

Università della Calabria
Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica e Informatica

con il contributo del

Fondo Sociale Europeo - POR Calabria FSE 2007/2013

XXVII ciclo

Computational Tasks in
Answer Set Programming:

Algorithms and Implementation

Settore Disciplinare INF/01 – INFORMATICA

Coordinatore: Chia.mo Prof. Nicola Leone

Supervisori: Prof. Francesco Ricca

Prof. Mario Alviano

Dottorando: Dott. Carmine Dodaro

Ringraziamenti
La presente tesi è cofinanziata con il sostegno della Commissione Europea,
Fondo Sociale Europeo e della Regione Calabria. L’autore è il solo responsa-
bile di questa tesi e la Commissione Europea e la Regione Calabria declinano
ogni responsabilità sull’uso che potrà essere fatto delle informazioni in essa
contenute.

Sors salutis et virtutis mihi nunc contraria,
est affectus et defectus semper in angaria.

Hac in hora sine mora corde pulsum tangite;
quod per sortem sternit fortem, mecum

omnes plangite!

Acknowledgements

I want to say thanks:

• To Prof. Francesco Ricca and To Prof. Mario Alviano, for their
attention and their patience during these years. The time spent with
you was a great pleasure.

• To Prof. Nicola Leone, for his interest in my work and his precious
suggestions.

• To Prof. Joao Marques-Silva and his research group, for their ho-
spitality and their advices when I was in Dublin.

• To the anonymous reviewers for their suggestions.

• To all of my friends and colleagues.

• To my parents Mario and Tina, my sisters Giulia e Rita and my
grandmother Rita, for their support in my life.

• Last but not least to Susanna, for being the milestone of my life.

Carmine

Sommario
L’Answer Set Programming (ASP) è un paradigma di programmazione di-
chiarativa basato sulla semantica dei modelli stabili. L’idea alla base di ASP
è di codificare un problema computazionale in un programma logico i cui
modelli stabili, anche detti answer set, corrispondono alle soluzioni del pro-
blema. L’espressività di ASP ed il numero crescente delle sue applicazioni
hanno reso lo sviluppo di nuovi sistemi ASP un tema di ricerca attuale ed
importante.

La realizzazione di un sistema ASP richiede di implementare soluzioni
efficienti per vari task computazionali. Questa tesi si occupa delle problema-
tiche relative alla valutazione di programmi proposizionali, ed in particolare
affronta i task di model generation, answer set checking, optimum answer set
search e cautious reasoning. La combinazione dei primi due task corrispon-
de alla computazione degli answer set. Infatti, il task di model generation
consiste nel generare dei modelli del programma in input, mentre il task di
answer set checking ha il compito di verificare che siano effettivamente mo-
delli stabili. Il primo task è correlato alla risoluzione di formule SAT, ed
è implementato -nelle soluzioni moderne- con un algoritmo di backtracking
simile al Conflict-Driven Clause Learning (CDCL); il secondo è risolto appli-
cando una riduzione al problema dell’insoddisfacibilità di una formula SAT.
In presenza di costrutti di ottimizzazione l’obiettivo di un sistema ASP è
l’optimum answer set search, che corrisponde a calcolare un answer set che
minimizza il numero di violazioni dei cosiddetti weak constraint presenti nel
programma. Il cautious reasoning è il task principale nelle applicazioni data-
oriented di ASP, e corrisponde a calcolare un sottoinsieme degli atomi che
appartengono a tutti gli answer set di un programma. Si noti che tutti questi
task presentano una elevata complessità computazionale.

I contributi di questa tesi sono riassunti di seguito:

(I) è stato studiato il task di model generation ed è stata proposta per la
sua risoluzione una combinazione di tecniche che sono state originaria-
mente utilizzate per risolvere il problema SAT;

(II) è stato proposto un nuovo algoritmo per l’answer set checking che mi-
nimizza l’overhead dovuto all’esecuzione di chiamate multiple ad un
oracolo co-NP. Tale algoritmo si basa su una strategia di valutazio-
ne incrementale ed euristiche progettate specificamente per migliorare
l’efficienza della risoluzione di tale problema;

(III) è stata proposta una famiglia di algoritmi per il calcolo di answer set
ottimi di programmi con weak constraint. Tali soluzioni sono state ot-
tenute adattando algoritmi proposti per risolvere il problema MaxSAT;

(IV) è stato introdotto un nuovo framework di algoritmi anytime per il cau-
tious reasoning in ASP che estende le proposte esistenti ed include un
nuovo algoritmo ispirato a tecniche per il calcolo di backbone di teorie
proposizionali.

Queste tecniche sono state implementate in wasp 2, un nuovo sistema
ASP per programmi proposizionali. L’efficacia delle tecniche proposte e
l’efficienza del nuovo sistema sono state valutate empiricamente su istan-
ze utilizzate nella competizioni per sistemi ASP e messe a disposizione sul
Web.

Abstract

Answer Set Programming (ASP) is a declarative programming paradigm
based on the stable model semantics. The idea of ASP is to encode a com-
putational problem into a logic problem, whose stable models correspond to
the solution of the original problem. The high expressivity of ASP, combined
with the growing number of applications, made the implementation of new
ASP solvers a challenging and crucial research topic.

The implementation of an ASP solver requires to provide solutions for sev-
eral computational tasks. This thesis focuses on the ones related to reason-
ing with propositional ASP programs, such as model generation, answer set
checking, optimum answer set search, and cautious reasoning. The combina-
tion of the first two tasks is basically the computation of answer sets. Indeed,
model generation amounts to generating models of the input program, whose
stability is subsequently verified by calling an answer set checker. Model gen-
eration is similar to SAT solving, and it is usually addressed by employing
a CDCL-like backtracking algorithm. Answer set checking is a co-NP com-
plete task in general, and is usually reduced to checking the unsatisfiability
of a SAT formula. In presence of optimization constructs the goal of an ASP
solver becomes optimum answer set search, and requires to find an answer
set that minimizes the violations of the so-called weak constraints. In data-
oriented applications of ASP cautious reasoning is often the main task, and
amounts to the computation of (a subset of) the certain answers, i.e., those
that belong to all answer sets of a program.

These tasks are computationally very hard in general, and this thesis
provides algorithms and solutions to solve them efficiently. In particular the
contributions of this thesis can be summarized as follows:

1. The task of generating model candidates has been studied, and a combi-
nation of techniques, which were originally introduced for SAT solving
has been implemented in a new ASP solver.

2. A new algorithm for answer set checking has been proposed that min-
imizes the overhead of executing multiple calls to a co-NP oracle by
resorting to an incremental evaluation strategy and specific heuristics.

3. A family of algorithms for computing optimum answer sets of programs
with weak constraints has been implemented by porting to the ASP
setting several algorithms introduced for MaxSAT solving.

4. A new framework of anytime algorithms for computing the cautious
consequences of an ASP knowledge base has been introduced, that
extends existing proposals and includes a new algorithm inspired by
techniques for the computation of backbones of propositional theories.

These techniques have been implemented in wasp 2, a new solver for
propositional ASP programs. The effectiveness of the proposed techniques
and the performance of the new system have been validated empirically on
publicly-available benchmarks taken from ASP competitions and other repos-
itories of ASP applications.

Contents

1 Introduction 1

2 SAT Solving 5
2.1 The Satisfiability Problem . 5
2.2 Davis Putnam Logemann Loveland Algorithm 6
2.3 Conflict-Driven Clause Learning 8

2.3.1 Learning . 9
2.3.2 Branching Heuristics 10
2.3.3 Learned Clauses Deletion 12
2.3.4 Restarts . 12

2.4 Incremental SAT . 13
2.5 Maximum Satisfiability . 15

3 Answer Set Programming 17
3.1 Syntax . 17
3.2 Semantics . 19
3.3 Properties of ASP programs 21
3.4 Knowledge Representation And Reasoning 25
3.5 Architecture of an ASP System 27

4 The ASP Solver wasp 2 28
4.1 The Architecture of wasp 2 28
4.2 Input Processor . 29
4.3 Simplifications of the Input Program 29
4.4 Model Generator . 30

4.4.1 Propagation . 32
4.4.2 Learning . 36

4.5 Answer Set Checker . 36
4.5.1 Unfounded-free Check for non-HCF components 37
4.5.2 Partial Checks . 40

4.6 Experiments . 42

I

4.6.1 Model Generator Evaluation 42
4.6.2 Answer Set Checker Evaluation 45

5 Optimum Answer Set Search 47
5.1 Preliminaries . 47
5.2 Algorithm opt . 48

5.2.1 Algorithm basic. 49
5.3 Algorithm mgd . 50
5.4 Algorithm oll . 51
5.5 Algorithm pmres . 53
5.6 Algorithm bcd . 55
5.7 Implementation . 57
5.8 Experiments . 58

6 Query Answering 62
6.1 Computation of Cautious Consequences 63
6.2 Correctness . 65
6.3 Experiments . 67

6.3.1 Implementation . 67
6.3.2 Benchmark Settings . 67
6.3.3 Discussion of the Results 68

7 Related Work 73
7.1 Relations with SAT, MaxSAT and SMT 73
7.2 ASP Solvers . 74

7.2.1 Solvers Based on Translations 74
7.2.2 Native Solvers . 75

8 Conclusion 78

II

Chapter 1

Introduction

During the recent years the number of computer applications have grown ex-
ponentially and most of the computational problems of our lives are handled
automatically. However, many of these problems are not easily solvable by
a computer, especially those for which a deterministic polynomial time algo-
rithm is unknown. The traditional approach for solving this kind of problems
is based on the imperative programming paradigm. The major drawback of
this approach is that high-level programming skills as well as deep domain
knowledge are required in order to find a good algorithm for a hard problem.
Moreover, usually small changes in the specification of the problem require
a lot of effort for adapting the implementation to the new specifications. An
alternative approach to solve these problems is based on declarative program-
ming. In this case, the problem and its solutions are stated in the form of an
executable specification, i.e. the problem is solved by stating the features of
its solution, rather than specifying how a solution has to be obtained.

Answer Set Programming. One of the major declarative programming
paradigms based on logic is Answer Set Programming (ASP) [1, 2, 3, 4, 5,
6, 7]. In ASP, knowledge concerning an application domain is encoded by
a logic program whose semantics is given by a set of stable models [6], also
referred to as answer sets. The core language of ASP, which features disjunc-
tion in rule heads and nonmonotonic negation in rule bodies, can express
all problems in the second level of the polynomial hierarchy [2]. Therefore,
ASP is strictly more expressive than SAT (unless the polynomial hierarchy
collapses). Nonetheless, several extensions to the original language were pro-
posed over the years to further improve ASP modeling capabilities, such as
aggregates [8] for concise modeling of properties over sets of data, and weak
constraints [9] for modeling optimization problems.

1

Motivations and Contributions. The high expressivity of the original
language combined with its extensions made ASP a powerful tool for develop-
ing advanced applications in the areas of Artificial Intelligence, Information
Integration, and Knowledge Management; for example, ASP has been used in
industrial applications [10], team-building [11], semantic-based information
extraction [12], linux package configuration [13], bioinformatics [14], assisted
living [15] and e-tourism [16]. These applications have confirmed the viabil-
ity of the use of ASP, and at the same time outlined the need for efficient
ASP implementations. After twenty years of research many efficient ASP
systems have been developed [17, 18, 19, 20, 21], and the improvements ob-
tained in this respect are witnessed by the results of the ASP Competition
series [22, 23]. Nonetheless, ASP applications demand better and better
performance in hard-to-solve problems, and thus the development of more
effective and faster ASP systems remains a crucial and challenging research
topic.

The implementation of an efficient ASP solver requires to provide effective
solutions for several computational tasks. In particular, this thesis focuses
on those related to reasoning with propositional ASP programs that have
great impact in applications, such as model generation, answer set checking,
optimum answer set search, and cautious reasoning.

The combination of the first two tasks basically corresponds to the com-
putation of answer sets. Indeed, the model generation task has the goal of
computing model candidates of the input program, whose stability is subse-
quently verified by a co-NP check performed by the answer set checker. The
generation of answer set candidates is a hard task performed by applying
techniques introduced for SAT solving, such as learning [24], restarts [25]
and conflict-driven heuristics [26]. Answer set checking is a co-NP complete
task in general, and it is usually reduced to checking the unsatisfiability of
a SAT formula [27]. Optimum answer set search is the main task of an ASP
solver in presence of optimization constructs, and requires to find an answer
set that minimizes the violations of the so-called weak constraints. More-
over, cautious reasoning corresponds to the computation of a (subset) of the
certain answers, i.e., those that belong to all answer sets of a program. The
latter is often the main task in data-oriented applications of ASP [28, 29, 30].

These computational tasks are very hard in general, and this thesis pro-
vides algorithms and solutions to solve them efficiently. In particular the
contributions of this thesis can be summarized as follows:

• The task of generating model candidates has been studied, and a com-
bination of techniques that were originally introduced for SAT solving,
such as learning [24], restarts [25] and conflict-driven heuristics [26]

2

has been implemented in the new ASP solver wasp 2.

• A new algorithm for answer set checking has been proposed that min-
imizes the overhead due to multiple calls to an external oracle [27] by
resorting to an incremental solving strategy.

• A family of algorithms for computing optimum answer sets of programs
with weak constraints [9] has been studied and implemented; these al-
gorithms were obtained by porting to the ASP setting several solutions
proposed for MaxSAT solving [31, 32, 33].

• A new framework of anytime algorithms for computing the cautious
consequences of an ASP knowledge base has been proposed, that ex-
tends existing proposals and includes a new algorithm inspired by tech-
niques for the computation of backbones of propositional theories [34].

Model Generation. The model generation task is related to SAT solving,
and modern ASP solvers are actually based on CDCL-like algorithms [20]
properly adapted in order to take into account the properties and the exten-
sions of ASP programs. Thus, our system extends the CDCL algorithm by
implementing several techniques for handling efficiently specific features of
ASP programs, such as minimality of answer sets and inference via aggre-
gates. The performances of our implementation have been assessed by an
experimental analysis on the instances of the Fourth ASP Competition [23].
The results show that our system is competitive compared with alternative
solutions.

Answer Set Checking. The second contribution regards answer set check-
ing, which is a co-NP-complete problem for disjunctive logic programs. In
fact, a polynomial algorithm for reducing the answer set checking problem
into the unsatisfiability problem has been proposed in [27]. However, practi-
cal applications have shown the drawbacks of such approach, mostly related
to the creation of a new SAT formula for each stability check. We have im-
proved the original algorithm by exploiting a strategy based on incremental
solving which minimizes the overhead due to multiple calls to an external or-
acle. An experimental analysis confirms the viability of our algorithm, which
is already comparable with alternative solutions.

Optimum Model Search. Optimum model search is the main task in
case of optimization programs in ASP. The task is addressed in this thesis
by adapting some of the techniques introduced for MaxSAT solving. In

3

particular, several algorithms introduced for MaxSAT solving, named mgd
[31], optsat [32], pmres [35] and bcd [36] have been properly adapted to
the ASP setting. Moreover, the algorithm oll [33] and basic have been
also implemented. The former has been introduced for ASP solving and
then successfully applied to MaxSAT solving [37], while the latter has been
implemented in the ASP solvers smodels [18], dlv [17] and clasp [20].

Cautious Reasoning. Concerning cautious reasoning, we designed and
implemented a new framework of anytime algorithms for cautious reasoning
in ASP. An algorithm is said to be anytime if it produces valid, intermedi-
ate solutions, during its execution, thus it can be safely terminated before
the end if the quality of the latest found solution is satisfactory. Our al-
gorithms produce certain answers during the computation of the complete
solution. The computation can thus be stopped either when a sufficient num-
ber of cautious consequences have been produced, or when no new answer
is produced after a specified amount of time. Since cautious consequences
computation is very hard, anytime property of our algorithms is crucial for
real world applications. In fact, we empirically verified that a large number
of certain answers can be produced after a few seconds of computation even
when the full set of cautious consequences is not computable in reasonable
time.

Organization of the Thesis. The remainder of the thesis is organized as
follows: In Chapter 2 we describe the techniques originally introduced for
SAT solving, which we have been extended to adapt them in a native ASP
solver. In Chapter 3 we describe the syntax and semantics of ASP and the
use of ASP as a powerful knowledge representation and reasoning tool. In
Chapter 4 we describe the solving strategy of new ASP solver and the new
algorithm for stable model checking. We also present the results of the exper-
iments conducted for assessing the performance of our implementation. In
Chapter 5 we compare several strategies for solving ASP optimization prob-
lems by introducing several MaxSAT algorithms in the context of ASP. In
Chapter 6 we describe algorithms and implementation of cautious reasoning
and we show anytime variants of the algorithms reported in literature. In
Chapter 7 we describe the work related to this thesis. Finally, Chapter 8
draws the conclusions of the thesis.

4

Chapter 2

SAT Solving

The Satisfiability (SAT) problem [38] and the Maximum Satisfiability prob-
lem are well-known hard problems. In the recent years effective techniques
for solving SAT and MaxSAT have been proposed, and successfully applied
to obtain efficient ASP implementations. This chapter provides an overview
on the the solving techniques used in modern SAT and MaxSAT solvers.
In particular, the classical Davis Putnam Logemann Loveland (DPLL) al-
gorithm [39] is presented. After that, its evolution, called Conflict-Driven
Clause Learning (CDCL) [40], is described together with some of the tech-
niques that are the core of CDCL, such as branching heuristics, learning and
restarts. Finally, incremental SAT solving and its usage for solving MaxSAT
are recalled.

2.1 The Satisfiability Problem
Let V = {v1, . . . , vn} be a finite set of Boolean variables. A literal ` is a
Boolean variable v or its negation ¬v. Given a literal `, its negation ¬` is
¬v if ` = v and it is v if ` = ¬v. A clause {`1, . . . , `n} is a disjunction of
literals. A SAT instance expressed in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A set of literals L is said to be consistent if, for every
literal ` ∈ L, ¬` /∈ L holds. An interpretation is a consistent set of literals.
Given an interpretation I and a literal `:

• ` is true w.r.t. I if ` ∈ I;

• ` is false w.r.t. I if ¬` ∈ I;

• ` is undefined if it is neither true nor false w.r.t. I.

5

A clause {`1, . . . , `n} is said to be satisfied if at least one literal among
`1, . . . , `n is true. A clause is said to be violated if all literals `1, . . . , `n
are false. A clause is undefined if it is neither satisfied nor violated. An
interpretation I is a satisfying variable assignment (or model) for a CNF
formula ϕ if all clauses of ϕ are satisfied w.r.t. I. In this case ϕ is said to
be satisfiable. Otherwise, if no interpretation is a model of ϕ then ϕ is said
to be unsatisfiable. The SAT problem consists of checking whether a given
CNF formula ϕ is satisfiable.

Example 1 (Satisfiable CNF formula). Let V = {v1, v2, v3} be a set of
Boolean variables. Consider the following CNF formula ϕ:

{v1, v2} {v2, v3}
{v1, v3} {¬v2, v3}

Interpretation I = {v1,¬v2, v3} is a model for ϕ. C

Example 2 (Unsatisfiable CNF formula). Let V = {v1, v2, v3} be a set of
Boolean variables. Consider the following CNF formula ϕ:

{v1, v2} {v2, v3} {v2,¬v3}
{v1,¬v2} {¬v2, v3} {¬v2,¬v3}

The formula ϕ is unsatisfiable because there is no variable assignment that
satisfies all the clauses. C

2.2 Davis Putnam Logemann Loveland Algo-
rithm

SAT solving has recently obtained an increasing interest since both indus-
trial applications and effective SAT solvers are available. Those results have
been obtained as improvements of the Davis Putnam Logemann Lovelang
(DPLL) algorithm [39], which is a complete, backtracking-based algorithm
for deciding whether a CNF formula is satisfiable or not. DPLL is reported
in pseudo-code in Algorithm 1. In a nutshell, the algorithm runs by setting
as true an undefined literal `, simplifies the formula accordingly, and then
recursively checks whether the simplified formula is satisfiable or not; in the
latter case, the same recursive check is done assuming the literal ¬` as true.
In more detail, DPLL takes a formula ϕ as input and starts from an assign-
ment in which all literals are undefined. Function UnitPropagation (line 2) is
invoked in order to satisfy unit clauses. An undefined clause is a unit clause
if it contains only one undefined literal. Intuitively, a unit clause can be

6

Algorithm 1: DPLL
Input : A CNF formula ϕ
Output: True, if ϕ is SAT. False, otherwise.

1 begin
2 ϕ := UnitPropagation(ϕ);
3 ϕ := PureLiteralElimination(ϕ);
4 if all clauses in ϕ are satisfied then
5 return True;

6 if ϕ contains an empty clause then
7 return False;

8 ` = ChooseLiteral();
9 return DPLL(ϕ ∧ `) OR DPLL(ϕ ∧ ¬`);

satisfied only if its unique undefined literal is inferred as true. In practice,
unit propagation has a tremendous effect on pruning the search space.

Example 3 (Unit clause). Consider the CNF formula ϕ of Example 1 and
the interpretation I = {¬v1}. Clause {v1, v2} is unit since there is only one
undefined literal v2. The same consideration holds for clause {v1, v3}. C

After that, function PureLiteralElimination (line 3) is called. This func-
tion simplifies clauses containing so-called pure literals. A literal ` is pure if
¬` does not occur in the formula. All clauses in which a pure literal ` appears
can be satisfied, and thus deleted, by inferring ` as true. Since ¬` does not
appear anyhow in the formula, satisfiability of the remaining clauses is not
affected by this operation. However, albeit this optimization is part of the
original DPLL algorithm, modern SAT solvers do not implement pure literal
checking due to the computational overhead.

Example 4 (Pure literal). Consider the CNF formula ϕ of Example 1. Lit-
erals v1 and v3 are pure since ¬v1 and ¬v3 do not occur in ϕ. C

After calling UnitPropagation and PureLiteralElimination, satisfiability
of the formula is detected (line 5) if all clauses in ϕ are satisfied; otherwise, if
all literals of a clause are false (line 7) then unsatisfiability is detected; finally,
if no inferences are possible, an undefined literal `, whose variable is called
branching variable, is selected according to a heuristic criterion (line 8), and
DPLL is called recursively.

7

Algorithm 2: Conflict-Driven Clause Learning
Input : A CNF formula ϕ
Output: SAT if ϕ is satisfiable, UNSAT otherwise

1 begin
2 while there are undefined clauses in ϕ do
3 ` := ChooseLiteral();
4 ϕ := ϕ ∪ {`};
5 ϕ := UnitPropagation(ϕ);
6 while there are violated clauses in ϕ do
7 ϕ := LearnClause(ϕ);
8 if not RestoreConsistency(ϕ) then
9 return UNSAT;

10 ϕ := UnitPropagation(ϕ);

11 return SAT;

2.3 Conflict-Driven Clause Learning
The original DPLL algorithms described in the previous section has been ex-
tended during recent years. In particular, almost all modern SAT solvers are
based on a new algorithm, called Conflict-Driven Clause Learning (CDCL)
[40]. CDCL is reported in pseudo-code in Algorithm 2. CDCL takes a formula
ϕ as input and starts from an assignment in which all literals are undefined.
An undefined literal ` is selected according to a branching heuristic criterion.
A unit clause {`} is added to the formula ϕ, and UnitPropagation(ϕ) is per-
formed as in the standard DPLL. After that, if there are violated clauses in ϕ,
function LearnClause(ϕ) is called. This function analyzes violated clauses
in order to produce a clause modeling the violation (or conflict) which is
added to ϕ (learning). This learned clause is computed in such a way that
the variables assignments leading to the violation of the clauses are prohib-
ited. Then, the algorithm calls function RestoreConsistency(ϕ) which undoes
previous computation until no clauses are violated. If ϕ cannot be consis-
tent undoing previous computation, function RestoreConsistency(ϕ) returns
false, and the algorithm terminates returning UNSAT. Otherwise, since the
learned clause may be unit, function UnitPropagation(ϕ) is invoked, and the
learning process is repeated until there are no violated clauses (line 6).

One of the most important features of algorithm CDCL is learning. How-
ever, the number of learned clauses can grow exponentially, thus an heuristic
for controlling the number of learned clauses is also usually implemented.

8

Moreover, another important technique usually employed in CDCL is called
restarts. Intuitively, some heuristic criteria are used to stop the computation
in order to restart the search by taking into account the learned clauses since
the first nondeterministic choices.

In the following, we first detail the learning procedure by describing the
most used learning scheme. Then, two effective branching heuristics are
described in Section 2.3.2. Finally, in Sections 2.3.3 and 2.3.4, some heuristics
for deletion of learned clauses and restarts are described, and details are
given for those employed by two modern SAT solvers, i.e. minisat [41] and
glucose [42].

2.3.1 Learning

Learned clauses forbid literal assignments that are not valid because they
lead to a conflict. To perform learning the implication graph is built during
unit propagation and a learning scheme is applied [24].

Implication Graph. The implication graph is a directed graph where each
node represents a literal that is true with respect to the current assignment.
An arc from a node N1 to a node N2 represents that the assignment of N1

participated to the inference of N2, i.e. if N2 is inferred by applying unit
propagation on a clause containing ¬N1. Hence, branching literals have no
incoming edges. When a literal ` is selected by the branching heuristic, a node
is added to the implication graph. Each literal ` appearing in the implication
graph is associated with a nonnegative integer called decision level, defined
as the number of branching literals in the implication graph after literal ` is
added. A conflict occurs when the implication graph contains a node for a
literal ` and a node for the complementary literal ¬` is added. In this case,
literals ` and ¬` are called conflicting literals.

First UIP Learning Scheme. A node N1 with decision level d is said
to dominate a node N2 with the same decision level d if and only if N1 is
contained in all paths connecting the branching literal with decision level d to
N2. A Unique Implication Point (UIP) in conflictual implication graph is a
node at the current decision level that dominates both vertices corresponding
to the conflicting literals. It is important to note that a UIP represents a
unique reason of the current decision level that implies the conflict, and thus,
there may be more than one UIP for a certain conflict (e.g. the decision literal
is always a UIP). The UIPs are usually ordered starting from the conflict.
In the first UIP [26] learning scheme, the learned clause is composed by the

9

first UIP in the above-mentioned order and by the literals from a smaller
decision level that imply the conflict. The first UIP learning scheme usually
allows to learn the smallest clauses implying the conflict [26]. The learning
algorithm is the following:

1. Let u be the first UIP, and d be its decision level.

2. Let L be the set of literals with decision level d occurring in a path
from u to the conflicting literals.

3. Add a literal ` to the learned clause if there is an arc (¬`, `′) in the
implication graph, `′ ∈ L and the decision level of ` is lower than d.

4. Add ¬u to the learned clause.

Example 5 (Learning). Consider the following CNF formula ϕ:

{¬v1,¬v9,¬v2} {¬v1,¬v10,¬v14, v3}
{v2,¬v3, v4} {¬v4, v11,¬v5}
{v6,¬v4} {¬v4,¬v12, v7}

{v5,¬v6, v8} {¬v6,¬v7,¬v13,¬v8}

A possible Implication Graph associated to ϕ is shown in Figure 2.1. Decision
levels are reported in parentheses. Literal v1 is the branching literal with
decision level 7 and leads to the derivation of the literals with decision level 7.
The remaining literals v9 to v14 have been assigned as true in a previous
decision level. UIPs are v1 and v4, because they are part of all paths from
v1 to either v8 or ¬v8. The first UIP is v4, since it is the UIP closest to the
conflict. The learned clause is {¬v4, v11,¬v12,¬v13}. C

2.3.2 Branching Heuristics

An important role in CDCL, as well as in DPLL, is played by the branching
heuristics. In the following we focus on two heuristics that are employed with
success in CDCL solvers, namely the Variable State Independent Decaying
Sum heuristic and the minisat heuristic.

Variable State Independent Decaying Sum. The Variable State Inde-
pendent Decaying Sum (VSIDS) [26] heuristic maintains a counter cl(`) for
each literal `. Counters are initialized to 0 and a counter cl(`) is increased
when a literal ` appears in a learned clause. Periodically, all counters are
divided by a constant. At each decision, the next branching literal is the

10

v1 (7)

¬v2 (7) v3 (7)

v4 (7)

¬v5 (7) v6 (7) v7 (7)

v8 (7) ¬v8 (7)

v9 (2) v10 (4)

¬v11 (3) v12 (5)

v13 (1)

v14 (6)

Figure 2.1: Implication Graph (First UIP: v4; Level in parentheses)

undefined literal ` with the highest value of cl(`). If two or more literals have
the same highest value of the heuristic counter, the next branching literal is
chosen randomly among them.

minisat. The branching heuristic of the SAT solver minisat [41] is an
enhancement of the original VSIDS. minisat maintains an activity counter
for each variable. The activity counter is initialized to 0. When a variable
v is involved in the learning process, i.e. it is responsible of some conflictual
assignments, its activity counter of v is increased by an increment value. The
increment is initialized to the value 1.0 and it is multiplied by 1.0/0.95 after
each conflict. Thus, counters of the variables involved in future conflict will
be increased by a higher value. This has the effect to give more importance
to variables involved in recent conflicts. At each decision, the variable with
the highest activity is chosen as false. Ties are broken randomly.

11

2.3.3 Learned Clauses Deletion

The number of learned clauses can grow exponentially, and this may cause a
performance degradation of propagation. A heuristic is usually employed for
deleting some of them. We present the heuristic employed by minisat and
glucose, since their effectiveness has been proved in practical applications.

minisat. The SAT solver minisat [41] implements a heuristic that re-
moves learned clauses not involved often in recent conflicts. Each learned
clause is associated with activity counters measuring the number of times a
clause was involved in the derivation of a conflict and are considered locked
if binary or when participated to the inference of some literal. Clauses are
then deleted performing the following algorithm:

1. Sort all clauses by increasing activity;

2. Remove the first half of the learned clauses that are not locked;

3. Remove all learned clauses that are not locked and have an activity
counter smaller than a threshold.

Glucose. The deletion heuristic of glucose [42] is based on the concept
of Literals Blocks Distance (lbd). Given a learned clause c, the lbd of c is the
number of different decision levels associated with the literals in c. The lbd
is computed when c is learned and it is updated in specific instants of the
search. In more detail, the lbd of a clause c is updated when c is involved
in the derivation of a new conflict, i.e. when a literal ` ∈ c, inferred by
unit propagation through c, is navigated in the implication graph during the
computation of a new learned clause.

Clauses are deleted performing the following algorithm:

1. Sort all clauses by increasing lbd.

2. Remove the first half of the learned clauses that are not locked.

Thus, clauses with an higher value of lbd are more likely to be deleted in the
glucose heuristic.

2.3.4 Restarts

In addition to basic learning, many SAT solvers exploit another technique
called restarts, that consists of a halt in the solution process, and a restart of
the search. Essentially, the solution process is interrupted, and the search of

12

Function ChooseLiteral(Set assum∧, Set assum∨)
1 if ∃ an undefined literal ` ∈ assum∧ then
2 return `;

3 if ∃ a true literal ` ∈ assum∨ then
4 return ChooseLiteral();

5 if ∃ an undefined literal ` ∈ assum∨ then
6 return `;

7 return ChooseLiteral();

a model is restarted from scratch. We present the restart strategies employed
by minisat and glucose.

minisat. The SAT solver minisat performs restarts depending on the
number of encountered conflicts and according to a heuristic sequence. In
particular, minisat uses the following sequence of conflicts (32, 32, 64, 32,
32, 64, 128, 32, 32, 64, 128, 256, . . .) which is based on the Luby series
introduced in [43].

Glucose. The SAT solver glucose implements a new strategy for restarts
considering the lbd scores of learned clauses [44]. In particular, the idea is to
restart when learned clauses of recent conflicts are increasing the lbd scores.
In more detail, this heuristic has two parameters k and x, which in glucose
are set to 0.7 and 100, respectively. The latest x conflicts are considered,
and the average of their lbd scores is multiplied by k. A restart occurs when
this value is greater than the average lbd of all clauses.

2.4 Incremental SAT
SAT solvers take a CNF formula ϕ as input, then look for a variable assign-
ment that satisfies ϕ, and then return SAT if such variable assignment exists,
and UNSAT otherwise. Albeit a single call to a SAT solver is sufficient for
many applications, many problems are not efficiently solvable in a unique
call. When multiple calls are needed the following naive algorithm can be
applied:

1. Create a CNF formula ϕ modeling the problem.

2. Invoke a SAT solver on the CNF formula ϕ.

13

3. Analyze the results.

4. If a solution to the problem is found then stop.

5. Otherwise create a new CNF formula and go to step 2.

However, this algorithm has shown to be inadequate in many practical cases.
The first drawback is that at each iteration the formula is rebuilt. Moreover,
the learned clauses cannot be exploited in different iterations. For this reason,
modern SAT solvers add an incremental interface for allowing multiple calls.
The key idea is to modify the formula ϕ in order to be shared by all calls, and
then solve the problem by using a set of literal assumptions [45], which model
a particular instance of the problem. In more detail, an incremental variant
of Algorithm 2 can be implemented by introducing two sets of assumptions,
assum∧ and assum∨. The incremental algorithm checks whether a formula
ϕ is satisfiable under the literal assumptions, that is, if there exists a model
of ϕ such that assum∧ and assum∨ are satisfied. Given an interpretation I:

• assum∧ is satisfied if assum∧ ⊆ I, i.e. if each literal ` ∈ assum∧ is
true w.r.t. I;

• assum∨ is satisfied if assum∨ ∩ I 6= ∅, i.e. if at least one literal ` ∈
assum∨ is true w.r.t. I.

The satisfiability test under assumptions can be implemented by modifying
the function ChooseLiteral of Algorithm 2 in the following way:

1. If assum∧ is satisfied go to step 2. Otherwise, pick the first undefined
literal among the literals in assum∧.

2. If assum∨ is satisfied go to step 3. Otherwise, pick the first undefined
literal among the literals in assum∨.

3. Pick a branching literal as in the non-incremental algorithm.

The search then runs as in the non-incremental version. If during the search
the assumptions assum∧ or the assumptions assum∨ are violated then the
algorithm undoes the computation until the assumptions are not violated
anymore.

An important advantage of this incremental strategy is its capability of
reusing learned clauses from previous invocations. In a CDCL solver this has
a great impact on the performance, since all of the previous computation is
used for pruning the search space in future calls. The incremental interface
provided by many modern SAT solvers has been used to solve several prob-
lems, ranging from MaxSAT to QBF. In the following we show an algorithm
for solving the MaxSAT problem based on iterative calls to a SAT solver.

14

Algorithm 3: Fu&Malik algorithm
Input : A WCNF formula Φ = ϕH ∪ ϕS

Output: An optimum model for Φ
1 begin
2 while true do
3 (res, ϕC ,M) := SATSolver(Φ);
4 if res = SAT then return M;
5 S := ∅;
6 foreach clause c ∈ ϕC ∩ ϕS do
7 let v be a fresh variable;
8 c := c ∪ {v};
9 S := S ∪ {v};

10 ϕH := ϕH ∪ CNF (#AtMostOne(S));

2.5 Maximum Satisfiability
The Maximum Satisfiability (MaxSAT) problem is the optimization variant
of SAT where clauses are replaced by weighted clauses. A weighted clause
is a pair (c, w), where c is a clause and w, called weight, is either a positive
integer or >. A weighted clause (c, w) is said to be a hard clause if w = >,
otherwise the clause is soft and w represents the cost of violating the clause.
A formula in weighted conjunctive normal form (WCNF) Φ = ϕH ∪ ϕS is a
set of weighted clauses, where ϕH is the set of hard clauses, and ϕS is the
set of soft clauses. A model for Φ is a variable assignment I that satisfies all
hard clauses. The cost of a model I is the sum of weights of the soft clauses
that are violated w.r.t. I. Given a WCNF Φ, the MaxSAT problem is to
find a model that minimizes the cost of violated soft clauses in Φ. Several
variants of the MaxSAT problem can be obtained by applying constraints
to the sets of hard and soft clauses. In particular, given a weighted formula
Φ = ϕH ∪ ϕS:

• If ϕH = ∅ and ∀ (c, w) ∈ ϕS, w = 1, the problem is referred to as
(unweighted) MaxSAT.

• If ϕH = ∅ and ∃ (c, w) ∈ ϕS : w > 1, the problem is referred to as
weighted MaxSAT.

• If ϕH 6= ∅ and ∀ (c, w) ∈ ϕS, w = 1, the problem is referred to as
(unweighted) partial MaxSAT.

15

• If ϕH 6= ∅ and ∃ (c, w) ∈ ϕS : w > 1, the problem is referred to as
weighted partial MaxSAT.

During recent years, several algorithms have been proposed for solving the
above variants of the MaxSAT problem. Modern and effective MaxSAT
solvers implement algorithms that call iteratively a SAT solver and use the
incremental interface described in Section 2.4. Many of those algorithms
are based on the concept of unsatisfiable core (or simply core) of an un-
satisfiable CNF formula ϕ, that is, a subset of ϕ which is still unsatisfi-
able. Core-based algorithms have been successfully applied for solving in-
dustrial instances as witnessed by the results of the MaxSAT evaluations
(see http://maxsat.ia.udl.cat/) and they represent the state-of-the-art
of MaxSAT solving. In the following we present the first core-based algo-
rithm for partial MaxSAT problems, which has been proposed in [46] and
it is called Fu&Malik algorithm. The Fu&Malik algorithm is important for
historical reasons since it introduced the concept of unsatisfiable cores for
solving the MaxSAT problem. The pseudo code of Fu&Malik algorithm is
sketched in Algorithm 3. The algorithm takes as input a WCNF formula
Φ = ϕH ∪ϕS and returns as output an optimum model for Φ. The algorithm
uses a modified SAT solver that takes as input a formula Φ and returns as
output a triple (res, ϕC ,M), where res is a string, ϕC a set of clauses and M
an interpretation. The SAT solver searches for a model of Φ. If one is found,
say M , the function returns (SAT, ∅,M). Otherwise, the function returns
(UNSAT, ϕC , ∅), where ϕC is an unsatisfiable core of ϕC . In the following,
without loss of generality, we assume that ϕH is satisfiable. The Fu&Malik
algorithm algorithm invokes the internal SAT solver on the formula Φ. If
a model is found, then the algorithm terminates returning it (line 4). Oth-
erwise, an unsatisfiable core ϕC is found. For each soft clause c ∈ ϕC , a
fresh variable v is added to the clause c. The variable v is called relaxation
variable, and, intuitively, it can be used for satisfying a soft clause without
leading to a conflict. Moreover, the algorithm adds to the formula Φ an ad-
ditional set of clauses enforcing that at most one of the relaxation variables
is assigned to true (line 10). This set of clauses assures to relax selectively
at most one soft clause for each core. The algorithm then iterates until an
optimum model is found.

16

Chapter 3

Answer Set Programming

Answer Set Programming (ASP) [1, 2, 3, 4, 5, 6, 7] is a declarative pro-
gramming approach that provides a simple formalism for knowledge repre-
sentation. ASP is based on the stable model semantics of logic programs [1]
and allows for expressing all problems in the second level of the polynomial
hierarchy [2]. In this chapter, we first introduce the syntax and the seman-
tics of ASP as background for motivating its applications and to show how
it can be used as a powerful knowledge representation and reasoning tool.
An architecture of a general system for evaluating ASP programs is then
presented.

3.1 Syntax
By convention, strings starting with uppercase letters refer to first-order
variables, while strings starting with lower case letters refer to constants.
A term is either a variable or a constant. Predicates are strings starting
with lowercase letters. An arity (non-negative integer) is associated with
each predicate. A standard atom is an expression p(t1, . . .,tn), where p is a
predicate of arity n and t1,. . . ,tn are terms. A standard atom p(t1, . . .,tn) is
ground if t1, . . . , tn are constants.

A set term is either a symbolic set or a ground set. A symbolic set is a
pair {Terms : Conj}, where Terms is a list of terms (variables or constants)
and Conj is a conjunction of standard atoms, that is, Conj is of the form
a1, . . . , an and each ai (1 ≤ i ≤ n) is a standard atom. A ground set is a
set of pairs of the form 〈t̄ : conj〉, where t̄ is a list of constants and conj is
a conjunction of ground atoms. An aggregate function is of the form f(S),
where S is a ground set and f ∈ {#count,#sum} is an aggregate function
symbol. An aggregate atom is of the form f(S) ≺ T , where f(S) is an

17

aggregate function, ≺∈ {=, <,≤, >,≥} is a predefined comparison operator,
and T is a constant referred to as guard.

An atom is either a standard atom, or an aggregate atom. A literal is
either an atom a, or its default negation not a. Given a literal ` we will use ∼`
for denoting its complement, that is not a if ` = a and a if ` = not a, where a
is an atom. This notation extends to sets of literals, i.e., ∼L := {∼` | ` ∈ L}
for a set of literals L.

Definition 1. A (disjunctive) rule is of the following form:

a1 ∨ · · · ∨ am ← `1, . . . , `n (3.1)

where a1, . . . , am are standard atoms and `1, . . . , `n are literals, m ≥ 0 and
n ≥ 0.

For a rule r of the form (3.1), disjunction a1∨ · · · ∨ am is called the head of r
and conjunction `1, . . . , `n is named the body of r. The set of head atoms is
denoted by H(r). The set of body literals is denoted by B(r), while the set
of positive and negated literals in B(r) are denoted by B+(r) and by B−(r),
respectively. Moreover C(r) := H(r) ∪ ∼B(r) is the clause representation
of r. A rule r is positive if B−(r) = ∅. A normal rule is a rule of the form
(3.1) such that m ≤ 1. An integrity constraint, or simply constraint, is a
rule of the form (3.1) such that m = 0. A weak constraint is a constraint
which is associated with a positive integer by the partial function weight.
For a compact representation, the weight will be sometimes indicated near
the implication arrow, e.g., ←3 a, not b is a constraint of weight 3. A fact is
a rule of the form (3.1) such that m = 1 and n = 0.

A program ΠR is a set of rules. The set of constraints in ΠR is denoted
constraints(ΠR), while the remaining rules are denoted by rules(ΠR). A
program with weak constraints Π is a pair (ΠR,ΠW), where ΠR is a program
and ΠW is a subset of constraints(ΠR). ΠW is the set of weak constraints,
while constraints(ΠR) \ ΠW is the set of hard constraints. The set of atoms
appearing in ΠR is denoted by atoms(ΠR). A program Π is said to be dis-
junctive if Π contains at least one disjunctive rule. Otherwise, Π is said to
be normal. A term, an atom, a literal, a rule, or a program is called ground
if no variables appear in it. A local variable of a rule r is a variable ap-
pearing only in sets terms of r; a variable of r is global if it is not local.
In ASP, rules in programs are required to be safe. A rule r is safe if both
the following conditions hold: (i) for each global variable X of r there is a
positive standard literal ` ∈ B+(r) such that X appears in `; (ii) each local
variable of r appearing in a symbolic set {Terms : Conj} also appears in
Conj. A program is safe if each of its rules is safe. In the following, we will
only consider safe programs.

18

Example 6 (Disjunctive logic program). Consider the following disjunctive
logic program:

r1 : a(X) ∨ b(X) ← c(X), not d(X)
r2 : ← c(X), f(X)
r3 : c(1) ←

• Rule r1 is a disjunctive rule with H(r1) = {a(X), b(X)}, B+(r1) =
{c(X)}, and B−(r1) = {d(Y)}.

• Rule r2 is a constraint with B+(r2) = {c(X), f(X)} and B−(r2) = ∅.

• Rule r3 is a fact. Note that every fact must be ground in order to be
safe. C

3.2 Semantics
The answer set semantics is defined on ground programs and it is given by its
stable models. Given a program Π, the Herbrand universe UΠ is the set of all
constants appearing in Π. If there are no constants in Π, then UΠ contains
an arbitrary constant c. Given a program Π, the Herbrand base BΠ is the
set of all possible ground atoms which can be constructed from the predicate
symbols appearing in Π with the constants of UΠ.

Example 7 (Herbrand universe and Herbrand base). Consider the following
program Π0:

r1 : a(X) ∨ b(X) ← c(X)
r2 : d(X) ← b(X), c(X)
r3 : c(1) ←
r4 : c(2) ←

Then, UΠ0 = {1, 2} and BΠ0 = {a(1), a(2), b(1), b(2), c(1), c(2), d(1),
d(2)}.C

For any rule r, Ground(r) denotes the set of rules obtained by replacing each
variable in r by constants in UΠ in all possible ways. For any program Π, its
ground instantiation is the set Ground(Π) =

⋃
r∈Π Ground(r) 1.

1We refer the reader to [8, 17, 47] for an accurate description of the grounding.

19

Example 8 (Ground instantiation). Consider the program Π0 in Example 7.
Its ground instantion is the following:

g1 : a(1) ∨ b(1) ← c(1)
g2 : a(2) ∨ b(2) ← c(2)
g3 : d(1) ← b(1), c(1)
g4 : d(2) ← b(2), c(2)
g5 : c(1) ←
g6 : c(2) ←

Note that the atoms c(1) and c(2) are already ground in Π0, while the rules
g1 and g2 are obtained from r1 and the rules g3 and g4 are obtained from
r2.C

A set L of ground literals is said to be consistent if, for every literal ` ∈ L,
its complementary literal ∼` does not belong to L. An interpretation I for
Π is a consistent set of ground literals over atoms in BΠ. A ground literal `
is interpreted as follows:

• ` is true w.r.t. I if ` ∈ I.

• ` is false w.r.t. I if ∼` ∈ I.

• ` is undefined w.r.t. I if it is neither true nor false w.r.t. I.

A ground conjunction of atoms conj is true w.r.t. I if all atoms appearing in
conj are true w.r.t. I. Conversely, conj is false w.r.t. I if there is an atom
in conj that is false w.r.t. I. Let I(S) denote the multiset [t1 | 〈t1, . . . , tn〉 :
conj ∈ S ∧ conj is true w.r.t. I]. The valutation I(f(S)) of an aggregate
function f(S) w.r.t. I is the result of the application of f on I(S) [8].
Let r be a rule in Ground(Π).

• The head of r is true w.r.t. I if and only if there is an atom a ∈ H(r)
such that a is true w.r.t. I.

• The body of r is true w.r.t. I if and only if each literal ` ∈ B(r) is true
w.r.t. I.

• The head of r is false w.r.t. I if and only if each atom a ∈ H(r) is false
w.r.t. I.

• The body of r is false w.r.t. I if and only if there is a literal ` ∈ B(r)
such that ` is false w.r.t. I.

20

A rule r is satisfied w.r.t. I if and only if H(r) is true w.r.t. I or B(r) is
false w.r.t. I. For a rule r, I |= r if r is satisfied w.r.t. I.

An interpretation I is total if and only if for each literal ` ∈ BΠ, ` ∈ I
or ∼` ∈ I, otherwise I is partial. A total interpretation M is a model for
Π if and only if for each rule r ∈ Π, M |= r. Stated differently, a total
interpretation M is a model for Π if, for each r ∈ Π, r is satisfied w.r.t. M .
A model M is a stable model (or answer set) for a positive program Π if it is
a minimal set (w.r.t. set inclusion) among the models for Π. The definition
of stable models for general programs is based on the FLP-reduct [8].

Definition 2. The FLP-reduct [8] of a ground program Π w.r.t. an inter-
pretation I is the ground program ΠI obtained from Π by deleting each rule
r ∈ Π whose body is not satisfied w.r.t. I.

Definition 3. A stable model (or answer set) [1] of a program Π is a model
I of Π such that I is a stable model of ΠI .

Let SM(Π) denote the set of stable models of Π. If SM(Π) 6= ∅ then Π
is coherent, otherwise it is incoherent.

Definition 4 (Optimum Stable Model). For a program with weak constraints
Π = (ΠR,ΠW), each interpretation I is associated with a cost:

cost(ΠW, I) :=
∑

r∈ΠW : I 6|= r

weight(r).

A stable model I of ΠR\ΠW is optimum for Π if there is no J ∈ SM(ΠR\ΠW)
such that cost(ΠW, J) < cost(ΠW, I).

An atom a ∈ atoms(Π) is a cautious consequence of a program Π if a
belongs to all stable models of Π. More formally, a ∈ atoms(Π) is a cautious
consequence of a program Π there is no M ∈ SM(Π) such that a /∈M . The
set of cautious consequences of Π is denoted CC(Π).

3.3 Properties of ASP programs
In this section we recall some properties of answer sets.

Definition 5 (Supportedness Property). Given an interpretation I, a positive
literal ` is supported w.r.t. I if and only if there exists a rule r such that for
each literal `b is true with respect to I and for each atom `h ∈ H(r) \ {`},
`h /∈ I.

21

A model M is said to be supported if for each positive literal a ∈ M ,
a is supported. Answer sets are supported models, while the reverse is not
necessarily true.

Definition 6 (Possibly Supporting Rule). Given an interpretation I, a rule
r is a possibly supporting rule for an atom a if the following conditions hold:

• a ∈ H(r); and

• no literal in B(r) is false with respect to I; and

• (H(r) \ {a}) ∩ I = ∅.

Let supp(a, I) denotes the set of possibly supporting rules for an atom a
and an interpretation I.

Definition 7 (Dependency Graph). Let Π be a program. The dependency
graph of Π, denoted DGΠ = (N,A), is a directed graph in which (i) each
atom in atoms(Π) is a node in N and (ii) there is an arc in A directed from
a node a to a node b if there exists a rule r in Π such that a ∈ H(r) and
either b ∈ B+(r) or b occurs in an aggregate atom. It is important to note
that negative literals cause no arc in DGΠ. We also safely assume that any
rule r such that H(r) ∩B+(r) 6= ∅ is removed from Π.

Definition 8 (Component). A strongly connected component (or simply
component) C of DGΠ is a maximal subset of N such that each node in
C is connected by a path to all other nodes in C.

In the following, we assume that for each rule r, and for each pair of
atoms (a,b) such that a ∈ H(r) and b appears in aggregate atom of r, a and
b are in two different components.

A component C is recursive, or cyclic, if C contains two or more atoms.
A component C is head-cycle free (HCF for short) if each rule r ∈ Π is
such that |H(r) ∩ C| ≤ 1. Otherwise C is said to be non head-cycle free
(non-HCF). Given a program Π, the subprogram sub(Π, C) corresponding
to a component C of the dependency graph is defined as the set of rules
r ∈ Π such that H(r) ∩ C 6= ∅. The rules of Π can be assigned to one or
more components. More specifically, a rule r is assigned to a component C
if r ∈ sub(Π, C). Moreover, a rule r ∈ sub(Π, C) is said to be an external
rule of C if B+(r)∩C = ∅; otherwise, r is an internal rule of C. An atom a
is said to be an external atom of C if a /∈ C; otherwise, the atom is internal.
A literal ` = a or ` = ∼a is said to be an external literal if a is an external
atom; otherwise, the literal is internal.

22

a

b

e

f

c

d

C1 C2

Figure 3.1: Dependency graph of the program Π

Example 9. Consider the following program Π:

r1 : a ← e r5 : c ← a, e
r2 : a ← b r6 : c ← d
r3 : b ← a r7 : d ← c
r4 : e ∨ f ← r8 : c ∨ d ← f

The dependency graph DGΠ of Π is reported in Fig. 3.1, where we also
represented the two recursive components C1 = {a, b} and C2 = {c, d}. The
component C1 is HCF; r1 is an external rule, while rules r2 and r3 are internal.
The component C2 is non-HCF; r5 and r8 are external rules, while rules r6

and r7 are internal. C

Definition 9 (Unfounded Set). A set X of atoms is unfounded w.r.t an
interpretation I if for each rule r such that H(r)∩X 6= ∅, at least one of the
following conditions is satisfied:

i) The body of r is false w.r.t I.

ii) The body of r is false w.r.t. (I \X) ∪ ∼X.

iii) ((H(r) \X) ∩ I) 6= ∅, that is, there exists a true atom w.r.t. I in the
head of r that does not belong to X.

Theorem 1 (Theorem 4.6 in [48]). Let Π be a program and I a supported
model for Π, I is an answer set iff I is unfounded-free, i.e. if there exists no
non-empty X ⊆ I such that X is an unfounded set for Π w.r.t. I [48].

The unfounded-free property can be verified independently for each com-
ponent C of the program, i.e. an interpretation I is unfounded-free w.r.t. a
program Π iff I is unfounded-free w.r.t. each subprogram sub(Π, C). Check-
ing whether a set of atoms is unfounded is known to be polynomial for HCF
components, while it is a co-NP complete problem for non-HCF compo-
nents [2].

23

Definition 10 (Rule shifting). Let r be a disjunctive rule of the form a1 ∨
· · · ∨ am ← `1, . . . , `n. The shifting of r consists of replacing r by m normal
rules, one for each atom in the head. The rule for the i-th head atom is as
follows:

ai ← `1, . . . , `n, not a1, . . . , not ai−1, not ai+1, . . . , not am. (3.2)

Definition 11 (Clark’s Completion). Given a ground program Π, let auxr

denotes a fresh atom, i.e., an atom not appearing elsewhere, added for a rule
r ∈ Π. The Clark’s completion (or completion) of Π, denoted Comp(Π),
consists of the following set of rules:

← not a, auxr1

. . .
← not a, auxrn

← a, not auxr1 , . . . , not auxrn

for each atom a ∈ atoms(Π), where r1, . . . , rn are the rules in Π whose heads
contain a.

← not auxr, B(r)

for each rule r ∈ Π;

← auxr, ∼bi

for each rule r ∈ Π and for each bi ∈ B(r);
Example 10. Consider the following program Π:

r1 : a ∨ b ←
r2 : c ∨ d ← a

The program Π after shifting disjunctive rules is the following:
r1 : a ← not b r2 : b ← not a
r3 : c ← a, not d r4 : d ← a, not c

Finally, Comp(Π) consists of the following set of rules:

← not a, auxr1 ← not b, auxr2

← not c, auxr3 ← not d, auxr4

← a, not auxr1 ← b, not auxr2

← c, not auxr3 ← d, not auxr4

← not auxr1 , not b ← not auxr2 , not a
← not auxr3 , a, not d ← not auxr4 , a, not c
← auxr1 , b ← auxr2 , a
← auxr3 , not a ← auxr4 , not a
← auxr3 , d ← auxr4 , c. C

24

Proposition 1. If M is a model of Comp(Π) then M |Π is a supported
model of Π, where M |Π is the restriction of M to the symbols of Π, that is,
M |Π := M ∩ atoms(Π).

3.4 Knowledge Representation And Reasoning
ASP can be used to encode problems in a simple and declarative way. More-
over, ASP is very expressive by allowing to represent problems that belong
to the complexity class ΣP

2 (i.e. NPNP). The simplicity of encodings and
the high expressivity of the language are the keys of the success of ASP. In
fact, ASP has been used in several domains, such as artificial intelligence,
deductive databases, bioinformatics, and also on industrial problems.

In this section, we show the usage of ASP as a tool for knowledge repre-
sentation and reasoning by examples. In particular, we present three well-
known problems: 3-Colorability, Consistent Query Answering and Maximum
Clique. The problem 3-Colorability shows how hard problems can be easily
encoded in ASP; Consistent Query Answering shows an application of cau-
tious reasoning in ASP; and the problem Maximum Clique shows how ASP
can deal with optimization problems by means of weak constraints.

NP-problems are usually encoded in ASP by using the “Guess & Check”
methodology originally introduced in [49] and refined in [17]. The idea behind
this method can be summarized as follows: a set of facts (input database)
is used to specify an instance of the problem, while a set of rules (guessing
part), is used to define the search space; solutions are then identified in the
search space by another set of rules (checking part), which impose some
admissibility constraints. In other words, the guessing part with the input
database defines the set of all possible solutions, which are then filtered by
the checking part to guarantee that the answer sets of the resulting program
represent precisely the admissible solutions for the input instance.

3-Colorability. Given a finite undirected graph G = (V,E) and a set of
three colors C, does there exist a color assignment for each vertex such that
there are no adjacent vertices sharing the color assignment?

This is a typical NP-complete problem in graph theory. Suppose that the
graph G is specified by using facts over predicates vertex and edge. Then,
the following program solves the Graph Coloring problem:

r1 : col(X, ”blue”) ∨ col(X, ”red”) ∨ col(X, ”green”) ← vertex(X)
r2 : ← edge(X,Y), col(X,C), col(Y,C)

This NP-complete problem is encoded in a simple way by using the “Guess
& Check” methodology. In the example, the guessing part is composed by

25

the rule r1 while the rule r2 composes the checking part. In fact, r1 guesses
a color assignment for a vertex v and r2 checks whether the color assignment
is valid assuring that two adjacent vertices have different color assignments.

Consistent Query Answering. Consistent Query Answering (CQA) is a
well-known application of ASP [28, 50]. Consider an inconsistent database
D where in relation R = {〈1, 1, 1〉, 〈1, 2, 1〉, 〈2, 2, 2〉, 〈2, 2, 3〉, 〈3, 2, 2〉, 〈3, 3, 3〉}
the second argument is required to functionally depend on the first. Given
a query q over D, CQA amounts to computing answers of q that are true
in all repairs of the original database. Roughly, a repair is a revision of the
original database that is maximal and satisfies its integrity constraints. In
the example, repairs can be modeled by the following ASP rules:

r1 : Rout(X,Y1, Z1) ← R(X,Y1, Z1), R(X,Y2, Z2), Y1 6= Y2, not Rout(X,Y2, Z2)
r2 : Rin(X,Y, Z) ← R(X,Y, Z), not Rout(X,Y, Z)

Rule r1 detects inconsistent pairs of tuples and guesses tuples to remove in
order to restore consistency, while r2 defines the repaired relation as the set
of tuples that have not been removed. The first and third arguments of R
can thus be retrieved by means of the following query rule:

q1 : Q(X,Z) ← Rin(X,Y, Z)

The consistent answers of q1 are tuples of the form 〈x, z〉 such that Q(x, z)
belongs to all stable models. In this case the answer is {〈1, 1〉, 〈2, 2〉, 〈2, 3〉}.

Maximum Clique. Given a finite undirected graph G = (V,E), a clique
C is a subset of its vertices such that for each pair of vertices in C an edge
connects the two vertices. The Maximum Clique problem is to find a clique
with the greatest cardinality. That is, for each other clique C’ in G, the
number of nodes in C should be larger than or equal to the number of nodes
in C’.

Suppose that the graph G is specified by using facts over predicates vertex
and edge. Then, the following program solves the Maximum Clique problem:

r1 : in(X) ∨ out(X) ← vertex(X)
r2 : ← in(X), in(Y), not edge(X,Y), not edge(Y,X), X < Y
r3 : ←1 out(X)

This program shows the encoding of optimization problems by means of weak
constraints. In the example, rule r1 represents the guessing part while the
rule r2 composes the checking part. In fact, r1 guesses a subset of nodes
candidates to be in a clique and rule r2 checks whether the subset of nodes is
a clique assuring that every vertices in the clique are connected by an edge.
Finally, rule r3 minimizes the number of nodes which are not in the clique.

26

3.5 Architecture of an ASP System
The architecture of an answer set system is usually composed by three mod-
ules. The first module is the Grounder, which is responsible of the creation of
a ground program equivalent to the input one. After the grounding process,
the next module, usually called Model Generator, computes stable model
candidates of the program. Stable model candidates are, in turn, checked by
the third module, called Answer Set Checker, which verifies that candidates
are actually stable models. These three modules are briefly described in this
section.

Grounder. Given an input program Π, the Grounder efficiently generates
an intelligent ground instantiation of Π that has the same answer sets of
the theoretical instantiation, but is usually much smaller [17]. Note that the
size of the instantiation is a crucial aspect for efficiency, since the answer
set computation takes exponential time (in the worst case) in the size of the
ground program received as input (i.e., produced by the Grounder). In order
to generate a small ground program equivalent to Π, the Grounder gener-
ates ground instances of rules containing only atoms which can possibly be
derived from Π, and thus (if possible) avoiding the combinatorial explosion
which can be achieved by naively considering all the atoms in the Herbrand
base [51]. This is obtained by taking into account some structural informa-
tion of the input program concerning the dependencies among predicates,
and applying sophisticated deductive database evaluation techniques. An
in-depth description of a Grounder module is out of the scope of this thesis.
Therefore, we refer the reader to [17, 47] for an accurate description.

Model Generator. The Model Generator takes as input a propositional
ASP program and returns as output answer set candidates. The Model
Generator usually implements techniques introduced for SAT solving, such as
learning, restarts and conflict-driven heuristics. Those techniques match the
working principle of a Model Generator but require quite a lot of adaptation
to deal with disjunctive logic programs under the stable model semantics.

Answer Set Checker. The goal of the Answer Set Checker is to verify
whether a model is an answer set for an input program Π. This task is
very hard in general, because checking the stability of a model is well-known
to be co-NP-complete [2] in the worst case. In case of hard problems, this
check can be carried out by translating the program into a SAT formula and
checking whether it is unsatisfiable.

27

Chapter 4

The ASP Solver wasp 2

This chapter describes the ASP solver for propositional programs wasp 2 [52].
wasp 2 is inspired by several techniques that were originally introduced for
SAT solving, like the CDCL algorithm [40], learning [24], restarts [25] and
conflict-driven heuristics [26]. The mentioned SAT solving methods have
been adapted and combined with state-of-the-art pruning techniques adopted
by modern native ASP solvers [53, 54]. In particular, the role of Boolean
Constraint Propagation in SAT solvers is taken by a procedure combining
the unit propagation inference rule with inference techniques based on ASP
program properties. In fact, support inferences are implemented via Clark’s
completion, and the implementation of the polynomial unfounded-free checks
is based on source pointers [18]. In wasp 2 stability of answer sets is checked
by means of a reduction to the unsatisfiability problem as described in [27].
In this chapter, after introducing the architecture of the new solver, we detail
the techniques for addressing the tasks of Model Generation and Answer Set
Checking as implemented in wasp 2. Finally, we report on an experimental
analysis in which we assess the performance of our solutions compared to the
state-of-the-art alternatives.

4.1 The Architecture of wasp 2
The architecture of wasp 2 is composed by four modules, and it is shown
in Figure 4.1. The first module is the Input Processor, which takes as input
a ground program encoded in the numeric format of gringo [47]. The Input
Processor applies some preliminary program transformations, and creates the
data structures that are used by the subsequent modules. The Simplifications
step further modifies the input program by removing redundant clauses and
variables. The simplified program is fed as input to the Model Generator

28

Input Pro-
cessor

Simplifications

Model
Generator

Answer Set
Checker

gringo numeric
format

answer sets

Figure 4.1: Architecture of wasp 2

module, which computes answer set candidates. The subsequent Answer Set
Checker module implements a stability check to verify that the produced
candidates are in fact answer sets.

4.2 Input Processor
The Input Processor takes as input a ground program encoded in the nu-
meric format of gringo and creates the data structures that are employed
by the subsequent simplification step. In particular, the Input Processor
simplifies its input by removing duplicated and trivial rules, determines a
splitting of the program in components (or program modules) and, then, ap-
plies two transformations, namely program shifting and Clark’s completion
as described in Chapter 3.

Program shifting allows to handle disjunctive programs, and Clark’s com-
pletion is applied to take into account the supportedness property of answer
sets. Indeed, it follows from Proposition 1 that given an input program Π the
models of Comp(Π) are supported models of Π. This is done for simplifying
the architecture of wasp 2 as it is explained in the following.

4.3 Simplifications of the Input Program
Program shifting and Clark’s completion may cause a quadratic blow-up in
the size of the input program. Thus, reducing the size of the resulting pro-
gram can be crucial for the performance of ASP solvers. The simplifications
employed by wasp 2 consist of polynomial algorithms for strengthening and
for removing redundant rules, and also include atoms elimination by means
of rewriting in the style of satelite [55]. Albeit the size of a program is not
always related to the easiness of producing answer sets, program simplifica-
tions have a great impact in performance as it happens in SAT solving [55].

29

In the following we detail the simplifications applied by wasp 2.

Subsumption. Given a program Π and the program Comp(Π) represent-
ing the Clark’s completion of Π, wasp 2 implements two types of rule sim-
plifications: subsumption and self-subsumption.

Definition 12. A rule r1 ∈ Comp(Π) subsumes a rule r2 ∈ Comp(Π) if
C(r1) ⊆ C(r2), where C(r1) and C(r2) denote the clause representation of r1

and r2, respectively.

A subsumed rule in Comp(Π) is redundant and can be safely removed.

Definition 13. A rule r1 ∈ Comp(Π) self-subsumes a rule r2 ∈ Comp(Π)
if there is a literal ` such that ` ∈ C(r1), ∼` ∈ C(r2) and C(r1) \ {`} ⊆
C(r2) \ {¬`}.

Stated differently a rule r1 ∈ Comp(Π) self-subsumes a rule r2 ∈ Comp(Π),
if r1 almost subsumes r2 except for one literal ∼` ∈ C(r2) and ` appears in
C(r1). In this case, the rule r2 can be strengthened by removing ∼`.

Thus, wasp 2 removes subsumed rules of Comp(Π) and then applies self-
subsumption to the remaining rules. Subsumption and sulf-subsumption are
then alternated until no other simplifications can be applied.

Literals Elimination. wasp 2 also implements a procedure for eliminat-
ing literals through rule distribution. The procedure detects a definition of
a literal `, that is ` ⇐⇒ `1 ∧ . . .∧ `n. In particular, a literal ` is eliminated
by rule distribution if the following set of rules exists:

← ∼`, `1, . . . , `n
← `, ∼`1

. . .
← `, ∼`n

Each occurrence of ` is substituted by `1∧ . . .∧ `n, and each occurrence of ∼`
is substituted by `1 ∨ . . . ∨ `n. However, wasp 2 actually eliminates literals
only if the number of rules after the simplification is less than the original
number of rules. Moreover, a literal ` = a or ` = not a is not eliminated if a
is in a cyclic component or a is an aggregate atom.

4.4 Model Generator
The Model Generator implements a CDCL-like algorithm (see Section 2.3).
A pseudo-code description of the Model Generator of wasp 2 is shown in

30

Algorithm 4: ComputeAnswerSet
Input : A program Π

An interpretation I for Π
Output: An answer set for Π or Incoherent

1 begin
2 while Propagate(I) do
3 if I is total then
4 return I;

5 ` := ChooseUndefinedLiteral();
6 I ′ := ComputeAnswerSet(Π, I ∪ {`});
7 if I ′ 6= Incoherent then
8 return I ′;

9 if there are violated (learned) clauses then
10 return Incoherent ;

11 AnalyzeConflictAndLearnClauses(I);
12 return Incoherent ;

Algorithm 4, which takes as input a program Π and an interpretation I for
Π and searches for an answer set of Π. Initially, interpretation I is set to
∅. Function Propagate (line 2), detailed in the next section, extends I with
those literals that can be deterministically inferred. This function returns
false if an inconsistency (or conflict) is detected, true otherwise. When no
inconsistency is detected, interpretation I is returned if total (lines 3–4).
Otherwise, an undefined literal, say `, is chosen according to some heuristic
criterion (line 5). Then computation proceeds with a recursive call to Com-
puteAnswerSet on I∪{`} (line 6). In case the recursive call returns an answer
set, the computation ends returning it (lines 7–8). Otherwise, the algorithm
unrolls choices until consistency of I is restored (backjumping; lines 9–10),
and the computation resumes by propagating the consequences of the clause
learned by the conflict analysis. Conflicts detected during propagation are
analyzed by procedure AnalyzeConflictAndLearnClauses (line 11).

The main algorithm is usually complemented with some heuristic tech-
niques that control the number of learned constraints (which may be expo-
nential in number), and possibly restart the computation to explore different
branches of the search tree. Concerning deletion of learned constraints as well
as restarts policy, wasp 2 implements both the heuristics of the SAT solvers
minisat and glucose, as described in Sections 2.3.3 and 2.3.4. The default
heuristics of wasp 2 are the ones implemented in glucose. Moreover, a

31

Function Propagate(I)
1 while UnitPropagation(I) ∧ AggregatesPropagation(I) do
2 if Unfounded-free(I) then
3 return true;

4 return false;

crucial role is played by the heuristic criteria used for selecting branching
literals. wasp 2 implements the branching heuristic of the SAT solver min-
isat. Propagation and constraint learning are described in more detail in
the following sections.

4.4.1 Propagation

The function Propagate extends the interpretation with the literals that can
be deterministically inferred. The role of propagation is similar to the unit
propagation procedure in the DPLL/CDCL algorithm, but it is more complex
than unit propagation because it implements a set of inference rules for taking
in account the properties of ASP programs. In particular, wasp 2 implements
three deterministic inference rules for pruning the search space during answer
set computation. These propagation rules are named unit, aggregates and
unfounded-free. Unit propagation infers literals appearing in unsatisfied rules
containing only one undefined literal. Aggregates propagation concerns the
propagation of the truth of aggregate atoms that can be deterministically
inferred. Unfounded-free propagation infers the falsity of atoms appearing
in an unfounded set.

Unit propagation and aggregates propagation are applied first (line 1
of function Propagate). They return false if an inconsistency arises. Other-
wise, unfounded-free propagation is applied (line 2). Function unfounded-free
propagation may learn an implicit clause in Π, in which case true is returned
and unit propagation is applied on the new clause. When no new clause can
be learned by unfounded-free propagation, function Propagate returns true
to report that no inconsistency has been detected.

During the propagation of deterministic inferences, implications relation-
ships among literals are stored in the implication graph. Recall that each
literal ` ∈ I is associated with a decision level, corresponding to the depth
nesting level of the recursive call to ComputeAnswerSet on which ` is added
to I.

In the following we detail the propagation rules applied during the answer
set computation and their effects on the implication graph.

32

Unit Propagation. Unit propagation operates on the completion of the
input program Π, thus it is as in SAT solvers. An undefined literal ` is inferred
by unit propagation if there is a rule r that can be satisfied only by `, i.e., r
is such that ` ∈ C(r) and for each `′ ∈ C(r) \ {`}, ∼`′ ∈ I. In the implication
graph we add node `, and arc (∼`′, `) for each literal `′ ∈ C(r) \ {`}.

Aggregates Propagation. We now detail aggregates propagation, which
consists of using aggregates for determining further deterministic consequences
of an interpretation. For simplifying the presentation, in the following we
adopt an alternative syntax for aggregate atoms introduced in [18]. In par-
ticular, an aggregate atom can be denoted as follows:

{b1 = w1, . . . , bm = wm, not bm+1 = wm+1, . . . , not bn = wn} ≥ bound (4.1)

where bi (i = 1, . . . , n) are atoms, bound and each wi (i = 1, . . . , n) are
positive integers. Each wi (i = 1, . . . , n) is the weight associated with the
i-th literal in the aggregate. Given an interpretation I, an aggregate atom A
of the form (4.1) is true w.r.t. I if∑

i∈[1..m]:bi∈I

wi +
∑

j∈[m+1..n]:∼bj∈I

wj ≥ bound

holds.
Given an aggregate atom of the form (4.1) an additional data structure

is maintained, whose syntax is the following: [not b0 = w0, b1 = w1, . . . , bm =
wm, not bm+1 = wm+1, . . . , not bn = wn], where b0 represents the aggregate
atom and w0 is a positive integer computed as follows: w0 = max{bound, 1−
bound+

∑
i=1...n wi}. Two counters C1 and C2 are also maintained. Counters

are updated when an atom is inferred as true or false and they model when the
inference rule can be applied. The algorithm for propagating the aggregate
is the following:

1. Initialize C1 = w0 + bound− 1 and C2 =
∑

i=0...n wi − bound.

2. Set C1 = C1 − wi, when an atom bi(i = 1, . . . ,m) becomes true or an
atom bi(i = 0,m + 1, . . . , n) becomes false.

3. Set C2 = C2 − wi, when an atom bi(i = 1, . . . ,m) becomes false or an
atom bi(i = 0,m + 1, . . . , n) becomes true.

4. Infer an undefined atom bi(i = 1, . . . ,m) as true if wi > C2 and as false
if wi > C1.

33

5. Infer an undefined atom bi(i = 0,m + 1, . . . , n) as true if wi > C1 and
as false if wi > C2.

Concerning the implication graph, given an aggregate of the form (4.1)
and an atom a, a literal ` = a or ` = not a is inferred as true when the weight
associated to a is greater than a particular counter C. In the implication
graph we add the node `, and arcs (∼`′, `) for each `′ that is responsible of
the updating of C. Note that this inference rule is implemented in wasp 2
as described in [56].

Example 11 (Aggregates propagation). Consider the following aggregate
atom {a1 = 1, a2 = 2, a3 = 3, not a4 = 4} ≥ 2. The corresponding data
structure is the following [not a0 = 9, a1 = 1, a2 = 2, a3 = 3, not a4 = 4],
where a0 represents the aggregate atom and the weight 9 is the maximum
value between the bound of the aggregate (2) and the sum of the weights
w1, . . . , w4 plus one minus the bound (9). Counters C1 and C2 are initially
set to 10 and 17, respectively. Suppose that a1 is inferred as true. The
counter C1 is then updated. The new value of C1 = 9, i.e. the old value
minus the weight associated to w1. Next, assume that a3 is set as false, thus
C2 is updated and the new value is 14. Finally, suppose that not a4 becomes
true. Counter C1 is updated and the new value is 5. At this point, atom
w0 is inferred as true because its weight (9) is greater than the counter C1

(5). In the implication graph we add the node w0, and arcs (not a1, w0) and
(a4, w0). C

Unfounded-free Propagation. This inference rule detects the sets of
atoms that are unfounded and then propagates unfounded atoms as false.
Checking whether a set of atoms is unfounded is known to be polynomial for
HCF components, while it is a co-NP complete problem for non-HCF com-
ponents [2]. The following polynomial procedure for unfounded-free propa-
gation is thus applied to cyclic HCF components, whereas unfounded sets of
non-HCF components are detected during answer set checking (see Section
4.5).

Algorithm 5 reports the polynomial algorithm for finding unfounded sets
of a HCF component by means of source pointers [18]. Each atom in a
given cyclic and HCF-component is associated with a rule modeling founded
support. Such rules are referred to as source pointers. The unfounded set
check is performed after the invalidation of any source pointer of a set of
atoms S. Briefly, the idea is to find a new source pointer for each atom in S.
If the algorithm fails to find a new source pointer for an atom a in S, then a
is considered as unfounded.

34

Algorithm 5: Unfounded-free Check for HCF components
Input : An HCF component C

A set S ⊆ C of atoms with no source pointers
An interpretation I

Output: true if the interpretation I is unfounded-free, false otherwise
1 begin
2 foreach a ∈ S do
3 if FindSourcePointer(a, C, S, I) then
4 S := S \ {a}; Q := {a};
5 foreach a′ ∈ Q do
6 T := {r : a′ ∈ B+(r), H(r) ∩ S 6= ∅, B+(r) ∩ S = ∅};
7 foreach rule r ∈ T do
8 Let a′′ be the unique atom in H(r) ∩ S;
9 if r ∈ supp(a′′, I) then

10 S := S \ {a′′}; Q := Q ∪ {a′′};

11 return S = ∅ ;

In more detail, the algorithm is invoked when atoms in a set S in a HCF
component C are not associated to any source pointers. For each atom a in
S the function FindSourcePointer searches for a source pointer for a. If a
has a source pointer then a is removed from S and a is added to the set of
founded atoms Q. Then for each founded atom a′ ∈ Q a set T is computed.
A rule r is in the set T if a′ appears in the positive body of r, the head of r
contains an atom that is in S and there is no atom in the positive body of r
that is in S. For each rule r in T , at most one atom in the head of r is in the
component C (otherwise the component would be non-HCF). Let a′′ be this
atom if r is a possible supporting rule for a′′, then a′′ is founded and thus is
removed from S and added to Q. At the end of the algorithm all atoms in S
are unfounded.

When an unfounded set S is found, our learning scheme adds one learned
constraint for each atom a ∈ S. Constraints for other atoms in S will be
learned on subsequent calls to the function, unless an inconsistency arises
during unit propagation. In case of inconsistencies, indeed, the unfounded
set S is recomputed. Given an atom a ∈ S the added constraint is computed
as follows:

1. R := {r : H(r) ∩ S 6= ∅, B+(R) ∩ S = ∅}.

2. For each r ∈ R, let `r be the first literal satisfying r.

35

Function FindSourcePointer(Atom a, HCF Component C,
SetOfAtoms S, Interpretation I)
1 begin
2 Ext := {r : r ∈ supp(a, I), r is external of C};
3 if Ext 6= ∅ then
4 return true;

5 Int := {r : r ∈ supp(a, I), r is internal of C,B+(r) ∩ S = ∅};
6 if Int 6= ∅ then
7 return true;

8 return false;

3. The constraint is ← a, {∼`r : r ∈ R}.

4.4.2 Learning

Learning acquires information from conflicts in order to avoid exploring the
same conflictual search branch several times. Learning is very important for
pruning the backtracking tree and to implement an efficient learning-based
heuristic. wasp 2 adopts a learning scheme based on the concept of the
first Unique Implication Point (UIP) (see Section 2.3.1), which is computed
by analyzing the implication graph. A node n in the implication graph is
a UIP for a decision level d if all paths from the choice of level d to the
conflict literals pass through n. The first UIP is the UIP for the decision
level of the conflict that is closest to the conflict. The learning scheme add
a constraint built as follows: Let u be the first UIP. Let L be the set of
literals different form u occurring in a path from u to the conflict literals.
The learned constraint comprises u and each literal ` such that the decision
level of ` is lower than the one of u and there is an arc (`, `′) in the implication
graph for some `′ ∈ L.

4.5 Answer Set Checker
Answer Set Checker is the module that verifies whether a supported modelM
is unfounded-free, i.e. M is an answer set. Answer set checking is a co-NP-
complete problem in case of non-HCF components and it is usually addressed
by reducing the answer set checking (or stable model checking) problem to
the unsatisfiability problem, which is the problem to decide whether a CNF
formula is unsatisfiable, as described in [27] and implemented in the ASP

36

solver dlv. In this section, we first describe the algorithm proposed in [27],
and then we present a new algorithm addressing the drawbacks related to
the previous approach.

dlv algorithm [27]. Given a program Π and an interpretation I to be
checked whether it is unfounded-free, the dlv algorithm rewrites the pro-
gram into a CNF formula. The interpretation I is unfounded-free iff the cor-
responding CNF formula is unsatisfiable, otherwise I contains an unfounded
set.

Given a program Π, a non-HCF component C and an interpretation I a
CNF formula ϕI

C , is built in the following way:

1. ϕI
C := ∅; Πaux := ∅.

2. Πaux := {r ∈ Π : H(r) ∩ I ⊆ C 6= ∅}.

3. Remove all rules in Πaux whose body is false w.r.t. I.

4. For each rule r ∈ Πaux, remove all negative literals and all positive
external literals from the body of r and all false atoms w.r.t. I from
the head of r.

5. ϕI
C := {C(r) : r ∈ Πaux}, where C(r) is the clause representation of r.

6. ϕI
C := ϕI

C ∪ {{¬a : a ∈ (C ∩ I)}}.

The major drawback of this algorithm is that the CNF formula ϕI
C is

built every time an interpretation I has to be checked. This leads to a
computational overhead. Moreover, since the CNF formula is created at each
check, the solver cannot benefit of the knowledge of previous computations.
We will now show an alternative strategy that creates once a different CNF
formula, which does not depend on an interpretation, and it is thus suitable
for being reused in different calls to the answers set checker.

4.5.1 Unfounded-free Check for non-HCF components

The wasp 2 algorithm for checking whether an interpretation is unfounded-
free addresses the weakness of the dlv algorithm by using the incremental
interface of modern SAT solvers. In particular, it creates a CNF formula for
each component C only once, and then to reuses it in every check.

Given a program Π and a non-HCF component C, the CNF formula ϕC

is built by wasp 2 in the following way:

1. ϕC := ∅; Πaux := ∅.

37

2. Πaux := {r ∈ Π : H(r) ∩ C 6= ∅}.

3. For each atom a /∈ C, let auxa be a fresh variable not appearing in
Πaux, replace each occurrence of a in all positive bodies of Πaux with
∼auxa.

4. For each atom a ∈ C, let auxa be a fresh variable not appearing in
Πaux, replace each occurrence of ∼a in all negative bodies of Πaux with
∼auxa.

5. ϕC := {C(r) : r ∈ Πaux}, where C(r) is the clause representation of r.

Example 12. Consider the program Π1 in Example 9:

r1 : a ← e r5 : c ← a, e
r2 : a ← b r6 : c ← d
r3 : b ← a r7 : d ← c
r4 : e ∨ f ← r8 : c ∨ d ← f

The component C2 = {c, d} is non-HCF and the program Πaux is the follow-
ing:

r1 : c ← a, e r2 : c ← d
r3 : d ← c r4 : c ∨ d ← f

Steps 3 and 4 then modify Πaux in the following way:

r1 : c ← not auxa, not auxe r2 : c ← d
r3 : d ← c r4 : c ∨ d ← not auxf

Finally, ϕC is created and consists of the following set of clauses:

{c, auxa, auxe} {c,¬d} {d,¬c} {c, d, auxf}. C

Note that, for each atom in Π this procedure introduces at most one fresh
atom. Moreover, a CNF formula ϕC is associated to exactly one non-HCF
component C.

A pseudo-code description of the algorithm for the unfounded-free check
of non-HCF components implemented in wasp 2 is shown in Algorithm 6.
In a nutshell, the idea is to simulate the dlv algorithm by using two set
of assumptions assum∧ and assum∨ (see Section 2.4). The set assum∧ is
populated in order to simulate steps 3 and 4 of the dlv algorithm. While,
the set assum∨ is populated by adding the literals contained in the clause
added at step 6 of the dlv algorithm. In more detail, the algorithm takes as
input a non-HCF component C and an interpretation I and returns as output

38

true if I is unfounded-free, false otherwise. In the beginning the Function
ComputeAssumptions(C, I) computes the set of assumptions assum∧ and
assum∨ (initially set to ∅). ComputeAssumptions(C, I) uses two sets of
atoms Cin and Cout, containing all atoms in C that are false w.r.t. I and
all atoms in the C that are not false w.r.t. I, respectively. Moreover, Ep

represents a set of positive external literals of the component and En repre-
sents a set of negative external literals of the component. The set assum∨ is
extended by adding {∼a}, for each atom a ∈ Cout (line 2). While assum∧ is
extended by the following literals:

• {∼a} and {∼auxa}, for each atom a ∈ Cin.

• {auxa}, for each atom a in Cout.

• {aux`}, for each literal ` ∈ Ep such that ` is true w.r.t. I.

• {∼aux`}, for each literal ` ∈ Ep such that ` is not true w.r.t. I.

• {`}, for each literal ` ∈ En such that ` is true w.r.t. I.

• {∼`}, for each literal ` ∈ En such that ` is not true w.r.t. I.

The SAT solver is then invoked. If the formula ϕC is unsatisfiable under the
assumptions assum∧ and assum∨, then the interpretation I is unfounded-
free. Otherwise, the satisfying assignment I ′ for ϕC is returned and an un-
founded set X can be computed. In fact, the unfounded set X is composed
by all non-false atoms in the component C that are false in I ′. The falsity
of all atoms in the X can be inferred by adding a constraint to the program.
However, we heuristically limit the number of added constraints by adding
a constraint only for the first atom in the unfounded set. This constraint is
computed as in the HCF case.

Note that the algorithm is defined for working on a generic SAT solver.
In our implementation, we used a specialized instance of the same algorithm
employed for model generation which takes as input a CNF formula and does
not invoke ASP specific inference rules, controlled by using the incremental
interface (see Section 2.4) of wasp 2.

Example 13. Consider the following program Π:

r1 : a ∨ b ← c r3 : b ← a
r2 : a ← b r4 : c ∨ d ←

The component C = {a, b} is non-HCF and the CNF formula ϕC is the
following:

{a, b, auxc} {a,¬b} {b,¬a}

39

Algorithm 6: Unfounded-free Check for non-HCF components
Input : A non-HCF component C and an interpretation I
Output: true if the interpretation I is unfounded-free, false otherwise

1 begin
2 assum∧ := ∅; assum∨ := ∅; I ′ := ∅;
3 (assum∧, assum∨) := ComputeAssumptions(C,I);
4 //let ϕC be the CNF formula associated to C
5 (res, I ′, Core) := SATSolverassum (ϕC , assum∧, assum∨);
6 if res = UNSAT then
7 return true;

8 else
9 //unfounded set U := {a : ∼a ∈ assum∨,∼a ∈ I ′};

10 return false;

Function ComputeAssumptions(C, I)
1 Cin := {a ∈ C : ∼a ∈ I}; Cout := {a ∈ C : ∼a /∈ I};
2 assum∨ := {∼a : a ∈ Cout};
3 assum∧ := {∼a : a ∈ Cin} ∪ {auxa : a ∈ Cout} ∪ {∼auxa : a ∈ Cin};
4 Ep := {` : ` is external, ` is positive};
5 En := {` : ` is external, ` is negative};
6 assum∧ := assum∧ ∪ {aux` : ` ∈ Ep, ` ∈ I} ∪ {∼aux` : ` ∈ Ep, ` /∈ I};
7 assum∧ := assum∧ ∪ {` : ` ∈ En, ` ∈ I} ∪ {∼` : ` ∈ En, ` /∈ I};
8 return (assum∧,assum∨);

Suppose that the interpretation to check is I = {a, b, ∼c, d}. The sets used
by the algorithm are the following: Cin := ∅, Cout := {a, b}, Ep := {c, d}
and En := {not c, not d}. The set assum∨ := {not a, not b} and the set
assum∧ := {auxa, auxb, not auxc, auxd, not c, d}. Note that, since atoms
auxa, auxb, auxd, c and d do not appear in the CNF formula ϕC , in this
case their value is in fact irrelevant for the correctness of the algorithm. The
SAT solver is then invoked on the CNF formula ϕC , which is unsatisfiable
under the assumptions assum∨ and assum∧, and thus the interpretation I
is unfounded-free. C

4.5.2 Partial Checks

wasp 2 implements an optimization of the main algorithm described in [57]
motivated by the following observation. When an unfounded set check fails

40

Table 4.1: Number of solved instances, average running time and average memory usage

clasp 3.0.1 wasp 2
Problem # sol. t mem. sol. t mem.
BottleFillingProblem 30 30 7.2 302.3 30 6.5 616.6
GracefulGraphs 30 15 103.1 17.3 8 74.7 65.5
GraphColouring 30 13 129.6 6.8 8 85.3 20.1
HanoiTower 30 28 52.4 22.1 30 38.2 61.5
IncrementalScheduling 30 2 210.3 2961.6 3 164.2 1304.0
Labyrinth 30 26 57.3 79.8 24 149.3 694.2
NoMystery 30 9 73.5 159.9 6 74.2 391.0
PermutationPatternMatching 30 18 16.2 339.7 26 48.8 324.9
QualitativeSpatialReasoning 30 30 44.8 431.7 23 56.5 1184.8
RicochetRobot 30 30 92.5 25.6 30 159.9 116.2
Sokoban 30 11 37.5 14.4 12 73.4 60.2
Solitaire 27 22 13.9 11.1 22 11.9 29.0
StableMarriage 30 17 145.3 1468.1 30 228.5 314.2
VisitAll 30 19 37.1 17.1 19 90.0 90.5
Weighted-Sequence Problem 30 25 65.2 236.5 26 140.6 883.7
Total 447 295 59.1 240.3 297 93.8 399.4

the solver backtracks until it is deactivated. However, the interpretation after
backtracking takes place may still contain another unfounded set. The basic
strategy would wait until a new answer set candidate is found for calling the
Answer Set Checker and detecting that actually the candidate is unfounded.
This can be avoided if an additional unfounded-free check is performed on
a partial interpretation after backtracking from answer set checking failures.
This smarter strategy is called partial answer set checking, and was already
used also in dlv [58]. We observe that each partial check is usually similar
to its antecedent check since the interpretation to check usually changes
slightly. Thus, the ability of reusing the computation of antecedent checks
is crucial for performing fast checks. However, we also observed that when
the number of answer set candidates is high the number of partial checks
shows a strong growth and they are not helpful for pruning the search space.
Thus, albeit partial checks ideally improve the basic algorithm [58], they can
lead to a deterioration of the performances in specific benchmarks. Thus,
wasp 2 uses an heuristic for enabling and disabling partial checks during
the computation. In particular, partial checks are disabled when the number
of learned constraints from unfounded sets is greater than half of the other
learned constraints; and are enabled otherwise. The idea is to balance the
number of learned constraints from unfounded sets and from conflicts. This
heuristic has been empirically proved to be effective (see Section 4.6).

41

4.6 Experiments
In this section we report the results of an experiment assessing the perfor-
mance of wasp 2. Model Generator and Answer Set Checker are compared
in separate sections. Moreover, we compare wasp 2 with the state of the art
ASP solver clasp version 3.0.1.

The experiments were run on a four core Intel Xeon CPU X3430 2.4 GHz,
with 4 GB of physical RAM and running Debian Linux 7.3 (kernel ver. 3.2.0-
4-amd64). Only one core was enabled, and time and memory limits were set
to 600 seconds and 3 GB, respectively. Performance was measured using the
tools pyrunlim and pyrunner (https://github.com/alviano/python). In
the experiments Gringo 3.0.5 [47] is used as grounder.

4.6.1 Model Generator Evaluation

In this section we report the experiments for evaluating the performances of
the Model Generator. Tested instances were taken from the 4th ASP Compe-
tition1 [23], in particular all instances in the NP category and the polynomial
problem StableMarriage. This category includes planning domains, temporal
and spatial scheduling problems, combinatorial puzzles, graph problems, and
a number of real-world domains in which ASP has been applied. (See [23]
for an exhaustive description of the benchmarks.) Note that we excluded
from our analysis the problem KnightTour because no solver was able to
solve instances of the 4th ASP Competition within the memory and the time
limit.

Results. Table 4.1 summarizes the number of solved instances, the average
running times in seconds and the average memory usage in megabytes for each
solver. In particular, the first column reports the total number of instances
(#); the remaining columns report the number of solved instances within the
time-out (sol.), the running times averaged over solved instances (t) and the
average memory usage over solved instances (mem.).

As a general comment, wasp 2 is comparable with the state of the art
solver clasp 3.0.1. In particular, wasp 2 solves two more instances than
clasp 3.0.1. Analyzing the results in more detail, wasp 2 and clasp 3.0.1
exhibit significantly different performances in some specific benchmarks. For
example in GracefulGraphs, GraphColouring and QualitativeSpatialReason-
ing, where clasp 3.0.1 solved 7, 5 and 7 instances more than wasp 2, re-
spectively, and in PermutationPatternMatching and StableMarriage where

1https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite

42

wasp 2 solved 8 and and 13 instances more than clasp 3.0.1, respectively.
Those differences are due to the different techniques applied in wasp 2 and
clasp 3.0.1 that are discussed in detail in the following. clasp 3.0.1 has
better performances than wasp 2 in GracefulGraphs and GraphColouring,
whose instances show different symmetric solutions. The heuristic of wasp 2
seems to be ineffective when instances have different symmetric solutions,
hence in these cases wasp 2 performs poorly compared to clasp 3.0.1.
Moreover, clasp 3.0.1 performs better than wasp 2 also in QualitativeS-
patialReasoning. In this benchmark, clasp 3.0.1 has a lower memory usage
than wasp 2. In particular, wasp 2 exceeds the memory limit in 7 instances
while clasp 3.0.1 has no memory out at all and the average memory us-
age of wasp 2 is about 3 times greater than the average memory usage
of clasp 3.0.1 on solved instances. On the contrary, wasp 2 has a better
memory usage in PermutationPatternMatching and in StableMarriage. Con-
cerning PermutationPatternMatching, wasp 2 exceeds the memory limit in 4
instances while clasp 3.0.1 exceeds the memory limit in 12 instances. Sim-
ilar considerations hold for StableMarriage, where clasp 3.0.1 exceeds the
memory limit in 13 instances while wasp 2 is able to solve all instances within
the memory limit. Also by looking at solved instances, the average memory
usage of clasp 3.0.1 is about 4 times greater than the average memory usage
of wasp 2.

Some additional observations can be made by studying in more detail
memory usage of wasp 2 and clasp 3.0.1. To this end we report in Fig-
ure 4.2 four plots depicting the memory consumption during the execution of
the solvers. In particular, we focus on two specific instances solved by wasp 2
in which clasp 3.0.1 exceeds the memory limit and two instances solved by
clasp 3.0.1 in which wasp 2 exceeds the memory limit. Figure 4.2(a) reports
the result for an instance of StableMarriage. StableMarriage is a problem in
the P category and its encoding is unstratified. In this case wasp 2 performs
better than clasp 3.0.1. We observed that the grounder gringo produces
several duplicated rules in the grounding phase (around 85% in some in-
stances). wasp 2 does not store such rules and thus it is able to maintain
its memory consumption always under 500 MB, while clasp 3.0.1 exceeds
the memory limit while reading the input. Figure 4.2(b) shows the result
for an instance of IncrementalScheduling. Also in this case we observe that
wasp 2 is less memory demanding than clasp 3.0.1, that exceeds the mem-
ory limit while reading the input. By our analysis, the data structures of
wasp 2 seem to be less memory demanding than the ones of clasp 3.0.1
in this specific benchmark. In fact, wasp 2 has a slight growth of memory
usage during the time, while clasp 3.0.1 exceeds the time limit after 177
seconds. Figure 4.2(c) depicts the results for an instance of QualitativeS-

43

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400

M
e
m

o
ry

 (
M

B
)

Time (s)

clasp 3.0.1
WASP 2.0

(a) Inst. 30 of StableMarriage

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

M
e
m

o
ry

 (
M

B
)

Time (s)

clasp 3.0.1
WASP 2.0

(b) Inst. 104 of IncrementalScheduling

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160

M
e
m

o
ry

 (
M

B
)

Time (s)

clasp 3.0.1
WASP 2.0

(c) Inst. 122 of QualitativeSpatialReasoning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600

M
e
m

o
ry

 (
M

B
)

Time (s)

clasp 3.0.1
WASP 2.0

(d) Inst. 125 of Labyrinth

Figure 4.2: Comparison of wasp 2 and clasp 3.0.1 memory consumption

44

Table 4.2: Number of solved instances and average running time

clasp 3.0.1 wasp 2bal wasp 2pc wasp 2nopc
Problem # sol. t sol. t sol. t sol. t
2QBF 65 13 43.63 14 95.63 9 76.22 14 95.56
ConformantPlanning 23 22 9.23 22 48.66 21 20.23 18 51.94
Repair 60 42 3.56 40 30.90 40 41.59 39 30.18
Total 148 77 11.94 76 47.97 70 39.63 71 48.59

patialReasoning, a problem in the NP category whose encoding has several
disjunctive rules. In this case wasp 2 has a peak of memory usage around
18 seconds while clasp 3.0.1 handles efficiently this instance. We found out
that the peak of memory usage occurs while shifting the disjunctive rules.
Thus, an improvement of the performances could be obtained by optimizing
the Clark’s completion in this specific case. Finally, Figure 4.2(d) reports
the result for Labyrinth, a problem in the NP category whose encoding is
recursive. In this case clasp 3.0.1 performs better than wasp 2. In fact,
wasp 2 has a slight growth of memory usage related to the constraints added
during the unfounded-free propagation. On the contrary, clasp 3.0.1 has a
constant memory usage in this benchmark. However, the performances of
wasp 2 could be improved by both reducing the number and the size of
learned constraints during the unfounded-free propagation.

4.6.2 Answer Set Checker Evaluation

In this section we report the experiments for evaluating the performances of
the Model Generator. Tested instances include all 2QBF instances of the ap-
plication track used in the 2014 QBF Gallery (http://qbf.satisfiability.
org/gallery/), all the instances of Conformant Planning and Repair used in
[21]. We excluded from our analysis the time of the grounder since instances
were publicly available already grounded.

The results are summarized in Table 4.2, that reports the number of
solved instances (sol.) and the average time (t) of solved instances in seconds
for each solver. The first column (#) reports the total number of instances
for each set. We compared three versions of wasp 2: wasp 2bal, i.e. wasp 2
using the balanced heuristic; wasp 2pc, i.e. wasp 2 using partial checks;
and wasp 2nopc, i.e. wasp 2 with no partial checks.

We observe that wasp 2bal is the best performing version of wasp 2 in
the overall. In fact, wasp 2bal solves 6 and 5 more instances than wasp 2pc
and wasp 2nopc, respectively. Concerning partial checks, we observe that
they lead in a degradation of the performances in 2QBF and they are effec-
tive in ConformantPlanning. Our explanation is related to the number of
answer set candidates. In more detail, if the Model Generator finds a high

45

number of answer set candidates then partial checks are not effective. In this
sense, wasp 2bal is able to perform partial checks when it is really needed.
In fact, wasp 2bal behaves the same as wasp 2pc in 2QBF. In Confor-
mantPlanning, wasp 2bal improves both wasp 2pc and wasp 2nopc by
solving more instances. In the overall, wasp 2bal is also comparable with
clasp 3.0.1 on this benchmark set. We observe that clasp 3.0.1 is faster
than wasp 2bal in terms of average time, in ConformantPlanning and in
Repair. In the latter, clasp 3.0.1 solves 2 more instances than wasp 2bal.
However, wasp 2bal solves one more instance than clasp 3.0.1 in 2QBF.
As conclusion, wasp 2bal implements a promising heuristic for schedul-
ing partial checks since it improves the performance of both wasp 2pc and
wasp 2nopc.

46

Chapter 5

Optimum Answer Set Search

Optimization problems in ASP are usually modeled by means of programs
with weak constraints [9]. In this chapter we present and compare alternative
solutions for evaluating programs with weak constraints, including model-
guided and core-guided algorithms. In particular, we consider an algorithm
inspired by optsat [32] that we call opt and its variant that we called basic;
the model-guided algorithm mgd [31] introduced for solving MaxSAT; and
the core-guided algorithms oll [33] that has been introduced in the context
of ASP and then successfully ported to MaxSAT [37]; pmres implemented
in the MaxSAT solver eva [35] and bcd implemented in the MaxSAT solver
msuncore [36]. These algorithms were implemented in our solver wasp 2
and tested on publicly-available benchmarks.

5.1 Preliminaries
The algorithms considered in this chapter can be classified in two categories,
namely core-guided and model-guided algorithms. These algorithms operate
by calling iteratively an ASP solver, thus we introduce in this section some
preliminary definitions and a common algorithmic framework. All algorithms
considered in this chapter are based on relaxation of constraints.

Definition 14. Given a weak constraint w, we call the constraint obtained
by adding to w a fresh atom auxw the relaxation of w.

Core-guided algorithms are based on the concept of unsatisfiable core
first introduced in the context of SAT solving [59]. According to the original
definition, an unsatisfiable core of an unsatisfiable CNF ϕ is a subset of ϕ
that is also unsatisfiable. The analogous notion in ASP can be stated as
follows:

47

Function RelaxWeakConstraint(r: weak constraint, var R: set)
1 begin
2 Let aux be a fresh atom;
3 R := R ∪ {aux = weight(r)};
4 return ← B(r), ∼aux;

Definition 15. An unsatisfiable core of an incohe<opositional program ΠR

is a set Πcore ⊆ constraints(ΠR) such that rules(ΠR) ∪ Πcore is incoherent.

Example 14. Given program Π = (ΠR,ΠW), where ΠR consists of the fol-
lowing rules:

r1 : a ∨ b← r3 : ←1 a r5 : ←1 b
r2 : c ∨ d← r4 : ←2 c r6 : ←2 d

and ΠW = {r3, r4, r5, r6}. A core of ΠR is {r3, r5}. C

Core-guided algorithms start by considering weak constraints as hard con-
straints and then selectively relaxing some of them (i.e., replacing them with
their relaxation) until an optimum cost is found. Model-guided algorithms
instead start by ignoring weak constraints and then enforce an improvement
on the cost of the computed stable models.

In the following if Π = (ΠR,ΠW) is an input program then ΠR \ ΠW is
assumed to be coherent. Moreover, we use a variant of function ComputeAn-
swerSet (Π, I) (see Chapter 4) called ComputeAnswerSetcores (Π,PrefChoices).
ComputeAnswerSetcores (Π,PrefChoices) takes as input a program Π and a
set of literals PrefChoices , and returns as output a triple (res,Πcore, I), where
res is a string, Πcore a set of rules and I an interpretation. The function
searches for a stable model of Π. If one is found, say I, the function re-
turns (Coherent , ∅, I). Otherwise, the function returns (Incoherent ,Πcore, ∅),
where Πcore is an unsatisfiable core of Π. During the search, the first choices
are those specified by the input parameter PrefChoices . In the following we
describe three model-guided algorithms namely opt, basic, and mgd; and
three core-guided algorithms namely oll, pmres, and bcd.

5.2 Algorithm opt

The pseudo code of algorithm opt is reported in Algorithm 7. All weak
constraints are relaxed in the beginning and relaxing atoms are added to
the set PrefChoices . Relaxing atoms are added in PrefChoices in descending
order according to weights of the corresponding weak constraints. During the

48

Algorithm 7: opt
Input : A program Π = (ΠR,ΠW)
Output: The optimum cost OPT for Π

1 begin
2 (R,OPT) := (∅, 1 +

∑
r∈ΠW

weight(r)) ;
3 foreach r ∈ ΠW do
4 ΠR := (ΠR \ {r}) ∪ {RelaxWeakConstraint(r, R)};
5 PrefChoices := {∼aux | aux = w ∈ R};
6 (res,Πcore, I) := ComputeAnswerSetcores(ΠR ∪ {← R ≥

OPT},PrefChoices);
7 if res = Incoherent then return OPT;
8 OPT := cost(ΠW, I);
9 goto 6;

stable model search, the branching heuristic is modified in order to prioritize
atoms in PrefChoices . Moreover, a constraint with an aggregate atom is used
to force an improvement of the solution within each stable model found. The
algorithm runs searching for a stable model. If a stable model is found then
its cost is computed and an aggregate atom forcing the solver to obtain a
solution with a better cost is added to the program. Otherwise, the algorithm
terminates returning the optimum cost found so far.

Example 15. Consider the program in Example 14. Initially, OPT is 7. In
the beginning all weak constraints are relaxed as follows:

r′3 :← a, not aux3 r′5 :← b, not aux5

r′4 :← c, not aux4 r′6 :← d, not aux6.

Moreover, R is {aux3 = 1, aux4 = 2, aux5 = 1, aux6 = 2} and PrefChoices
is {∼aux4, ∼aux6, ∼aux3, ∼aux5}. Then, a stable model I for ΠR is found,
say {a, c, aux3, aux4} of cost 3. OPT is thus updated to 3 and a new stable
model is searched, with the additional constraint ← R ≥ 3. The resulting
program is actually incoherent, and the algorithm terminates. C

5.2.1 Algorithm basic.

A variant of Algorithm 7 is implemented as the standard strategy for han-
dling optimization ASP problems in the solvers smodels [18], dlv [17] and
clasp [54]. We will refer to such an algorithm as basic. In a nutshell, the
only difference with Algorithm 7 is that set PrefChoices is empty. Stated
differently, to obtain basic from Algorithm 7, line 5 is replaced by

49

Algorithm 8: mgd
Input : A program Π = (ΠR,ΠW)
Output: The optimum cost OPT for Π

1 begin
2 (ΠS,ΠR, R,OPT) := (ΠW,ΠR \ ΠW, ∅, 1 +

∑
r∈ΠW

weight(r));
3 (res,Πcore, I) := ComputeAnswerSetcores(ΠR ∪ {← R ≥ OPT}, ∅);
4 if res = Incoherent then return OPT;
5 OPT := min(cost(ΠW, I), OPT);
6 foreach r ∈ ΠS such that I 6|= r do
7 ΠS := ΠS \ {r};
8 ΠR := ΠR ∪ {RelaxWeakConstraint(r, R)};
9 goto 3;

PrefChoices := ∅;

so that the branching heuristic is free to choose any undefined literal even if
some relaxation atom is still undefined.

5.3 Algorithm mgd

The pseudo code of the model-guided algorithm mgd is reported in Algo-
rithm 8. The algorithm runs as follows. Weak constraints are initially ignored
and a stable model is found. Recall that if Π = (ΠR,ΠW) is an input pro-
gram then ΠR \ΠW is assumed to be coherent. Violated weak constraints are
relaxed and considered as hard constraints in the subsequent stable model
searches. Moreover, the program is extended by a constraint of the form
← R ≥ OPT , where R contains the relaxing atoms and the associated
weights, and OPT is the current optimum cost. This process is iterated un-
til the program becomes incoherent, which means that OPT is the optimum
cost for the original program.

Example 16. Consider the program in Example 14. Initially, ΠS contains
all weak constraints, i.e., r3–r6, which are instead removed from ΠR. The
optimal value OPT is initially set to 7, and set R is empty. A stable model
for ΠR = {r1, r2} is computed, say {a, c}, and stored in variable I. The cost
of this solution is 3, thus OPT is updated. Weak constraints r3 and r4 are
then relaxed, i.e., they are removed from ΠS, and ΠR is extended with the
following constraints:

r′3 :← a, not aux3 r′4 :← c, not aux4

50

Algorithm 9: oll
Input : A program Π = (ΠR,ΠW)
Output: The optimum cost for Π

1 begin
2 (ΠS,Πaggr) := (ΠW, ∅);
3 (res,Πcore, I) := ComputeAnswerSetcores(ΠR ∪ Πaggr, ∅);
4 if res 6= Incoherent then return cost(ΠW, I);
5 foreach ← R ≥ lb ∈ Πaggr ∩ Πcore such that |R| > lb do
6 ΠS := ΠS ∪ {←1 R ≥ lb};
7 Πaggr := (Πaggr \ {← R ≥ lb}) ∪ {← R ≥ lb + 1};
8 minWeight := min({weight(r) | r ∈ Πcore ∩ ΠS});
9 R := ∅;

10 foreach r ∈ Πcore ∩ ΠS do
11 if weight(r) > minWeight then
12 ΠS := ΠS ∪ {←weight(r)−minWeight B(r)} ;
13 ΠS := ΠS \ {r};
14 ΠR := (ΠR \ {r}) ∪ {RelaxWeakConstraint(r, R)};
15 Πaggr := Πaggr ∪ {← R ≥ 2};
16 goto 3;

where aux3 and aux4 are fresh atoms. After this process, set R is {aux3 =
1, aux4 = 2}, and the subsequent coherence test must satisfy the constraint
← R ≥ 3. Let us assume that the returned stable model I is {a, d, aux3},
with cost 3. Weak constraint r6 is then relaxed. Again, it is removed from ΠS

and ΠR is extended with r′6, i.e., ← d, not aux6 where aux6 is a fresh atom.
R is extended with aux6 = 2 and a new stable model is searched. Say that
I = {b, c, aux4} is returned, again with cost 3. Weak constraint r5 is relaxed.
It is removed from ΠS and ΠR is extended with r′5, i.e., ← b, not aux5. R is
extended with aux5 = 1 and a new stable model is searched, but the program
is now incoherent. The algorithm thus terminates by returning 3, i.e., the
optimum cost for the original program. C

5.4 Algorithm oll

The core-guided algorithm oll [33] is reported in Algorithm 9. oll is con-
ceived for unweighted ASP optimization problems, i.e., for programs in which
all weak constraints have the same weight. However, there are several possi-
bilities for using the algorithm in case of weighted ASP optimization problems

51

[33]. One strategy considers the replacement of each weak constraint r by
weight(r) copies of r of weight 1. We consider a procedure described in [33]
that is similar to the one described in [60, 61].

The algorithm runs by considering all weak constraints of the input pro-
gram Π = (ΠR,ΠW) as hard constraints and searches for a stable model. If
none is found then some weak constraints are relaxed, which means that they
can possibly be violated during the search for a stable model. This process is
iterated until a stable model is found. The algorithm uses a set ΠS for storing
all weak constraints of Π that are not relaxed, so that any weak constraint is
relaxed at most once. Initially, ΠS is equal to ΠW. The algorithm also uses
a set Πaggr of constraints created by the algorithm, which is initially empty
and will store constraints consisting of a unique aggregate atom. If a stable
model I for ΠR ∪ Πaggr is found then I is also an optimum solution of Π.
Otherwise, an unsatisfiable core Πcore is computed and used for relaxing ΠR.
In mode detail, constraints in Πaggr ∩ Πcore are moved into ΠS and replaced
by copies with increased lower bounds, unless the copies are trivially satis-
fied. The minimum weight minWeight of the weak constraints in the core is
then computed (line 8). Then for each weak constraint r in ΠS ∩ Πcore with
a weight greater than the minWeight a copy of r is created. The weight of
the new weak constraint is equal to the weight of r minus the minWeight
and the new weak constraint is added to ΠS. The weak constraint r is then
considered as unweighted and relaxed by procedure RelaxWeakConstraint.
Finally, an aggregate containing the new relaxing atoms and unitary weights
is added to Πaggr (line 15).

Example 17. Consider the program in Example 14. Initially, ΠS contains
all weak constraints, i.e., r3–r6. Program ΠR = {r1, . . . , r6} is incoherent,
and thus an unsatisfiable core Πcore is computed, say {r3, r4, r5, r6}.1 The
minimum cost minWeight of the weak constraints in the core is 1. A copy
of weak constraints r4 and r6 is then created, and the new weak constraints
are the following:

r7 :←1 c r8 :←1 d.

The new weak constraints r7 and r8 are added to ΠS. All weak constraints
in Πcore are thus relaxed, i.e., they are replaced by the following constraints:

r′3 :← a, not aux3 r′5 :← b, not aux5

r′4 :← c, not aux4 r′6 :← d, not aux6.

The subsequent coherence test must also satisfy a constraint raggr of the form
← {aux3 = 1, aux4 = 1, aux5 = 1, aux6 = 1} ≥ 2. The processed program is

1Note that the core is not minimal since {r3, r5} and {r4, r6} are also cores.

52

incoherent and an unsatisfiable core {r7, r8} is returned. The minimum cost
of the weak constraints in the core is 1. Weak constraints r7 and r8 are thus
relaxed, i.e., they are replaced by the following constraints:

r′7 :← c, not aux7 r8 :← d, not aux8

where aux7 and aux8 are fresh atoms. The subsequent coherence test must
also satisfy a constraint raggr of the form ← {aux7 = 1, aux8 = 1} ≥ 2
The program is still incoherent and an unsatisfiable core {raggr, r′3, . . . , r′6}
is returned. Constraint raggr is thus added to ΠS in order to be relaxed,
and its bound is increased by 1 in the subsequent coherence check. The
relaxed version of raggr is ← {aux3 = 1, aux4 = 1, aux5 = 1, aux6 = 1} ≥
2, not auxaggr, where auxaggr is a fresh atom. (Actually, there is yet another
trivial constraint, namely ← {auxaggr = 1} ≥ 2.) The processed program is
now coherent and a stable model is computed, say {a, c, aux3, aux4, aux7} of
cost 3, which is also optimum. C

5.5 Algorithm pmres

Algorithm 10 is based on partial MaxSAT resolution [62], an extension of
resolution taking into account weighted clauses. It was first introduced for
MaxSAT in the eva solver [35]. pmres starts by considering all weak con-
straints of the input program Π as hard constraints and searches for a stable
model (line 3). If none is found then fresh atoms are introduced for each weak
constraint in the computed core (line 6) in order to relax them (line 11). The
lower bound, which is initially set to zero (line 2), is increased of the min-
imum weight of the relaxed weak constraints (lines 7–8), and their weights
are decreased of the same value (line 12).

At this point, pmres adds n−1 weak constraints, where the i-th weak con-
straint is violated if the formula auxi∨(auxi+1∧· · ·∧auxn) is false (lines 13–
15). As a further optimization, the algorithm introduces fresh atoms ci+1,
for each i ∈ [1..n− 2], for modeling the conjunctions auxi+1 ∧ · · · ∧ auxn.

This process is iterated until a stable model is found, and finally the lower
bound, i.e., the optimum cost for Π, is returned.

Example 18. Consider the program in Example 14. Initially, weak con-
straints are considered hard and an unsatisfiable core Πcore is returned, say
{r3, r4, r5, r6}, and the lower bound is increased to 1. All weak constraints
are thus relaxed, i.e., they are replaced by the following constraints:

r′3 : ←1 a, ∼aux3 r′5 : ←1 b, ∼aux5

r′4 : ←2 c, ∼aux4 r′6 : ←2 d, ∼aux6

53

Algorithm 10: pmres
Input : A program Π = (ΠR,ΠW)
Output: The optimum cost for Π

1 begin
2 (ΠS, lower_bound) := (ΠW, 0);
3 (res,Πcore, I) := ComputeAnswerSetcores(Π, ∅);
4 if res = Coherent then return lower_bound ;
5 Let ΠS ∩ Πcore = {r1, . . . , rn}, where n ≥ 1;
6 Let aux1, . . . , auxn, c2, . . . , cn−1 be fresh atoms;
7 m := min{weight(r1), . . . , weight(rn)};
8 lower_bound := lower_bound + m;
9 for i = 1 to n do

10 ΠS := ΠS \ {ri};
11 ΠR := (ΠR \ {ri}) ∪ {← B(ri), ∼auxi};
12 if weight(ri) > m then ΠS := ΠS ∪ {←weight(ri)−m B(ri)};
13 if i ∈ [1..n− 2] then next := ci+1; else next := auxn;
14 if i ∈ [1..n− 1] then ΠS := ΠS ∪ {←m ∼auxi, ∼next};
15 if i ∈ [2..n− 1] then ΠR := ΠR ∪ {ci ← auxi, next};
16 goto 3;

However, two of them, namely r4 and r6, are put back in the program with
weight 1. Moreover, fresh atoms c4, c6, and the following rules, are intro-
duced:

r7 : ←1 ∼aux3, ∼c3 rc3 : c3 ← aux5, c4

r8 : ←1 ∼aux5, ∼c4 rc4 : c4 ← aux4, aux6

r9 : ←1 ∼aux4, ∼aux6

The processed program is still incoherent and an unsatisfiable core, say
{r4, r6, r9}, is returned. Constraint r11 is thus relaxed and replaced by

r′9 : ← ∼aux4, ∼aux6, ∼aux7.

(Note that, according to Algorithm 10, r4 and r6 should be relaxed again.
However, this is not really required for computing the optimum cost of the
input program, and the algorithm can be easily modified to avoid such a
redundant operation.) Weak constraints r4, r6, r9 are removed because their
weights are equal, but a new fresh atom c9 and the following rules are added:

r10 : ←1 ∼aux4, ∼c9 rc9 : c9 ← aux9, aux6

r11 : ←1 ∼aux9, ∼aux6

The lower bound is 2 at this point.

54

The program is still incoherent. For example, {r′3, r′5, r7, r8} is an un-
satisfiable core. Hence, r7 and r8 are relaxed and replaced by the following
rules:

r′8 : ← ∼aux5, ∼c4, ∼aux8 r′9 : ← ∼aux4, ∼aux6, ∼aux9

r12 : ←1 ∼aux8, ∼aux9

where aux8 and aux9 are fresh atoms. The lower bound is increased to 3.
The processed program is now coherent and a stable model is computed,

say {a, c, aux3, aux4, aux8, aux9}. The optimum cost 3 is finally returned. C

5.6 Algorithm bcd

Algorithm 11 is called core-guided binary search with disjoint cores, in short
bcd [36] and implements a binary search of the optimal solution. In a nut-
shell, all weak constraints are initially considered as hard constraints and
a stable model is searched. If the processed program is incoherent then an
unsatisfiable core is computed and stored in a set Cores, which is initially
empty. Weak constraints in the computed core are relaxed and the new relax-
ing atoms are used to build a constraint comprising a single aggregate atom
aimed at performing a binary search on the subsequent coherence tests. In
fact, each unsatisfiable core is associated with a lower and an upper bound,
which are updated during the computation. More in detail, whenever an
incoherent program is processed, the new unsatisfiable core Πcore is merged
with each element in Cores intersecting Πcore. In this way Cores is guaran-
teed to contain pairwise disjoint unsatisfiable cores, which actually represent
disjoint subproblems. When no weak constraint needs to be relaxed, and
Πcore intersects only one previously computed core C, the lower bound of C
is increased because the subproblem associated with C has no solution of cost
smaller than (C.lb+C.ub)/2. In fact, such a subproblem is represented by a
constraint added at line 7. Hence, the new lower bound of C will force the
algorithm to search for a solution of higher cost, actually resulting in a binary
search of the optimum cost. When instead a stable model I is found, OPT
as well as the upper bounds of the computed cores are updated according to
I. This process is repeated until Cores contains unsolved subproblems.

Example 19. Consider the program in Example 14. Initially, ΠS contains
all weak constraints, i.e., r3–r6, while Cores is empty (line 2). Program ΠR =
{r1, . . . , r6} is incoherent, and thus an unsatisfiable core Πcore is computed,
say {r3, r5}. Weak constraints r3 and r5 are thus relaxed (line 22), i.e., they
are replaced by the following constraints:

r′3 :← a, ∼aux3 r′5 :← b, ∼aux5

55

Algorithm 11: bcd
Input : A program Π = (ΠR,ΠW)
Output: The optimum cost for Π

1 begin
2 (ΠS, Cores,OPT) := (ΠW, ∅, 0);
3 repeat
4 Πaggr := ∅;
5 foreach C ∈ Cores do
6 if C.lb + 1 = C.ub then C.mb := C.ub; else

C.mb := bC.ub+C.lb
2
c;

7 Πaggr := Πaggr ∪ {← C.R ≥ C.mb + 1};
8 (res,Πcore, I) := ComputeAnswerSetcores(ΠR ∪ Πaggr, ∅);
9 if res 6= Incoherent then

10 OPT := cost(ΠW, I);
11 foreach C ∈ Cores do
12 C.ub :=

∑
aux=w∈C.R∧I|=auxw;

13 else
14 SubCores := {C ∈ Cores | C.core ∩ Πcore 6= ∅};
15 if Πcore ∩ ΠS = ∅ and |SubCores| = 1 then
16 Let SubCores = {C};
17 C.lb := C.mb;
18 else
19 Let C be a new structure;
20 (C.core, C.R) := (∅, ∅);
21 foreach r ∈ Πcore ∩ ΠS do
22 r′ := RelaxWeakConstraint(r, C.R);
23 ΠS := ΠS \ {r};
24 ΠR := (ΠR \ {r}) ∪ {r′};
25 C.core := C.core ∪ {r′};
26 (C.lb, C.ub) := (0, 1 +

∑
aux=w∈C.R w);

27 foreach C ′ ∈ SubCores do
28 (C.core, C.R) := (C.core ∪ C ′.core, C.R ∪ C ′.R) ;
29 (C.lb, C.ub) := (C.lb + C ′.lb, C.ub + C ′.ub);

30 Cores := (Cores \ SubCores) ∪ {C};

31 until ∀C ∈ Cores C.lb + 1 ≥ C.ub;
32 return OPT ;

56

where aux3 and aux5 are fresh atoms. Rules r′3 and r′5 are stored in a new
structure C1 in Cores, whose lower and upper bounds are initially set to 0
and 3 (line 26). The subsequent coherence test must also satisfy a constraint
obtained from C1, that is, ← {aux3 = 1, aux5 = 1} ≥ 2. However, the
processed program is still incoherent and an unsatisfiable core {r4, r6} is
returned. Weak constraints r4 and r6 are thus relaxed, i.e., they are replaced
by the following constraints:

r′4 :← c, ∼aux4 r′6 :← d, ∼aux6

where aux4 and aux6 are fresh atoms. Rules r′4 and r′6 are stored in a new
structure C2 in Cores, whose lower and upper bounds are initially set to
0 and 5, so that the next coherence check must also satisfy ← {aux4 =
2, aux6 = 2} ≥ 3. Actually, a stable model is found, say {a, c, aux3, aux4},
which means that the current optimal solution has cost 3. Upper bounds of
C1 and C2 are updated to 1 and 2, respectively. The next coherence check
must thus satisfy r1, r2, r

′
3, . . . , r

′
6, and the additional constraints rC1 : ←

{aux3 = 1, aux5 = 1} ≥ 2 and rC2 : ← {aux4 = 2, aux6 = 2} ≥ 2. However,
the unsatisfiable core {r′4, r′6, rC2} is returned. In this case the lower bound
of C2 is set to 1 and the algorithm terminates returning 3, i.e., the optimal
cost. In fact, the lower and the upper bounds of C1 are 0 and 1, respectively,
and the lower and the upper bounds of C2 are 1 and 2, respectively. Hence,
for each structure in Cores the lower bound + 1 is greater than the upper
bound (line 31). C

5.7 Implementation
In the following, we report a few technical details and design choices that
enlighten on the implementations of optimal stable model search in wasp 2.
Source codes of the implemented algorithms can be downloaded from the
branch optimization of the repository https://github.com/alviano/wasp.git.
The incremental interface of wasp 2 is a key component for the implementa-
tion of algorithms for optimal stable model search. Indeed, at the beginning
of the computation, each weak constraint is considered as hard and one relax-
ation literal is added in its body. After that, the constraints to be considered
during each call to the ASP solver are easily selected (depending on the search
algorithm of choice) by means of assumptions on the relaxation literals. For
example, core guided algorithms start by considering all weak constraints as
hard by simply assuming all relaxation literals to be false.

An additional technique implemented in wasp 2 that improves efficiency
in weighted problems is called stratification [63]. The idea is to start by

57

considering weak constraints of maximum weight, say w, and by ignoring
the remaining weak constraints. If the resulting program is incoherent, all
weak constraints in the detected unsatisfiable core have weight w (or greater),
and therefore the lower bound can be increased significantly. This process is
iterated until a stable model is found, which is the case when the processed
program has no unsatisfiable core only involving weak constraints of weight
w (or greater). Hence, the maximum weight among the weak constraints of
weight smaller than w is computed, say w′, and all weak constraints of weight
w′ or greater are considered in the next search. This process terminates when
all weak constraints are considered and a stable model is found.

5.8 Experiments
In this section we report the results of an experiment assessing the perfor-
mance of wasp 2 implementing the algorithms described in this chapter. We
also include in the comparison the ASP solver clasp. All the solvers used
gringo 3.0.5 [47] as grounder. Concerning clasp we used the version 3.0.1.

Hardware Setting. The experiments were run on a four core Intel Xeon
CPU X3430 2.4 GHz, with 4 GB of physical RAM and running Debian
Linux 7.3 (kernel ver. 3.2.0-4-amd64). Only one core was enabled, and
time and memory limits were set to 600 seconds and 3 GB, respectively.
Performance was measured using the tools pyrunlim and pyrunner (https:
//github.com/alviano/python).

Compared methods. We implemented several algorithms for optimal sta-
ble model search in wasp 2, so to minimize the influence of the result re-
turned by function ComputeAnswerSetcores (all algorithms will use the same
ASP solver). In particular, in our comparison, we considered the following
variants of wasp 2:

• opt: The solver wasp 2 employing Algorithm 7.

• basic: The solver wasp 2 employing the basic algorithm.

• mgd: The solver wasp 2 employing Algorithm 8.

• oll: The solver wasp 2 employing Algorithm 9.

• pmres: The solver wasp 2 employing Algorithm 10.

• bcd: The solver wasp 2 employing Algorithm 11.

58

We also considered, as reference of the state of the art, two versions of the
solver that won the fifth ASP Competition in the optimization track (T3),
namely:

• claspbasic: The solver clasp 3.0.1 in its default configuration, which
runs algorithm basic.

• claspoll: The solver clasp 3.0.1 running algorithm oll.

Benchmark Setting. The experiment was conducted on benchmarks that
were already used in the literature for the comparative evaluation of ASP
solvers [64, 23] and MaxSAT solvers (http://www.maxsat.udl.cat/). In
particular, we considered:

• All benchmarks evaluated in Track 3 (Optimization) of the 5th ASP
Competition [65], namely: Crossing Minimization, Maximal Clique,
Still Life, and Valves Location.

• Benchmarks used in [33] namely: Labyrinth, Minimum Postage Stamp
Problem, Sokoban, Weight Bounded Dominating Set Suite, Fastfood and
Open Doors. We downloaded all the instances available for these prob-
lems in the Asparagus repository.

• All the industrial instances from the familyWCSP.spot5 of the MaxSAT
Competition 2014 (http://maxsat.ia.udl.cat).

MaxSAT instances were translated from the original formulation in Ex-
tended DIMACS CNF format to the lparse numeric format in the straight-
forward way. All instances used in our experiments are publicly available,
and can be downloaded, together with detailed descriptions of benchmark
problems, from the following web sites: the 5th ASP competition (https:
//www.mat.unical.it/aspcomp2014), Asparagus (http://asparagus.cs.
uni-potsdam.de), and the 9th MaxSAT competition (http://maxsat.ia.
udl.cat).

Instances have been classified in unweighted and weighted depending on
whether all constraints have associated the same costs or not, respectively.
In particular, the weighted set comprises Fastfood, Open Doors, Valves Lo-
cation, WCSP.spot5.dir and WCSP.spot5.log ; the remaining benchmarks are
unweighted.

Results overview. We first analyze the performance of the considered al-
gorithms for optimal stable model search in terms of the number of optimal

59

Table 5.1: Number of solved instances and average running time in seconds

opt basic mgd oll pmres bcd
Problem # sol. time sol. time sol. time sol. time sol. time sol. time

un
w

ei
gh

te
d

CrossingMinim 30 1 142.43 7 249.71 8 248.53 23 52.47 23 100.08 10 83.99
Labyrinth 29 3 117.95 4 162.43 1 482.29 6 58.85 4 13.52 3 18.31
MaximalClique 30 0 - 2 549.81 1 452.16 30 31.31 7 278.90 0 -
MPSP 6 4 34.49 4 57.07 4 39.36 5 12.35 5 11.54 3 29.98
Sokoban 28 28 2.60 28 1.70 28 1.83 28 4.24 28 4.24 28 2.62
StillLife 10 4 147.64 3 1.57 3 1.13 5 41.25 5 62.83 3 2.44
WBDSS 29 0 - 0 - 0 - 9 65.77 9 49.75 0 -

w
ei

gh
te

d Fastfood 29 20 67.73 26 98.84 26 118.13 17 86.18 18 51.36 19 116.64
OpenDoors 31 31 13.66 31 11.69 31 12.64 31 15.26 31 16.96 31 14.04
ValvesLocation 30 2 10.31 4 14.62 4 14.08 4 44.33 4 64.23 4 33.43
WCSP.spot5.dir 21 3 66.76 3 21.03 3 32.51 15 7.31 14 13.47 6 16.16
WCSP.spot5.log 21 3 52.45 3 107.31 3 59.14 14 31.70 13 15.79 5 0.11
Total unweighted 162 40 32.44 48 78.71 45 69.66 106 32.8 81 64.77 47 22.67
Total weighted 132 59 36.55 67 50.39 67 56.63 81 32.95 80 26.26 65 44.35
Total 294 99 34.89 115 62.21 112 61.87 187 32.87 161 45.64 112 35.25

solutions found within the timeout. This datum is reported for each bench-
mark problem in Table 5.1, together with the average running time on solved
instances. Benchmarks are properly divided in weigthed and unweigted, and
total scores of each algorithm for the two categories, as well as total scores
overall, are reported in the last three rows of the table.

As a general comment, we note that core-guided algorithms outperform
model-guided alternatives in almost all benchmarks. The only exception is
Fastfood, in which basic and mgd solve 26 instances, whereas core-guided
algorithms solve at most 19 instances (bcd). As a possible explanation for
this behavior, we observed that for instances of Fastfood the unsatisfiable
cores computed by wasp 2 contain relatively many weak constraints (at least
80 weak constraints are involved in all unsatisfiable cores of several instances
in this benchmark). On the other hand, this peculiarity cannot affect model-
guided algorithms, as they approach the solution from a different direction.

Concerning model-guided algorithms, we observe that they behave simi-
larly in almost all benchmarks, with basic leading the category with a total
of 115 solved instances, only 3 more than mgd. The distance of opt is
instead higher, as it solves only 99 instances. As the difference with ba-
sic consists in constraining the branching heuristic with a set of preferred
choices, we conclude that such an interference pays off only in few cases.

Among core-guided algorithms, the category is leaded by oll, with 187
solved instances, 26 instances more than pmres. Actually, after observing
the similarities of Algorithms 9 and 10, the general behaviors of oll and
pmres was expected to be similar. However, the native implementation of
aggregates in wasp 2 sharpens an advantage of oll with respect to pm-
res, which is particularly evident in the MaximalClique domain, where the

60

Table 5.2: Number of solved instances and average running time in seconds

oll basic claspoll claspbasic
Problem # sol. time sol. time sol. time sol. time

un
w

ei
gh

te
d

CrossingMinim 30 23 52.47 7 249.71 24 72.63 14 162.02
Labyrinth 29 6 58.85 4 162.43 17 89.73 4 112.90
MaximalClique 30 30 31.31 2 549.81 30 61.82 1 370.31
MPSP 6 5 12.35 4 57.07 5 3.21 4 148.42
Sokoban 28 28 4.24 28 1.70 28 1.04 28 0.92
StillLife 10 5 41.25 3 1.57 6 75.70 4 32.60
WBDSS 29 9 65.77 0 - 10 48.58 0 -

w
ei

gh
te

d Fastfood 29 17 86.18 26 98.84 16 30.32 29 13.07
OpenDoors 31 31 15.26 31 11.69 31 10.65 31 12.46
ValvesLocation 30 4 44.33 4 14.62 2 12.67 4 9.84
WCSP.spot5.dir 21 15 7.31 3 21.03 13 15.10 3 2.53
WCSP.spot5.log 21 14 31.70 3 107.31 6 0.00 3 8.71
Total unweighted 162 106 32.81 48 78.71 120 50.90 55 69.82
Total weighted 132 81 32.95 67 50.39 68 15.25 70 11.98
Total 294 187 32.87 115 62.21 188 38.01 125 37.43

difference of solved instances is 23. Including in this comparison the other
core-guided algorithm, bcd, we note that the distance with oll is 75 in-
stances.

Comparison with the state of the art. We run the state of the art
solver clasp on the tested benchmarks, with the default configuration and
explicitly selecting oll. The number of solved instances is reported in Ta-
ble 5.2, where we also repeat the result obtained by our implementation of
oll and basic to ease the comparison. As a first observation, the result con-
firms that oll is the best option also for clasp, with a difference of 63 solved
instances. The two implementations of basic behave similarly, with clasp
solving 10 instances more than wasp 2. Comparing the two implementations
of oll, we observe that clasp performs better in unweighted benchmarks,
where it solves 14 instances more than wasp 2. On the other hand, the op-
posite happens for weighted benchmarks, where wasp 2 solves 13 instances
more than clasp. As an explanation for the unweighted case, we note that
clasp is much faster then wasp 2 in Labyrinth, where it appears to handle
more efficiently the unfounded-free propagation (see Section 4.4.1). As for
the weighted benchmarks, instead, we checked that the stratification tech-
nique described in Section 5.7 provides a boost of performance. The better
performance of wasp 2 over clasp is justified by this technique, which is
not implemented in clasp.

61

Chapter 6

Query Answering

An ASP knowledge base can be queried according to two possible modes of
reasoning, usually referred to as brave (or credulous) and cautious (or skepti-
cal). Brave reasoning provides answers to the input query that are witnessed
by some stable model of the knowledge base. For cautious reasoning, instead,
answers have to be witnessed by all stable models. Cautious reasoning over
ASP knowledge bases has relevant applications in various fields ranging from
Databases to Artificial Intelligence. Among them are consistent query an-
swering [28], data integration [29], and ontology-based reasoning [30]. A
common practice in ASP is to reduce query answering to the computation of
a subset of the cautious consequences of a logic program [17], where cautious
consequences are atoms belonging to all stable models. It is important to
note that cautious reasoning is a resource demanding task, which is often
not affordable to complete in reasonable time. It is interesting to observe
that query answering is addressed differently in other logic programming
languages. For example, Prolog queries having infinitely many answers are
common due to the presence of uninterpreted function symbols. Prolog sys-
tems are thus designed to produce underestimates of the complete, possibly
infinite solution, which actually represent sound answers to the input query.

In fact, underestimates are useful in practice, especially in the cases in
which waiting for termination is not affordable, and this may be the case even
if termination is guaranteed. It is thus natural to ask whether underestimates
can be computed also in the context of ASP.

This chapter provides a description of the algorithms employed by ASP
systems. Moreover, we have also adapted to ASP the iterative consistency
testing algorithm for computing backbones of propositional theories [34]. An
interesting aspect of the algorithms analyzed in this chapter is that underes-
timates are produced during the computation of the complete solution. The
computation can thus be stopped either when a sufficient number of cautious

62

consequences have been produced, or when no new answer is produced after
a specified amount of time. Such algorithms are referred to as anytime in
the literature. Finally, we also discuss the results of an experimental analysis
showing that a large percentage of the sound answers can be produced after
few minutes of the computation.

6.1 Computation of Cautious Consequences
Several strategies for computing cautious consequences of a given program
are reported in this section. Some of these strategies aim at solving the
problem producing overestimates of the solution, which are improved and
eventually result in the set of cautious consequences of the input program.
Among them are the algorithms implemented by the ASP solvers dlv [17]
and clasp [20], respectively called enumeration of models and overestimate
reduction in the following. However, another strategy can in addition pro-
duce sound answers during the computation of the complete solution, thus
providing underestimates also when termination is not affordable in reason-
able time. This strategy is iterative coherence testing, an adaptation of an
algorithm computing backbones of propositional formulas [34]. Finally, a
strategy for obtaining underestimates from enumeration of models and over-
estimate reduction is presented, which can also be used to improve the other
algorithms.

In more detail, the algorithms considered here have a common skele-
ton, reported as Algorithm 12. They receive as input a program Π and
a set of atoms Q representing answer candidates of a query, and produce
as output either the largest subset of Q that only contains cautious conse-
quences of Π, in case Π is coherent, or Incoherent otherwise. Initially, the
underestimate U and the overestimate O are set to ∅ and Q, respectively
(line 1). A coherence test of Π is then performed (lines 2–4) by calling func-
tion ComputeAnswerSetassum, which actually is the incremental variant (see
Section 2.4) of the stable model search as described in Section 4.4. The first
argument of the function is a program Π. The second argument is an inter-
pretation, which is initially empty. The third and the fourth arguments are
the set of assumptions assum∧ and assum∨, described in Section 2.4. The
function returns either I in case a stable model I of Π is found, or Incoherent
otherwise. Note that Incoherent is returned not only when Π is incoherent,
but in general when each stable model M of Π violates some assumptions.
The first stable model found is used to improve the overestimate (line 5).
At this point, estimates are improved according to different strategies un-
til they are equal (line 6). The strategy implemented by EnumerationOf-

63

Algorithm 12: CautiousReasoning
Input : a program Π and a set of atoms Q
Output: atoms in Q that are cautious consequences of Π, or Incoherent

1 U := ∅; O := Q; I := ∅; assum∧ := ∅; assum∨ := ∅;
2 I := ComputeAnswerSetassum (Π, I, assum∧, assum∨);
3 if I = Incoherent then
4 return Incoherent ;

5 O := O ∩ I;
6 while U 6= O do

// EnumerationOfModels or other procedure

7 return U ;

Procedure EnumerationOfModels (A1)
1 Π := Π ∪ Constraint(I);
2 I := ComputeAnswerSetassum (Π, I, ∅, ∅);
3 if I = Incoherent then
4 U := O;
5 else
6 O := O ∩ I;

Procedure OverestimateReduction (A2)
1 Π := Π ∪ Constraint(O);
2 I := ComputeAnswerSetassum (Π, I, ∅, ∅);
3 if I = Incoherent then
4 U := O;
5 else
6 Π := Π \ Constraint(O);
7 O := O ∩ I;

Procedure IterativeCoherenceTesting (A3)
1 a := OneOf(O \ U);
2 I := ComputeAnswerSetassum (Π, I, {∼a}, ∅);
3 if I = Incoherent then
4 U := U ∪ {a};
5 else
6 O := O ∩ I;

Models adds to Π a constraint that eliminates the last stable model found
(line 1). Function Constraint({a1, . . . , an}) in fact returns a singleton of the
form {← a1, . . . , an}. The algorithm then searches for a new stable model

64

(line 2) to improve the overestimate (line 6). If no new stable model exists,
the underestimate is set equal to the overestimate (lines 3–4), thus terminat-
ing the computation. OverestimateReduction is similar, but the constraint
added is obtained from the current overestimate (line 1). In this way, when a
new stable model is found, an improvement of the overestimate is guaranteed,
and the constraint can thus be reduced accordingly (lines 6 and 1).

The strategy implemented by IterativeCoherenceTesting can also improve
the underestimate many times during its computation. In fact, one cautious
consequence candidate is selected by calling function OneOf (line 1). A
stable model is searched (line 2) by assuming this candidate as false. If none
is found then the underestimate can be increased (lines 3–4). Otherwise, the
overestimate can be improved (lines 5–6).

Variants of these algorithms can be obtained by modifying the function
ComputeAnswerSetassum with another function which actually implements
stable model search, but also improves the current underestimate after each
restart. This function is referred to as ComputeAnswerSetassum ∗.

6.2 Correctness
In this section we show the correctness of the algorithms presented in the
previous section.

Theorem 2. Let Π be a program and Q ⊆ atoms(Π) a set of atoms.
CautiousReasoning(Π,Q) terminates after finitely many steps and returns
Q ∩ CC(Π) if Π is coherent; otherwise, it returns Incoherent . Moreover,
U ⊆ Q ∩ CC(Π) ⊆ O holds at each step of computation. The claim holds
for all variants of Algorithm 12.

The proof is split into several lemmas using Πi, Li, Ui, Oi, Ii to denote the
content of variables Π, L, U,O, I at step i of computation (i ≥ 0), where L
is the set containing the learned constraints. More in detail, in Lemma 1 we
will first show that underestimates form an increasing sequence and, on the
contrary, overestimates form a decreasing sequence. Then, in Lemma 2 we
will prove properties of stable models of programs Πi∪Li (i ≥ 0). Correctness
of estimates will be shown in Lemmas 3–4, and termination of the algorithms
in Lemma 5. Finally, in Lemma 6 we will extend the proof to variants using
ComputeAnswerSetassum ∗.

Lemma 1. Ui ⊆ Ui+1 and Oi+1 ⊆ Oi ⊆ Q for each i ≥ 0.

Proof. Variable U is initially empty. EnumerationOfModels and Overesti-
mateReduction reassign U only once. IterativeCoherenceTesting always en-
larges the set stored in U by means of set union (line 4). Concerning variable

65

O, it is initially equal to Q and restricted at each reassignment by means
of set intersection (line 7 for OverestimateReduction; line 6 for the other
procedures).

Lemma 2. SM(Πi+1 ∪ Li+1) ⊆ SM(Πi ∪ Li) for each i ≥ 0. For Iterative-
CoherenceTesting we also have SM(Πi+1 ∪ Li+1) = SM(Πi ∪ Li) for each
i ≥ 0.

Proof. Variable Π is reassigned only by EnumerationOfModels and Over-
estimateReduction, where constraints are added to the previous program.
Constraints can only remove stable models (as a consequence of the Split-
ting Set Theorem by [66]). On the other hand, learned constraints stored in
variable L are implicit in the program stored by variable Π, and thus cannot
change its semantics.

Lemma 3. Oi ⊇ Q ∩ CC(Π) for each i ≥ 0.

Proof. The base case is true because O0 = Q. Assume the claim is true for
some i ≥ 0 and consider Oi+1 = Oi ∩ Ii+1, where Ii+1 ∈ SM(Πi ∪ Li). By i
applications of Lemma 2, we obtain Ii+1 ∈ SM(Π0∪L0), i.e., Ii+1 ∈ SM(Π).
We can thus conclude a ∈ Oi\Oi+1 implies a /∈ CC(Π), and we are done.

Lemma 4. Ui ⊆ Q ∩ CC(Π) for each i ≥ 0.

Proof. The base case is true because U0 = ∅. Assume the claim is true for
some i ≥ 0 and consider Ui+1. If Ui+1 = Ui then the claim is true. Otherwise,
we distinguish two cases.

For IterativeCoherenceTesting, Ui+1 = Ui ∪ {a} for some a ∈ Oi \ Ui.
Moreover, there is no M ∈ SM(Πi ∪ Li) such that a /∈ M because Ii+1 is
Incoherent . From Lemma 2, we can conclude that there is no M ∈ SM(Π)
such that a /∈ M , i.e., a ∈ CC(Π). Since a ∈ Oi \ Ui, we have a ∈ Oi and
thus a ∈ Q by Lemma 1. Therefore, a ∈ Q ∩ CC(Π) and we are done.

For EnumerationOfModels and OverestimateReduction, Ui+1 = Oi and
the algorithm terminates. Exactly i+ 1 constraints were added to Π, one for
each stable model of Π found, i.e., I1, . . . , Ii. Moreover, Ii+1 is Incoherent .
Assume by contradiction that there is a ∈ Oi \ CC(Π). Hence, there is
M ∈ SM(Π) such that a /∈ M . Moreover, a ∈ Ij (j = 1, . . . , i) and thus
M is a model of all constraints added at line 1. Consequently, M is a stable
model of Πi ∪ Li, which contradicts Ii+1 is Incoherent .

Lemma 5. Algorithm 12 terminates after finitely many steps.

66

Proof. When EnumerationOfModels is used, termination is guaranteed be-
cause Π has a finite number of stable models. OverestimateReduction either
sets U equal to O, or reduces O, which initially is equal to Q, a finite set.
IterativeCoherenceTesting either increases U , or reduces O, and thus termi-
nates because O is finite and Ui ⊆ Oi holds for each i ≥ 0 by Lemmas 3 and
4.

Lemma 6. Underestimates produced by ComputeAnswerSetassum ∗ are sound.

Proof. Follows by the fact that L contains constraints that are implicit in
the program stored by variable Π.

6.3 Experiments
We implemented the algorithms introduced in the previous section in order
to analyze their performances. Details on the implementation, on the tested
benchmarks, and on the obtained results are reported in this section.

6.3.1 Implementation

The algorithms described in Section 6.1 are implemented in wasp 2. In
the following, A2 and A3 will denote wasp 2 running Algorithm 12 with
procedures OverestimateReduction and IterativeCoherenceTesting, respec-
tively. A2∗ and A3∗ will instead denote the variants using the function
ComputeAnswerSetassum ∗. Procedure EnumerationOfModels is not con-
sidered in the analysis since it is significantly outperformed by the other
strategies in general.

6.3.2 Benchmark Settings

We compared the implemented algorithms on three benchmarks, correspond-
ing to different applications of cautious reasoning, briefly described below.
Multi-Context Systems Querying (MCS). Multi-context systems [67] are a
formalism for interlinking heterogeneous knowledge bases, called contexts,
using bridge rules that model the flow of information among contexts. Test-
cases in this benchmark are roughly those of the third ASP competition [22],
where each context is modeled by a normal logic program under the stable
model semantics. We actually made the testcases harder by requiring the
computation of all pairs of the form 〈c, a〉 such that atom a is true in context
c, while in the original testcases a single pair of that form was involved in the
query. The benchmark contains 53 of the 73 instances submitted to the third

67

ASP competition. We in fact excluded instances corresponding to incoherent
theories, which are solved by the first coherence test in around 6 seconds on
average, and always in less than 14 seconds.
Consistent Query Answering (CQA) is a well-known application of ASP
[28, 50] that we briefly described in Section 3.4. We considered the benchmark
proposed by [68], and in particular query Q3 encoded according to the rewrit-
ings by [50]. The benchmark contains 13 randomly-generated databases of
increasing size ranging from 1000 to 7000 tuples per relation. Each generated
relation contains around 30% of primary key violations.
SAT Backbones (SBB). The backbone of a propositional formula ϕ is the set
of literals that are true in all models of ϕ. When ϕ is a set of clauses over
variables v1, . . . , vn (n ≥ 1), satisfiability of ϕ can be modeled in ASP by rules
ti ← ∼fi and fi ← ∼ti (i = 1, . . . , n), and introducing a constraint for each
clause in ϕ. Backbone computation thus corresponds to the computation
of cautious consequences of an ASP program. The benchmark contains 20
industrial instances used in the SAT Challenge 2012 [69].

The experiment was run on a Mac Pro equipped with two 3 GHz Intel
Xeon X5365 (quad core) processors, with 4 MB of L2 cache and 16 GB of
RAM, running Debian Linux 7.3 (kernel ver. 3.2.0-4-amd64). Binaries were
generated with the GNU C++ compiler 4.7.3-4 shipped by Debian. Time
and memory limits were set to 600 seconds and 8 GB, respectively. Per-
formance was measured using the tool RunLim (http://fmv.jku.at/runlim/).
All instances were grounded by gringo 3.0.5 [47], whose execution time is not
included in our analysis. We however report that the grounding time was
often less than 1 second, with a peak of around 5 seconds for the largest 10
instances of MCS.

6.3.3 Discussion of the Results

The performance of the algorithms for computing cautious consequences in-
troduced in Section 6.1 can be studied from several perspectives. On the one
hand, we want to know which solution performs better and in which cases.
On the other hand, we are interested in analyzing the rate at which each
algorithm produces sound answers.

Overall performance. Table 6.1 summarizes the number of solved in-
stances and average running times. In particular, the first column reports
the total number of instances (#); the remaining columns report the num-
ber of solved instances within the time-out (solved) and the average running
times on solved instances (avg time). A3∗ outperforms A2∗ in MCS, and is

68

0

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

Simplifications First coherence test

MCS

CQA

SBB

0% 25% 50% 75% 100%

(4.2 + 1.6 s)

(1.4 + 0.1 s)

(0.5 + 25.4 s)

(a) Sound answers

MCS

CQA

SBB

0% 25% 50% 75% 100%

(4.2 + 1.6 s)

(1.4 + 0.1 s)

(0.5 + 25.4 s)

(b) Candidates reduction

Figure 6.1: Sound answers and candidates reduction from simplifications and
from first coherence test

faster also in CQA. On the other hand, A2∗ performs well in SBB, solving
one instance more than A3∗, and being faster on average. Note that, as
expected, if one considers both the number of solved instances and running
time, A2, A3 perform as A2∗, A3∗, respectively.

Detailed Analysis. An important feature of the algorithms analyzed in
this chapter is the ability to produce both sound answers and overestimates
during the computation. Figure 6.1 reports, for each benchmark, the aver-
age percentage of (a) sound answers produced and (b) candidates reduction
within the initial steps of the computation. In particular, we plot the effects
of simplifications and of the first coherence test. The improvement of the
overestimate reported in Figure 6.1(b) is significant. The first steps of the
computation are able to reduce the number of candidates of at least 51% (in
MCS) up to around 75% (in CQA). Simplifications are already very effective
in CQA, where candidates are reduced of around 45%. It is important to
note that the reduction of candidates at this stage applies to all algorithms,
while sound answers are produced only by anytime algorithms. This is effec-
tive in practice, as shown in Figure 6.1(a). Indeed, anytime algorithms print
from 40% (in SBB) to 90% (in CQA) of sound answers already after sim-
plifications, which requires few seconds on the average. The first coherence
test further improves the underestimate, which ranges from 52% (in MCS)

Table 6.1: Average running time and number of solved instances

A2* A3*
Problem # solved avg time solved avg time
MCS 53 23 181.9 39 254.1
CQA 13 12 118.8 13 89.5
SBB 20 15 53.4 14 65.7
Total 86 50 118.0 66 136.4

69

 1000

 10000

 100000

0 100 200 300 400 500 600

S
o
u
n
d
 a

n
d
 c

a
n
d
id

a
te

 a
n
s
w

e
rs

Execution time (s)

A2
A3

(a) Basic algorithms on instance 34 of
MCS

 1000

 10000

 100000

0 100 200 300 400 500 600

S
o
u
n
d
 a

n
d
 c

a
n
d
id

a
te

 a
n
s
w

e
rs

Execution time (s)

A2*
A3*

(b) Starred algorithms on instance 34
of MCS

 1000

 10000

0 100 200 300 400 500 600

S
o
u
n
d
 a

n
d
 c

a
n
d
id

a
te

 a
n
s
w

e
rs

Execution time (s)

A2
A3

(c) Basic algorithms on
mrpp_6x6#12_16 of SBB

 1000

 10000

0 100 200 300 400 500 600

S
o
u
n
d
 a

n
d
 c

a
n
d
id

a
te

 a
n
s
w

e
rs

Execution time (s)

A2*
A3*

(d) Starred algorithms on
mrpp_6x6#12_16 of SBB

Figure 6.2: Overestimate and underestimate improvement during execution

to around 91% (in CQA). However, we observe that the first coherence test
may require some time (25s on the average for SBB instances, with a peak
of 193s), which motivated the starred variants. In fact, starred variants can
produce underestimates at each restart, not only when a coherence test is
completed. Actually, both A2∗ and A3∗ improve progressively the underesti-
mate up to around an additional 30% before the first stable model is found,
which is desirable on hard instances.

In order to further confirm the above observations, we analyze in detail
the behavior of the algorithms after simplifications. In particular, Figure 6.2
plots both the number of sound answers (line below) and the number of can-
didate answers (line above) over time. In particular, Figure 6.2(b) is devoted
to the starred algorithms on an instance of MCS, whereas Figure 6.2(a) plots
the behavior of the basic algorithms on the same instance. First we note that
A3 outperforms A2, which timed out. Notably, A2∗ can produce the under-
estimate (see the bottom line in Figure 6.2(b)) whereas A2 can only print
the overestimate (there is no underestimate line for A2 in Figure 6.2(a)).
In general, A3 is able to improve its estimates better than A2. Note that

70

0

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

10 seconds 1 minute 2 minutes 5 minutes Up to timeout

A2

A2*

A3*

A2

A2*

A3*

A2

A2*

A3*

 0 20 40 60 80 100

MCS

CQA

SBB

(a) Sound answers

A2

A2*

A3*

A2

A2*

A3*

A2

A2*

A3*

 0 20 40 60 80 100

MCS

CQA

SBB

(b) Candidates reduction

Figure 6.3: Sound answers and candidates reduction after simplification

there is a point in the plots for each improvement of estimates, and lines
are very dense on MCS instances. This confirms that MCS instances have a
huge number of stable models that can be rapidly computed. We observed
an analogous behavior for CQA. Plots for SBB instances on Figure 6.2(c)
and Figure 6.2(d) have, instead, sparse lines, confirming that stable model
search is harder for this benchmark. Nevertheless, the starred algorithms can
rapidly produce most of the sound answers. A deeper look at Figure 6.2(c)
suggests that A2 is much faster than A3 in solving this instance. In fact, A2
improves the overestimate faster than A3.

More insights on the general behavior of the algorithms in the non-
deterministic part of the computation can be obtained by looking at Fig-
ure 6.3. In particular, Figure 6.3(a) reports the average percentage of sound
answers produced after the simplification step, while candidates reduction is
shown on Figure 6.3(b). A3 is not shown in the figure because it performs
similarly to A3∗ in this perspective. We point out that all bars refer to
sound answers and candidates remaining after simplifications, also for A2.
As a general observation, A2 prints sound answers only at the end of the
computation, while other algorithms are anytime. Consequently, A2 does
not provide sound answers as soon as the other algorithms, as shown on
Figure 6.3(a). Basically, A2 can print something in the first 10s only for
easy instances, while A2∗ improves a lot in this respect. For example, A2∗

outputs around 14% of sound answers already in the first 10s of computation
in MCS, while A2 produces no output. Nonetheless, A3∗ performs generally

71

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of instances

A2
A2*
A3*

(a) 25% of sound answers

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of instances

A2
A2*
A3*

(b) 100% of sound answers

Figure 6.4: Time performance of algorithms for computing underestimates

better than A2∗. Analogous considerations can be done for the reduction of
candidates on Figure 6.3(b).

Another perspective on the behavior of the various algorithms can be
obtained by looking at Figure 6.4. Here are reported, for each benchmark,
two variants of the classical cactus plot. Recall that, in a cactus plot, the x-
axis reports the number of instances that are solved within the time reported
on the y-axis. Here we consider variants where on the x-axis is the number of
instances for which an algorithm printed 25% (resp. 100%) of sound answers
within the time reported on the y-axis. We point out that anytime solvers
can print 100% of sound answers before the timeout, even if termination is
not reached within the allotted time. Figure 6.4 confirms that A2 is slower
than anytime algorithms in printing sound answers. It is interesting to note
that the anytime A2∗ improves sensibly A2 in all benchmarks, especially
at the beginning of the computation. Note that the differences are more
evident in the plots on the left that focus on the first 25% of sound answers.
Finally, we confirm that A2∗ is the fastest single-process implementation in
SBB. Nonetheless, A3∗ prints more sound answers also in non-terminating
instances.

72

Chapter 7

Related Work

In this chapter, we first discuss related work from the SAT area; then we
compare existing ASP solvers and their solving approaches with wasp 2.
Moreover, the ASP solvers which are more similar to our solver, namely
clasp and wasp, are subject of a detailed comparison with wasp 2.

7.1 Relations with SAT, MaxSAT and SMT
In this thesis we proposed several solutions for four different tasks related
to propositional answer set solving. The techniques employed for addressing
these tasks are related to those proposed in the SAT area.

wasp 2 adopts and extends CDCL backtracking search algorithm [40],
learning [24], restarts [25] and conflict-driven heuristics [26] that were first
introduced for SAT solving. The mentioned SAT solving methods have been
properly adapted and modified for handling efficiently specific properties and
language constructs of ASP programs that have no correspondence in SAT
formulas, such as the minimality of answer sets and aggregate atoms. These
characteristics features of ASP have been dealt with by using a solving archi-
tecture that is similar to the concept of propagator introduced in Satisfiability
Modulo Theories (SMT) solving [70]. More in detail, wasp 2 implements and
extends techniques introduced in the SAT solvers minisat [41] and glucose
[42], and combines them with ASP-specific propagators exploiting minimality
of answer sets and implementing aggregates.

Optimum answer set search has been addressed in this thesis by adapt-
ing core-guided [60, 61, 36] and model-guided algorithms [31] introduced
for MaxSAT solving. In particular, we consider an algorithm inspired by
optsat [32] that we call opt and its variant called basic; the model-guided
algorithm mgd [31] introduced for solving MaxSAT; and the core-guided al-

73

gorithms oll [33] that has been introduced in the context of ASP and then
successfully ported to MaxSAT [37]; pmres [35] implemented in the MaxSAT
solver eva and bcd [36] implemented in the MaxSAT solver msuncore. It
is worth observing that the first attempt of porting MaxSAT algorithms
to ASP was described in [33], in which the algorithm oll was proposed.
Nonetheless, to the best of our knowledge, no previous attempt to porting
mgd, opt, bcd and pmres algorithms to the ASP framework is reported in
the literature.

Cautious reasoning is related to the problem of backbone computations
of propositional formulas [34, 71]. In fact, the backbone of a propositional
formula ϕ is the set of literals that are true in all models of ϕ. Several algo-
rithms for computing backbones of propositional formulas are based on vari-
ants of the iterative consistency testing algorithm [34, 72], which essentially
corresponds to the iterative coherence testing algorithm analyzed in Chap-
ter 6. Backbone search algorithms usually feature additional techniques for
removing candidates to be tested, such as implicant reduction and core-based
chunking [73]. Most of the implicant reduction techniques are not applicable
to normal ASP programs because of the intrinsic minimality of stable mod-
els. For example, backbone search algorithms can reduce their overestimate
by removing all unassigned variables when a (partial) model is found; in our
setting, ASP solvers always terminate with a complete assignment. Core-
based chunking, instead, requires a portfolio of algorithms [72] in order to be
effective, which is beyond the scope of this thesis.

7.2 ASP Solvers
ASP has obtained growing interest since robust solvers were available. ASP
solvers can be classified into based on translation (or non-native) and native
according to the evaluation strategies employed. Solvers based on translation
usually perform a translation from ASP to other theories and then use specific
solvers for those theories as black box, while native solvers implement specific
algorithms and data structures for dealing with ASP programs.

7.2.1 Solvers Based on Translations

assat [74] was one of the first non-native solver based on a rewriting of nor-
mal ASP programs into propositional formulas and the call of an external
SAT solver. Similar techniques were adopted by cmodels [19], and more
recently by the lp2sat [75] family of solvers. Among these cmodels is the
only one that can deal with disjunctive programs. In particular, cmodels

74

performs the task of answer set checking by testing the unsatisfiability of a
CNF formula as proposed in [27], and it is able to learn a (loop) formula mod-
eling unfounded sets in case of stability check failure. We also mention other
approaches based on translations, like pbmodels [76] that rewrites ASP
to pseudo-Boolean constraints; and lp2diff [77] rewriting ASP to SMT.
wasp 2 is a native solver, thus, it adopts a very different solving approach
with respect to non-native solvers. Nonetheless, some similarities exist, in-
deed wasp 2 uses Clark’s completion as implemented by assat [74].

7.2.2 Native Solvers

Among the first effective native solvers that were proposed we mention dlv [17]
and smodels [18].

dlv implements a systematic backtracking without learning and adopts
look-ahead heuristics, while wasp 2 is based on CDCL and look-back tech-
niques. Concerning unfounded-free propagation, dlv implements a pruning
technique based on finding external supporting rules, while wasp 2 is based
on source pointers [18]. Answer set checking is implemented by wasp 2 as an
improvement of the algorithm introduced in dlv [27] that avoids the creation
of a new formula for each check as detailed in Section 4.5. Concerning opti-
mization problems, both dlv and wasp 2 implement the algorithm basic.
Nonetheless, wasp 2 implements also several other strategies that are not
implemented by dlv. Cautious reasoning is addressed in dlv only by imple-
menting the algorithm enumeration of models, and dlv does not print any
form of estimation of the result during the computation. We also note that
dlv features brave reasoning, which is not currently supported by wasp 2.
For the sake of completeness, we mention an extension of dlv [78] that imple-
ments backjumping and look-back heuristics, which however does not include
learning, restarts, and does not use an implication graph for determining the
reasons of conflicts.

smodels implements a DPLL-like algorithm without learning and adopts
look-ahead heuristics. It is worth observing that the algorithm based on
source pointers as introduced in smodels [18] is also used by wasp 2 for
unfonded-free propagation. smodels supports normal logic programs, while
disjunctive programs are supported by its extension called gnt [79]. gnt
does not perform incremental unsatisfiability tests on CNF formulas as im-
plemented by wasp 2, instead it uses smodels for testing the incoherence
of logic programs at each check. The variant of smodels called smod-
elscc [80] features learning and look-back heuristics but do not apply Clark’s
completion, resulting in support-related inference rules that are not required
in wasp 2. Concerning optimization problems, smodels introduced the

75

basic algorithm that has been implemented also by wasp 2. Nonetheless,
wasp 2 supports a portfolio of model-guided and core-guided algorithms that
are not implemented by smodels. We also mention minisat(ID) that ex-
tends the SAT solver minisat for dealing with ASP programs [81]. However,
minisat(ID) does not support the full language of ASP as wasp 2.

The native solvers that are more similar to wasp 2 are clasp [20] and
wasp [82]. In the following we detail the differences and similarities of wasp 2
compared with those two solvers.

Differences with clasp. Both wasp 2 and clasp use source pointers,
backjumping, learning, restarts, and look-back heuristics. There are nonethe-
less several differences with wasp 2 related to data structures and input sim-
plification, for example wasp 2 handles duplicated rules while reading the
input program, which results in a lower memory usage of wasp 2 in some
benchmarks during our experiments.

wasp 2 differs from clasp concerning the algorithm for unfounded set
check in case of non-HCF components. In particular, the algorithm of wasp 2
is an enhancement of the algorithm of dlv, which is based on the reduction
of the unfounded set check problem into the unsatisfiability problem [27]. On
the contrary, clasp creates a set of nogoods encoding unfounded subsets.
The unfounded set checks is then performed by extracting nogoods from the
interpretation [21]. Both wasp 2 and clasp uses a technique for performing
the unfounded set check under assumptions [21].

Concerning optimization problems, both clasp and wasp 2 implement
the algorithms basic and oll. The latter has been introduced in un-
clasp [33], an experimental branch of clasp. However, wasp 2 implements
mgd, opt, pmres and bcd introduced for MaxSAT solving that are not
implemented by clasp. Moreover, wasp 2 improves the performances of the
algorithm oll on weighted benchmarks by implementing the stratification
strategy.

Concerning cautious reasoning, the algorithm implemented by clasp is
overestimate reduction. wasp 2 differs from this solver especially with re-
spect to the output produced during the computation of cautious conse-
quences. In fact, clasp only prints overestimates during the computation.
Our implementation, instead, is anytime and thus prints both underestimates
and overestimates during the computation. Underestimates provide sound
answers also when termination is not affordable in reasonable time, and are
thus of practical importance for hard problems. It is interesting to observe
that among the strategies supported by our implementation there is an any-
time variant of the algorithm used by clasp that performed very well on two

76

of our three benchmarks. We also note that clasp features brave reasoning,
which is not currently supported by our implementation.

Differences with wasp. wasp 2 is a substantially revised version of wasp
[82]. First of all we observe that wasp does not implement any program
transformation phase, whereas wasp 2 applies both Clark’s completion and
program simplification in the style of satelite [55]. The Clark’s completion
introduces a number of clauses that represent support propagation, which
is implemented by a specific propagation procedure in wasp instead. The
addition of this preprocessing step brings advantages in both terms of sim-
plifying the implementation of the propagation procedure and in terms of
performances. The program simplification step of wasp 2 optimizes the pro-
gram by eliminating redundant atoms (also introduced by the completion)
and shrinking definitions. This results in a program that is usually easier
to evaluate. Concerning the unfounded-free propagation both wasp 2 and
wasp compute unfounded sets according to the source pointers [18] tech-
nique. wasp immediately infers unfounded atoms as false, and updates a
special implementation of the implication graph. In contrast, wasp 2 learns a
rule representing the inference and propagates it with unit propagation. This
choice combined with Clark’s completion allows to simplify conflict analysis,
learning and backjumping. Indeed, wasp implements specialized variants
of these procedures that require the usage of complex data structures that
are difficult to optimize. Since in wasp 2 literals are always inferred by
the UnitPropagation procedure, we could adopt an implementation of these
strategies optimized as in modern SAT solvers. Finally both wasp 2 and
wasp implement conflict-driven branching heuristics. wasp 2 uses a branch-
ing heuristic inspired to the one of minisat, while wasp uses an extension of
the BerkMin [83] heuristic extended by adding a look-ahead technique and
an additional ASP-specific criterion.

Concerning answer set checking, wasp implements an algorithm similar
to the one introduced in [27]. In particular, wasp creates a CNF formula at
each stability check and then uses the SAT solver minisat in order to check
the unsatisfiability of the formula. Optimization problems are handled in
wasp by implementing several model-guided and core-guided algorithms, in-
cluding opt, mgd, oll and bcd. However, wasp 2 implements also pmres
and a stratification technique for improving the performances on weighted
benchmarks. Finally, wasp has no front-end for dealing with cautious rea-
soning.

77

Chapter 8

Conclusion

This thesis focused on computational tasks related to reasoning with propo-
sitional ASP programs, such as model generation, answer set checking, op-
timum answer set search, and cautious reasoning. These tasks are com-
putationally very hard in general, and this thesis provided algorithms and
solutions to solve them efficiently. In particular the contributions of this
thesis can be summarized as follows:

1. We studied the task of generating model candidates and we imple-
mented in a new ASP solver a combination of techniques originally
introduced for SAT solving, which led to the following publications
[52, 82, 84, 85].

2. We proposed a new algorithm for stable model checking that minimizes
the overhead of executing multiple calls to a co-NP oracle by resorting
to an incremental evaluation strategy and specific heuristics.

3. We implemented a family of algorithms for computing optimum answer
sets of programs with weak constraints porting to the ASP setting
several algorithms introduced for MaxSAT solving.

4. We introduced a new framework of anytime algorithms for computing
the cautious consequences of an ASP knowledge base, that extended
existing proposals and included a new algorithm inspired by techniques
for the computation of backbones of propositional theories. This work
has been presented in [86].

These techniques have been implemented in wasp 2, a new solver for
propositional ASP programs. The effectiveness of the proposed techniques
and the performance of the new system have been validated empirically on

78

publicly-available benchmarks taken from ASP competitions and other repos-
itories of ASP applications. Our proposals are effective and wasp 2 represents
a valuable addition to the state-of-the-art of ASP solving.

As a final remark, we point out that the source code of wasp 2 has been
released under the Apache 2.0 License and can be downloaded at https:
//github.com/alviano/wasp.

79

Bibliography

[1] Gelfond, M., Lifschitz, V.: The stable model semantics for logic pro-
gramming. In Kowalski, R.A., Bowen, K.A., eds.: Logic Programming,
Proceedings of the Fifth International Conference and Symposium, Seat-
tle, Washington, August 15-19, 1988 (2 Volumes), MIT Press (1988)
1070–1080

[2] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans.
Database Syst. 22 (1997) 364–418

[3] Apt, K.R., Warren, D.S., Truszczynski, M., eds.: The Logic Program-
ming Paradigm: A 25-Year Perspective. 1st edn. Springer-Verlag New
York, Inc., Secaucus, NJ, USA (1999)

[4] Niemelä, I.: Logic programs with stable model semantics as a constraint
programming paradigm. Ann. Math. Artif. Intell. 25 (1999) 241–273

[5] Lifschitz, V.: Answer set planning. In Schreye, D.D., ed.: Logic Pro-
gramming: The 1999 International Conference, Las Cruces, New Mex-
ico, USA, November 29 - December 4, 1999, MIT Press (1999) 23–37

[6] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and
disjunctive databases. New Generation Comput. 9 (1991) 365–386

[7] Baral, C.: Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press (2003)

[8] Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell. 175 (2011) 278–298

[9] Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by
constraints. IEEE Trans. Knowl. Data Eng. 12 (2000) 845–860

[10] Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for
knowledge management. In Erdem, E., Lin, F., Schaub, T., eds.: Logic

80

Programming and Nonmonotonic Reasoning, 10th International Confer-
ence, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Pro-
ceedings. Volume 5753 of Lecture Notes in Computer Science., Springer
(2009) 591–597

[11] Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S.,
Leone, N.: Team-building with answer set programming in the gioia-
tauro seaport. TPLP 12 (2012) 361–381

[12] Manna, M., Oro, E., Ruffolo, M., Alviano, M., Leone, N.: The HıLεX
system for semantic information extraction. T. Large-Scale Data- and
Knowledge-Centered Systems 5 (2012) 91–125

[13] Gebser, M., Kaminski, R., Schaub, T.: aspcud: A linux package configu-
ration tool based on answer set programming. In Drescher, C., Lynce, I.,
Treinen, R., eds.: Proceedings Second Workshop on Logics for Compo-
nent Configuration, LoCoCo 2011, Perugia, Italy, 12th September 2011.
Volume 65 of EPTCS. (2011) 12–25

[14] Erdem, E., Erdem, Y., Erdogan, H., Öztok, U.: Finding answers and
generating explanations for complex biomedical queries. In Burgard,
W., Roth, D., eds.: Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2011, San Francisco, California, USA,
August 7-11, 2011, AAAI Press (2011)

[15] Mileo, A., Schaub, T., Merico, D., Bisiani, R.: Knowledge-based multi-
criteria optimization to support indoor positioning. Ann. Math. Artif.
Intell. 62 (2011) 345–370

[16] Ricca, F., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M.,
Leone, N.: A logic-based system for e-tourism. Fundam. Inform. 105
(2010) 35–55

[17] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scar-
cello, F.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7 (2006) 499–562

[18] Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the
stable model semantics. Artif. Intell. 138 (2002) 181–234

[19] Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver en-
hanced to non-tight programs. In Lifschitz, V., Niemelä, I., eds.: Logic

81

Programming and Nonmonotonic Reasoning, 7th International Confer-
ence, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004, Pro-
ceedings. Volume 2923 of Lecture Notes in Computer Science., Springer
(2004) 346–350

[20] Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set
solving: From theory to practice. Artif. Intell. 187 (2012) 52–89

[21] Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven dis-
junctive answer set solving. In Rossi, F., ed.: IJCAI 2013, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Bei-
jing, China, August 3-9, 2013, IJCAI/AAAI (2013)

[22] Calimeri, F., Ianni, G., Ricca, F.: The third open answer set program-
ming competition. TPLP 14 (2014) 117–135

[23] Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C.,
Ianni, G., Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A.,
Pührer, J., Redl, C., Ricca, F., Schneider, P., Schwengerer, M., Spendier,
L.K., Wallner, J.P., Xiao, G.: The fourth answer set programming com-
petition: Preliminary report. In Cabalar, P., Son, T.C., eds.: LPNMR.
(2013) 42–53

[24] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient con-
flict driven learning in Boolean satisfiability solver. In: ICCAD. (2001)
279–285

[25] Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search
through randomization. In Mostow, J., Rich, C., eds.: Proceedings of
the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference, AAAI 98,
IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA., AAAI Press /
The MIT Press (1998) 431–437

[26] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an efficient SAT solver. In: Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22,
2001, ACM (2001) 530–535

[27] Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic program-
ming systems by SAT checkers. Artif. Intell. 151 (2003) 177–212

[28] Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent
query answering in inconsistent databases. TPLP 3 (2003) 393–424

82

[29] Eiter, T.: Data integration and answer set programming. In Baral,
C., Greco, G., Leone, N., Terracina, G., eds.: Logic Programming and
Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005,
Diamante, Italy, September 5-8, 2005, Proceedings. Volume 3662 of Lec-
ture Notes in Computer Science., Springer (2005) 13–25

[30] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.:
Combining answer set programming with description logics for the se-
mantic web. Artif. Intell. 172 (2008) 1495–1539

[31] Morgado, A., Heras, F., Marques-Silva, J.: Model-guided approaches
for MaxSAT solving. In: 2013 IEEE 25th International Conference on
Tools with Artificial Intelligence, Herndon, VA, USA, November 4-6,
2013, IEEE (2013) 931–938

[32] Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems
with preferences. Constraints 15 (2010) 485–515

[33] Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-
based optimization in clasp. In Dovier, A., Costa, V.S., eds.: ICLP
(Technical Communications). (2012) 211–221

[34] Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of
propositional theories. In Coelho, H., Studer, R., Wooldridge, M., eds.:
ECAI. Volume 215 of Frontiers in Artificial Intelligence and Applica-
tions., IOS Press (2010) 15–20

[35] Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided
maxsat resolution. In Brodley, C.E., Stone, P., eds.: Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31,
2014, Québec City, Québec, Canada., AAAI Press (2014) 2717–2723

[36] Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search
algorithms for maximum satisfiability. In Burgard, W., Roth, D., eds.:
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011,
AAAI Press (2011)

[37] Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT
with soft cardinality constraints. In O’Sullivan, B., ed.: Principles and
Practice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings. Volume
8656 of Lecture Notes in Computer Science., Springer (2014) 564–573

83

[38] Cook, S.A.: The complexity of theorem-proving procedures. In Harri-
son, M.A., Banerji, R.B., Ullman, J.D., eds.: Proceedings of the 3rd An-
nual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, ACM (1971) 151–158

[39] Davis, M., Logemann, G., Loveland, D.W.: A machine program for
theorem-proving. Commun. ACM 5 (1962) 394–397

[40] Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Trans. Computers 48 (1999) 506–521

[41] Eén, N., Sörensson, N.: An extensible sat-solver. In Giunchiglia, E.,
Tacchella, A., eds.: Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita Ligure, Italy,
May 5-8, 2003 Selected Revised Papers. Volume 2919 of Lecture Notes
in Computer Science., Springer (2003) 502–518

[42] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern
sat solvers. In Boutilier, C., ed.: IJCAI. (2009) 399–404

[43] Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas
algorithms. Inf. Process. Lett. 47 (1993) 173–180

[44] Audemard, G., Simon, L.: Refining restarts strategies for SAT and
UNSAT. In: Principles and Practice of Constraint Programming - 18th
International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings. Volume 7514 of Lecture Notes in Computer
Science., Springer (2012) 118–126

[45] Eén, N., Sörensson, N.: Temporal induction by incremental sat solving.
Electr. Notes Theor. Comput. Sci. 89 (2003) 543–560

[46] Fu, Z., Malik, S.: On solving the partial max-sat problem. In Biere,
A., Gomes, C.P., eds.: SAT. Lecture Notes in Computer Science (2006)
252–265

[47] Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo
series 3. In Delgrande, J.P., Faber, W., eds.: LPNMR. Volume 6645 of
LNCS., Springer (2011) 345–351

[48] Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Un-
founded sets, fixpoint semantics, and computation. Inf. Comput. 135
(1997) 69–112

84

[49] Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving
using the DLV system. In Minker, J., ed.: Logic-Based Artificial Intel-
ligence. Volume 597 of The Springer International Series in Engineering
and Computer Science. Springer US (2000) 79–103

[50] Manna, M., Ricca, F., Terracina, G.: Consistent query answering via
ASP from different perspectives: Theory and practice. TPLP 13 (2013)
227–252

[51] Leone, N., Perri, S., Scarcello, F.: Improving ASP instantiators by join-
ordering methods. In Eiter, T., Faber, W., Truszczynski, M., eds.: Logic
Programming and Nonmonotonic Reasoning, 6th International Confer-
ence, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceed-
ings. Volume 2173 of Lecture Notes in Computer Science., Springer
(2001) 280–294

[52] Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on WASP 2.0.
CoRR abs/1404.6999 (2014)

[53] Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina,
G.: The disjunctive datalog system DLV. In de Moor, O., Gottlob,
G., Furche, T., Sellers, A.J., eds.: Datalog Reloaded - First Interna-
tional Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised
Selected Papers. Volume 6702 of Lecture Notes in Computer Science.,
Springer (2010) 282–301

[54] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven
answer set solving. In Veloso, M.M., ed.: IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelligence, Hy-
derabad, India, January 6-12, 2007. (2007) 386

[55] Eén, N., Biere, A.: Effective preprocessing in sat through variable and
clause elimination. In: SAT. Volume 3569 of LNCS., Springer (2005)
61–75

[56] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the imple-
mentation of weight constraint rules in conflict-driven ASP solvers. In
Hill, P.M., Warren, D.S., eds.: Logic Programming, 25th International
Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Pro-
ceedings. Volume 5649 of Lecture Notes in Computer Science., Springer
(2009) 250–264

[57] Janhunen, T., Niemelä, I., Simons, P., You, J.: Unfolding partiality
and disjunctions in stable model semantics. In Cohn, A.G., Giunchiglia,

85

F., Selman, B., eds.: KR 2000, Principles of Knowledge Representation
and Reasoning Proceedings of the Seventh International Conference,
Breckenridge, Colorado, USA, April 11-15, 2000., Morgan Kaufmann
(2000) 411–422

[58] Pfeifer, G.: Improving the model generation/checking interplay to en-
hance the evaluation of disjunctive programs. In Lifschitz, V., Niemelä,
I., eds.: Logic Programming and Nonmonotonic Reasoning, 7th Interna-
tional Conference, LPNMR 2004, Fort Lauderdale, FL, USA, January
6-8, 2004, Proceedings. Volume 2923 of Lecture Notes in Computer Sci-
ence., Springer (2004) 220–233

[59] Zhang, L., Malik, S.: Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In: DATE, IEEE Computer Society (2003) 10880–10885

[60] Manquinho, V.M., Silva, J.P.M., Planes, J.: Algorithms for weighted
Boolean optimization. In Kullmann, O., ed.: Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT
2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. Volume 5584
of Lecture Notes in Computer Science., Springer (2009) 495–508

[61] Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial
MaxSAT through satisfiability testing. In Kullmann, O., ed.: The-
ory and Applications of Satisfiability Testing - SAT 2009, 12th Interna-
tional Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Pro-
ceedings. Volume 5584 of Lecture Notes in Computer Science., Springer
(2009) 427–440

[62] Larrosa, J., Heras, F.: Resolution in max-sat and its relation to local
consistency in weighted csps. In Kaelbling, L.P., Saffiotti, A., eds.:
IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5,
2005, Professional Book Center (2005) 193–198

[63] Ansótegui, C., Bonet, M.L., Levy, J.: Sat-based maxsat algorithms.
Artif. Intell. 196 (2013) 77–105

[64] Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.:
The second answer set programming competition. In Erdem, E., Lin,
F., Schaub, T., eds.: Logic Programming and Nonmonotonic Reason-
ing, 10th International Conference, LPNMR 2009, Potsdam, Germany,

86

September 14-18, 2009. Proceedings. Volume 5753 of Lecture Notes in
Computer Science., Springer (2009) 637–654

[65] Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth
answer set programming competition. CoRR abs/1405.3710 (2014)

[66] Lifschitz, V., Turner, H.: Splitting a logic program. In Hentenryck,
P.V., ed.: Logic Programming, Proceedings of the Eleventh Interna-
tional Conference on Logic Programming, Santa Marherita Ligure, Italy,
June 13-18, 1994, MIT Press (1994) 23–37

[67] Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-
context systems. In: AAAI, AAAI Press (2007) 385–390

[68] Kolaitis, P.G., Pema, E., Tan, W.C.: Efficient querying of inconsistent
databases with binary integer programming. PVLDB 6 (2013) 397–408

[69] Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international
sat solver competitions. AI Magazine 33 (2012)

[70] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL(T). J. ACM 53 (2006) 937–977

[71] Slaney, J.K., Walsh, T.: Backbones in optimization and approximation.
In Nebel, B., ed.: IJCAI, Morgan Kaufmann (2001) 254–259

[72] Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing
backbones of propositional formulae. AI Commun. (2014) To appear.

[73] Ravi, K., Somenzi, F.: Minimal assignments for bounded model check-
ing. In Jensen, K., Podelski, A., eds.: TACAS. Volume 2988 of LNCS.,
Springer (2004) 31–45

[74] Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program
by SAT solvers. Artif. Intell. 157 (2004) 115–137

[75] Janhunen, T.: Some (in)translatability results for normal logic programs
and propositional theories. Journal of Applied Non-Classical Logics 16
(2006) 35–86

[76] Liu, L., Truszczynski, M.: Pbmodels - software to compute stable mod-
els by pseudoboolean solvers. In Baral, C., Greco, G., Leone, N., Ter-
racina, G., eds.: Logic Programming and Nonmonotonic Reasoning, 8th
International Conference, LPNMR 2005, Diamante, Italy, September

87

5-8, 2005, Proceedings. Volume 3662 of Lecture Notes in Computer Sci-
ence., Springer (2005) 410–415

[77] Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models
via reductions to difference logic. In Erdem, E., Lin, F., Schaub, T.,
eds.: Logic Programming and Nonmonotonic Reasoning, 10th Interna-
tional Conference, LPNMR 2009, Potsdam, Germany, September 14-18,
2009. Proceedings. Volume 5753 of Lecture Notes in Computer Science.,
Springer (2009) 142–154

[78] Ricca, F., Faber, W., Leone, N.: A backjumping technique for disjunc-
tive logic programming. AI Commun. 19 (2006) 155–172

[79] Janhunen, T., Niemelä, I.: GNT - A solver for disjunctive logic pro-
grams. In Lifschitz, V., Niemelä, I., eds.: Logic Programming and Non-
monotonic Reasoning, 7th International Conference, LPNMR 2004, Fort
Lauderdale, FL, USA, January 6-8, 2004, Proceedings. Volume 2923 of
Lecture Notes in Computer Science., Springer (2004) 331–335

[80] Ward, J., Schlipf, J.S.: Answer set programming with clause learn-
ing. In Lifschitz, V., Niemelä, I., eds.: Logic Programming and Non-
monotonic Reasoning, 7th International Conference, LPNMR 2004, Fort
Lauderdale, FL, USA, January 6-8, 2004, Proceedings. Volume 2923 of
Lecture Notes in Computer Science., Springer (2004) 302–313

[81] Pooter, S.D., Wittocx, J., Denecker, M.: A prototype of a knowledge-
based programming environment. In Tompits, H., Abreu, S., Oetsch,
J., Pührer, J., Seipel, D., Umeda, M., Wolf, A., eds.: Applications
of Declarative Programming and Knowledge Management - 19th In-
ternational Conference, INAP 2011, and 25th Workshop on Logic Pro-
gramming, WLP 2011, Vienna, Austria, September 28-30, 2011, Revised
Selected Papers. Volume 7773 of Lecture Notes in Computer Science.,
Springer (2011) 279–286

[82] Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A
native ASP solver based on constraint learning. In Cabalar, P., Son,
T.C., eds.: LPNMR. Volume 8148 of LNCS., Springer (2013) 54–66

[83] Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver.
Discrete Applied Mathematics 155 (2007) 1549–1561

[84] Dodaro, C.: Engineering an efficient native ASP solver. TPLP 13 (2013)

88

[85] Alviano, M., Dodaro, C., Ricca, F.: Comparing alternative solutions for
unfounded set propagation in ASP. In Baldoni, M., Baroglio, C., Boella,
G., Micalizio, R., eds.: AI*IA 2013: Advances in Artificial Intelligence -
XIIIth International Conference of the Italian Association for Artificial
Intelligence, Turin, Italy, December 4-6, 2013. Proceedings. Volume 8249
of Lecture Notes in Computer Science., Springer (2013) 1–12

[86] Alviano, M., Dodaro, C., Ricca, F.: Anytime computation of cautious
consequences in answer set programming. TPLP 14 (2014) 755–770

89

