded by the maximum level l (bounded by the
number of nodes of GT,P (uP ), and thus by the size of T ) which can be assigned
to a node of GT,P (uP ), times the number of different template atoms that occur in
P and T . Thus, the size of P ′ is O(|T |2(|T |+ |P |)). ¤
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Figure 7.2: Architecture of the DLPT compiler

As already discussed in Chapters 1 and 2, and proved also in [Dantsin et al.,
2001], plain DLP programs (under the brave reasoning semantics) entirely cap-
ture the complexity class ΣP

2 . This bounds the expressive power of DLPT , too.
Indeed, as previously shown, DLPT programs may allow to express more succinct
encodings of problems, w.r.t. DLP; but, despite this, the expressive power is not
increased, accordingly to the following Corollary.

Corollary 7.20 DLPT has the same expressive power as DLP.

Proof. The result is straightforward. Theorem 7.19 showed as unfolded DLP
programs produced as the output of E are polynomially larger than the input pro-
grams. In addition, DLPT semantics is defined in terms of the equivalent, unfolded,
DLP program. Thus, DLPT has the same expressiveness properties as DLP. ¤

7.6 System architecture and usage

The DLPT language has been implemented on top of the DLV system [Faber et al.,
1999; 2001; Faber and Pfeifer, since 1996]. The current version of the language
is available through the DLPT Web page [Calimeri et al., since 2003], and the
overall architecture of the system is shown in Figure 7.2. The system work-flow
is described in the following.

A DLPT program is sent to a DLPT pre-parser, which performs syntactic checks
(included non-recursivity checks), and builds an internal representation of the
DLPT program. The DLPT Inflater performs the Explode Algorithm and produces
an equivalent DLV program P ′; P ′ is piped towards the DLV system. The an-
swer sets M(P ′) of P ′, computed by DLV, are then converted in a readable format
through the Post-parser module; the Post-parser filters out from M(P ′) informa-
tions about internally generated predicates and rules.

The system introduces also some useful features in order to ease programming.
For instance, the possibility to define some predicates as ‘global’, just specifying
them in the template definition.
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#template nD[f1(b1) , ... , fn(bn)](bn+1)
GLOBAL g1 , ... , gm

where g1, ..., gm is a list of predicate symbols defined as global. This intro-
duces the notion of scope. The notion is similar to traditional imperative lan-
guages, such as C++, where it is possible to mask global variables. Intuitively, the
meaning of the local predicates results from the rules defined within the template
body, while the meaning of the global predicates results from the rules belong-
ing to the general program. We refer to function scope in the former case, and
program scope in the latter.

Example 7.21 In this template definition, we have node as a global predicate,
while coloring is local, and arc is an argument.

#template coloring[arc(2)](2) GLOBAL node {
coloring(Country, red) v
coloring(Country, green) v
coloring(Country, blue) :- node(Country).

:- arc(Country1, Country2),
coloring(Country1, CommonColor),
coloring(Country2, CommonColor).

}



Chapter 8

External Predicates

We introduce here Disjunctive Logic Programming with External Predicates, a
framework aimed at enabling DLP to deal with external sources of computation
and called DLP-EX. This feature is realized by the introduction of ‘parametric’
external predicates, whose extension is not specified by means of a logic program
but computed through external code. With respect to existing approaches it is ex-
plicitly addressed the issue of invention of new information coming from external
predicates, in form of new, and possibly infinite, constant symbols. Several de-
cidable restrictions of the language are identified as well as suitable algorithms
for evaluating Disjunctive Logic Programs with external predicates. The frame-
work paves the way to Disjunctive Logic Programming in several directions such
as pattern manipulation applications, as well as the possibility to exploit function
symbols.

We present also our successful implementation of DLP-EX into the DLV sys-
tem, which is now enabled to make external program calls.

8.1 Introducing External Predicates

Despite the good results achieved by the current DLP systems, even state-of-the-
art hardly deal with data types such as strings, natural and real numbers. Although
simple, this data types bring two kinds of technical problems: first, they range
over infinite domains; second, they need to be manipulated with primitive con-
structs which can be encoded in logic programming at the cost of compromising
efficiency and declarativity. Furthermore, interoperability with other software is
nowadays important, especially in the context of those Semantic Web applications
aimed at managing external knowledge.

94
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Thus, the introduction of external sources of computation in tight synergy with
DLP solvers opens a variety of possible applications. We show next an example
of these successful experiences.

The discovery of complex pattern repetitions in string databases plays an im-
portant role in genomic studies, and in general in the areas of knowledge dis-
covery. Genome databases mainly consist of sets of strings representing DNA
or protein sequences (biosequences) and most of these strings still require to be
interpreted. In this context, discovering common patterns in sets of biologically
related sequences is very important.

It turns out that specifying pattern search strategies by means of Answer Set
Programming and its extensions is an appealing idea: constructs like strong and
weak constraints, disjunction, aggregates may help an algorithm designer to fast
prototype search algorithms for a variety of pattern classes.

Unfortunately, state-of-the-art DLP Solvers lack the possibility to deal in a
satisfactory way with infinite domains such as strings or natural numbers. Fur-
thermore, although very simple, such data types need of ad hoc manipulation
constructs, which are typically difficult to be encoded and cannot be efficiently
evaluated in logic programming.

So, in order to cope with these needs, one may conceive to properly extend
answer set programming with the possibility of introducing external predicates.
The extension of an external predicate can be efficiently computed by means of
an intensional definition expressed using a traditional imperative language.

Thus, we might allow a pattern search algorithm designer to take advantage
of Answer Set Programming facilities, but extended with special atoms such as
e.g. #inverse(S1,S2) (true if S1 is the inverse string of S2), #strcat(S1,S2,S3) (true if
S3 is equal to the concatenation of S1 and S2), or #hammingDistance(S1,S2,N) (true
if S1 has N differences with respect to S2). Note that it is desirable that these
predicates introduce new values in the domain of a program whenever necessary.
For instance, the semantics of #strcat(a,b,X) should be such that X matches with the
new symbol ab.

Provided with a suitable mechanism for defining external predicates, the au-
thors of [Palopoli et al., 2005] have been able to define and implement a frame-
work allowing to specify and resolve genomic pattern search problems; the frame-
work is based on automatically generating logic programs starting from user-
defined extraction problems, and exploits disjunctive logic programming properly
extended in order to enable the possibility of dealing with a large variety of pattern
problems. The external built-in framework implemented into the DLV system is
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essential in order to deal with strings and patterns.

8.2 Syntax of DLP-EX

Syntax of DLP-EX language is fundamentally the ‘‘usual’’, already presented in
Chapter 1.1. We will address here some differences due to the novelties.

Let U , X , E and P be mutually disjoint sets whose elements are called con-
stant names, variable names, external predicate names, and ordinary predicate
names, respectively. Unless explicitly specified, elements from X (resp., U) are
denoted with first letter in upper case (resp., lower case); elements from E are
usually prefixed with ‘ # ’. U will constitute the default Herbrand Universe. We
will assume that any constant appearing in a program or generated by external
computation is taken from U , which is possibly infinite1.

Elements from U ∪ X are called terms. An atom is a structure p(t1, . . . , tn),
where t1, . . . , tn are terms and p ∈ P ∪ E ; n ≥ 0 is the arity of the atom. In-
tuitively, p is the predicate name. The atom is ordinary, if p ∈ P , otherwise we
call it external atom. A list of terms t1, . . . , tn is succinctly represented by t. A
positive literal is an atom, whereas a negative literal is not a where a is an atom.

For example, node(X), and #succ(a,Y) are atoms; the first is ordinary, whereas the
second is an external atom.

A rule r is of the form

α1 ∨ · · · ∨ αk :- β1, . . . , βn, not βn+1, . . . , not βm, (8.1)

where m ≥ 0, k ≥ 1, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordinary
or external) atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r),
where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. E(r) is the set of
external atoms of r. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint, and if
B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if it contains only ordinary
atoms. A DLP-EX program is a finite set P of rules; it is ordinary, if all rules are
ordinary. Without loss of generality, we will assume P has no constraints2 and
only ground facts.

1Also, we assume that constants are encoded using some finite alphabet Σ, i.e. they are finite
elements of Σ∗.

2A constraint :-B(r) can be easily simulated through the introduction of a corresponding
standard rule fail :- B(r), not fail, where fail is a fresh predicate not occurring elsewhere in the
program.
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The dependency graph G(P ) of P is built in the standard way by inserting a
node np for each predicate name p appearing in P and a directed edge (p1, p2),
labelled r, for each rule r such that p2 ∈ B(r) and p1 ∈ H(r).

The following is a short DLP-EXprogram:

mustChangePasswd(Usr) :- passwd(Usr, Pass),

#strlen(Pass, Len), #<(Len, 8).

8.3 Semantics of the DLP-EX language

We formally introduce here the semantics of DLP-EX, and discuss some theoretical
properties. As for the syntax, we define the semantics of DLP-EX by generalizing
what already introduced (Chapter 1.2), pointing out the differences.

In the sequel, we will assume P is a DLP-EX program. The Herbrand base
of P with respect to U , denoted HBU(P ), is the set of all possible ground ver-
sions of ordinary atoms and external atoms occurring in P obtained by replacing
variables with constants from U . The grounding of a rule r, grndU(r), is defined
accordingly, and the grounding of program P by grndU(P ) =

⋃
r∈P grndU(r).

An interpretation I for P is a couple 〈S, F 〉 where:

• S ⊆ HBU(P ) contains only ordinary atoms; We say that I (or by small
abuse of notation, S) is a model of ordinary atom a∈HBU(P ), denoted
I |= a (S |= a), if a∈S.

• F is a mapping associating with every external predicate name #e ∈ E ,
a decidable n-ary Boolean function (which we will call oracle) F (#e) as-
signing each tuple (x1, . . . , xn) either 0 or 1, where n is the fixed arity
of #e, and xi ∈ U . I (or by small abuse of notation, F ) is a model of
a ground external atom a = #e(x1, . . . , xn), denoted I |= a (F |= a), if
F (#e)(x1, . . . , xn) = 1.

A positive literal is modeled if its atom is modeled, whereas a negated literal is
modeled if its corresponding atom is not modeled.

Example 8.1 We give an interpretation I = 〈S, F 〉 such that the external predi-
cate #strlen is associated to the oracle F (#strlen), and F (# <) to # <. Intuitively
these oracles are defined such that #strlen(pat4dat,7) and #< (7,8) are modeled by I ,
whereas #strlen(mypet,8) and #< (10,8) are not.

The following is a ground version of rule 8.2:
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mustChangePasswd(frank) :- passwd(frank, pat4dat),

#strlen(pat4dat, 7), #<(7, 8).

Let r be a ground rule. We define

i. I |= H(r) iff there is some a ∈ H(r) such that I |= a;

ii. I |=, B(r) iff I |=, a for each atom a∈B+(r) and I 6|=, a for each atom
a∈B−(r);

iii. I |= r (i.e., r is satisfied) iff I |=H(r) whenever I |= B(r).

We say that I is a model of a DLP-EX program P with respect to a universe U ,
denoted I |=UP , iff I |= r for all r∈ grndU(P ). A model M is minimal if there is
no model N such that N ⊂ M .

Given a general ground program P , we can give a definition (equivalent to the
one already presented in Chapter 1.2) of its GL reduct w.r.t. an interpretation I as
the positive ground program P I , obtained from P by:

• deleting all rules having a negated literal which is not modeled by I;

• deleting all the negated literals from the remaining rules.

I ⊆HBU(P ) is an answer set for a program P w.r.t. U iff I is a minimal
model for the positive program grndU(P )I . Let ansU(P ) be the set of answer
sets of grndU(P ). We call P F-satisfiable, if it has some answer set for a fixed
function mapping F , i.e. if there is some interpretation 〈S, F 〉 which is an answer
set. In the following we will assume the semantics associated to each external
predicate is defined a priori, i.e. F is fixed.

8.4 Properties of DLP-EX programs

Although simple in its definition, the above semantics does not give any hint on
how to actually compute answer sets of a given program P . In general, given an
infinite domain of constants U , and a program P , HBU(P ) is indeed infinite.

Theorem 8.2 It is given a DLP-EXprogram P , a domain of constants U , and a
function mapping F where the co-domain of F contains only boolean functions
decidable in polynomial time in the size of their arguments. Deciding whether P

is F -satisfiable in the domain U is undecidable.



Chapter 8. External Predicates 99

Proof. (Sketch) The proof is carried out by showing that the Answer Set Se-
mantics of a ordinary program P with function symbols3 can be reduced to the
Answer Set Semantics of a DLP-EX program P . We take advantage of a family
of external predicates {#functioni}. In a given interpretation 〈S, F 〉, F will be such
that #functioni(C, f, x1, . . . , xi) is modeled if C unifies with the compound term
f(x1, . . . , xi).

This allows to rewrite a logic program P with function symbols by means of
external predicates. For instance, the rule

p(s(X)) :- a(X, f(Y, h(Z))).

can be rewritten in an equivalent DLP-EX rule:

p(S) :- a(X, F ), #function1(S, s,X), #function2(F, f, Y,H),

#function1(H, h, Z).

¤

Tailoring cases where a finite portion of U is enough to evaluate the semantics
of a given program is thus of interest. In the following we reformulate some results
regarding splitting sets [Lifschitz and Turner, 1994].

Definition 8.3 Given a DLP-EX program P , a splitting set is a set of atoms A ∈
HBU(P ) such that for each atom a ∈ A, if a ∈ H(r) for some r ∈ grndU(P ),
then B(r) ∪H(r) ⊆ A. The bottom bA(P ) is the set of rules
{r | r ∈ grndU(P ) and H(r) ⊆ A}. The residual rU(P, I) is a program ob-
tained from grndU(P ) by deleting all the rules which are not modeled by I , and
removing from the remaining rules all the a ∈ A modeled by I .

We take advantage here of the formulation of the splitting theorem as given in
[Bonatti, 2004].

Theorem 8.4 (Splitting theorem [Lifschitz and Turner, 1994; Bonatti, 2004]) Given
a program P and a splitting set A, M ∈ ansU(P ) iff M can be split in two dis-
joint sets I and J , such that I ∈ ansU(bA(P )) and J ∈ ansU(rU(grndU(P ) \
bA(P )), I).

Definition 8.5 Given a rule r, a variable X is safe in r if it appears in some
ordinary atom a ∈ B+(r). A rule r is safe if each variable X appearing in r is
safe. A program P is safe if each rule r ∈ P is safe.

3Positive Horn programs with function symbols are undecidable, see e.g. [Dantsin et al., 2001]
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Theorem 8.6 Given a safe DLP-EX program P , let U ⊂ U be the set of constants
appearing in P . Then ansU(P ) = ansU(P ).

Proof.(Sketch) The line of reasoning of the theorem is proving that, assuming
P is safe, grndU(P ) is a finite splitting set for P . Furthermore, grndU(P ) =

bU(P ). For each M ∈ ansU(P ), we can prove that rU(grndU(P ) \ bU(P ),M) is
consistent and its only answer set is the empty model. Thus M ∪ ∅ ∈ ansU(P ).
Viceversa, assuming an answer set M ∈ ansU(P ) is given, same arguments lead
to conclude that M ∈ ansU(P ). ¤

In case a safe program is given, the above theorem allows to consider as the
set of ‘relevant’ constants only those values explicitly appearing in the program at
hand. Intuitively, the semantics of a safe program P can be evaluated by means of
the following steps:

• compute grndU(P );

• remove from grndU(P ) all the rules containing at least one external literal
e such that F 6|= e, and remove from each rule all the remaining external
literals.

• compute the remaining ordinary program by means of a standard DLP solver,
such as DLV.

It is worth pointing out that, assuming the complexity of computing oracles is
polynomial in the size of their arguments, this algorithm as same complexity as
computing grndU(P )4.

8.5 Dealing with values invention

Although important for clarifying the given semantics, it is an actual practice to
specify external sources of computation not in terms of boolean oracles. So we
aim at introducing the possibility to specify functional oracles, keeping anyway
the simple reference semantics given previously. In the new setting we are going
to introduce, it is also very important that an external atom brings knowledge
from external sources of computation, in terms of new symbols added to a given
program.

4Assuming rules can have unbounded length, grounding a disjunctive logic program is in the
worst case exponential in the size of the Herbrand base (see e.g. [Leone et al., 2001]).
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For instance, assume U contains encoded values that can be interpreted as
natural numbers and that the external predicate #sqr is defined such that the atom
#sqr(X,Y) is true whenever Y encodes a natural number representing the square of
the natural number X; we want to extract a series of squared values from this
predicate.

Example 8.7 Consider now the following short program, containing an unsafe
rule.

number(2).

square(Y ) :-number(X), #sqr(X,Y ).

In the presence of unsafe rules as in the above example, Theorem 8.6 ceases
to hold: it is indeed unclear whether there is a finite set of constants which the
program can be grounded on. In the above example, we can intuitively conclude
that the set of meaningful constants is {2, 4}. It is however undecidable, given a
computable boolean oracle f to establish whether a given set S contains all and
only all those tuples t such that f(t) = 1.

In order to overcome these limits, we extend our framework with the possibil-
ity of explicitly computing missing values on demand. Although restrictive, this
setting is not far from a realistic scenario where external predicates are defined by
means of generic partial functions instead of boolean ones.

Definition 8.8 It is given an external predicate name #p, having arity n and its
oracle function F (#p). A pattern is a list of b’s and u’s. A b will represent a place-
holder for a constant (or a bounded variable), whereas an u will be a placeholder
for a variable. Given a list of terms, the corresponding pattern will be given by
replacing each constant with a b, and each variable with a u.

For instance, the pattern related to the list of terms (X, a, Y ) is (u, b, u). Let
pat be a pattern of length n having k placeholders b (which we will call input
positions), and n − k placeholders of u type (which we will call output posi-
tions). A functional oracle F (#p)[pat] for the pattern pat, associated to the ex-
ternal predicate #p, is a partial function taking k constant arguments from U and
returning a tuple of arity n− k, and such that F (#p)[pat](a1, ..., ak) = b1, ..., bn−k

iff F (#p)(a1, . . . , ak, b1, . . . , bn−k) = 1. Let pat[j] be the j-th element of a pat-
tern pat. Let unboundpat(X) be the sub-list of X such that pat[j] = u for each
Xj ∈ X , and boundpat(X) be the sub-list of X such that pat[j] = b for each
Xj ∈ X .
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An external predicate #p might be associated to one or more functional oracles
‘consistent’ with the originating boolean oracle. For instance, consider the #sqr

external predicate, defined as mentioned above. We associate to it two functional
oracles, F (#sqr)[b, u] and F (#sqr)[u, b]. The two functional oracles are such that,
e.g.

F (#sqr)[b, u](3) = 9 (8.2)

F (#sqr)[u, b](16) = 4 (8.3)

and this is consistent with the fact that F (#sqr)(3, 9) = F (#sqr)(4, 16) = 1,
whereas F (#sqr)[u, b](5) is set as undefined since F (#sqr)(X, 5) = 0 for any natu-
ral X .

In the sequel, given an external predicate #e, we will assume it comes equipped
with its oracle F (#e) (called also base oracle) and a list of consistent functional or-
acles {F (#e)[pat1], . . . , F (#e)[patm]}, having different patterns pat1, . . . , patm

5.
Adopting functional oracles in the context of safe programs is however to big

a restriction. We thus aim at enlarging the class of programs that can be evaluated
against a finite Herbrand universe. To this end, we introduce a relaxed notion of
safety. Intuitively, a variable is weakly safe if its value, although not explicitly
appearing in a program, can be computed through a functional oracle.

Definition 8.9 Given a rule r, let E(r) its set of external atoms. A choice C of
functional oracles is a mapping C : E(r) 7→ N associating each external atom of
r with the index of one of its functional oracles. Given a choice C, let FC(#e) a
shortcut for the functional oracle F (#e)[patC(#e)].

Given a rule r and a choice C, a variable X is weakly safe in r w.r.t. to C if
either

• X is safe; or

• X appears in some external atom #e(X) ∈ B+(r), X ∈ unboundpat
C(#e)

and each variable Y ∈ boundpat
C(#e)

is weakly safe.

A rule r is weakly safe if there is a choice Cr such that each variable X ap-
pearing in some atom a ∈ B(r) is weakly safe with respect to Cr. A program P

is weakly safe if each rule r ∈ P is weakly safe.

5Note that functional oracles prevent, to some extent, to define multivalued functions and/or
generic relations. We consider anyway this setting acceptable for a variety of applications.



Chapter 8. External Predicates 103

Example 8.10 Assume that #sqr is associated to the list of functional oracles
{F (#sqr)[b, u], F (#sqr)[u, b]} defined above. Given a choice of oracles C such
that C(#sqr(X,Y )) = 2, the second rule of Program 8.7 is not weakly safe (intu-
itively there is no way for computing the value of the variable Y with the oracle
F (#sqr)[u, b]. The same rule is weakly safe if we set C(#sqr(X,Y)) = 1.

It turns out that deciding whether a given rule is weakly safe or not depends on
a given choice, but also from the set of available functional oracles. It is assumed
indeed that an external predicate does not come with all its possible functional
oracles.

Proposition 8.11 Given a set of external predicates E , and a list of functional
oracles for each #e ∈ E , it can be checked in polynomial time whether a program
P is weakly safe.

Proof.(Sketch) Simply observe that for each rule r ∈ P it can be checked in time
linear in the number of atoms of r whether a choice making r weakly safe exists.
¤

Weakly safe rules can be grounded with respect to functional oracles as fol-
lows.

Definition 8.12 Given a weakly safe rule r, a choice C for it, and a set of ordinary
ground atoms A, a ground rule r′ is member of ins(r, A) if r can be grounded to
r′ by the following algorithm:

1. replace positive literals of r with a consistent nondeterministic choice of
matching ground atoms from A; let θ the resulting variable substitution;

2. until θ instantiates all the variables of r:

• pick from rθ an external atom #e(X)θ such that θ instantiates all the
variables X ∈ boundpat

C(#e)
(X).

• If FC(#e)(boundpat
C(#e)

(Xθ)) = a1, . . . , ak, then update θ by assign-

ing a1, . . . , ak to unboundpat
C(#e)

(Xθ); else fail;

3. return r′ = rθ.
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Example 8.13 Let’s consider the second rule of Example 8.7; then,
ins(r, {number(1), number(2)}) contains the two rules:

square(1) :-number(1), #sqr(1, 1).

square(4) :-number(2), #sqr(2, 4).

Although desirable, weak safety is not sufficient in order to intuitively guar-
antee finiteness of answer sets and decidability.

Example 8.14 For instance, the program:

square(2).

square(Y ) :- square(X), #sqr(X, Y ).

is modeled by the infinite set of atoms {square(2), square(4), . . . }.

We thus introduce the notion of semi-safe program. Intuitively a semi-safe
program is such that external atoms cannot create infinite chains of new values to
be taken in account.

Definition 8.15 A weakly safe program P is semi-safe if each cycle in G(P )

contains only edges corresponding to safe rules.

Example 8.16 The program

square(Y ) :- square(X), number(Y ), #sqr(X, Y ).

square(Y ) :-number(X), #sqr(X,Y ).

is semi-safe.

We extend next Theorem 8.6 to the case of semi-safe programs.

Theorem 8.17 It is given a semi-safe program P . Then there is a finite set of
constants U such that ansU(P ) = ansU(P ).

Proof.(Sketch) The set U is defined as all the constant symbols appearing in the
set of atoms T∞

P (∅) where the operator TP is defined as follows.

TP (A) = A ∪ {a ∈ H(r′)|r′ ∈ ins(r, A) for some r ∈ P}

It is provable that T∞
P (∅) = T n

P (∅) for some n in case P is semi-safe; T∞
P (∅) is

a splitting set, and U is finite; as in Theorem 8.6 for each M ∈ ansU(P ), we can
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prove that rU(grndU(P ) \ bT∞P (P ),M) is consistent and its only answer set is the
empty model. Thus M ∪ ∅ ∈ ansU(P ). Assuming an answer set M ∈ ansU(P )

is given, same arguments lead to conclude that M ∈ ansU(P ). ¤

The above theorem allows to compute semantics of a semi-safe program P by
means of a traditional answer set solver, following the steps:

• compute the ground program T∞
P (∅). This computation involves a num-

ber of evaluation of ins(r, A) that trigger evaluation of functional oracles
whenever needed;

• eliminate external literals as in the case of safe programs;

• evaluate the remaining ordinary program by means of a traditional solver;

We observe that, assuming F contains polynomial-time functional oracles, the
complexity of the above algorithm is not greater than the complexity of computing
grounding for an ordinary program.

8.6 Implementation and experiments

The proposed DLP-EX language has been integrated into the DLV system. The
prototype is called DLV-EX6, and it’s introduced here, as well as some experi-
ments.

From a practical point of view, the external atoms are dealt with in the follow-
ing steps (see Figure 8.1):

1. at design time: a developer provides a library of external atoms, each of
them associated with a set of functional oracles. Each functional oracle has
a corresponding pattern. Although useful in practice, it is not compulsory
to provide functional oracles other than the base oracle. However, the ab-
sence of specific functional oracles limits de facto the possibility to exploit
an external atom in weakly safe rules. A testing environment helps check-
ing the correctness of the oracles by means of automatically generated test
programs.

6http://www.mat.unical.it/kali/dlv-ex
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2. at run-time in a pre-processing stage: each rule is checked to be weakly
safe, and a suitable choice of functional oracles is made. Then the overall
program is checked to be semi-safe. It is anyway possible to relax this
second condition, provided that termination of grounding algorithms is not
guaranteed in this case. It is worth pointing out that an user developing
a logic program is not in charge of specifying a choice of oracles, since
the system itself will choose the best functional oracles among a variety of
possibilities.

3. at run-time during the rule instantiation stage: the optimized grounder of the
DLV system has been extended in order to compute ins(r, A) for a given
rule r and a set of ‘active’ atoms A. For each external atom in r,the chosen
functional oracles are repeatedly invoked according to Definition 8.12.

Point 2 and 3 above are integrated in the existing grounding algorithm of the
system. We briefly recall the rule instantiation algorithm, part of the Intelligent
Grounding module of the DLV system already cited in Chapter 4.3. Given a rule r,
this algorithm exploits an intelligent backtracking algorithm, where a given atom
a ∈ B(r) is picked at each stage and it is tried to be instantiated with respect to
currently allowed values. The picking order is crucial in order to tailor the search
space to the smallest extent: in principle, it is preferred to pick first those atoms
whose estimated set of possible values is smaller.

The presence of external atoms impacts within such algorithm in a two-fold
way: for what point 2 above is concerned, given a rule r, among possible choices
of functional oracles, our algorithm prefers those patterns whose number of un-
bounded variables is bigger. This intuitively allows to reduce the space of possible
instantiations for a given external atom. For instance, given the atom #sqr(X,Y), the
choosing algorithm prefers, whenever possible, to choose the oracle with pattern
(b, u) instead of the base oracle (which can be seen has having the pattern (b, b)),
since this way it is searched only the space of values where Y is equal to the
square of X . In the second case, an oracle with pattern (b, b) forces in principle to
check all the possible couples of values for X and Y .

Point 3 impacts on the atom pick-up ordering strategy. For the same reasons
above, it is preferred to pick up external atoms, with pattern having many un-
bounded variables, as earlier as possible. This strategy relies on the assumption,
often true in practice, that the computation of a functional oracle is less time con-
suming than several computations of the corresponding base oracle.
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Figure 8.1: System Architecture

All the pre-existing built-in atoms available in the DLV system (such as arith-
metic and relational operators) have been rewritten using the new general frame-
work. We carried out some experiment in order to appreciate the impact and
the possible overhead of the new construct. Results are encouraging: grounding
times are in most cases equivalent, and the slowdown reported in few cases is
never above 6-7%.

External predicate definitions can be grouped in one or more libraries. Li-
braries have to be compiled such that they can be dynamically linked to the DLV-
EXexecutable; oracles are written in the C++ language. A special directive inside
DLV-EXprograms tells the system which libraries have to be linked at runtime.
Also, built-in developers are enabled to redefine predefined operators in order to
deal with new data types, e.g. real numbers.

Some usage experiments have been carried out as well; few users have been
requested to start implementing some customized libraries [Palopoli et al., 2005;
Cumbo et al., 2004], and early feedbacks are positive both from the correctness
and the ease of use points of view.
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8.7 Related works

We give now a due overview on the related works in the literature.
For what the possibility of calling external modules in a logic program is

concerned, it is worth to mention the foundational work of Eiter et al. [1997d].
This paper takes the notion of generalized quantifier, known in formal logics, and
adapts it in the context of modular logic programming. A generalized quantifier
indeed, can be seen as a way for delegating the truth value of a formula to an
external source of computation.

Based on this work, the same authors are addressing the issue of implementing
generalized quantifiers under Answer Set Semantics, in order to enable Answer
Set Solvers to communicate, in both directions, with external reasoners [Eiter et
al., 2004b; 2005]. This approach is different from the one considered in this work
since the former is inspired from second order logics and allows bidirectional
flow of relational data (to and from an external atom), whereas, in our setting, the
information flow is strictly value based. Nonetheless, HEX programs, as defined
in [Eiter et al., 2005], do not deal with infinite domains explicitly.

Although this know-how has not been explicitly divulgated yet, other Answer
Set Solvers introduced the possibility to deal with externally computed functions
[Syrjänen, 2002; Osorio and Corona, 2003].

Furthermore, there are several works aiming at bringing in Answer Set Pro-
gramming a restricted capability of dealing with infinite domains. Among these, it
is worth citing the notion of ω-restricted programs [Syrjänen, 2001]. ω-restricted
programs allow to keep decidability of Answer Set Semantics in the presence of
functions symbols, and constitute a subclass of finitary programs. It is indeed
important to recall the work of Bonatti [2004], aimed at tailoring the class of
finitary programs. Although, in general, recognizing this class of programs is
undecidable, finitary programs allow function symbols but are decidable under
brave/skeptical reasoning with ground queries. As shown in Theorem 8.2, exter-
nal functions might be exploited in order to simulate function symbols. It is a
matter of future search to extend the notion of semi-safe program to a larger class
and investigate equivalence conditions with the notion of finitary program.

In the above cited literature, infinite domains are obtained through the intro-
duction of compound functional terms. Thus the studied theoretical insights are
often specialized to this notion of term, and take advantage e.g., of the common
unification rules of formal logics over infinite domains. Similar in spirit to our
approach is the work on open logic programs, and conceptual logic programs
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[Heymans et al., 2004]. Such paper addresses the possibility of grounding a logic
program, under Answer Set Semantics, over an infinite domain, in a way similar to
classical logics and/or description logics. Each constant symbol has no predefined
compound structure however. Also similar is the work of Cabibbo [1998], which
extend the work of Hull and Yoshikawa [1990]. The latter authors introduce a lan-
guage (ILOG) with a special construct aimed at introducing new invented values
in a logic program, for the purpose of creating new tuple identifiers in relational
databases. Based on this work, Cabibbo investigates about decidable fragments of
the language. Despite some crucial semantic differences, the presented notion of
weak safety is similar to the one herein presented, and describes conditions such
that new values do not propagate in infinite chains.



Chapter 9

Conclusions

In this thesis we have studied Disjunctive Logic Programming, a very powerful
and expressive formalism which has recently became quite popular in AI in the
areas of non-monotonic reasoning and logic programming. Our studies addressed
some issues; indeed, practical applications in many emerging areas require always
higher performances; moreover, there are some kinds of problems that cannot be
encoded in a natural way and then the resulting programs are often complex and
tricky.

We focused on these issues; thus, we proposed new techniques aiming at im-
proving the efficiency of the DLV system (or similar DLP systems), and new
extensions of Disjunctive Logic Programming for enhancing its knowledge mod-
elling abilities.

In summary, the main contributions of the work are the following:

• [PartI] We have presented Disjunctive Logic Programming; we have first
defined the syntax of this language and its associated semantics, the Answer
Set Semantics. Then, we have analyzed the computation complexity of this
language and we have illustrated the usage of Disjunctive Logic Program-
ming for knowledge representation and reasoning.

• [PartII] We have addressed some key issues for the computation of dis-
junctive logic programs. In particular, we have focused on search space
pruning, which is crucial for the efficiency of DLP systems. We have car-
ried out an in-depth analysis of two main pruning operators for DLP, namely
Fitting’s operator and the Well-founded operator. We have proposed a new
strategy for the intelligent combination of the two pruning operators, and
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we have implemented it in the DLV system. We have carried out experi-
ments, which confirm the strong impact of the pruning operators on the ef-
ficiency of DLP systems, and assess the importance of our results. Interest-
ingly, even if the Well-founded operator is computationally more expensive
than Fitting’s operator (quadratic time versus linear time in the propositional
case), its stronger pruning power often pays off and reduces the computation
time by an order of magnitude in some cases.

Future work can focus on tuning the actual implementations of the pruning
operators, and on singling out new classes of DLP programs where they are
efficiently computable.

• [PartIII] In the first piece of this part of the thesis we have started ad-
dressing some lacks of DLP, namely code reusability and modularity. We
have presented the DLPT language, an extension of DLP allowing to define
template predicates. The proposed language is very promising; the future
work can have as objectives: introducing a clearer model theoretic semantic
and prove its equivalence with the current operational semantics; general-
izing template semantics in order to allow safe and meaningful forms of
recursion between template definitions; introducing new forms of template
atoms in order to improve reusability of the same template definition in
different contexts; prove the formal equivalence of DLT sub-programs with
semantics for aggregate constructs such as in [Calimeri et al., 2005]; ex-
tending the template definition language using standard languages such as
C++, such as in [Eiter et al., 2005]; consider program equivalence results
[Eiter et al., 2004a] in order to optimize the size of unfolded programs.

In the second piece of this last part of the thesis, continuing in addressing
some lacks of DLP, namely the gaps between Disjunctive Logic Program-
ming and practical applications, we have presented a framework where ex-
ternal atoms with value invention are taken in account. The purpose of this
work is in the direction of starting to close those gaps. Also, we believe this
works paves the way to an actual implementation of finitary programs with
function symbols. The system prototype, examples, manuals and bench-
mark results are available at http://www.mat.unical.it/kali/
dlv-ex.
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mentation of the Well-founded and Stable Model Semantics. In Michael J. Ma-
her, editor, Proceedings of the 1996 Joint International Conference and Sym-
posium on Logic Programming (ICLP’96), pages 289–303, Bonn, Germany,
September 1996. MIT Press.
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Appendix A

Further Details on Experiments

A.1 Encodings of the Problems

Note that some of the encodings reported here employ true negation (denoted us-
ing “−” in front of atoms), which has not been introduced in the syntax definition
in this work. However, DLV reduces such programs to equivalent ones without
true negations, substituting each truly negated occurrence of an atom a by a new
atom na and adding a constraint :- a, na. for each atom a that occurs both with
and without true negation.

A.1.1 Hamiltonian Path

The actual encoding for HAMPATH used for experiment is almost the same as
the one in Chapter 3.2.2. Suppose that the graph G is specified by two predi-
cates node(X) and arc(X,Y ), and the starting node is specified by the predicate
start which contains only a single tuple. Then, the following program solves the
problem HAMPATH:

% Each node has to be reached.
reached(X) :- start(X).
reached(X) :- inPath(Y, X).
:- node(X), not reached(X).
% Guess whether a given arc is in the path or not.
inPath(X, Y ) v outPath(X,Y ) :- reached(X), arc(X, Y ).
% At most one incoming/outgoing arc!
:- inPath(X, Y ), inPath(X, Y 1), Y <>Y 1.
:- inPath(X, Y ), inPath(X1, Y ), X<>X1.

126
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A.1.2 Blocksworld

For blocksworld, we used an encoding of the problem domain which is derived
from an encoding in an action language. The reader can refer to [Erdem, 1999;
Faber et al., 1999] for further details.

% specification of the move action
move(B,L, T ) v −move(B,L, T ) :- block(B), location(L),

actiontime(T ), B <> L.

% the effects of moving a block
on(B, L, T1) :- move(B, L, T ), #succ(T, T1).
−on(B, L, T1) :- move(B, , T ), on(B, L, T ), #succ(T, T1).
% move preconditions
% a block can be moved only when it’s clear
:- move(B, L, T ), on(B1, B, T ).
% if a block is moved onto another block, the latter must be clear
:- move(B, B1, T ), on(B2, B1, T ), block(B1).
% concurrent actions are not allowed
:- move(B, , T ), move(B1, , T ), B <> B1.
:- move( , L, T ), move( , L1, T ), L <> L1.

% inertia
on(B, L, T1) :- on(B,L, T ), not − on(B, L, T1), #succ(T, T1).
% time at which actions can be initiated
actiontime(T ) :- T < #maxint, #int(T ).
% location definition (blocks are defined in the problem instances)
location(t). location(B) :- block(B).

A.1.3 Sokoban

The encoding solving SOKO puzzles follows.

% Timesteps etc.
time(T ) :- #int(T ). actiontime(T ) :- #int(T ), T ! = #maxint.

% define left and bottom for simplicity
left(L1, L2) :- right(L2, L1). bot(L1, L2) :- top(L2, L1).
% define the adjacent squares
adj(L1, L2) :- right(L1, L2). adj(L1, L2) :- left(L1, L2).
adj(L1, L2) :- top(L1, L2). adj(L1, L2) :- bot(L1, L2).
% all the locations
location(L) :- adj(L, ).
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% It is possible to push a box if the Sokoban can move to the square
% in front the box and the box can be pushed in the desired direction.
push(B, right,B1, T ) v − push(B, right, B1, T ) :-

reachable(L, T ), right(L, B), box(B, T ), pushable right(B, B1, T ),
good pushlocation(B1), actiontime(T ).

push(B, left, B1, T ) v − push(B, left, B1, T ) :-
reachable(L, T ), left(L,B), box(B, T ), pushable left(B, B1, T ),
good pushlocation(B1), actiontime(T ).

push(B, up, B1, T ) v − push(B, up, B1, T ) :-
reachable(L, T ), top(L,B), box(B, T ), pushable top(B,B1, T ),
good pushlocation(B1), actiontime(T ).

push(B, down, B1, T ) v − push(B, down,B1, T ) :-
reachable(L, T ), bot(L, B), box(B, T ), pushable bot(B, B1, T ),
good pushlocation(B1), actiontime(T ).

% reachable represents the locations which are reachable at some
% timestep from the location of the Sokoban in that timestep.
reachable(L, T ) :- sokoban(L, T ).
reachable(L, T ) :- reachable(L1, T ), adj(L1, L), notbox(L, T ).
% The following rules define the possible pushes during some timestep.
pushable right(B,D, T ) :- box(B, T ), right(B, D), notbox(D,T ),

actiontime(T ).
pushable right(B,D, T ) :- pushable right(B, D1, T ), right(D1, D),

notbox(D, T ).
pushable left(B, D, T ) :- box(B, T ), left(B,D), notbox(D, T ), actiontime(T ).
pushable left(B, D, T ) :- pushable left(B,D1, T ), left(D1, D), notbox(D, T ).
pushable top(B, D, T ) :- box(B, T ), top(B, D), notbox(D, T ), actiontime(T ).
pushable top(B, D, T ) :- pushable top(B, D1, T ), top(D1, D), notbox(D, T ).
pushable bot(B,D, T ) :- box(B, T ), bot(B, D), notbox(D,T ), actiontime(T ).
pushable bot(B,D, T ) :- pushable bot(B, D1, T ), bot(D1, D), notbox(D, T ).
% Effects of pushing.
sokoban(L, T1) :- push( , right, B1, T ), #succ(T, T1), right(L,B1).
sokoban(L, T1) :- push( , left, B1, T ), #succ(T, T1), left(L,B1).
sokoban(L, T1) :- push( , up, B1, T ), #succ(T, T1), top(L,B1).
sokoban(L, T1) :- push( , down, B1, T ), #succ(T, T1), bot(L,B1).
−sokoban(L, T1) :- push( , , , T ),#succ(T, T1), sokoban(L, T ).
box(B, T1) :- push( , , B, T ),#succ(T, T1).
−box(B, T1) :- push(B, , , T ), #succ(T, T1).
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% Inertia. Unless changes are caused, things remain as they were.
box(LB, T1) :- box(LB, T ), #succ(T, T1), not− box(LB, T1).
sokoban(LS, T ) :- sokoban(LS, T ), #succ(T, T1), not− sokoban(LS, T1).
% Unique actions per timestep.
:- push(B, , , T ), push(B1, , , T ), B! = B1.
:- push(B, D, , T ), push(B,D1, , T ), D! = D1.
:- push(B, D,B1, T ), push(B, D,B11, T ), B1! = B11.

% Auxiliary definitions.
good pushlocation(L) :- right(L, ), left(L, ).
good pushlocation(L) :- top(L, ), bot(L, ).
good pushlocation(L) :- solution(L).
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A.2 Sokoban Detailed Results

In Tables A.1 and A.2 you find detailed results for the Sokoban puzzle bench-
marks. The reported numbers are seconds for runtime (user + system time).

Old ifPoss ifNeed
1 738.04 21.39 19.70
2 - - -
3 - 7.48 6.99
4 - 7.74 7.29
5 - 77.59 71.42
6 - 173.68 162.39
7 - 195.27 178.51
8 548.24 12.27 11.62
9 264.85 16.04 14.97
10 - 16.01 14.77
11 - - -
12 - 54.76 50.20
13 - 23.90 22.18
14 - 271.24 242.87
15 - 19.25 17.54
16 - 627.05 575.95
17 - 20.13 18.58
18 - 45.31 41.43
19 - 487.70 441.67
20 - 32.13 30.09
21 - 99.02 92.08
22 - - -
23 255.83 21.41 20.10
24 - 13.81 12.79
25 - 31.69 29.24
26 321.81 20.69 19.26

Old ifPoss ifNeed
27 - 7.54 7.13
28 - 199.58 183.73
29 421.22 4.07 3.86
30 - - -
31 124.32 14.42 13.23
32 - - -
33 - 219.63 202.54
34 - 62.37 57.57
35 - 199.52 182.09
36 - - -
37 549.44 17.63 16.68
38 - 56.75 51.69
39 - - -
40 - 16.62 15.07
41 - - -
42 - - -
43 - 27.04 25.15
44 - 295.75 276.50
45 - - -
46 - - -
47 - 9.44 8.76
48 - - -
49 385.71 13.89 12.90
50 - 25.35 23.18
51 - 217.76 203.39
52 - 246.47 230.39

Table A.1: Detailed results for the Yoshio Murase SOKO instances.
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Old ifPoss ifNeed
1 0.98 0.83 0.82
2 1.90 1.67 1.60
3 0.65 0.68 0.67
4 2.99 1.60 1.56
5 61.65 2.22 2.16
6 152.54 21.19 19.28
7 3.86 1.67 1.60
8 100.86 3.87 3.73
9 1.95 1.43 1.37
10 1.16 0.90 0.90
11 3.78 1.59 1.55
12 83.54 2.27 2.20
13 27.30 5.05 4.75
14 445.60 4.86 4.65
15 48.18 2.92 2.74
16 0.59 0.60 0.60
17 53.47 9.74 9.10
18 361.54 5.98 5.58
19 8.21 2.14 2.06
20 - 8.72 8.07
21 1.55 1.01 0.99
22 565.06 7.54 7.01
23 44.30 1.72 1.68
24 - 27.28 25.18
25 82.02 11.41 10.57
26 125.81 7.29 6.76
27 3.87 1.55 1.50
28 - 13.63 12.52
29 - 23.90 22.46
30 13.81 2.22 2.18
31 37.72 1.92 1.87
32 3.86 1.21 1.19
33 - 39.44 35.61
34 - 63.17 58.07
35 189.21 10.37 9.44
36 - 302.66 281.64

Old ifPoss ifNeed
37 - 589.14 533.16
38 789.52 81.20 75.19
39 132.97 2.59 2.52
40 - 389.44 354.95
41 8.37 1.71 1.70
42 - 104.60 96.22
43 403.12 2.51 2.42
44 224.12 3.61 3.40
45 - 31.23 28.88
46 - 6.43 6.10
47 - 8.67 8.20
48 - 221.16 201.23
49 - 33.38 30.79
50 - - -
51 - - -
52 - 349.29 328.23
53 - 10.98 10.26
54 - - -
55 37.24 2.77 2.62
56 - 10.87 10.04
57 - 79.42 71.75
58 - 64.82 58.67
59 - 8.31 7.73
60 - 5.62 5.29
61 - 260.75 241.98
62 - 116.11 106.23
63 - 688.73 638.46
64 257.59 21.11 19.60
65 - 375.09 341.36
66 - 40.46 37.40
67 - 695.20 629.97
68 - 589.31 533.12
69 - 233.59 214.51
70 - 30.53 28.05
71 - 14.55 13.34

Table A.2: Detailed results for the Jacques Duthen SOKO instances.


