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Preface

Life is the point upon which the whole universe lies. Howetlee knowledge about
life machinery is very poor in comparison to the complexitypmlogical processes
regulating it. Many &orts have been done to better understand mechanisms under-
lying life, grasp the key concepts about the processes tf, lgjrowth and death and
trim the incompleteness of the knowledge about life bagmeints.

This thesis is meant to be helpful in this direction, tryinghlighten some shady
issues relevant in bioinformatics. In particular, the wtitkt has been done tries to
clarify some biological processes regulating cell lifeleyia different organisms, by
comparing their simple and complex building blocks.

On the one hand, simple biological structures (i.e., pnsiehave been analyzed.
This way, the unknown functions of uncharacterized prat@inthe biological pro-
cesses in which they are involved can be determined. To ihigwo approaches
have been devised:

e PQSC-FCNN: atool for predicting protein quaternary steetwhich is related
to the biological function of the protein when involved iregffic biological pro-
cesses.

e Bi-GrarpiN: a tool for annotating proteins with functional informatiby com-
paring protein-protein interaction networks.

On the other hand, complex biological structures (i.e,dgaal networks) of
different organisms have been explored. This way, functionalules conserved
during the evolution can be identified. In this respect, tywpraaches have been
proposed:

e Sus-GrarpiN: a tool for the pairwise alignment of protein-protein irtetion net-
works.
e PInG-Q: a tool for querying protein-protein interactiortwerks.
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The above mentioned approaches have been proved, by expégiravaluations,
to be able to discover significant biological results. Thigriomising since it allows
to help in complementing the knowledge about biologicakpsses regulating the
cell life cycle. This way, by looking within the simple elents of life (i.e., living
cells) the knowledge beyond these simple elements can bpagta

A look to the future research perspectives, in this prorgisesearch area, hints
that the &orts payed in this direction can be greatly rewarded thrahghresults
that will be obtained in the long term.

Rende (CS), Italy, Valeria Fionda
November 2009
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Bioinformatics: Background and Uptake






1

Introduction and Overview

The development of biotechnology, that is, the applicatibthe principles of en-
gineering and technology to the life sciences, has led tditie of a new field of
research: Bioinformatics. Bioinformatics was born at the ef the 70s when the
emerging ICTs found a wide use in the project of genome sagijugn

Several definitions of Bioinformatics have been proposkdf avhich underline
the role of this research area as a bridge linking life sa@eartd computer science.
The National Center for Biotechnology Information (NCBi#)r instance, defines
bioinformatics as:

“Bioinformatics is the field of science in which biology, cputer science, and
information technology merge into a single discipline. fehare three important sub-
disciplines within bioinformatics: the development of nalgorithms and statistics
with which to assess relationships among members of lartge stds; the analy-
sis and interpretation of various types of data includingleotide and amino acid
sequences, protein domains, and protein structures; argetlelopment and imple-
mentation of tools that enabldheient access and management dfadient types of
information.”

Generally speaking, bioinformatics tasks can be subdividéwo main groups:
the first group concerns the design and maintenance of lidallodata banks while
the second one is related to the design of algorithms anéragstor data manip-
ulation and knowledge discovery. As matter of fact, these $ivands of research
cross-fertilize each other, as also exemplified in Figuik Ih. particular, on the one
hand, software and algorithms are developed by exploitiotpgical data banks,
from which biological data useful for their evaluation ardracted. On the other
hand, by exploiting bioinformatics systems, new informatis inferred and, possi-
bly, used to enrich available data banks.

In this general context, this thesis focuses in particutatte design and im-
plementation of new algorithmic and software solutionsddrass relevant bioinfor-
matics problems, such asotein function predictiometwork alignmenandnetwork
querying

In the last few years, biological data banks were populatéd & very large
amount of data produced by researclSiystems BiologyThese data convey infor-
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Bioinformatics tasks

_ Generate new

. . data Algorithms and software
Biological . .
Data Bank for data manipulation and
Supplies input | knowledge discovery
data 1

Fig. 1.1.Relations between bioinformatics tasks.

mation about single macromolecules such as proteins aresgeiich can be seen
as the cell building blocks, as well as the interactions agreuch macromolecules.
Starting from these interaction data it is possible to boittte complex bioinformat-

ics structures as shown in Figure]l.2. For instance, inierecamong proteins are
exploited to buildprotein-protein interaction networksvhereas biochemical reac-
tions involving enzymes and metabolites are used to lmaéthbolic networks

To properly look up the large amount of biological data, ke in the plethora
of biological data, banks and mine useful information, tesidn and development
of automatic tools has become crucial.

At the beginning, the interest of researchers was focusedlynen tools to mine
bio-sequences. In fact, severdfogts have been paid for genome sequencing and
designing procedures to compare biological sequencestolséor similar regions.
In this respect, notable examples are the Needleman anddWatgorithm|[145] for
global sequence alignment, and the Smith and Watermanithigof189] for local
sequence alignment. These basic tools, then, evolvedgghiitth to very popular
sequence alignment tools, such as FASTA [160] and BLAST J[282the same

Cell building blocks Complex biological

structures
& =2 W
C == Interactions protein interaction transcriptional
proteins genes network regulatory network

enzymes

metabolic network

Fig. 1.2. Simple and complex structures exploited in bioinformatics.
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time, algorithms for motif searfhand identification of coding regions in genomic
sequences were also developed.

More recently, the study of proteins, protein relations aratromolecules com-
plex structures has gained momentum. In particular, byif@pkt proteins as inde-
pendent macromolecules, a relevant task has become thietfmeaf protein func-
tions, with the aim of properly understanding the role of haracterized proteins
within living cells. However, the observation that protgimnd macromolecules in
general, can be better characterized by analyzing theirdotion patterns has given
birth to the definition of a formal model, grounded on the ¢r#geory, to represent
the set of molecular interactions of an organism referreas®iological Networks
Hence, biological networks can be fed as input to graphbtsgniques that would
try to infer new information about cellular activity and déwtive processes of the
species. Indeed, by comparing the biological networks of different species the
transfer of knowledge, from one species to another, is abssiple by identifying
similar regions in the two input networks.

The aim of this thesis is also that of investigating the aggtions and opportuni-
ties in this latter group of bioinformatics tasks and previgseful tools to overcome
some of the relevant problems thereof.

1.1 Main Contributions

The goal of this thesis is to provide innovative softwarelddor knowledge dis-
covery in bioinformatics concerning the analysis of bothe (i.e., proteins) and
complex (i.e., protein-protein interaction networksystures. In particular, some ef-
forts have been paid to predict the functions of unchareedproteins and discover
functional modules in protein-protein interaction netkgrA comprehensive exper-
imental evaluation is also provided to substantiate tfectveness of the proposed
approaches from a biological point of view.

1.2 Problem Description

Proteins are essential parts of organisms which parteipavirtually every pro-
cess within cells. Many proteins work as biochemical caatgrs, also known as
enzymes, that catalyze the reactions occurring in livirgaoisms. Proteins can in-
teract with other molecules to perform storage and tratdpactions. Moreover,
these fundamental components provide mechanical suppddteape to tissues and
mechanical work as, for example, the muscular contrackorally, several proteins
have an essential role in decoding cellular informatiorer€fore, understanding the
functions performed by proteins within the cell is a key hformatics task.

The function of a protein is determined by its three-dimenal structure. The
tools developed to face this task, providing informationwtthe three-dimensional

1 A motif is a nucleotide or amino-acid sequence pattern that is widespreatasn or is
conjectured to have, a biological significance.
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folding of a given protein, are also useful to understandftimetion performed by
the latter.

The first part of this thesis is oriented to protein functicediction, accom-
plished by using two dierent methods:

e PQSC-FCNN: a protein quaternary structure prediction tbat leverages the
number of polypeptidic chains within a given protein;

e Bi-GrarpiN: based on the analysis of protein-protein interactions snplarticu-
lar, on the idea that similar proteins have similar intamacprofiles.

However, biological processes regulating the cell lifeleyastem from complex
interactions among cell constituents. Therefore, thewiehaf the cell can be deeply
understood if the analysis is not limited to a mere individstady of cell building
blocks (e.g., proteins, genes) but also encompasses monglecostructures (e.g.,
protein complexes). In this respect, recently, some autiort@ols have been devel-
oped, which aim at mining new knowledge about cellular psses by exploiting
interaction data. These tools expl@itological Networksas a formal model to en-
code molecular interactions among cell building blocks.

In this context, there are several ways to compare biolbgieavorks, butet-
work alignment network integrationand network queryinghave surely to be re-
garded as the most significant onles [181]. In Figuré 1.3 theseepts are summa-
rized.

Comparing Biological Networks
Network Alignment Network Integration Network Querying

: GOAL GOAL GOAL
T - Identification of T
human PPI | |dentification of human PPI o human PPI knowledge
network functional network f

supported by network transfer by the

conserved identification of

- ; several networks o
protein modules and study of  ( e (?Onserved
A interrelations i fltf';]Stal’IC(ejS |
‘ et ‘ of the module
east PPI human metabolic| Petween data ¢
) types query module

network network

Fig. 1.3.The three main ways of comparing biological networks.

Network alignments the process of globally comparing two or more networks
of the same type belonging tofféirent species, in order to identify similarity and
dissimilarity regions. Network alignment is commonly apglto detect conserved
sub-networks, which are likely to represent common fumaionodules[184].
Network integrationis the process of combining several networks of the same
species, representingfifirent kinds of interactions (e.g., protein, metabolic), to
study their interrelations. For instance, network intégratechniques have been
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used to predict protein interactions and identify proteadules [98, 236].

Finally, network queryingechniques search a whole biological network to identify
conserved occurrences of a given query module, which cansed for transfer-
ring biological knowledge from one species to another (asfay within the same
species). Indeed, since the query generally encodes achalkcterized functional
module (e.g., thaIAPK cascadeén yeas], its occurrences in the queried network
(e.g., theMAPK cascadén humar) suggest that the latter (and then the correspond-
ing organism) features the function encoded by the former.

The second part of this thesis concerns the comparativegsasalf biological
networks and, in particular, protein-protein interactfonPPI) networks. More pre-
cisely, two tools have been developed, namely:

e Sue-GrarpIN: a tool to preform network alignment;
e PInG-Q: atool to query PPI networks.

1.3 Outlook

This section provides the reader with an overview on theamaruf this thesis. More-
over, a chapter dependency schema is also sketched. Thiniadh intended to help
the reader in following the path that motivated each indigidchapter and under-
stand how chapters are connected to one another.

1.3.1 Thesis’ Structure

Part[] comprises two chapters (i.e., chapférs 1[dnd 2). @dptntroduces and
motivates the work presented in the other chapters. Morgavesader’s guide is
presented. ChaptErl 2 provides some background; in patj@dme information is
given both on simple (i.e., proteins) and complex (i.e.|dg@al networks) biolog-
ical strictures . Moreover, an overview on the motivatioetibd the study of both
these structures (i.e., protein function prediction amaddgical network analysis) is
provided. Overall, the aim of this chapter is to grip the mr&linterest and create a
well-founded motivation for the work done in later chapters

Part{Tl comprises three chapters (i.e., chadiefs 3, 4 hndHgptei B charts the
state of the art in protein function prediction. This baakgrd is necessary to prop-
erly understand the motivations of the work presented inftesubsequent chap-
ters (i.e., chapteiisl 4 arid 5). In particular, Chapter 4 isiged on the prediction
of the quaternary structure of proteins, which charaotsrihe biological function
of a protein when involved in specific biological procesdasChapteib, the tool
Bi-GrarpiN, Whose aim is to compute protein functional similarity asprotein in-
teraction networks of dierent organisms, is presented. This tool can be useful when
comparing two networks, one of which is well-characteriagdile the other one is
uncharacterized, to predict the unknown functions of pnste
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Part[l comprises two chapters (i.e., chapiers 6 [@nd 7). Hapiei6, the ap-
proaches presented in the literature for aligning two oremuplogical networks
are described. This is useful to understand the advantagkdisadvantages of the
approach we developed for the same purpose, which is calledsgarrin and is
discussed in ChaptEtl 7.

Part[IM consists of two chapters (i.e., chapfdrs 8[@nd 9).HapBel8, a novel
approach to querying protein interaction networks, cateds-Q, is presented. The
aim of Chapte[P is that of analyzing and comparing tools sEVito query biolog-
ical networks, also considering the method presented irptel&. This analysis is
intended to help in understanding problems and researabssstate of the art and
opportunities for researchers working in this area.

Finally, ParfVl sketches final conclusions and discussesdutends in the bioin-
formatics fields. Here, the contribution of the presentithesll be once more out-
lined w.r.t. the motivations and requirements identifiethatbeginning.

1.3.2 Reader’s Guide

The present thesis has been written following a logical pgdrconnecting the var-
ious research contributions. However, it is possible togaize two main threads.
The first is related to bioinformatics simple structures.(iproteins) considered as
single macromolecules and is discussed in[Phrt Il. The skgart is related to Bio-
logical Network analysis and concerns Fatt Il V.

As for the first thread, a reader interested in this specifibl@m can focus on
Part[Il even if the content included in the introductory dlemmnd the second one
have to be considered as compulsory premises to itt Pars bhéen logically divided
in three sub-parts. The Chagiér 3 gives some backgroundsesgeo understand the
problem of protein function prediction and draws the statb@art in this area. This
introductory chapter is a must to understand the subsetwerthapters (Chaptér 4
and®). In facts, Chaptet 3 motivates the tools proposedaptens ¥ anf]5.

As for the second thread (i.e., Biological Network analysisreader interested
in this specific problem may only focus on parts I1[afl IV; aledhis case the intro-
ductory chapter and the second chapter become a must.

Par{IIl has been logically divided in two sub-parts. Chaptgives some background
necessary to understand the problem of network alignmehtlesws an overview
of the state of the art related to global and local alignmealst This introductory
chapter is a premise to the subsequent chapter (CHapter fAct] Chaptelr]é moti-
vates the tool proposed in Chagtér 7.

Part[IM has been also logically divided in two sub-parts. mafter 8, a tool for
querying protein interaction networks is presented antlated. In Chaptdr]9, this
tool is compared with the state of the art. Moreover, Chd@i@so provides a com-
parative overview of biological network querying systeimgexploiting an illustra-
tive example.

Figure[I.4 summarizes chapters organization and providks between the
work presented in the fierent parts and chapters in order to allow the reader to
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choose the parts on whiclhe is interested. In particular, two kinds of dependen-
cies between parts and three between chapters are defibtedelationconcludes
between Palifl | and Pdrl V indicates that Chapiér 10 analyweslaims presented
in Part[] on the basis of the research discussed in the vapars. The relations
motivatesfrom a Part (or Chapter) to another Part (or Chapter) indgdhat the
content of the former provides the information necessamdtivate the contribu-
tions introduced in the latter. For example, the relatimmgivatefrom Parf] to parts

[M] MTand Vlindicates that the content of P&lt | provideg timnformation necessary
to understand why the tools presented in Faf{sl, Il @nd &enbeen developed.
The relationexploitsindicates that the contribution introduced in Chapier &z

a sub-procedure the method presented in Chhapter 5. To tgmederstand how the
system discussed in Chapiér 7 works, the reader is suggesitsb read Chaptét 5.
The relationanalyzes and comparésdicates that the tool described in Chapier 8 is
compared w.r.t. the state of the art in Chapter 9.

Part I. Bioinformatics:
Background and Uptake
Part V: Conclusions and Future Trends
Chapter 1
Introduction and Overview goncludes Chapter 10
Conclusions and Future Trends
motivates
Chapter 2
Background
‘ motivates
Part 2. Protein function Part 3. Network Alignment Part 4. Network Querying
Prediction
Chapter 3 Chapter 6 Chapter 8
Protein Function Prediction: Network Alignment Techniques: PInG-Q: a Tool for Protein
the State of the Art an Overview Interactié)n Graph Querying
motivates
Chapter 4
Protein Quaternary Structure Prediction motivates analyzes and
compares
Chapter 5 Chapter 7 Chapter 9
- - " Ta—" exploits

Bi-Grappin: Functional Similarity P Sub-Grappin: Extracting Similar Biological Network Querying Systems:
Search by PPI Network Analysis Subgraphs across PPl Networks Analysis and Comparison

Fig. 1.4. Structure of the thesis and chapter dependencies
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1.3.3 Publications

Part of the material of the thesis has been published in sooregls, conferences
and books :

Journals

e V. Fionda, L. Palopoli, S. Panni, S. Rombo. “A technique tarsk for functional
similarities in protein-protein interaction networkdhternational. Journal on
Data Mining and Bioinformaticsvol. 3(4), pp. 431-453, 2009.

Book Chapters

e V.Fionda, L. Palopoli. “Network Querying Techniques forlPBtwork Compar-
ison”. Chapter XVII.In: Biological data mining in protein interaction networks
(Xiao-Li Li, See-Liong Ng, Eds.)GI Publishing. ISBN:978-1605663982. pp.
312-334, 2009.

Conferences

e \Valeria Fionda, Simona Panni, Luigi Palopoli and Simona BmRo. “sc Bi-
GRAPPIN: Bipartite GRAph based Protein-Protein Inte@ttNetworks sim-
ilarity search”.In Proceedings of IEEE International Conference on Biainfo
matics and Biomedicine (BIBM'07gBilicon Valley, USA, 2-4 November, pp.
355-361, 2007.

e Fabrizio Angiulli, Valeria Fionda and Simona E. Rombo. “®ia Data Conden-
sation for Hfective Quaternary Structure Classificatioln’ Proceedings of Inter-
national Conference on Intelligent Data Engineering andohuated Learning
(IDEAL'07). Birmingham, UK, 16-19 December, pp. 810-820, 2007.

e \Valeria Fionda, Simona Panni, Luigi Palopoli and Simona &mnRo. “Singling
out functional similarities in graph databasebi.Proceedings of the Sixteenth
Italian Symposium on Advanced Database Systems (SEBD08yello (PA),
22-25 June, pp. 271-278, 2008

e Valeria Fionda, Simona Panni, Luigi Palopoli and Simona &nRo. “Protein-
protein interaction network querying by a 'focus and zooppm@ach”.In Pro-
ceedings of the 2nd International Conference on BioinfditsaResearch and
Development (Bird’08)Vienna, 7-9 July, pp. 331-346, 2008.

e \Valeria Fionda, Gialuigi Greco. “Charting the Tractalilierontier of Mixed
Multi-Unit Combinatorial Auctions”.In Proceedings of the 21st International
Joint Conference on Atrtificial Intelligence (IJCAI'Q®asadena, CA, USA, 11-
17 July. pp. 134-139, 2009.

e \Valeria Fionda, Simona Panni, Luigi Palopoli and Simona &nRo. “Extract-
ing similar sub-graphs across PPl Networksi' Proceedings of the 2nd Inter-
national Conference on Bioinformatics Research and Dgretnt (ISCIS’09)
Northen Cyprus, 1417 September. pp. 183-188, 2009.
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Background

Summary. In this chapter, some background necessary to understand the tdpticeamo-

tivation of this thesis is provided. In particular, across this chapter, sofoenation will be

given regarding both simple biological structures (i.e., proteins)ti@e&.1) and complex
biological strictures (i.e., biological networks) (Sectlonl 2.2). Moepan overview of the
motivation behind the study of both these types of structure (i.e., praiactibn prediction
and biological network analysis) is provided in Secfiof 2.3 and Secfidn 2.4

2.1 Background on Proteins

Genes are segments of DNA that code for proteins inside th@anscription is the
process by which the enzyme (that is a protein working asehleimical catalysator)
RNA polymerase, reads the sequence of bases on a gene amdicsnagn mRNA
molecule from that sequence. Translation is the process Highwa ribosome, a
macromolecular assembly, reads the information contaiméite mRNA molecule
and synthesizes a protein molecule from the sequence onRiNAMMolecule. Thus,
each protein molecule is a product of the gene that codes florturn, proteins are
responsible for carrying out various functions inside teik &or instance, many pro-
teins work as enzymes that catalyze the reactions that dediving organisms or
they can interact with other molecules for performing sgerand transport functions.
Moreover, these fundamental components provide mecHanipaort and shape to
tissues and mechanical work as, for example, muscularaxtian. Finally, several
proteins have an essential role in the decoding of cellafarination and also regu-
late the transcription of a gene to an mMRNA molecule.

Proteins are macromolecules composed by linear polymechains, of amino
acids. All organisms use the same set of 20 amino acids adifmyiblocks in the
protein synthesis. The variations of the order in which aracids are connected
and their total number let to obtain an almost unlimited nandd proteins.

The primary structure of a protein is the sequence of its amatids, forming the
polypeptidic chain. The 20 amino acids are knowrweamino acids since they are
composed by an amide group and a carboxylic group, bind t€tBealso known
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asa carbon. Thex carbon also binds hydrogen atoms and a side chain, caked
The side chain is distinctive to each amino acid. The amindsaare bound to one
another by the condensation ofrecarboxylic group of one amino acid to the amide
group of another amino acid to form a chain. This bond is knesmeptidic bond
and the involved amino acids are called residues. The fradeaand carboxylic
groups at the opposite extremities of the peptidic chaircalledN-terminal (amide
terminal) andC-terminal (carboxylic terminal). Conventionally, all thesidues of a
peptidic chain are numbered starting frodrterminals.

On the basis of protein complexity, a protein can have at fioostevels of struc-
tural organization (see Figure 2.1). The primary strucisithe amino acid sequence
and describes the one-dimensional structure of a protéia.other three levels en-
code the protein three-dimensional structure. In moreildétia polypeptidic chain
patterns that regularly repeat into the protein denotedbersdary structure. The ter-
tiary structure is related to the three-dimensional stmecof the whole polypeptide.
The Quaternary Structure is related to the arrangement@btwnore polypeptidic
chains in one polymer.

Alterations of the conditions of the environment, or someraltal treatments, may
lead to a destruction of the native conformation of proteiith the subsequent loos-
ing of their biological activities. This process is calleghdturation.

Primary Secondary Tertiary Quaternary
Structure Structure Structure Structure
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Fig. 2.1.Different levels of protein structures.

The central dogma of molecular biology was first enunciatedrtancis Crick
in 1958 [43] and re-stated in a paper appeared inNbture journal published in
1970 [44]: “The central dogma of molecular biology dealswiie detailed residue-
by-residue transfer of sequential information. It statest information cannot be
transferred back from protein to either protein or nucleiida In other words, the
central dogma of molecular biology is that genes may pegtetthemselves and
work through their expression in form of proteins, but it i3 possible to go the
other way around and obtain the gene sequence from the mprdteie that the ex-
pression of a gene is its product, that is, the protein forciwlihe gene encodes
information.

The genetic information is encoded into the sequence of disedof the DNA and
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perpetuate through the replication. More precisely, theetie information is repre-
sented both by DNA and RNA. In fact, while cells use only DNApn® viruses, the
retroviruses have their genome encoded into the RNA, which is replicatedthe
infected cells.

The DNA uses four nucleotides: adenine (A), guanine (G)pgiye (C) e
thymine (T). Since it is not possible to represent each oRthdifferent amino acid
by a nucleotide, each amino acid corresponds to a group téatises. By choosing
words composed by two nucleotides onfy4 16 combinations can be obtained. In-
stead, by choosing words composed by three nucleotitlesé# combinations can
be obtained, that are flicient to encode the 20 amino acids. Thus, a code of three
or more nucleotides is necessary and the one made of thréeotides seems to be
valid for all organisms. Each triplet is calleddon All the 64 codons specify amino
acids except three of them, that are stop triplets, and apesggnals in the transduc-
tion process. Since 61 codons are used to encode 20 amirg) auittiple triplets
may encode for the same amino acid, and in general these Irawaime first two
nucleotides and dierent third nucleotides. The starting triplet is the oneoglirog
the methionine amino acid: all proteins start with this asraégcid. The transduction
process ends and the protein is released when one of thestopetiplets is recog-
nized.

2.1.1 Protein Primary Structure

The primary structure of a protein is the linear sequenceaso&inino acids. The
amino acid sequence of a protein is determined by the geneetitades for it.
The differences between two primary structures reflect the evelatitations. The
amino acid sequences of related species are with high pititpatimilar and the
number of diferences in their amino acid sequences are a measure of howttiar
time the divergence between the two species is located: tine distant the species
are the more dierent the protein amino acid sequences are.

The amino acid residues essential for a given protein to taiaitits function are
conserved during the evolution. On the contrary, the residhat are less impor-
tant for a particular protein function can be substitutedobdyer amino acids. It is
important to note that some proteins have a higher numbeuludtgutable amino
acids than others, thus proteins can evolve fieddnt speeds. Generally, the study
of molecular evolution is focused on family of proteins. feins belonging to the
same family are called homologous and the tracing of theusienl process starts
from the identification of such families. Homologous arenitifeed by using spe-
cialized amino acids sequence alignment algorithms tlyanlalyzing two or more
sequences, search for their correspondences.

2.1.2 Protein Secondary Structure

The secondary structure is referred to the general thmaestiional form of lo-
cal segments of proteins. It does not describe specific at@ositions in three-
dimensional space, but is defined by patterns of hydrogedsbatween backbone
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amide and carboxylic groups. The secondary structure adeelto the spacial ar-
rangement of amino acid residues that are neighbors in ihepr structure. The
secondary structure is the repetition of four substrusttinat arew helix, 8 sheet,
B turn, Q loop. The most common secondary structures are alpha belin# beta
sheets (see Figure 2.2).

A common method for determining protein secondary stracisifar-ultraviolet
(far-UV, 170-250 nm) circular dichroism. A less common neeths infrared spec-
troscopy, which detects filerences in the bond oscillations of amide groups due
to hydrogen-bonding. Finally, secondary-structure cotstenay be accurately esti-
mated using the chemical shifts of an unassigned NMR spactru

7 S-sheét r

Fig. 2.2.Two examples of protein secondary structurdtelix andg sheet.

2.1.3 Protein Tertiary Structure

The tertiary structure of a protein is its three-dimensistraicture, as defined by the
atomic coordinates. The function of a protein is determimgds three-dimensional
structure and the three-dimensional structure dependseoprimary structure. Ef-
forts to predict tertiary structure from the primary sturet are generally known as
protein structure prediction. However, the environmenthich a protein is syn-
thesized and allowed to fold are significant determinantigsdiinal shape and are
usually not directly taken into account by current predictmethods.

The biological activity of a protein is related to the comf@tion the protein
assumes after the folding of the polypeptidic chain. Thd@wnation of a molecule
is a spacial arrangement that depends on the possibilittheobonds to spin. In
physiologic conditions a protein has only one stable canédion, known as native
conformation.

On the contrary of secondary structure, the tertiary stinecalso takes into ac-
count amino acids that are far in the polypeptidic sequendeb&long to diferent
secondary structures but interact with one another.



2.1 Background on Proteins 15

To date, the majority of known protein structures have besterchined by the ex-
perimental technique of X-ray crystallography. A seconchomn way of determin-
ing protein structures uses NMR, which provides somewheattaresolution data in
general and is limited to relatively small proteins.

An example of tertiary structure as reported by the PDB detdbis shown in
Figure[Z.8. This figure represents the tertiary structureB-Adenosylmethionine
Synthetasavith 8-BR-ADP.

Fig. 2.3.An example of protein tertiary structure.

2.1.4 Protein Quaternary Structure

Many proteins are assemblies of more than one polypeptiaiacknown as protein
subunits. In addition to the tertiary structure of the suts multiple-subunit proteins
possess a quaternary structure, which is the three-diovalsspacial arrangement
of the several polypeptidic chains, corresponding to pmatebunits.

According to this structure, the protein can be subdividetivio groups: homo-
oligomers and hetero-oligomers. The first group is made ofems composed by
only one type of subunit, while the second one is made of pretbat are composed
by different types of subunits. The proteins belonging to the firstig are those
having structural and supporting roles, while the protdiaknging to the second
one have dynamic functions.

Protein quaternary structures can be determined usingetyaf experimental
techniques that require a sample of proteins in a varietxpéemental conditions.
The experiments often provide an estimate of the mass ofdtieerprotein and, to-
gether with knowledge of the masses amdtoichiometry of the subunits, allow the
quaternary structure to be predicted with a fixed accuraowé¥er, it is not always
possible to obtain a precise determination of the subumitpmsition. The number
of subunits in a protein complex can often be determined bgswmeng the hydro-
dynamic molecular volume or mass of the intact complex, threquires native
solution conditions.

1 httpy/www.rcsb.orgpdyhoméehome.do
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TableZ1 reports the nomenclature used to identify prajeaternary structures.
The number of subunits in an oligomeric complex are desdrimng names that
end in-mer (Greek for “part, subunit”).

Number of subunits Name
1 monomer
2 dimer
3 trimer
4 tetramer
5 pentamer
6 hexamer
7 heptamer
8 octamer
9 nonamer
10 decamer
11 undecamer
12 dodecamer
13 tridecamer
14 tetradecamer
15 pentadecamer
16 hexadecamer
17 heptadecamer
18 octadecamer
19 nonadecamer
20 eicosamer

Table 2.1.The nomenclature used to identify protein quaternary structures

Figure[2Z.4 shows an example of the quaternary structure obtaip. The qua-
ternary structure reported in the figure ieeramerand is related to a potassium ion
channel protein fronStreptomyces lividans

Fig. 2.4.An example of protein quaternary structure.
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The quaternary structure is important, since it charazsrthe biological func-
tion of proteins when involved in specific biological proses. Unfortunately, qua-
ternary structures are notimmediately deducible fromgincimino acid sequences.

2.2 Biological Networks

Biological networks, which store information about molkecuelations and interac-
tions, can be conveniently represented as graphs. A grdqplili$rom a set of nodes
or vertices, representing cellular building blocks (er@t@ins or genes), and a set of
edges (directed or undirected), representing interasfisee Figure215). A graph is
a pairG = (V,E), whereV is the set of nodes arid is the set of edges, so that the
elements fronk are pairs of elements &f. In an undirected graph, an edge linking
nodesA andB represents a mutual interaction. Conversely, in a diregtaph, each
edge represents the flow of material or information from ac®umode to a target
node.

(a) An example of undirected graph (b) An example of directed graph

Fig. 2.5.Examples of graph structure.

Different types of graphs are used to represdirdint types of biological net-
works, each of which stores information about interacti@asted to specific entities
or molecules[1]. Relevant kinds of networks incluttanscriptional regulatory net-
works signal transduction networkmetabolic networkgrotein-protein interaction
networks(or PPI networR, domain interaction network$&ene Co-Expression Net-
worksandgenetic interaction networks

2.2.1 Transcriptional Regulatory Networks

As already pointed out in Sectidn 2.1, the transcription afeme to an mRNA
molecule is regulated by proteins referred to as transoriactors. A transcrip-
tion factor may activate or inhibit the expression of a gerséde the cell by binding
to regions upstream or downstream of the gene on the DNA migle€his process
may, in turn, facilitate or prevent RNA polymerase from bimgland initiating the
transcription of the gene. Thus, the genes inside cellsdotevith each other via
intermediate transcription factors to influence each ate&pression.
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The set of genes interactions inside the cell is referred tthetranscriptional
regulatory network This kind of network can be modeled as a graph having two
types of nodes, representing the transcriptional factodstlae mRNAs of the target
genes, respectively. Moreover, it has two types of direetigks, representing tran-
scriptional regulation and translation, respectivelyi@er graph model combines
genes with transcriptional factors they encode, to obtagmagh all the nodes of
which represent genes. In this latter representation, ga ednnects a source gene
to a target gene if the former produces RNA or a protein acim@ transcriptional
activator or inhibitor of the latter. An activator gene igthource of a positive reg-
ulatory connection, while an inhibitor gene is the sourceaafegative regulatory
connection.

2.2.2 Signal Transduction Networks

Cells use signaling pathways and regulatory mechanism®&aodmate multiple
functions. For instance, inside the cell, the proteinsradewith each other to influ-
ence each other’s activity. Moreover, extracellular sigaae mediated to the inside
of a cell by protein-protein interactions of signaling nalées. Thesignal transduc-
tion networksstore information about the processes through which a celearts
one kind of signal or stimulus into another by protein-pioiateractions. In partic-
ular, the signal transduction corresponds to the propagafi molecular or physical
signals (for example, sensory stimuli) from a cell’s exdettio its intracellular re-
sponse mechanisms.

In the graphs modeling signal transduction networks, eestrepresent proteins
and directed edges represent the protein-protein interecthat work as signal con-
verters.

2.2.3 Metabolic Networks

Metabolic networkgepresent the set of biochemical reactions that are regpens
for the uptake of nutrients from the external environment teir conversion into
other molecules required for the growth and maintenanckeotell. Each reaction
takes in input some metabolites and produces as outputmitabolites. Moreover,
metabolic reactions are catalyzed by enzymes.

Metabolic networks can be represented as weighted tripaytaphs with three
types of nodes (i.e., metabolites, reactions and enzymeb)veo types of edges
representing mass flow and catalytic regulation, respagtiifhe first type of edge
connects reactants to reactions and reactions to produwssecond type connects
enzymes to the reactions they catalyze.

Simpler graph models have also been proposed. In particoédabolic networks
can be represented as bipartite graphs consisting of twestgpnodes, which are
metabolites and reactions. Each reaction node has an ingazdige from each re-
actant metabolite and one outgoing edge to each producboiiéa In the bipartite
metabolic graph, there are no direct links between eithemntetabolites or two reac-
tions. Another bipartite graph representation consideti@two partitions of nodes
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the chemical compounds and the enzymes, respectively.debrenzyme node, an
incoming edge occurs with each of its substrate nodes andtgoiog edge occurs
with each of its product nodes.

The metabolic networks sometimes are also representedipartite graphs
(which could be directed or undirected) in which there isyomhe type of node.
For instance, a simple model is a directed graph in which sioeleresent enzymes
and directed edges connect pairs of enzymes for which thduptmf the source
enzyme is a substrate of the sink enzyme. In another simptkeinoodes represent
metabolites and directed edges represent enzymes thigzesgiareaction having the
source metabolite as the reactant and the sink metabolite gsoduct.

2.2.4 Protein-Protein Interaction Networks

A protein-protein interaction network stores the inforirmatabout the interactome of
a given organisms, that is the whole set of its protein-pmdteeractions. In graphs
modelingprotein-protein interaction (PPI) networksthe nodes represent proteins
and the edges are undirected and possibly weighted, witlptateins connected if
they bind. Edge weight may be used to incorporate relighilfiormation concerning
the interaction.

Since protein-protein interactions are very importaneigulating cell life cycle,
there are a multitude of methods to detect them. Each of timeskeod has its own
strengths and weaknesses, especially with regard to tisitisiy and specificity.
A high sensitivity means that many real interactions arectetl. A high specificity
indicates that most of the interactions detected are alsarong in reality. Thus, the
reliability weights are important to take into accountasliity, in terms of sensitivity
and specificity, of the method used to detect interactions.

Itis important to note that, since protein interactionsaften obtained from pro-
tein complex detection and not really as binary interagi@imore complex model
may be more informative. In fact, the use of hyper-graprsteimd of simple graphs,
might be usefully adopted to model protein complexes.

2.2.5 Domain Interaction Networks

Domains are independently folded modules of a proteidofain-domain interac-
tion (DDI) networkis constructed when each protein in a PPI network is replaced
by one or more nodes representing its constituent domairibid type of network,
edges connecting two proteins are transformed to connecititesponding domain
nodes. Since most of the known proteins are composed by rhareane domain,

a domain-domain interaction network usually gets muchelatgan the original
protein-protein interaction network. Howeverffdrent proteins (often functionally
unrelated) frequently share identical domains and, tbeeebne domain node in a
DDI network usually appears multiple times in the contextlififferent proteins.
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A similar type of network is the domain co-occurrence netwan which each
domain is represented by a single node. In this type of nétiweo nodes are con-
nected by an edge when the corresponding domains occur sathe protein at least
once.

2.2.6 Gene Co-Expression Networks

The gene co-expression networktore information about transcription that takes
place at the same time or under the same conditions. In thes@rks, each gene
corresponds to a node and edges connect genes that areregsexp These net-
works are constructed by large-scale DNA microarray expents, and the un-
ordered composition of a pair of co-expressed genes leatth® tondirected nature
of the networks. Starting from microarray gene expressata,dhe concordance of
gene expression is measured with a Pearson correlatiomgngda Pearson cor-
relation matrix. According to a first type of model, this niatis dichotomized to
arrive at an adjacency matrix. Binary values in the adjagenatrix correspond to
an unweighted graph. Using this representation some geresoanected and all
connections are equivalent.

A more complex model takes into account edge weights to stdogmation
about the absolute value of the Pearson correlation. Intyipis of representation
all genes are connected and edge weights denote connecéngths between gene
pairs.

2.2.7 Genetic Interaction Networks

Inactivation of most genes, in any organism, has little@lisible gfects on cell func-
tioning under laboratory conditions. However, inactimgtispecific rare combina-
tions of such non-essential genes can have profotiiedts on the organism under
exactly the same conditions. In general, two genes are sajdrtetically interact if
a mutation in one gene either suppresses or enhances thetybheif a mutation
in its partner gene. In the graphs modeling genetic intemacgtetworks, nodes are
genes and edges represent genetic interactions.

2.2.8 The Cell: a Network of Networks

It is important to underline that all the kinds of biologicatworks discussed above
(e.g., metabolic, transcriptional regulatory or protpioetein interaction networks)
are not independent of each other inside the cell. For instahe state of the genes
in the transcriptional regulatory network determines tttévay of the metabolic net-
work. On the other hand, the concentration of metabolitékérmetabolic network
determines the activity of transcription factors or progaivhich regulate the expres-
sion of genes in the regulatory network. Thus, the bioldgieaworks together form
a network of networks inside the cell that determines thealvbehaviour of the
corresponding organism.
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2.2.9 Biological Network Modeling

On the more formal side, considering only unipartite graphsiological networkN

is commonly represented by a (possibly directed) g@ph= (VN, EN) (see Figure
[2.8). In this graph, the set of nodes (or vertice8) denotes a set of cell building
blocks (e.g., proteins, enzymes, metabolites, genes)anskt of edgeEN encodes
the interactions between pairs of nodes.

In the most general definition, each edge € EN takes the form of a triplet
el = (vi,v;,li,j) wherev,v; € VN are the interacting cell components apgdis
the label associated to that edge (in PINs, for example, dige éabel may encode
the reliability of that interaction to actually occur).

Fig. 2.6.An example of biological network grapN.

2.3 Protein Function Prediction

Proteins are essential parts of organisms and participat@tually every process
within cells. Many proteins work as biochemical catalysat&known also as en-
zymes, that catalyze the reactions occurring in living oigias. Proteins can also
interact with other molecules to perform storage and trarifpnctions. Moreover,
these fundamental components provide mechanical suppibgteape to tissues and
mechanical work as, for example, the muscular contrackorally, several proteins
have an essential role in decoding cellular informatiorer€fore, understanding the
functions performed by proteins within the cell is a key sgubioinformatics.

Recently, a large amount of protein sequences has been weitidke as a result
of whole genome sequencing project of many organisms. Heryés almost im-
possible to reveal their potential functions by experiraéntethods only. Moreover,
there is a fast increasing in the number of proteins whosetsires are known but
whose functions are not. Seeing that experimental methodg are not sfiicient,
a great attention is given to the computational approachesich plenty of protein
functions can be predicted simultaneously with reasoredsaracy. Therefore, com-
putational protein function prediction methods prove thelves a powerful tools for
biological research.

Protein function prediction methods can be basically diasksaccording to in-
formation sources:
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e Sequence-based approaches, that are the most basic méthegsxploit se-
quence alignment, sequence motif and domain information;

e Structure-based approaches, that make use of structéoahiation. They com-
pare whole three-dimensional shapes;

e Protein-protein interaction-based approaches. Thersereral diferent meth-
ods such as global mapping of unknown proteins or evidertegration in PPI
networks.

The fundamental idea of sequence-based protein functiedigiion is the de-
tection of similar protein sequences by database searchssyming that similar
sequences might have similar functions. For this purpasegral alignment algo-
rithms, such as BLAST [202], can be used. But it is importamtdte that(a) on the
one hand, similar sequences not always have similar fumetia (b) on the other
hand, dissimilar sequences have similar function at tinfibas, sequence space do
not correspond with function space.

Structure-based protein function prediction uses straéhdformation and is sim-
ilar to sequence-based prediction. The basic assumptibatiproteins with similar
structure might have similar function. Protein functionstsongly related with its
structure since a protein works by interacting with otheat@ins or chemicals and
its structure limits the possibility of its interaction mesd Moreover, structure simi-
larity could fill the gap that is overlooked with sequencedthmethods. In fact, low
sequence similar proteins may have a significant strucsinalarity.

Protein-protein interaction (PPI) information have detiered protein physical
interaction maps for several organisms. These physicatdntions are comple-
mented by the other types of information discussed in Sefi@ and shared evo-
lutionary history. The protein-protein interaction datande used to predict protein
function by the observation that if protepmand proteinp’ interact, they are func-
tionally close to each another. Moreover, similar protdiage similar interacting
patterns. Thus, ip and p’ interact withp; and p}, andp; and p; are similar, it is
possible to infer that alsp andp’ are functional related.

2.4 Biological Network Analysis

Cell behavior and function cannot be deeply understoodititra mere analysis of
its individualbuilding blockge.g., proteins, genes). In fact, biological processes reg
ulating cell life cycle stem from complex interactions argaell constituents. In the
last few years, several techniques have been developeddover such interactions
and the amount of data made available in several databagesii#® [175], MINT
[33], KEGG [94]) has grown steadily. These datasets promése and exciting in-
sights into the molecular machinery underlying biologisgstems. However, their
analysis is fraught with a range of mathematical and stegigbroblems. This is par-
ticularly true for protein-protein interaction datasethjch sufer from being incom-
plete and subject to high error rates (both false positigefalse negative). However,
to properly look up the large amount of available data anderigeful information,
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the design and development of automatic tools has becormmktilihese tools lever-
age Biological Networks as a formal model to encode mol&dntaractions among
cell building blocks. As already pointed out in Sectfon] 2Ptheir most basic ab-
straction level, biological networks can be representedgraphs, where groups of
connected biomolecules (corresponding to nodes of thényjfapllaborate” to form
relatively isolated biological functional unit (corresping to subgraphs). Biologi-
cal graphs can be fed as input to suitable graph-based tpawable to perform
topological and functional comparisons. Such techniquedo# specialized algo-
rithms to infer new information about cellular activity aedolutive processes of the
species, which allows to gain better understanding abeutidchanisms underlying
life processes [237].

A wide range of statistical and computational methods fergtructural, func-
tional and comparative analysis of biological networksehbgen developed. In par-
ticular, there are several ways to compare biological netsydbutnetwork align-
ment network integratiorand network queryinghave surely to be regarded as the
most significant one$ [181]. Figure P.7 summarizes the giogdich of these tasks.
Network alignments the process of globally comparing two or more networks of
the same type belonging toffirent species in order to identify similarity and dis-
similarity regions. Network alignment is commonly appliedietect conserved sub-
networks, which are likely to represent common functionatmes. As can be seen
in Figure[2.T, the input of a network alignment algorithm tave (or, possibly more)
biological networks of dferent organisms and the output are pairs (or, possible sets)
of subgraphs (or, possibly simpler structures, such aspathe for each input net-
work, that have been recognized to be similar. For instatiee jdentification of
conserved linear paths may lead to the discovery of siggaathways, as well as
conserved clusters of interactions (subgraphs) may quonekto protein complexes.
Network integrationis the process of combining several networks of the same
species, representingfiirent kinds of interactions (e.g., protein, metabolic), to
study their interrelations. Since each type of network seim$ight into a dierent
slice of biological information, integrating flierent network types may paint a more
comprehensive picture of the overall biological systemasrsudy. Commonly, net-
works to be integrated are defined over the same set of elenfeigt, the set of
proteins of a certain species), and the integration is aediby merging them into a
single network with multiple types of interactions, eachwn from one of the orig-
inal networks. As shown in Figufe 2.7, the input of a netwarlegration algorithm
are two (or, possibly more) biological networks defined dliersame set of elements
(corresponding to graph nodes) that stor@edent types of information (painted in
green for the first input network and in red for the second ofie¢ output is a new
network, defined over the same set of elements, that ineyedittypes of input in-
teractions. In particular, in the figure, the interactioetobging to only one of the
input networks are reported with the same color used in theesponding network
(green or red), while the interactions stored in both neka@re painted in black.
A fundamental problem is to identify, in the merged netwdtlgctional modules
that are supported by interactions of multiple types (fetance, the cluster of nodes
{ny, N2, N4, Ns, Ng} in Figure[2.7).
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Comparison of Biological Networks

Network alignment Network integration Network querying
Input Output Input Output Input Outpu

Fig. 2.7.Comparing biological networks: the three main ways.

Finally, network queryindechniques search a whole biological network to iden-
tify conserved occurrences of a given query module, whichbsaused for transfer-
ring biological knowledge from one species to another (@sgay within the same
species). Indeed, since the query generally encodes acheslicterized functional
module (e.g., the MAPK cascade in yeast), its occurrencésergueried network
(e.g., the MAPK cascade in human) suggest that the lattelrtfeen the correspond-
ing organism) features the function encoded by the formssiown in Figure 217,
the input of a network querying algorithm are a whole biotaginetwork (painted
in blue) and a query module (colored in violet) of the sametffpr instance, both
reporting protein-protein interaction information). Thatput are all the (possibly
approximated) occurrences of the query module into thetargtwork.

2.5 Concluding Remarks

In this chapter some biological and bioinformatics backgi knowledge, useful
to understand the subsequent chapters, has been givenulidensent parts of this
thesis will illustrate the state of the art, and several wative contribution irprotein
function prediction(Par{Il), network alignmen¢Par{Ill) andnetwork queryingPart

V).
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Protein Function Prediction: the State of the Art

Summary. In this chapter, the state of the art about protein function prediction willute o
lined. Firstly, in Sectiofi 311, the notion of “protein function” is discussduer, in Section
32 an overview of the dlierent methods proposed in the literature to predict protein function
is provided. Moreover, in the subsequent sections, two strandsedraswill be deepened:
guaternary structure prediction (Sectionl 3.3) and protein functiorigtied by PPI networks
analysis (Sectiopn 3.4).

3.1 Protein Function

The concept of protein function is not very well-defined. d&ctf this concept typi-
cally includes all the types of activities that a proteinngdlved in, from molecular
to physiological ones. Some categorizations of the typdaraftions a protein can
perform have been proposed in the literatlire [23, 7]. The dategorization[[23]
distinguishes among:

e Molecular function: the biochemical function performed &yprotein, such as
ligand binding, catalysis of biochemical reactions andfaomational changes;

e Cellular function: the function performed when many prosetome together to
perform complex physiological functions, such as operatibmetabolic path-
ways and signal transduction, to keep the various comperadrthe organism
working well;

¢ Phenotypic function: the integration of the physiologisabsystems, consisting
of various proteins performing their cellular functionegdahe interaction of this
integrated system with environmental stimuli.

Clearly, these three categories are not independent. tntfecmolecular function
category is a sub-category of the cellular function catggehich is, in its turn, a
sub-category of phenotypic function.

A widely used categorization is the Gene Ontology clasgifiosschemel[[7], which
categorizes protein functions into:
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e Cellular component: referred to the parts of a cell or itsapellular environment
where the protein is localized;

e Molecular function: the elemental activities of a protetritee molecular level,
such as binding or catalysis;

e Biological process: operations or sets of molecular eveitts a defined begin-
ning and end, pertinent to the functioning of integratethtivunits: cells, tissues,
organs, and organisms.

Often, the protein function prediction is referred to onerare of these cate-
gories. In the sense that functional annotation of suclyoaites are transferred from
characterized to uncharacterized proteins.

3.2 Protein Function Prediction

There are plenty of proteins which have a totally unknowrcfiom. For some of
these proteins only the amino acid sequences are knowrg ¥anibthers also pro-
tein structures have been provided by the structural gerso@nters. Since proteins
participate in virtually every process within cells, unstanding the functions they
perform therein is a key bioinformatics task. For this reaseveral tools have been
developed to infer protein function.

Among the existing software tools, some main strategiedbeatistinguished:

e homology search and transfer of annotations:
— sequence alignment
— structure alignment
¢ function inference by genomic context
— genomic sequences
— gene expression data
phylogenomic approaches
protein interaction networks

In the following paragraphs such strategies will be disedss more detail.

3.2.1 Homology Search and Transfer of Annotations

The most basic strand of approaches proposed for prediptioigin function is
based on homology search. These methods try to infer theownkfunction of a
protein by finding a protein, with a known function, havinther a similar sequence
or a similar structure.

Sequence homology is the classical methodology used to tinéefunction of
a novel protein. Indeed, sequence homology has been provbd #fective and
reliable for inferring protein function, although its afmalbility is limited to protein
for which substantial sequence similarity to annotatedgins can be found. In fact,
in a study involving over a million sequence alignments [[1B3was shown that
alignments with at least 30% sequence identity corresportide 90% of the cases
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to homologous proteins, while alignments whit the 25% olsege identity or less
identify homologous proteins only in the 10% of the casesdde the coverage
of methods that utilize sequence alignments may be limiteckkevant sequence
identity percentages to maintain reasonably low falsetpesiate.

Another methodology for protein function prediction is éd®n the observation
that, in many biological processes, the interacting e#titiave to come into physi-
cal contact in order to accomplish the desired task. Staftom this observation a
connection between structure and function can be detesitack the structure of a
protein determines several of its functional features lf@sady pointed out in Chap-
ter[2). Thus, proteins having similar structures have, Wigh probability, also sim-
ilar function. The prediction methods that are based ondh&ervation exploit the
structural alignment of protein. Such alignments atteropggtablish equivalences
between two or more polymer structures based on their shaptheee-dimensional
conformation.

Sequence Alignment

As already pointed out in the previous section, sequenceotomy is the classical
methodology used to infer the function of a novel protein.

The simplest way to discover sequence homology is to useiginna¢nt soft-
ware such as the Basic Local Alignment Search Tool (BLAST,)PI-BLAST [4]
or FASTA [161] to find possible homologs of a given protein égygence databases.
However, as already underlined in the previous sectionplgirtransfer of function
annotations from proteins having similar sequences maypruatuce very accurate
results, due to the weak correlation between the sequentéarfunction of pro-
teins.

This section discusses several approaches that have begospd to improve
sequence homology based techniques by exploiting sevdd#lanal information.
For instance, numerous approaches use standardized tomatzhemes, such as
the Gene Ontology. The use of GO annotations make the pratdsansferring
functional annotations organism-independent, since litaised on a hierarchically-
structured functional ontology. Several methods, suchrms-Blast [235], GOblet
[83] or GOtchal[134], that firstly align protein sequenced @nen filter the alignment
result exploiting statistical and machine learning teghes have been proposed.

Another direction in which homology-based function tramsfan be improved
is by making the process probabilistic. This goal can beeaet, for example, by
assuming that a protein can only belong to a functional ¢fatssBLAST score dis-
tribution with the members of the class is the same as th#d aiémbers themselves
[122].

Another family of approaches tackles subsequence analyisésobservation is
that often only specific parts of the whole sequence are artfoi the protein to
perform its function. Starting from this observation, soapproaches try to identify
useful portions of the protein sequence that may deternténfinction. However,
the meaning of “useful portions” is ambiguous even if two magfinitions are the
most common:
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e Motifs: that are subsequences conserved across a set efrpsatguences be-
longing to the same family. These subsequences are caesliftat functional
sites in proteins, such as sites for ligand binding, DNA bigcand interactions
with other proteins. Thus, motifs can be usefully exploifed predicting the
function of a protein.

¢ Domains: that are parts of protein sequences that can efahe&tion, and exist
independently of the rest of the protein chains. Each dorfaains a compact
three-dimensional structure and often can be independstable and folded.
Many proteins consist of several structural domains. Tinetian of a protein is
a combination of the functions of each of its domains.

The above definitions indicate that identifying domains amatifs can be use-
ful for predicting protein function. As mentioned earligrese subsequences provide
a new way of encoding the protein sequence in terms of fegtuvhich encode
whether a certain motif or domain is present in a sequenash feature representa-
tion can be modeled by a feature vector that must be calclilateach protein in the
target set. Then, various statistics and data mining tectesi, such as classification,
could be used in the prediction process. Many approachesitmsthis idea have
been proposed in the literature, which exploit both moti, (815, 127] 2118, 22] or
domains([1777, 30, 163].

Unfortunately, the approaches in this category do not abtatable results. One
reason is the lack of an unambiguous definition of subseaseihndeed, each of the
above mentioned approaches models the subsequence pattariterent manner.
In addition, the programs used to extract these sequent=mmare approximated,
and hence, add a source of error to the prediction process.

The third family of approaches for protein function pretiot which exploit se-
guence information are that based on features. The basiédde transform protein
sequences into more biologically meaningful featuresctvimhake the distinction
between proteins from fierent functional classes easier. Some examples of types of
features that can be extracted from sequences are:

e Sequence based attributes: such as the number of residthesdiferent types,
the length of the sequence, the molecular weight, norntNae der Waals vol-
ume, polarity or n-grams.

e Phylogeny based attributes: computed for instance thrtheghesults of a PSI-
BLAST search.

e Structure based attributes: such as secondary structtitmites.

Feature-based approaches use standard classificatioitratgoto learn models
of functional classes from the set of features, and theizatthis model to make
predictions for uncharacterized proteins [224,1223)103,/157[ 90, 91, 29, 57, 35].
The most commonly used classifiers in this class of appreaahe support vector
machines (SVM)129], neural networks (NN) [224, 223, 157q &ime naive Bayesian
classifier [[35].

Overall, it is clear from the above discussion that featumeed approaches are
better able to handle the function prediction task than Hogyor subsequence-
based approaches: this is because of the inclusion of molagigally meaningful
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features. This enables the construction of a more robusehfod the sequence-
function mapping.

Concluding, techniques that predict protein function freequence can be cate-
gorized into three classes, namely:

e Homology-based approaches: are those approaches baskd alighment of
protein sequences and the discovery of significant sequesit®logy. These
approaches are not always accurate and seviatehave been done to make
the search more accurate by exploiting probabilistic apgines or leveraging
other information (e.g., GO annotations).

e Subsequence-based approaches: often not the whole seqbehonly some
segments of it (corresponding to motifs or domains) are & for determin-
ing the function of a given protein. Hence, the approachekigcategory treat
these segments or subsequences as features of a proteirapriiese features
to protein function.

e Feature-based approaches: extract from the amino aci@segsome features
related to several physical and functional protein charétics. These features
are used to construct a predictive model, which can map ttarie-value vector
of a query protein into its function.

Analyzing the above categorization, it is quite clear thet subsequence and
feature-based approaches are very similar at the basik $éwee they involve the
construction of a model for the feature-to-function magpidowever, there are also
significant diterences between them. The most fundamenttdrdince is that while
subsequence-based approaches extract the featurem@amingful subsequences)
from a set of functionally related sequences, featureapproaches derive and
evaluate their features on the basis of individual protegugnces.

Structure Alignment

Sequence is only one aspect that has an influence on theduioéta protein. In fact,

to be able to perform their biological function, proteint&foto one, or more, spe-
cific spatial conformations, driven by a number of non covaieteractions such as
hydrogen bonding, ionic interactions, Van Der Waals formed hydrophobic pack-
ing. The functional behavior of a protein may hence be befteterstood by also
looking at its structure.

Some approaches that analyze the secondary [217, 66] aiatytestructures
[158,[117]/118] of proteins have been proposed in the litegatTertiary structures
reflect the physical characters of translated proteins,adied clues to the actual
mechanism of protein function. However, tertiary struetuare derived using rela-
tively costly and time-consuming experimental technigguesh as X-ray crystallog-
raphy and Protein nuclear magnetic resonance spectroghidfir). The number of
known tertiary structures is small as compared to the nurabprotein sequences
known. Moreover, tertiary structures cannot be alwaysbdji predicted from pro-
tein sequences, especially when appropriate templatetstes for homology mod-
eling are not available. Secondary structures, on the d¢thed, can beféectively
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predicted from sequences and used to complement sequemaddgy for function
prediction.

In several works it has been proved that the structure of gejords not tightly
correlated directly with its biological function, but it &orrelated with lower-level
functional features. Thus, functional features might bedu®er predicting the func-
tion of a protein from its structuré [183,182, 150, 203].

Leveraging these studies, some ideas for inferring funetiéeatures from the
structure of a protein have been proposed [141] [188, 68243, therefor, protein
structure can be used to predict protein function. Indeedersl researchers have
proposed various structural features and approachesotiéun prediction, which
can be classified into the following four categories:

e Similarity-based approaches: are those approathes [B5888] that, given the
structure of a protein, identify the protein with the mostigar structure by using
structural alignment techniqués [110, 113], and transddunctional annotations
to the query protein.

e Motif-based approaches: attempt to identify three-dinered motifs, that are
substructures conserved in a set of functionally relateteprs (e.g., the helix-
turn-helix (HTH) motif [129]), and estimate a mapping beémédhe function of a
protein and the structural motifs it contains. This mappgiden used to predict
the functions of unannotated proteins. However, note thattsiral motif finding
programs, (e.g., TESS [213], FFE_[69] and SPASM [107]) ratytleir own
definitions of a structural motif, since there does not exighiversally accepted
definition of this concept.

e Surface-based approaches: these approaches do not cchsidtructure of a
protein with respect to the distances between consecutiugoeacids, but repre-
sent it by a continuous surface. This representation halpentifying features
such as voids or holes in the surface. The idea here is tlahtitons between
proteins occur due to the complementarity of their molecslafaces. The ap-
proaches in this category utilize these features to inferftimction of proteins
[1085,[21] 65 63].

e Learning-based approaches: this category emplfigstéve classification meth-
ods, such as SVM and k-nearest neighbor, to identify the eqgstopriate func-
tional class for a protein from its most relevant structdeakures([102, 49, 214,
13].

3.2.2 Function Inference by Genomic Context

In the context of exploiting genomic information for protéunction prediction two
strands of research can be recognized. The first strand mentdee analysis and
alignment of genomic sequences while the second one makesfgene expres-
sion data. In the two subsequent paragraphs these two stodndsearch will be
discussed.
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Genomic Sequences

This section discusses some approaches exploiting ideésh vetem from the

genome resource for function prediction. In this domainstaf the studies fall

in the field of comparative genomic¢s [131] and, thus, theiappbns are oriented to
functional associations between genes or proteins ratharannotations for individ-
ual proteins. Also, it must be remarked that the approachtfss category are often
justified by evolutionary mechanisms. The approaches mexpto derive functional
associations from genomic data, and possible functionigtied, can be divided in

three categories [131]:

e Genome-wide homology-based annotation transfer: the meediate impact
of large-scale genome sequencing projects has been theagkcation of ex-
isting sequence-homology based approadhes [4] for fumaltiannotation trans-
fer. The availability of complete genomes of many organitedgo the creation
of databases of gene sequences [19] and the database @fr€fsDrthologous
Genes (COGs) [200]. The approaches in this category usénexdatabases for
searching for homologous of the query protein, with the ditnamsferring func-
tional annotations from the closest results.

e Gene neighborhood-based or gene order-based approdubssapproaches are
based on the hypothesis that proteins, whose correspogéings are close to
each other in multiple genomes, are expected to functipmatiéract [45/ 152,
153111108, 123].

e Gene fusion-based approaches: these approaches attadiggicteer pairs or sets
of genes in one genome that are merged to form a single geneihex genome
[132,[229] 60l 130]. Here, the underlying hypothesis is thase sets of genes
are functionally related.

As can be seen, approaches in the latter two categoriesiegetmmic context,
i.e. the location of a gene on the genome [Huynen et al. 2000].

Gene Expression Data

Gene expression is the process by which information fromree de used in the
synthesis of a functional gene product (i.e., a protein anational RNA). Gene ex-
pression experiments try to quantitatively measure thestndption phase of protein
synthesis and are obtained by microdﬁr@he primary advantage of gene expres-
sion experiments is that theyfer an éfective method for observing the simultane-
ous activity of thousands of genes under a given experirheatalition. Thus, gene
expression data holds great promise for determining thetifum and functional as-
sociations of proteins. Several repositories have beenpset order to make gene
expression data publicly accessiblel[16,]156, 12].

1 A 2D array on a solid substrate (usually a glass slide or silicon thin-film cell)asays
large amounts of biological material using high-throughput screenetaals.
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Usually, the format of gene expression data is very simgheyTare represented
by a rectangular matrix, in which the rows correspond to getie columns to condi-
tions, and the entries denote the expression measuremegeok under a particular
condition. Another important factor in microarray datalges is that the data used
in research is generally of two kinds: static and temporak Tirst category con-
sists of datasets containing snapshots of the expressiceriain genes in dierent
samples under the same conditions. The second one, alsmlawmtime-series gene
expression data, consists of datasets capturing the ekpnes certain genes of the
same organism at flerent instants of time.

Early approaches identified functional associations betvwgenes by measuring
the similarity between their expression profiles usingstiaal methods [212]. How-
ever, these studies usually required significant humanvaitgion, thus more generic
techniques from data mining were proposed. These techsicpre be grouped into
the following three categories:

e Clustering-based approaches: an underlying hypothesgjerad expression anal-
ysis is that functionally similar genes have similar expias profiles, since they
are expected to be activated and repressed under the sadiortn Approaches
in this category use unsupervised learning techniqueticparly clustering, to
group together genes on the basis of their gene expressifitepy and assign
functions to the unannotated proteins using the most damiiaction for the
respective clusters [56, 118, 148, 242, 226,1199] 241, 36,280128| 155].

¢ Classification-based approaches: the functions of somesgaay be known and
may act as class labels. Thus, a more direct solution to thiglgm of predict-
ing protein function from gene expression profiles is thesikcation. The ap-
proaches in this category firstly build various types of niedier the expression
function mapping by using classifiers and, then, explois¢hrodels to annotate
new proteins([24, 135, 115, 147, 239].

e Temporal analysis-based approaches: temporal gene sikpregperiments mea-
sure the activity of genes atftBrent instances of time (e.g., during a disease) and
this information can be used to predict protein functione Hpproaches in this
category derive features from this temporal data and ussiilzation techniques
to predict the functions of unannotated proteins [15/ 6128188 116/, 8, 139,
208].

3.2.3 Phylogenomic Approaches

The biological species existing today have evolved frormfive forms of life over
millions of years, and this process of evolution continwggtay. The changes in the
physiologies of diferent organisms have been driven by the changes at the cellu-
lar level, which include the adoption and surrender of fiom by proteins due to
changes in the genes encoding them. Thus, it is essentialtale the evolutionary
perspective in any complete understanding of protein fanct

As a result, several approaches for predicting proteintfanaising evolution-
based data have recently been proposed. The two most conaros 6f this data



3.2 Protein Function Prediction 35

are known as phylogenetic profiles and phylogenetic treas tlze field of biology
that deals with the evolutionary relationships among Mimganisms is also known
asphylogenetics

The phylogenetic profile of a protein is (generally) a binaegtor whose length
is the number of available genomes. The vector containsaue\ in theé™ position
if the i genome contains a homologue of the corresponding gene, ativise.
Some variations of these vectors use real numbers thattréféeextent of similarity
between the original gene and the best match in the genomg bearched. Thus,
these profiles provide a way of capturing the evolution ofegeacross various or-
ganisms. This information becomes useful for functionadayeics when it is seen
in the light of the phenomenon gpeciation which is the evolutionary mechanism
by which new species are created from currently existingone

It may be hypothesized that proteins which interact fumally correspond to
genes that are inherited across several genomes duringtspe@vents. Phyloge-
netic profiles are a powerful mathematical way of modeling ghenomenon, and
thus dfer a very innovative method for inferring functional assticins between
proteins, since the latter are expected to have very sipiiiglogenetic profile. This
is the basic assumption made by all the approaches for tmgtiediction on the
basis of phylogenetic profiles [162, 125, 2255846 240].

In several other studies, a more extensive representattievotutionary knowl-
edge is used. This representation is known as a phylogemetc The leaves of
this tree correspond to organisms and the internal nodest@éme hypothetical last
common ancestor (LCA) of all its descendents. The branap@esent evolution re-
lationships. Surely, phylogenetic trees embody a mucterisburce of knowledge
than phylogenetic profiles since the latter are construoteég on the basis of the
leaf nodes of the former, thus ignoring the hierarchicalctire of the evolution-
ary knowledge. The additional knowledge provided by thernmal tree nodes can
be used to extract further information about the patternvofugion of a set of pro-
teins. Thus, phylogenetic trees, if accurately constdjatan provide strictly richer
information than simple profiles. Still, both of these forofphylogenetic data to-
gether constitute a very rich pool of knowledge about evotuthat can be utilized
effectively for the prediction of protein function.

The studies that try to uncover gépmtein functions and functional linkages
using phylogenetic data such as profiles and trees can bsfiddsnto three cate-
gories:

e Approaches using Phylogenetic Profiles: these approachdsaaed on the hy-
pothesis that proteins with similar phylogenetic profiles functionally related
[162,125[ 225, 58, 46, 240].

e Approaches using Phylogenetic Trees: this category embdbbse approaches
that exploit phylogenetic trees to predict function. Mokthese approaches use
various data mining and machine learning techniques artlpeobetter results
than those based only on profiles|[55} 50,1159, 169, (187, 59].
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e Hybrid Approaches: these approaches use SVM-based temwiig combine the
two forms of evolutionary knowledge stored in phylogengtiofiles and trees
[210,145].

3.2.4 Protein Interaction Networks

Proteins do not work alone, but interacts with other bictagentities such as DNA,
RNA, as well as other proteins to perform their function. Elerthe function of a
protein may be inferred by looking at its interaction neighimnod.

The approaches that attempt to predict function from a prat¢eraction networks
can be broadly categorized into the following five categorie

¢ Neighborhood-based approaches: utilize the neighborbbibe query protein in
the interaction network to predict its functidn [178] 8461076, 26, 126, 137].
For instance, a basic technique belonging to this categssigias to the query
protein the most prevalent function among its interactirgeins.

e Global optimization-based approaches: consider thetstriof the entire net-
work and try to optimize an objective function based on theodations of all the
proteins in the network [119, 121, 209, 197]95,1142].

e Clustering-based approaches: are based on the hypothasidense regions in
the interaction network represent functional modules iictviproteins perform
the same function. Thus, the approaches in this categorly gpaph cluster-
ing algorithms to PPI networks and then transfer the funstiof characterized
proteins to unannotated proteins belonging to the same lm¢tR0, 52| 177].

e Association-based approaches: use several algorithniimfling frequently oc-
curring sets of interactions (subgraphs). The identifidehsaphs are supposed
to denote functional modules in which the majority of proteperform the same
function [86,[227| 34]. The basic idea of these approachssrigar to that of

the previous category. Theftérence is that in this case, patterns of interactions,

instead of clusters of nodes, are searched for.

e Comparison of protein-protein interaction networks: peedrotein function by
comparing the protein-protein interaction networks of twwomore organisms.
This way, an uncharacterized protein of one network is atadtwith the known
function of a protein in another network, so that the two gireg have the most
similar interaction patterns [14, 186].

3.3 Protein Quaternary Structure Prediction

Many proteins are composed of two or more subunits, eacltiassd with diferent
polypeptide chains. The number and the arrangement of #galforming a protein
are referred to aguaternary structureas already pointed out in Chapfér 2. The
quaternary structure of a protein is important, since itrabterizes the biological
function of the protein when it is involved in specific biologl processes. Unfor-
tunately, quaternary structures are not trivially dedigcfioom protein amino acid
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sequences and, thus, recently, some techniques have lmgmsed to provide pro-
tein quaternary structure classification[B8} [76,/191) 238]. Most of them aim at
classifying homo-oligomeric proteins.

The first software that has been proposed to predict proteitegnary structure,
called Quaternary Structure Explorer (QSE)![76], claspifgteins in two distinct
classes: homodimers and non-homodimers. This softwaasescbon the analysis of
protein amino acid sequences and useGHes classification algorithm. The evalu-
ation has been performed exploiting a dataset made of 163@+wdigomeric pro-
teins, extracted from SWISS-PROT [11], composed by 914 hamerd and 725
non-homodimers. According to this approach, each proteirepresented by 401
amino acid indices obtained by the AAindex databasel[106]akino acid index is
a list of 20 numerical values corresponding to physicalpubal, and biochemical
properties of the 20 common amino acids. The overall precisbtained during the
evaluation was 70%.

Another method proposed by Song and Teing [191] that corssimdy the two
classes of homodimers and non-homodimers introduced a reasure called func-
tion of degree of disagreement (FDOD). The FDOD is a meastimefarmation
discrepancy computed to measure discrepancies amongneeguand the set of
subsequence distributions. The subsequence distribigiaseful to take into ac-
count the &ect of residue order on protein structure. The approach ng %mnd
Tang exploited the FDOD in the classification process ancetaduation has been
performed on the same dataset exploited to evaluate QSEJu8ing the evalua-
tion both the resubstitution test and the 10-fold crosgdadibn test were performed
with different subsequence lengths ranging from 1 to 4. This techritained an
overall precision of 85%.

The last approaclih [238], which has been proposed to clgssifgin quaternary
structures into homodimers versus non-homodimers clasgdsits protein primary
sequences and uses both Support Vector Machines (SVM) amdtariant discrim-
inant algorithm. Each protein is represented by the amifb@mmposition and four
autocorrelation functions. According to the classicalm&én, amino acid compo-
sition consists of 20 components, representing the oaecer&equency of each of
the 20 native amino acids in a given protein. Since the amiitb@mposition alone
doesn’t take into account any sequence information, thecasiexploited also four
autocorrelation functions computed by exploiting the amanid index profile of the
primary sequence. The autocorrelation functions exglae:(i) FASG*: the auto-
correlation functions of amino acid residue index of Fasnf@nNISKP®: the auto-
correlation functions of amino acid residue index of NistvilaOoi; (i) WOLS®:
the auto-correlation functions of amino acid residue inofew/old et al;(iv) KYTJC:
the auto-correlation functions of amino acid residue indeKyteDolittle. This ap-
proach obtained a precision of 8% on the same dataset used by the two previously
discussed approachés [76, 191].

The techniques illustrated above [76, 191,1238] are abldastinduish just be-
tween two classes, that are homodimers and non-homodiidevgever, some ap-
proaches able to discriminate among a large variety of etalsave been proposed in
the literature.
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In this respect, the first proposed approach [38] exploispeudo amino acid
composition of proteins for representing each protein ast @fsdiscrete numbers.
The pseudo amino acid composition consists of-20discrete numbers, in which
the first 20 numbers are the same as the 20 components in #sécaleamino acid
composition, and the others represgsequence-order correlation factors. This rep-
resentation is more powerful than the standard amino agitpbosition, since it is
able to take into account a considerable amount of sequendez-and sequence-
length dfects. The dataset used in the evaluation was extracted WoIi8S-PROT.

In particular, the training set was made of 3174 homo-oligdoprotein sequences,
among which 382 were annotated with monomer, 817 with diB@3, with trimer,
884 with tetramer, 54 with pentamer, 287 with hexamer, aritivtifh octamer. The
independent dataset consisted in 332 protein sequencshjaf 50 were annotated
with monomer, 102 with dimer, 56 with trimer, 80 with tetram@ with pentamer,
28 with hexamer, and 10 with octamer. This approach reacheaverall success
rate of 801% on the independent set by performing resubstitutiork-kaife, and
independent data set tests.

The four approaches described abdve [76.] 191] 238, 38] iexpity protein
sequence information. Another notable approachl[233ieats exploits the func-
tional domain composition of proteins. According to thipresentation, each pro-
tein is represented as a binary vector in which ithile position is equals to 1 if
the protein contains thieth domain. This representation, as shown in some studies
[222,[101[ 39, 30, 232], is able to deliver important infotima about protein struc-
tures and functions. The approach is based on the nearggtboeialgorithm and
was evaluated performing a two stages evaluation. The fagesvas the jackknife
cross-validation test on a non-redundant dataset of 71féipsorepresented by 540
PFam domains. The second stage exploit the non-redundtagetdo classify an
independent dataset of9%1 proteins defined on the same set of 540 domains. This
approach obtained an overall success rate df7# in the first evaluation stage and
84.11% in the second one.

3.4 Protein Function Prediction by PPI networks analysis

In this section an overview of the methods proposed to preulatein function by
comparing protein-protein interaction networks is preddThree approaches have
recently been proposed to address this issue [14] 184, h8%ie following each of
these approaches will be discussed in detail.

The first approach that relies on the comparison of PPl n&sdd] is based
on a strategy to identify functionally related proteinswotprotein-protein interac-
tion networks. This approach exploits both sequence-basadin comparisons and
conserved protein-protein interactions across the twotinptworks. This approach
works in two stages. In the first stage the two PPI networksabgaeed using only
protein sequence similarities and, in particular, by asniy proteins to sequence
homology clusters using tHaparanoidalgorithm [171]. In the second stage, pairs
of proteins, one from each species, that are likely to rettaénsame function, are
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identified by performing probabilistic inference. In padtiar, the orthology relation
between each pair of possibly corresponding proteins waketad as a probabilistic
function of the orthology relations among their immediagdwork neighbors. Note
that, orthology relationships were inferred by using Gibampling. In the evalua-
tion phase, this approach has been used to resolve ambiguazignal orthology
relationships between thHg. cerevisiaandD. melanogastePPI networks. In par-
ticular, 121 cases, for which functional orthology assigntiwas ambiguous when
sequence similarity is used alone, were analyzed.

The second approach, called IsoRank [184], is an algorittmpdirwise global
alignment of PPI networks aiming at finding a corresponddrateseen nodes and
edges of the input networks that maximizes the overall matblis approach uses
both PPI network data and sequence similarity data to caarthetalignment. More-
over, the relative weights of the two data sources are freenpeters. The basic idea
is that a node in the first PPI network can be mapped to a ngdethe second PPI
network if the neighborhood topologiesicdnd j are similar, i.e., the neighbors of
can be mapped to the neighborsjoln particular, the algorithm works in two stages.
In the first stage, it associates a score with each possilifthrbatween the nodes of
the two networks. The scof; is the score associated to the pair of protejrfisom
the first network, ang, from the second network. The vectrrepresenting the set
of Rjs, is computed by constructing and solving an eigenvaluelpnobThis prob-
lem encompasses both network and sequence data. In thelstaga, the algorithm
builds the mapping by extracting from R high-scoring, p&@eymutually-consistent
matches. This stage is resolved by interprefihgs encoding a bipartite graph and
finding the maximum-weight bipartite matching for this gnapn particular, each
partition of the bipartite graph contains all the nodes fiame network and the edge
weights are set to the value froR At the end of the alignment, any unmatched
node represents a gap node. The system was used to ali§n tkeecvisia@and the
D. melanogastePPI networks and the common identified subgraph had 142&Gedge
After the alignment was performed, the results have beenwded to detect func-
tional orthologs using the same dataset exploited by Bgpatyayay et al[[14].

IsoRank [184] has been extended, in a subsequent work [i8%]ign multi-
ple PPI networks. In particular the five PPI networksSafccharomyces cerevisjae
Drosophila melanogasteCaenorhabditis eleganslus musculugsndHomo sapi-
enswere aligned. In this respect, the computation of the veRtsr made for each
pair of input networks. Since the authors consider more thhametworks in input,
the node mapping can be computed according twWiemint scenarioqi) one-to-
one mappings, that require that any node can be mapped toshatom® other node
per species{ii) many-to-many mappings, in which a node can be mapped to more
than one node in another networks. To compute the mappiaguthors exploit an
approximate multipartite graph weighted matching aldponit
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3.5 Concluding Remarks

In this chapter, the state of the art about protein functimedigtion has been dis-
cussed. The subsequent two chapters will present two ngypebaches proposed
to solve the function prediction problem according to twiiedent methodologies.
In particular, in Chapterl4 an approach based on the predidf protein quater-
nary structure is presented. In Chagter 5 a novel approaftmttional annotation
of proteins based on protein-protein interaction netwarksparison is discussed.
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Protein Quaternary Structure Prediction

Summary. This chapter describe a novel method for protein quaternary strymtedéction.
In particular, in Sectiof 411 some background information on proteitequary structure is
recalled and in Sectidn 4.2 a brief comparison with existing methods is outfeedior 4.8
discusses the classification method exploited in the prediction process Sedtinr{ 4% the
results of the experimental validation on both homo-oligomers and heligamers datasets
are reported.

4.1 Introduction

As pointed out in Chaptéd 3, protein quaternary structurelegted to the biological
function of the protein when it is involved in specific biologl processes.

While an increasing number of amino acid sequences is prddand stored
in public databases, the geometric conformation of a pnatan be determined by
slow and expensive methods (such as crystallography and 8{dBtrometry). Thus,
a plenty of computational methods have been developed itagifew years to
predict and classify protein secondary, tertiary and quatg structures[[30, 76,
138,167 2383]. The focus of this chapter is protein quatgraaucture prediction.
In particular, we deal with the problem offieiently exploiting available databases
of amino acid sequences in order to predict the number ofrstgonf a given protein.

In the rest of this section, we first briefly recall some basiscepts concerning
protein quaternary structure and then point out our comtiobs.

Background on protein quaternary structure

Several proteins (e.g., Hemoglobin) are a combination af &wmore individual
polypeptide chains or subunits. The arrangement into wéicth subunits assemble
is called theprotein quaternary structureQuaternary structure refers to the num-
ber of subunits involved in forming a protein, to their idennections and to their
organization[[108, 198]. Biological processes are oftdéilnémced by the quaternary
structure of proteins involved therein; e.g., the subumitstruction of many enzymes
provides the structural basis for the regulation of thetivies. Proteins having a
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quaternary structure are calletigomers and may be further classified asmo-
oligomers consisting of identical subunits, aheétero-oligomersmade of subunits
that are diferent from one another. Furthermore, based on the numberbohis
linked together, an oligomer may bedamer (composed by two subunits),tamer
(composed by three subunits)ietramer(composed by four subunits), and so on.
Proteins consisting of only one subunit are callesthomers

Contributions

In this chapter, a classification method to individuate thmber of subunits of each
protein of a given dataset is dicussed.

To this aim, protein functional domain information is exjal, as already success-
fully done in previous literature [233]. In particular, daprotein is encoded by a
vector whose elements are associated to PFam domains [t&thumber of sub-
units included in a given protein is then obtained by assigtihat protein to a class
(e.g., monomers, homodimers, etc.), on the basis of a prelialassified dataset
and of a suitable classification method.

As already discussed in Chapkér 3, a few approaches haverbeemntly intro-
duced to support protein quaternary structure classifiod88,[ 76/ 191/, 233, 238].
The most successful of them_ [233, 238] reach at most th&¥80f overall accu-
racy, and the maximum dataset size they considered is oft @00 proteins.
Furthermore, most of the quaternary structure classifinatiethods proposed in the
literature store the overall dataset, comparing each jorédebe classified to each
stored protein. This may result hard when large dataset® dre considered.

Our approach gives a contribution in the direction of redgdboth the portion
of dataset that is necessary to store and, consequentlguthber of comparisons
to carry out at classification time, allowing sensible spaed time savings, while
achieving very good accuracy figures.

In particular, we exploit a nearest neighbor condensagchriques (in particu-
lar, a recently introduced onel [6]) to replace the wholegirptlataset with a notable
subset that can be then used for the sake of fast proteinrgaagestructure pre-
diction. To this aim, we use a training set consistent sutosehe nearest neighbor
decision rule as reference dataset during classificatienT Lbe a dataset. Having
fixed a meaningful distance metrics, a sutSetf T is a training set consistent sub-
set of T for the nearest neighbor rule,$f correctly classifies all the objects ofby
means of the nearest neighbor rule.

To evaluate our method, we conducted two series of expetamdine first
series involved homo-oligomeric proteins while the second classified hetero-
oligomeric proteins. As for homo-oligomeric proteins, wansidered two dferent
kind of tests. First, we performed the 10-fold cross-val@aon a very large pro-
tein dataset including 2068 proteins taken from the SWISSPROTI[10] database.
The results confirmed thefectiveness of our approach. In fact, we scored an over-
all accuracy of 9774%, by using only the .61% of the total dataset. This result is
important, since pinpoints that our method can be adoptedn@ctly classify pro-
teins whose quaternary structures are unknown, significeaducing the portion of
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dataset to analyze. Such a reduction is particularly dibeam the case of protein
quaternary structures classification, where large daasetoften to be considered.
The second kind of tests concerns the exploitation of thikjsite cross-validation
on a non-redundant dataset already used to test anothexssfidctechnique pro-
posed in the literaturé [233]. Also in this case, the resu#iobtained show that our
method is more powerful than the previous ones, being abtdtain comparable
accuracy in the classification of quaternary structuresn éwusing only the 439%
of the whole dataset.

As for hetero-oligomeric proteins we performed the 10-foioiss-validation on a
very large protein dataset including,233 proteins again extracted from the SWIS-
SPROT database. In this respect, we conducted two typespefiments consid-
ering only PFamA domains and both PFamA and PFamB domairsa iAl this
case we obtained high accuracy values. Indeed, we obtaimpedc#sion score in
the range 9®3%-9903% by using a condensed dataset having a size in the range
2,76%-413% of the original dataset.

The rest of this chapter is organized as follows. Sedtiohbfiefly addresses
differences among our approach and the approaches that havprbpesed in the
literature and discussed in Chagiér 3. Sedfioh 4.3 descabeprotein quaternary
structure classification method and Secfion 4.4 presemg sxperimental results.
Finally, Sectiori 4.6 reports some conclusions.

4.2 Related Work

Recently, some techniques have been proposed for protatergary structure clas-
sification [38/ 76 191, 2338, 238] and a detailed descriptibsuch methods can be
found in Chaptel]3.

Most of them aim at classifying homo-oligomeric proteingtf€ently from all
of them, our approach has been used for classifying both kalilgomers and hetero-
oligomers. Moreover, all the approaches presented in theature use a dataset of
protein with known quaternary structure as training set, alwding the prediction
stage, compare the query protein to each protein in thangset. Diferently from
them our approach extract a consistent subset of the tgpg@hto reduce both time
and space requirement at classification time. In the follgwa more detailed com-
parison is carried of.

The techniques presented in [76, 191,]238] are able to dissh just between
two classes, that are homodimers and non-homodimers, adenar approach is
able to discriminate among any number of classes. In thigertsour method is
more similar to other two recently proposed approaches238].

Moreover, four of the five approaches presented in the titeea 76,[191] 238,
38] exploit only protein sequence information, without aegard for protein domain
composition. Our method is flierent, as we consider the protein domain composi-
tion that, according also to other studies [222,]1101)39[23@], is able to deliver
important information about protein structures and fumtdi which may be related
to protein quaternary structure. In this respect, the mosta approach is the one
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by Yu et al [233] which also exploits the functional domaimgmosition of proteins
and the nearest neighbor algorithm (NNA).

Therefore, in our experiments, we used the same non-redtiddtaset exploited
by Yu et al. [233], enriched in the number of considered doisiadbbtaining some
accuracy improvements (see Secfiod 4.4). Bufedently from their method, which
exploits ageneralized distanc@vhich is not a metric) in the classification method,
we used the Jaccard distance as the distance metric. Fagresrour technique is
more dficient than the one proposed by Yu et al. and, in general, tteaother related
techniques, due to its ability of classifying proteins weith the necessity of making
comparisons with all the elements of the dataset. Indeecareable to extract a
relatively small subset of the training set to carry out saatiassification without
any significant loose in precision.

To summarize, our approach is more general than some of ¢éhéops methods
[76,[191,238], that are specific for the classification ofyamlo classes of protein
quaternary structures. Furthermore, we exploited theeproepresentation which is
shown to be the most complete in terms of protein functiamf@rmation (i.e., func-
tional domain composition), and we achieve high accuratyegeven if exploiting
small dataset portions. All these features grant to our atettighest overall suc-
cess rate than the other ones presented in the literatui®®y, making it attractive
especially when large protein datasets have to be handled.

4.3 Classification through PQSC-FCNN

In this section, the classification method exploited tovitdliate the number of sub-
units of each unclassified protein of a given dataset is de=ttrin the following we
will refer to as PQSC-FCNN, for Protein Quaternary StruetQtassification through
FCNN rule, to the classification method here presented.derdio design anfeec-
tive and dficient classification method, fiierent issues are to be addresg@dthe
feature space and distance metrics to ad@pthe classification algorithm, ar(di)
the suitability of the overall method.

As already pointed out, most of the quaternary structuresdiaation methods
proposed in the literature store and use the whole availddti@set as training set,
comparing each protein to be classified to each stored prokais may result hard
when large datasets are considered. Hence, we would likeattichlly reduce the
portion of the dataset that is necessary to store and, coestly the number of
comparisons to carry out, allowing sensible space and taviegs.

To this end, we exploit protein functional domain inforneati and encode each
protein by a binary vector whose elements are associateldamélomains [17]. We
adopt the Jaccard metric as our distance measure and ekglkinearest neighbor
rule [42,[196,[48], one of the most extensively used nonparamelaissification
algorithms, which is simple to implement and yet powerflieTationale underlying
this choice is that, for this classification rule, there egfBcient techniques to reduce
both space and time requirements.



4.3 Classification through PQSC-FCNN 45

In the following, the adopted protein representation,affise metrics, classifica-
tion rule, and data reduction method are detailed.

Protein representation

To characterize proteins, we adopted the functional dormaimnposition, since this
kind of representation has been proved to be successfufduratie specific problem
we analyzed[[233], and for the solution of other related f@ails, such as the pre-
diction of protein-protein interactions [222, 101], of pgim structures [39] and of
protein functions[[30, 232]. Protein functional domaine alements of the protein
structure that are self-stabilizing and often fold indegeantly of the rest of the pro-
tein chain. According to the functional domain compositiamprotein is represented
by a binary vector with size equals to the number of explaitehains. In particular,
let D be an ordered set of protein domains, which have been caoadittecharacter-
ize the proteins in a dataset Then, each proteip € P is represented by a vectog
of |D| elements. The elemewf[i] is set to be one ip contains the-th domain inD,
zero otherwise.

Distance metrics

We used the Jaccard metrics as our distance metrics, whiehyisuitable for binary
data. In particular, the Jaccard distance between twoipregetorsv,; andvy, is

defined as: N, +n
d(Vp1. Vpo) = —————
N+ N2+ N3

where:

e nyis the number of domains belonging to bgthansps;
e nyisthe number of domains belonging e and not top,;
e ngisthe number of domains belonging e and not top;.

Classification rule

The nearest neighbor rulg42] is widely used as a classification algorithm. It is
simple to implement and yet powerful, due to its theorefraperties guaranteeing

that for all distributions its probability of error is boued above by twice the Bayes

probability of error.

The nearest neighbor decision rule can be generalized toatbe in which the
k nearest neighbors are taken into account. In such a case; abject is assigned
to the class with the most members present amond thearest neighbors of the
object in the training set. This rule has the additional propthat it provides a good
estimate of the Bayes error and that its probability of easymptotically approaches
the Bayes errof [73].

The naive implementation of the NN rule has no learning phsiaee it requires
to store all the previously classified data, and then to coengach sample point to be
classified to each stored point. In order to reduce both spade¢ime requirements,
several techniques to reduce the size of the stored dataddiM rule have been
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proposed (se€[221] for a survey). In particular, amongeheshniques, thigaining
set consisterines, aim at selecting a subset of the training set thatatyraassifies
the remaining data through the NN rule.

Data reduction

In order to reduce the reference protein quaternary streickataset used during clas-
sification, we exploited the Fast Condensed Nearest Neighit® [6], FCNN for
short,that is an algorithm computing a training set cobsissubset for the NN rule.

Informally, having fixed a meaningful distance metrics ardhtasefl, a subset
S of T is a training set consistent subsetToffor the nearest neighbor rule,
correctly classifies all the objects ®fby means of the nearest neighbor rule. Thus,
loosely speaking, the objects of the subSetan be regarded as representing the
objects of T which are not inS, and training set consistent subset methods for the
nearest neighbor rule can be regarded as methods to filtdataget instances which
can be considered unessential to correctly classify neaniirtg objects.

The method is recalled next. We provide some definitions fik&t defineT as
a labeled training set from a metric space with distanceiosett. Letx be an el-
ement of T. Then we denote byn(x, T) the kth nearest neighbor of in T, and
by nns(x, T) the setinn(x, T) | 1 < i < k}. [(X) will be the label associated ta
Given a pointy, thek-NN rule NNk(y, T) assigns tg the label of the class with the
most members present ims(y, T). A subsetS of T is said to be &-training set
consistent subset of if, for eachy € (T — S), I(y) = NNk(y, S). Let S be a subset
of T, and lety be an element 0&. By Vor(y, S, T) we denote the sk € T | VY €
S, d(y, X) < d(y, X)}, that is the set of the elements Bfthat are closer tg than to
any other elemeny of S, called theVoronoi cellof yin T w.r.t. S. Furthermore, by
Voren(y, S, T) we denote the s¢k € (Vor(y,S, T) — {y}) | I(X) £ NNk(x, S)}, whose
elements are calledoronoi enemiesfyin T w.r.t. S. Centroid¢T) is the set con-
taining the centroids of each class labeTinThe FCNN rule relies on the following
property: a seS is a training set consistent subseflofor the nearest neighbor rule
if for each elemeny of S, Voren(y, S, T) is empty.

The FCNN algorithm initializes the consistent sulfSetith a seed element from
each class label of the training setIn particular, the seeds employed are the cen-
troids of the classes ifi. The algorithm is incremental. During each iteration the
setS is augmented until the stop condition, given by the propabigve, is reached.
For each element @, arepresentativelement ofVoreny, S, T) w.r.t.yis selected
and inserted int®. Such a representative element it is the nearest neighbomof
Vorenly, S, T), that is, the elememin(y, Voren(y, S, T)) of T.

As for the time complexity of the method, IStdenote the size of the training set
T and letn denote the size of the computed consistent subs€hen the FCNN rule
requiresN ndistance computations to compare the elemenitswith the elements of
S. However, if the distance employed is a metric, a technioqupéoéing the triangle
inequality further reduces this worst case computatioosi &].
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[ Large dafaset ]

% Accuracy

Classes [ PQSCFCNN k=2 || PQSCFCNNk=3 || PQSCFCNNKk=4 |

[[ Corr/Tot [% Accuracy|| Corr/Tot [% Accuracy|| Corr/Tot [% Accuracy |

% Accuracy

Classes 2-FCNN 3-FCNN 4-FCNN
Monomer 6,114/6,184] 99.45% 6,130/6,184] 99.13% 6,135/6,184] 99.21%
Homodimer 8,408/8,690| 96.75% ||8,427/8,690, 9697% ||8,402/8,690| 96.68%
Homotrimer 1,154/1,190, 96.97% 1,150/1,190, 96.64% 1,136/1,190, 95.46%
Homotetramer 2,422/2513 96.38% |(2,452/2,513] 97.57% ({2,380/2,513] 94.71%
Homopentamer 232/237 97.89% 232/237 97.89% 232/237 97.89%
Homohexamer 759/784 96.81% 761/784 97.07% 742/784 94.64%
Homoheptamer 4/5 80.00% 4/5 80.00% 4/5 80.00%
Homooctamer 457/465 9828% 458/465 9849% 458/465 98.49%
Overall 97.60% 97.74% 97.11%
(% Dataset Exploitation]] 6.43% T 6.51% T 6.70% |

Table 4.1.Precision of 2-FCNN, 3-FCNN, 4-FCNN on a,p@8 protein dataset.

4.4 Experiments

In this section, we illustrate the experimental evaluatbthe method proposed in
this chapter.

To build our datasets, we downloaded proteins from the SWRESPdatabagke
[10] and domains from the PFam datalfafE7]. We conducted two series of ex-
periments. The first series involved homo-oligomers wliiikegecond one conserned
hetero-oligomers.

Homo-oligomeric proteins

As for homo-oligomeric proteins, we considered twfigtient experiments. The first
experiment consisted in running the 10-fold cross-vailichabn a very large protein
dataset consisting of 268 proteins. The number of considered domains84a.
The results of this experiment are shown in Tdblé 4.1. The dokimn of the ta-
ble contains the homo-oligomeric class names, the secbird, and fourth ones
report both the number of correctly predicted proteinstwiheir total number and
the percentage of accuracy scoredRQSC-FCNNfor k = 2, k = 3 andk = 4,
respectively, for each class. In the last two rows of theetathle overall accuracy and
the percentage of exploited dataset are reported. Thenataesults confirmed the
effectiveness of our approach. In fact, the maximum overattesgrate obtained on
the entire dataset is of the 4%, and the minimum dataset exploitation was drasti-
cally reduced to the.83% of the original dataset. In general, as for the classifioa
accuracy the three values lofvere comparable, being equivalent on the homopen-
tamers and on the homoheptamers, while onlykfer 3 and fork = 4 the method
returned the same results for homooctamers.

Table[4.2 shows detailed information about the condensiegeserated by the
method on the overall dataset of,@68 proteins. In particular, for each class, both

1 httpywww.ebi.ac.ukswissprot
2 httpy/www.sanger.ac.yBoftwargPfany



48 4 Protein Quaternary Structure Prediction

[ Condensed set ]

Classes PQSC-FCNN k=2 PQSC-FCNN k=3 PQSC-FCNN k=4
Number of| Percentage| Number of | Percentagd| Number of| Percentage
elements elements elements

Monomer 98/6,184 | 1.58% || 153/6,184 2.47% || 157/6,184| 254%

Homodimer 643/8,690| 7.40% || 649/8,690| 7.47% || 718/8,690| 8.26%

Homotrimer 145/1,190| 1218% || 101/1,190| 8.49% 108/1,190| 9.08%
Homotetramer || 197/2,513| 7.84% 199/2,513| 7.92% 157/2,513| 6.25%
Homopentamer|| 17/237 7.17% 17/237 7.17% 17/237 7.17%
Homohexamer 74/784 9.44% 74/784 9.44% 79/784 10.08%

Homoheptamer| 3/5 60.00% 3/5 60.00% 3/5 60.00%
Homooctamer 29/465 6.24% 29/465 6.24% 29/465 6.24%
Overall 1,206 6,01% 1,225 6.10% 1,268 6.32%

Table 4.2.Condensed sets related to the dataset diG®proteins.

the number of elements of the condensed set belonging toltes, and the reduc-
tion percentage w.r.t. the total number of elements in tlats; are reported. The
number of elements and the reduction percentage of the lbeeralensed set are
shown on the last row of the table. By using all the three \&loik (that are 2,
3 and 4) the method extracted condensed sets with the sampesizlass for ho-
mopentamers, homoheptamers and homooctamers. For thénaptamer class, the
reduction percentage was notably higher than for the otlasses, due to the few
elements belonging to that class (only 5). The reductiorg@age on the overall
dataset was.81% fork = 2, 6.10% fork = 3 and 632% fork = 4. This shows the
power of the method, as it is fiicient to explore only a bit more than the 6% of the
overall dataset to (most probably) classify a new protein.

In order to compare our method with a related one, in the sb&ord of ex-
periments we considered the non-redundant protein datesseissed by Yu et al. in
[233]. The main goal of this comparison is to show that ourhradtmay have ac-
curacy comparable to those of related methods, while signsiiucing the amount
of labeled data to exploit during the classification. In jgater, we point out that
the method presented in [233] utilized a non redundant eersi the overall protein
dataset in order to cope with problems associated with neanagt of large data
sets. As we will show in the following, our method is able tdvieaeven this non
redundant dataset, while maintaining the same accurat¢yeatmpetitor method.

Yu et al. adopted an approach based on the functional doroaipasition and
employed the nearest neighbor algorithm (NNA) to classibtgin quaternary struc-
tures. They represented the 717 considered proteins by &#@ids. Here, we en-
larged the number of considered domains, 258 in order to obtain a more accurate
data representation. Thus, we compaP€B5C-FCNNvith NNAby running the jack-
knife cross-validation on the non-redundant dataset, Imgidering the same, 253
domains representation for all methods.

We runPQSC-FCNNexploiting the Jaccard metric, wherddblA has been run
with the generalized distance exploited[in [233]. The ressaite illustrated in Table
[4.3. The first column of the table contains the homo-oligaceasses, the second,
third, fourth and fifth ones illustrate both the number ofreotly predicted objects
w.r.t. the total number of them and the percentage of acgusacred byPQSC-
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[ Non-redundant dataset ]

Classes PQSC-FCNN k=2 | PQSC-FCNN k=3 | PQSC-FCNN k=4 NNA

Corr /Tot[% Accuracy | Corr /Tot[% Accuracy [Corr /Tot[% Accuracy || Corr /Tot[% Accuracy
Monomer 177/208| 8510% |174/208| 8365% |[178/208| 8558% 168/208| 80.77%
Homodimer 250/335| 74.63% |250/335| 74.63% |263/335| 7851% 268/335| 80.00%
Homotrimer 28/40 70.00% 27/40 67.50% 27/40 67.50% 28/40 70.00%

Homotetramer 53/95 55.79% 52/95 54.74% 42/95 44.21% 53/95 55.79%
Homopentamer || 11/11 10000% | 11/11 10000% | 11/11 10000% 11/11 10000%
Homohexamer 9/23 39.13% 9/23 39.13% 10/23 4348% 7/23 30.43%

Homooctamer 2/5 40.00% 2/5 40.00% 2/5 40.00% 2/5 40.00%
[Overall accuracyl] 73.92% [ 73.22% [ 74.34% T 74.90% |
% Dataset 46.79% 47.35% 4539% 100%
Exploitation

Table 4.3.Comparison of precision scores obtained by PQSC-FCNN and NNA.

FCNNfor k = 2, fork = 3 and fork = 4, andNNA, respectively, for each considered
class. In the last two rows of the table, the overall accuean/the percentage of ex-
ploited dataset for each method are reported. We can obgetall the considered
techniques returned the same results for the two classesnodentamers and ho-
mooctamers. The only class for whiBIQ SC-FCNNloes not obtain higher accuracy
than theNNA s the homodimer class. However, for= 4 it obtains a success rate
of 7851% for that class, w.r.t. the 8% scored by th&INA and thus, also in this
case, the two methods achieved comparable results.

For the homotrimer and the homotetramer classesP®E8C-FCNNor k = 2
and theNNA had the same accuracy scores, whereas in the remaining (Cases
monomers and homoexamer§QSC-FCNNalways scored better accuracy than
NNA also with some sensible improvements. In particularkfer4, PQSC-FCNN
scored the accuracy value of .BB% for monomers, which is about84% higher
than the success rate obtained by A whereas it scored the accuracy value of
43.48% for homohexamers, which is aboutQ&% higher than the success rate ob-
tained by theNNAfor the same class and represents the best accuracy impgovem
w.r.t. NNAwe obtained.

These results are significant since, for monomers and haanoers, our method
has been able to obtain more accurate results MdA while exploiting only the
45.39% of the overall dataset, whereas the methods by Yu et3d] ffbes not feature
any dataset reduction. Summarizing, fP@SC-FCNNmethod is able to reach an
overall success rate that is greater thanNIN&, even if it exploits only the 439 —
47.35% of the original dataset. This means tRQSC-FCNNs more dficient than
the method([233], allowing both time and space savings withoy significant loss
in accuracy but, rather, often allowing success rate imgr@nts.

Hetero-oligomeric proteins

As for hetero-oligomeric proteins, we performed two typexgperiments. In the first
type, we considered both PFamA and PFamB domains for progpiresentation,
while in the second one we considered only the PFamA dom#@fasexecuted the
10-fold cross-validation on a very large protein dataseluiting 33273 proteins,
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[ Hetero-oligomers dataset PFamAPFamB domains

Classes PQSC-FCNN k = 2 PQSC-FCNN k=3 PQSC-FCNN k=4
Corr/Tot  |% Accuracy Corr/Tot  |% Accuracy Corr/Tot  |% Accuracy

Monomer 14681/14,801] 9919% [[14,640/14801] 9891% [[14,653/14,801] 99.00%
Heterodimer 9,331/9,632 96.88% 9,323/9,632 96.79% 9,357/9,632 97.14%
Heterotrimer 1,379/1,438 95.90% 1,376/1,438 95.69% 1,352/1,438 94.02%
Heterotetramer 6,017/6,157 97.73% 6,061/6,157 98.44% 6,077/6,157 98.70%
Heteropentamer 25/29 86.20% 25/29 86.21% 23/29 79.31%
Heterohexamer 778/798 97.49% 783/798 9812% 782/798 98.00%
Heterooctamer 409/418 97.84% 409/418 97.84% 408/418 97.60%
Overall 98.04% 98.03% 98.13%

(% Dataset Exploitation]] 3.66% I 3.84% I 4.13% |

Table 4.4. Precision of 2-FCNN, 3-FCNN, 4-FCNN on a,233 protein dataset.

[ Hetero-oligomers Condensed sets PFan¥PFamB domains ]

Classes PQSC-FCNN k = 2 PQSC-FCNN k=3 PQSC-FCNN k = 4
Number of |Percentage| Number of |Percentage| Number of | Percentage
elements elements elements
Monomer 135/14,801] 0.91% [|220/14,801] 1.49% |[203/14,801] 1.37%

Homodimer 612/9,632| 6.35% 600/9,632| 6.23% 673/9,632| 6.99%
Homotrimer 116/1,438| 8.07% 96/1,438 6.68% 102/1,438| 7.09%
Homotetramer || 199/6,157| 3.23% 203/6,157| 3.30% 240/6,157| 3.90%
Homopentamer| 10/29 34.48% 10/29 34.48% 11/29 37.93%
Homohexamer || 49/798 6.14% 50/798 6.27% 55/798 6.89%
Homooctamer 23/418 5.50% 23/418 5.50% 25/418 5.98%
Overall 1,114 3.44% 1,202 3.61% 1,309 3.93%

Table 4.5.Condensed sets related to the dataset (fB3Bproteins.

extracted from the SWISSPROT database. As for the first exigati involving both
PFamA and PFamB domains, we exploite88® domains. The obtained results are
shown in Tabl€4]4. The maximum overall success rate olttainghe entire dataset
was of the 98.3%, and the minimum dataset exploitation was drasticaitiuced

to the 366% of the original dataset. In general, as for the classidicaccuracy the
three values ok were comparable.

Table[4.5 shows detailed information about the condensegeserated by the
method on the overall dataset of,333 proteins. The training set consistent subset
extracted from the whole dataset has a size equals ta4dé&afork = 2, 361% for
k = 3 and 393% fork = 4 of the size of the original dataset. This shows the power
of the method, as it is sficient to explore less than the 4% of the overall dataset to
(most probably) classify a new protein.

Table[4.6 and Table 4.7 show the results obtained on the satased of hetero-
oligomers using only PFamA domains in the protein repregimt. As it can be
noted, the size of the exploited dataset is of8BY proteins, thus it is even smaller
than the previous one. The reason is that some proteins wenpased only of
PFamB domains and, in this experiment, they were deletee.nfdximum overall
success rate obtained on the entire dataset was of tB8%9 and the minimum
dataset exploitation was drastically reduced to th&6% of the size of original
dataset. Also in this case, as for the classification acyguttae three values ok
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Hetero-oligomers dataset Only PFamA domains ]

Classes PQSC-FCNN k = 2 PQSC-FCNN k=3 PQSC-FCNN k=4
Corr/Tot  |% Accuracy Corr/Tot  |% Accuracy Corr/Tot  |% Accuracy
Monomer 14500/14533] 99.77% [[14479/14533] 99.63% |[[14478/14533] 99.62%
Heterodimer 8,994/9,200 97.76% 8,979/9,200 97.60% 8,996/9,200 97.78%
Heterotrimer 1,355/1,378 98.33% 1,334/1,378 96.81% 1,334/1,378 96.81%
Heterotetramer 5,515/5,543 99.49% 5,511/5,543 99.42% 5,503/5,543 99.28%
Heteropentamer 22/23 95.65% 22/23 95.65% 22/23 95.65%
Heterohexamer 765/778 9833% 765/778 9833% 759/778 97.55%
Heterooctamer 347/352 9858% 348/352 98.86% 345/352 98.01%
Overall 99.03% 98.84% 98.84%
(% Dataset Exploitation]] 2.76% I 2.98% I 3.08% |

Table 4.6. Precision of 2-FCNN, 3-FCNN, 4-FCNN on a, 807 protein dataset.

[ Hetero-oligomers Condensed sets Only PFamA domains ]

Classes PQSC-FCNN k = 2 PQSC-FCNN k=3 PQSC-FCNN k=4
Number of|Percentage| Number of | Percentage| Number of | Percentage
elements elements elements
Monomer 97/14533| 0.67% |{166/14533] 1.14% |{161/14533] 1.11%

Homodimer 434/9200| 4.72% ||6451/9,200, 4.90% 496/9,200| 5.39%
Homotrimer 84/1,378 6.10% 65/1,378 4.72% 69/1,378 5.01%
Homotetramer || 133/5,543| 2.40% 133/5,543| 2.40% 114/5,543| 2.06%
Homopentamer| 5/23 21.74% 5/23 2174% 6/23 26.09%
Homohexamer || 44/778 5.66% 45/778 5.78% 50/778 6.43%
Homooctamer 17/352 4.83% 17/352 4.83% 18/352 5.11%
Overall 814 2.56% 882 2.77% 914 2.87%

Table 4.7.Condensed sets related to the dataset @®1proteins.

were comparable and the 3-FCNN and 4-FCNN obtained the sasuéts. As for
the condensed sets generated by the method, the trainingrssistent subset ex-
tracted from the whole dataset has a size equals to.B&@2fork = 2, 277% for
k = 3 and 287% fork = 4 of the size of the original dataset.

Summarizing, the?QSC-FCNNmethod is able to reach a good classification
precision even if it exploits only a very small portion of theginal dataset. This
means thaPQSC-FCNNs a powerful tool, allowing both time and space savings.

4.5 Concluding Remarks

In this chapter a classification method for protein quateretuctures has been pro-
posed. This method exploits protein functional domainrimfation and the FCNN
rule. Experimental evaluations showed that this approgahle to reduce the portion
of protein dataset that is necessary to store, by extrag@oimaining set consistent
subset, and, this, the number of comparisons to carry ourglthre classification of
a new protein, allowing sensible space and time savings gwaranteeing high val-
ues of accuracy. Some tests carried out on homo-oligomeddatero-holigomeric
proteins have been illustrated, confirming the validityted approach.

In the next chapter a novel approach for the prediction ofgincfunctions by
comparing PPI networks will be described.
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Br-Grappin:Functional Similarity Search by PPI
Network Analysis

Summary. This chapter describes a method for predicting protein function by congpte
protein-protein interaction networks of two species. Sedfich 5.1 prowde® background
information about the comparison of PPI networks. Sedfioh 5.2 pietes B-Grarpiv al-
gorithm along with some application cases. In Secfioh 5.4, the results okpezimental
evaluation of B-Grappin and the comparison with other algorithms is outlined. Finally, in
Sectior[5.b some conclusions are drawn.

5.1 Introduction

The problem of identifying conserved functional composetross species is a cen-
tral problem in biology. After the hugdferts that have been made toward complet-
ing the genome coding of several organisins [41], a large afeattention is now
turning toward the analysis of the ever increasing amouanobtated proteins. The
observation that biological variations caused by evolutitfluence the ways pro-
teins interact with one another, recently persuaded bist®that a protein cannot be
analyzed independently of the other proteins particigaiimio common biological
processes [211]. The set of all the protein-protein intisas of a given organism
is its interactome Theinteractomes usually modeled by an indirect graph, i.e., the
protein-protein interaction (PPI) network, where, asadiediscussed in Chapter 2,
nodes represent proteins and edges encode their interadiimtein interactions are
usually discovered by high-throughput experimental tespines [89] 114] and com-
putational methods [140, 2111]. In both cases, the resuititaractions to hold are
not completely reliable’ [193], as also testified by sevepactfic studies[[9]_47].
Clear enough, the limited reliability of such data may ptitdly affect any attempt
to extract useful information from them.

In this chapter, we deal with the problem of searching focfiomal conservation
across interaction networks offtirent organisms. This problem has been already
considered in the literaturé [14, 171,197, 182, [184]. Moreoseveral approaches
related to the work presented in this chapter have alreaélly biscussed in detail in
Chapte[B. Our technique, called-Brarriv (Bipartite GRAph based Protein-Protein
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Interaction Networks analysis), is inspired by an approfachmatching database
schemes [154]. BGrarpiN is based on the computation of the maximum weighted
matching [74] on bipartite graphs and aims at “measuringgd dimilarity between
pairs of nodes of two networks. The intuition here is that@tgin in one network
should be actually considered similar to a protein in theeotietwork as long as
they are not only characterized by a good sequence singjlarit also by similar
interaction profiles (here referred to msighborhoodg[14,(62,[184]. In particular,
we consider the sequence similarities between proteinsfidrent networks and
refinethem by analyzing the similarities of their neighbor progeiln more detail,
we adopt a concept of “neighborhood” that isfeient from that adopted in some
related work (e.g.,[[14, 184]). This new definition of neightiood is not simply
related to the number of edges connecting two nodes but/yntuisthe weights of
edges. Surely, when information about weights is not avkg|aur definition can be
reduced to the one that assign to theeighborhood of a given protein all the proteins
connected to it by a path of lengith

Bi-Grarpin is independent of the topology of the analyzed networks aptbk
vides the possibility to incorporate both quantitative aglthbility information dur-
ing the analysis. In particular, information about the isth of the interaction of
two proteins, related to physical-chemical features [ILB3], is exploited indepen-
dently of plausibility information about that interactiémreliably hold. On its turn,
reliability depends on the way by which the interaction wssalvered — laboratory,
high-throughput or computational methods. Thereforefwiekinds of information
are meant to play a fferent role in the similarity search. At the best of our knowl-
edge, this is the first attempt in this direction.

The proposed approach can be summarized as follows. GieRBAInetworks,
B1-Grarpin considers each pair of proteing’( p”’) from the first and the second
network, respectively. If the two proteins feature at leasteak sequence similarity
(e.g., the BLAST E-value< 1072, as also done in [97]), the algorithm starts by
exploring the first neighborhood @ andp”. Such neighborhoods are used to build
a bipartite graph on which a maximum weight matching w.eguence similarities
is computed. The value thus obtained is combined with theesszp similarity ofp’
and p” to compute a new refined similarity value between the preteihis value
will be further refined by iteratively analyzing the farthegighborhood ofy’ and
p”. The graph exploration stops when a given number of neidgtduats ofp’ and
p” has been analyzed.

To validate the fectiveness of BGrapriN, we ran it on the three PPI net-
works of Saccharomyces cerevisi@ihe yeast) Drosophila melanogastefthe fly)
andCaenorhabditis eleganghe worm) and performed twoftierent kinds of exper-
iments. The first one concerned the discoveryusfctional orthologqd14], that is,
proteins performing the same biological function iffelient species. In this respect,
we compared our results with those of two other approa¢hElB5]. Experimental
evaluations confirmed that our method is successful in iddating functional or-
thologs. In the second kind of experiments;&arpiN has been exploited to align
the S. cerevisiametwork with theD. melanogasteand theC. elegansnetworks.
This analysis helped to verify thatisrarpin can be profitably exploited to indi-
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viduate common processes in which proteins are involvedsa thatter experiments
showed that BGrarpiN is able to correctly single out proteins that are known to be
involved in similar biological processes. That confirmed torrectness and relia-
bility of this approach. Furthermore, those experimenghlighted the merits of the
proposed technique in understanding the role of not yet eltacterized proteins.
In this respect, it is worth noting that we chose to alignybastnetwork with that

of the fly and theworm since theyeastis a much more characterized organism than
the other two.

The rest of the chapter is organized as follows. In the necti@ethe B-Grappin
algorithm is illustrated in detail. In Sectidn 5.3, a conmipan with some related
work is provided. The experimental evaluations are reparteSectiorf 5.4. Finally,
in Sectior{ 5.5, some conclusions are drawn.

5.2 A Technique for Protein Similarity Refinement

In this section some useful definitions are introduced. TherBection 5.211, the
algorithm B-GrappiN is presented, and in Sectibn 5]2.2 three examples showeng th
behavior of the algorithm on some artificial, yet significasplication cases are
discussed.

The most common representation for protein-protein ictéra networks is that
of undirected graphs, where nodes represent proteins &yas e@note their interac-
tions.

Definition 5.1. (Graph Protein-Protein Interaction Networket P = {p1, p2, ..., Pn}
be the set of nodes denoting the proteins of a given orgardachiflentified by pro-
tein ids), and letl be the set of (undirected) labeled eddés, p;}, 1), associated
to the interactions between pairs of proteins. Each edg# lab a pair of the form
(w, ¢y, wherew andc are real numbers in the interval [, called weakness and con-
fidence, resp. A graph protein-protein interaction networlgraph PPI networkis
thengn = (P, I).

Edge labels are used to encode both quantitative and fdéljabiormation about
interactions, whenever available. For example, quaivitanhformation, encoded
in the termw of the label pair, might concern protein-protein interaetstrength
[120,/194], so that larger values wfdenote weaker interactions. Beside quantitative
information, we are also interested in representing thabiity associated with in-
teractions[[193]. Thus, the teroof the label pair represents a reliability ¢heient
that weighs to what extent a stored interaction should bahigltaken into account
in the analysis.

Definition 5.2. (Interaction Path, Cumulative Confidence @iven a graph PPI net-
work Gn, we calllnteraction Pathof ranki (shortly,I-Path) a path such that:

F(@i-1)< Zwu <F@i)i=1)
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where eaclw, is the weakness value associated with edgethe path andF is a
user specified function, taking a nonnegative integer infiamd returning a nonneg-
ative integer as output, such taf0) = 0. The serie$F (i)}i-o Serves the purpose of
encoding neighborhood border weight values and, as sudujtably “shape” the
graph neighborhood level structure.

The Cumulative confidence 6f the I-Pathis defined a€ = [], cu, where the
¢y denote the confidences of edgesl-Path.

Definition 5.3. (I-Shortest Path)'he I-Shortest Pattbetween two nodep andq in

Gn, denoted bysp(p, ), is the path among those linkingto g such thaty,, w is
minimum, where eachy, is the weakness value associated with edges occurring in
the path. If more than one such a path exists, the one withrmari cumulative
confidence is chosen (anyone of them, in case of a further tie)

Definition 5.4. (i-th Neighborhood)Given a nodep in a graph PPI networlgy =
(P, I, thei-th neighborhood of is the set:

N(p,i) ={dlge P.g# p,sp(p,q) is al-Pathin G, i > 0}.

N(p,i) is the set of nodes that can be reached ffpthrough an I-Paththat is also
an I-Shortest path.

Note that while the sum of weaknesses across an I-shortiéstipgermines the
neighborhood which a nodebelongs to, the cumulative confidence is representative
of the probability thap actually belongs to thatneighborhood.

In the following, we shall assume that the graph represgrttie PPI network
of a given organism is connected. This is reasonable in géaad, whenever this
condition is not satisfied, our technique can be thought gdieapto each of the
connected components of the graph PPI network by its own.

5.2.1 TheBi-Grappin Algorithm

Let Gn, andGn, be two graph PPI networks, and assume that each pair of psotei
(P, p’), with p’ € Gn, andp” € Gn,, have been aligned using one of the available
sequence alignment algorithms. Therefore & Dbe a sequence similarity dictio-
nary storing all the tripletgp’, p”, fo), wherefy is a codficient in the real interval
[0,1] obtained from the alignment parame&'rl'me largerfo, the more similar the
sequences gb' and p”. The output of our technique is a new set of triplets, called
FSD (i.e., Functional Similarity Dictionary. In particular,FS D stores triplets of
the form(p’, p”, fp), wherep’ € Gn,, P” € Gn, and f, is aprotein-protein similar-

ity cogficientin the real interval [01] measuring theefinedsimilarity betweenp’
andp”, as computed by theiBsrappin algorithm. As before, the largdp the more
similar p” andp”.

L In our experiments, in order to compukg we have used the Blast 2 sequences algorithm
[202] and the associated E-value parameter.
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The algorithm starts by setting theS D equals to thes SD Then, each triplet
(p’, p”, fpy in FS Dwith f, larger than a fixed cutfbvalue (four.or) is considered in
order to refine itsf, value. To this end, theneighborhoods op’ andp” (i > 1)
are iteratively generated and compared by computing thectis¢ function of a
maximum weight matching. At the generic iteratipthe output of such an objective
function is exploited to refine the valug. The neighborhood analysis stops at a
fixed iterationiyax Whose value is fixed as explained later in this section. Tra fin
refined value off, is that corresponding to thigiax -th iteration. Figuré 5]1 shows
the pseudocode of the algorithm.

The core of the algorithm is the evaluation of the similafigtween twoi-
neighborhoods, which is based on a maximum weight matchingpatation. Given
the twoi-neighborhoodsVv(p', i) = {p}, Py ..., Pyt @ndN(p”, 1) = (P, Py - - .. Pm,)s
consider the sets:

o S(p,p’.i) = {p, € N(p,i)s.t.ap € N(p”,i)and a tripleXp(, p/, fo) €
S S D with fy > fmaten);

o S(p,p".i) = {p{ € N(p”,i)s.t.3p, € N(p',i) and a triplekp;, py. fo) €
SSD with fo > fratcn);

Let X be set of edgeg py,, Py, 9ni)l9hk = Chik - frk}, Where:

pL €S (P, P, 0);

P €S7(P,p".0);

frk is the sequence similarity betwepfjandpy as stored in the inpu8 S D

Cnk = min{Cy, Cy}, whereC,, and Cy are the cumulative confidences of the I-
shortest paths connecting to the target proteip’ andp;’ to the target protein
p”, respectively.

Moreover, consider the bipartite weighted gr& = (S’ (p’, p”’, )US”(p’, p”’, i), X).
The fixed threshold valudnyaich considered in the building of’(p/, p”’,i) and
S”(p’, p”,i) is used to prune the set of nodes to be considered for theasake
matching. Note that such a pruning is safe since it a-prixciugles only insignifi-
cant pairings, corresponding to pairs of proteins with alt®osequence similarity.
The maximum weight matching f@G is a setX’ C X of edges such that for each
nodex € S’(p/, p’,i) US”(p’, p”’,i) there is at most one edge Xf incident ontox
and¢(X’) = 2o, pyamex: Tnk is maximum.

Note that¢(X’) returns a measure of how much the two involved neighborkiood
match, considering not only neighbor sequence similaritiet also the associated
cumulative confidences.

Let/7;(X"), 1 < j < 2 denote the projections of on thej — th component of its
triplets. Consider the set of nodEof N(p', i) UN(p”, i) that remained unmatcHéd
in X', that is:

=N, )\ ITL(X) U (N(p”, 1) \ II2(X)).

Clear enough, in evaluating the similarity of the two neigtitmods analyzed at the
generic step of the algorithm, unmatched nodes have to lem timto account by

2 The unmatched nodes are callgap nodesn [184].
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Algorithm Br-GrappiN

Input:

- a sequence similarity dictiona§'S D

- two graph PPI networkgy, andgGy,

- the stop iteratiomyax

- two real valueS¢yt.qr and fmatcn

- areal valuer

Ouput: a functional similarity dictionaryrS D

=

11: i=i+1
12: return the functional similarity dictionarfS D

0: refine the value off, as:

setFSD=SSD
for eachtriplet (p’, p”, f,) in FSD
if (fp 2 fcut-cﬂ)
seti=1
while i # imax
generatethei-th neighborhoodgv(p’, i) and N(p”,i) of p" andp”, resp.
generatethe setsS’(p’, p”,i) andS”(p’, p”, i)
computethe maximum weighted matcK and the set of unmatched nodes
computep(N(p',i), N(p”,1), X', T, @)

fo(i) = 6() x uN (P’ 1), N(p7,1), X', T @) + [1 = 6()] x fo(i — 1)

Fig. 5.1.The B-Grarpin algorithm.

suitably decreasing the matching value, as their preseitnesges for dferences in
the two neighborhoods. Therefore, the following value isipated:

$(X)

pN(P', D), N(P". 1), X, Ta) = (1 - a- AN(P', 1), N(p”, 1), 1)) a(x)

where:

. . &G, .
AN, ), N(p”,i), ) = W denotes the proportion of the un-

matched nodes weighted by the cumulative confide@;eassociated with the
I-shortest paths connecting, to the target proteirp’ within the first network
(resp. top” within the second one) over the sum of all the ffieéentsCg, simi-
larly associated with nodes N(p’, i) U N(p”,i).

The factoro(X’) = 2o, p amoex: Ch is_used to n_ormalizeS(X’) in the range

[0, 1], as. (o py.gngex: Chi denotes the sizes of weighted byCy.

a is a codficient used to tune the weight of unmatched nodes w.r.t. that o
matched ones.

At each step, the valuef,, of the considered tripletp’, p”, fp) in FS Dis modi-

fied according to the following formula:

fo()) = 6() x u(N (P’ 1), N(p”.1), X', I @) + [1 = 6(1)] % fp(i — 1)
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whered(i) represents the generic term of a succes$ign}i~, of factors used to

weaken the contribution of nodes belonging to farthesthimghoods. Thuds(i)}

is monotone decreasing (in our experiments wesét ).
We recall that the neighborhood analysis stops at a fixedtitariyax . Such a

valueiyax has to be chosen such that:

¢ the size of the analyzed neighborhoods does not get anywagamable with the
one of the entire graphs,
¢ the analyzed neighborhoods are not “too far” from the c@wesing proteins,

since, otherwise, the results computed via the maximumhtemgtching would not
be actually significant. Therefore we have the followingutes

Theorem 5.5.Let Gy, and Gn, be two graph PPI networks ofirand i nodes,
respectively, and let n= maxny, n,}. Let iyax be the chosen iteration upper
bound and let p,, be the number of nodes in tl&(p’, p”,i) (S”(p’, p”,i), resp.)
1 < i < imax, of maximum size. Then, in the worst case, the algoriBmGrarpIN
runs in qmax{(n? - n?),n%) time.

Proof. The I-Shortest path between each pair of nodes in each gRipteRvork can
be pre-computed by the Floyd-Warshall algorithn®im®). Thus, for each of the two
networks, a matrixV of sizen? can be built where each elemeMt{h, k] contains
both the sum of the weaknesses and the cumulative confidéorct®e 1-Shortest
path connecting the nodeand the nodé&. Hence, building théth neighborhood of
a node cost®(n).

The time required to compute the maximum weight matchingmpartite graph
including i nodes isO(R°) [74]. Because of the definition df;ax, the number of
nodes in each of the analyzed bipartite grapt@®(is,,,, ), thus the maximum weight
matching cost:O(n?MAx). Both i-th neighborhood extraction and maximum weight
matching have to be computed for each of tRdriplets inS S D Thus, the overall
cost of theF S Dconstruction iQ(max(q? = - n?),n%).

In particular, letn be the number of nodes in the largest of the two analyzed
networks; even if other choices are possible, we recommeifict iyax (which is
what we done in our experiments) so that:

1. for each pair of nodeg in Gy, andp” in Gy, |S' (P, p”.imax)| < log?(n) and
\S”(0, p”simax)l < log?(n); o L

2. thereisat Ieasioma pair of nod@sn Gy, andp” in G, such thatS’(p’, p”, imax +1)| >
log?(n) or |S” (P, P, imax +1)| > log?(n).

5.2.2 Application Cases

In this section, we illustrate some specific cases that wd tesealidate the algo-
rithm. We built some ad hoc examples discussed below forpiipose, where the
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Fig. 5.2.Example 1: increasing of the initial similarity value.
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involved networks have small size only for ease of expasitithe behavior of B
GrappiN does not change in analogous situations when larger nesvayek consid-
ered, but illustrating examples with thousand of nodes dalve been, we argue,
less explanatory.

The first situation we analyzed is that illustrated in Figbiu®, where the starting
similarity between the two target proteipsand p” is fo = 0.600. In particular, in
Figure[5.2 (b) the subnetworks includipg, p” and their neighborhoods, up to the
fourth level ones, are shown, highlighting wittHférent gray tones proteins inftér-
ent neighborhoods and showing edge labels using two tainesfor each network,
in Figure[5.2 (a). Note that, for these synthetic exampldgedabels are often dif-
ferent from 1. Pairings between proteins in correspondgighborhoods of the two
target proteins, as returned by running@arrin, are shown in the table reported
in Figure[5.2 (c). There, for eadmeighborhood of’ and p”, the second column
reports the SSD values corresponding to the triplptspy, fhk), wherep;, and p;/
are the best matchaeheighbors. The third and fourth columns contain the awerag
neighborhood similarity and the sum of the cumulative canfaes of the unmatched
nodes of tha-neighborhood ofy’ and p”, respectively. The fourth column gives a
measure of how much the unmatched nodes influence the fing wdlsimilarity.
Finally, the fifth column show’-p” similarity, as refined at each stageAnalyz-
ing in detail the intermediate outputs of-Brappin, we can observe that the initial
fo = 0.600 betweerp” andp” is increased after analyzing the 1- neighborhood, due
to the high similarity of proteins in corresponding neighimods paired during the
matching process. Therf, further increases after the analysis of the 2-, 3-, and 4-
neighborhoods, obtaining a fingj = 0.799, foriwax = 4, that is, as expected, larger
than fo.

The second situation we consider is that illustrated in g3, where the-
neighborhood of’ andp” is explored up toyax = 3 and their starting similarity is
fo = 0.850. From the analysis of Figure b.3, which is analogousdaré5.2 in terms
of table structure, we can observe that the similarity betw® andp” decreases af-
ter the analysis of the first and the second neighborhoodsienthe average neigh-
borhood similarities are relatively small and there aresommatched nodes. Then,
fp weakly increases after the analysis of the 3-neighborhfmodyhich the average
neighborhood similarity increases, while remaining lowhaan fo. This is suppos-
edly correct, since even if the sequence similarity betwgesnd p” is high, their
neighborhoods share a low average similarity and presené sommatched nodes,
indicating low functional similarity.

The third example is illustrated in Figure b.4, whéygx = 2 andfy = 0.710.

In this case, the similarity betwegn andp” decreases after the analysis of the first
neighborhoods, where the average neighborhood similarityver thanfo. Then, f,
increases after analyzing the 2-neighborhood, where thige neighborhood sim-
ilarity is higher than the previouk,. This example highlights that, as also suggested
elsewhere [40], limiting the neighborhood analysis onlyhe first level would not

be suficient for the sake of obtaining coherent results w.r.t. fiomal conservation.
This is becaus@’ andp” are supposedly involved in common biological processes
but there is no evidence of that in their first level neighloads.
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=
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(©)

Fig. 5.3.Example 2: decreasing of the initial similarity value.
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Proteins| w c
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p; P |0.690/0.180 p; Py |0.940/0.810
p; P, |0.960/0.570 p; Py |0.9800.280
p; Py |1.000/0.830 p7 pf|0.860/0.210
P Py |0.860/0.250 Py, P71/1.000[0.390
Py Pjo [0.920]0.330

p’-p” (fo = 0.710)

iln p7” X
| ph pk fhk % Zpyefcy fp

p, 0.5200.698 0.580 |0.694
P, p; 0.535
P pl 0.980
2[p, py 0.9900.80§ 1.146 |0.72Q
P, pl 0.920
P, Py, 0.880
P Pyp 0.940
p; Pg 0.970
P, py 0.350

=
2

(b)

Fig. 5.4.Example 3: a final comprehensive example.

To summarize, Example 1 shows that if two proteins have divelg low fg but
very similar neighborhoods, then the final computgds significantly larger than
fo. This confirms that BGrarpin is able to detect proteins with high similar interac-
tors, thus possibly involved in common biological procaséeample 2 highlights
that B-Grarpin is also able to discern proteins that, even if characterigetligh
sequence similarity, have dissimilar interactors, and tiwey probably play dier-
ent functional roles in the two organisms. This may be duegkample, to large
changes caused by evolutive processes. Finally, Exampé8put that the analy-
sis of neighborhoods farther than the first one is necedsagger to obtain a correct
measure of functional similarity.
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5.3 Related Work

The approaches which are most related t@BappriN are reported in [14, 184, 185]
and have been discussed in detail in Chdgter 3.

If we consider the approach by Bandyopadhyay et al. [14], vleshhow in Sec-
tion[5.4 that, diferently from this technique, IB5rappin can be exploited not only
to decide about functional orthology when sequence siityilaray fail, but also to
study proteins that are not yet well characterized in soreeisp.

Moreover, as for the other two approaches proposed_in| [182], Linlike B-
GrarpIN, quantitative information is not taken into account. Farthore, the pur-
pose of B-GrarpiN is that of refining protein similarities through neighbooks ex-
ploration and dfers from these two approaches that deal with the problenobig)!
network alignment. Moreover, the exploitation of bipartifraph weighted matching
as reported in[184] is quite érent from that of BGrappin. In fact, in [184] the
bipartite graph weighted matching is only used for the fitighanent of the two net-
works, whereas BGrappIN USES it step-wise on pairs of neighborhoods as the main
computation task.

Other approaches [97, 182,/ 71] are more loosely relatedBvitBrappiN. Simi-
larly to these approachesi-Brarpin l00ks at conservation across PPI networks but,
differently from them, it aims at singling out functional sinnitees between pairs of
proteins, rather than focusing on the extraction of sinptatein subnetworks.

Finally, Bi-GrappIN is able to incorporate both quantitative and reliabilitfoir
mation in its analysis, that is not simultaneously expbbite[14,/184[ 185, 97, 182,
71].

5.4 Experimental Validation

To validate our approach, we tested it on fecerevisiadyeast),D. melanogaster
(fly) and C. elegangworm) PPI networks. This evaluation was meant to study the
ability of Bi-Grappin in individuating functional orthologs and to compare our re
sults with those presented in 14, 185]. As will be illust@tin Section 5.4]1, the
experimental results proved thffextiveness of our approach. In a second phase, we
aligned the yeast network with those of the fly and the wormspeetively, and ana-
lyzed the most interesting results obtained by the aligrisy@s discussed in Section
£.4.2. We downloaded the interaction data for the threeiderexd organisms from
the DIP databasé [1ih]To date, no explicit information about strength or relipi
of interactions is available in DIP. Thus, in our experinggme seiv = 1 andc = 1
for all edge labels. The functigh (introduced in Definition 5]2) was simply chosen
to be the identity function. Following the recommendatioSection 5.2 ]liyax was
set to 2 and, finallyy was set to (5.

In order to evaluate protein-protein sequence similaritieeded to construct
the S S D we exploited theBlast 2 sequencesgorithm [202@ to align protein se-

3 httpy/dip.doe-mbi. ucla.edu
4 ftp://ftp.ncbi.nlm. nih.goyblasfexecutables
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quences, and referred to BLASH-value parameter to measure the sequence simi-
larity of pairs of proteins. In particular, after aligningd proteinsp’ andp” of two
different organisms, we computed the sequence similarity iimdg according to

the following transformation:

0, if E> 1072
fo=9_2 .
20E | jf E < 1072

whereE is the BLAST E-value on inpup’ andp”.

Note that the E-value may assume, in general, values greeerl, and the
lower it is, the more similar the protein sequences are. dhadla reported above
serves the purpose of both normalizing the sequence sityifanction, to obtain a
similarity value in the range [@], and obtaining a significant variations when the
E-value reaches very small values (corresponding to vemilasi sequences).

The algorithm was implemented on a Pentium 4, GHz with 4 GB of mem-
ory. The resulting running times were about 23 minutes fasyand fly networks
comparison, about 4 minutes for yeast and worm ones.

5.4.1 Functional Orthologs Detection

In this section, we discuss a set of experiments showirGBrprin to be dfective
in detecting functional orthologs, that are, proteins fiediby orthologs (i.e. genes
in different species that originate from a single ancestor gem&rpeng the same
function in two or more species [171,]14]. As pointed outlid][1he analysis of
protein interactions can help in eliminating ambiguity wdeequence similarity is
not suficient. In particular, the approach presented.in [14] prdkiasit is possible
to resolve ambiguous functional orthology relationshipthie yeast and fly PPI net-
works. In [185], functional orthology detection was inigated for PPI networks of
five different organisms.

We tested our method on two pairs of networks, that are, thstyend the fly,
and the yeast and the worm ones, respectively. We comparegsults with those
reported in[[14] for the yeast and the fly correspondences,asp with those in
[185] for both alignments. Table 5.1 shows the results olegifor the yeast and
fly networks. We considered the yeast and fly pairs of protiingvhich sequence
similarity is not decisive to detect functional orthologg/reported in the supplemen-
tal material of [14E. Within the networks, we chose those protein clusters where
the sequence similarity is giciently high, because in such cases the discrimination
may be considered more significant. Furthermore, we discktitbse clusters where
some of the component proteins have no interactions, sime&rBrin works on
connected networks. Therefore, we focused on the Inpatatiosters([149], con-
taining ambiguous functional orthologs, which are repbitethe first column of Ta-
ble[5.1. The second column contains the similarity valuagmed by our algorithm
for each pair of proteins (reported in values between 0 afid tbObetter appreciate

5 httpy/www.cellcircuits.orgBandyopadhyay 2006
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YeasyFly proteins |Bi-Grappin (f, - 100)|Bandyopadhyay et al{Singh et al,

ssa2 — Hsc70-4 50.00(bs) 53.22%(bs) out of

ssal — Hsc70-4 50.00(bs) 48.10% cluster
Cmd1 - Cam 47.73 35.90% out of
Cmd1 — And 48.18(bs) 44.39%(bs) cluster
Actl — Act5c 58.32 39.56% out of

Actl — Act42a 58.93(bs) 39.24% cluster

Actl — Act87e 51.68 43.53%(bs)

Actl — CG10067 51.89 38.20%

Actl — Act88f 55.07 40.17%
kap104 —Trn 55.45(bs) 40.64% out of

kap104 — CG8219 42.43 46.78%(bs) cluster

Hsp82 — Hsp83 57.23(bs) 52.43%bs) out of

Hsc82 — Hsp83 57.10 46.52% cluster

Myo4 — Didum 54.13(bs) 37.06%bs) out of

Myo2 — Didum 54.12 36.81% cluster

Gsyl — CG6904 50.00(bs) 48.97%bs) out of

Gsy2 — CG6904 50.00(bs) 38.13% cluster

Vphl - CG18617 50.00(bs) 41.87%bs) out of

Stvl - CG18617 50.00(bs) 38.44% cluster
Rpt4 — Rpt4 58.97(bs) 38.02% out of

Rpt4 — CG7257 56.45 44.43%bs) cluster

Glc7 — Pp1-87b 50.00(bs) 38.61%(bs) out of

Glc7 — Pph-96a 50.00(bs) 37.31% cluster
Glc7 — Flw 50.00(bs) 37.30%

Rtsl — Pp2a-b’ 50.00 56.83%(bs) out of
Rts1 — Wdb 55.54(bs) 41.00% cluster
Pph22 — Mts 51.54(bs) 49.68%(bs) out of
Pph21 — Mts 51.41 46.53% cluster

Tdh2 — Gapdh2 50.00 46.09%(bs)

Tdh3 — Gapdh2 57.34(bs) 38.08% (bs)
Aacl — Sesb 40.26 41.39%

Aac3 — Sesb 41.19(bs) 46.52%(bs) (bs)
Aacl - Ant2 39.64 41.43%
Aac3 — Ant2 40.93 46.52%(bs) (bs)

Utrl - CG6145 47.80 63.07%bs) (bs)

YELO41W — CG6145 42.50 57.20%
Utrl — CG33156 49.30(bs) 50.11% (bs)
YELO41W — CG33156 49.21 48.60%

YBR241C - Glutl 34.27(bs) 55.18% out of
YBR241C - Sutl 29.92 60.18%(bs) cluster
Pre5 — Proa6t 39.56 39.74% (bs)

Pre5 — Pros35 49.58(bs) 49.68%(bs)

Caml - Efy 36.41 44.02%(bs) out of
Tefd — Efy 42.35(bs) 39.53% cluster
Clb3 - Cycb 35.21 36.90% out of
Clb5 - Cycb 33.46 36.53% cluster
Clbl - Cycb 34.02 37.06%

Clb2 — Cycb 35.70(bs) 40.23%(bs)

Clb4 — Cycb 35.04 37.00%

Skpl — Skpa 45.93(bs) 38.68%(bs)

Skpl - CG12227 31.61 38.40% (bs)
Skp1 — Skpc 29.34 36.35% (bs)
Rps26a — Rps26 35.57(bs) 40.32% out of
Rps26b — Rps26 35.57(bs) 40.48%(bs) cluster
Cdc33 - Eif-4e 35.14(bs) 39.12% (bs)
Cdc33 - CG8023 33.01 39.65%(bs) (bs)
Ssol - CG31136 30.15 54.94% (bs)
Ss02 — CG31136 31.00(bs) 56.83%(bs) (bs)

Egd2 — CG4415 18.57 43.99% out of
Egd2 — Naa 26.85(bs) 50.41%(bs) cluster

Rppla - Rplpl 37.23(bs) 50.50%(bs) out of

Rpplb — Rplpl 32.31 46.71% cluster

Cofl —Tsr 37.23(bs) 43.74%(bs) out of

Cofl — CG6873 32.31 42.78% cluster

Table 5.1.Functional orthologs detection yeastandfly networks.
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the diferences with[[14]), whereas the third column reports thegitality values
returned by Bandyopadhyay et al. [14]. The symlid) (s used to indicate the best
scoring pair. The last column contains the best scoringsmaicording to[[185]. In
this respect, note that the purpose of the approach distirs§&85] is the global
alignment of two or more input networks. Thus, it is not alwdlye case that pro-
teins recognized as functional orthologs by [185] corresisdo proteins in the same
Inparanoid cluster. In these cases, a direct comparisaveleetour method and that
of [185] is not possible, and we referred as “out of clustér tesults corresponding
to such cases.

Note that, our analysis agrees in most cases with eithérdjfdi[185] (20 out
of 26 analyzed cases), and-8rarpix is able to discriminate functional orthologs in
21 out of 26 analyzed cases.

Tablg5.2 shows the comparison betweei@Barpin and [185] for the functional
orthologs detection in the yeast and worm networks. Agéia first column shows
the Inparanoid clusters, and the second and third colurtusdrdte the best scoring
pairs according to our approach and that discussed in [18§pectively. Note that,
in this case, BGraprpiN always agrees with [185], whenever the two approaches are
comparable but, notably andffdirently from [185], B-Grarrin is always successful
in discriminating among dierent protein pairs.

Yeasfc. elegans |BI-GRAPPIN | Singh
proteins (fp-100) | etal.
RPL1IA —T22F3.4] 41.57(bs) | (bs)
RPL11A - FO7D10.1 41.53
GSY1-Y46D5A.31] 55.23(bs) | out of
GSY2 - Y46D5A.3] 50.00 cluste
GSP1-K01G5.4 | 51.10(bs) | outof
GSP2 - K01G5.4 50.68 cluste
NPL4 — F59e12.5 41.94 (bs)
NPL4 — F59e12.4 | 50.02(bs) | (bs)
BMH1—M117.2 | 49.26(bs) | (bs)
BMH1 - F52D10.3 42.02

BMH2 —M117.2 47.73 (bs)

BMH2 - F52D10.3 42.07
Aacl-T27E9.1 40.42 out of
Pet9 — T27E9.1 41.49(bs) [cluster
Aac3 - T27ES.1 41.21

Cdc33-B0348.6 | 33.42(bs) | (bs)
Cdc33 - F53A2.6 32.29 (bs)
Cdc33 — R04A9.4 31.50 (bs)
GSY1-Y46G5A.31 55.23(bs) | out of
GSY2 - Y46G5A.31 50.00 cluste
YPL048W — F17C11]9 36.03(bs) | out of
YKLO81W — F17C11)9 35.86 cluste
CIb3 - TO6E6.2 33.91(bs) | out of
Clb4 — TO6E6.2 33.14 cluste
Clbl - TO6E6.2 28.78
Ssol — F56A8.7 30.09 (bs)
Sso02 — F56A8.7 30.69(bs) | (bs)
Rppla—Y37E3.7 | 20.68(bs) [ outof
Rpplb - Y37E3.7 14.54 cluster]

Table 5.2.Functional orthologs detection yreastandworm networks.
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5.4.2 Common Processes Detection

As a further set of experiments, we aligned ecerevisiagetwork with theD.
melanogasteand theC. elegansnes, in order to individuate proteins involved in
common biological processes. It is worth pointing out theg tatter condition is
different from functional orthology discussed in Secfion .thdieed, two proteins
are recognized to be functional orthologs if, as alreadyaémnged, they derive from
orthologs and perform the same function iffelient organisms. On the other hand,
proteins which are not necessarily functional orthologghbe anyway involved in
common biological processes and it is known that commaeslietween involved
sets of interactors witness for this to hold.

We first discuss the pairs of proteins illustrated in TabB that are those scoring
the highest refined similarity as computed by@aprpin. We identify proteins by
name, providing also thEWISSPROT iavhen the name may be ambiguous. The
first two columns of Tablg 513 show the pairs of proteins @pomding to the first
ten best scores for tHg. cerevisiaandD. melanogastenetworks, pointing out that
Bi-Grarpiv is able to correctly pair proteins with similar functions.fact:

proteins PP2A are phosphatases involved in signal tratisdtic

Actin, Actin42A and Actin5c are cytoskeleton constituents

alpha- and beta- PDHEL1 are components of Pyruvate dehyaiegeomplex;
RPT4 are components of the proteasome;

alpha Importin and CSEL1 are involved in nuclear export

Hsc70 are homologs to heat shock proteins.

In the third and four columns of Table 5.3, proteins corrésjiog to the top ten
best scores for th8. cerevisiaandC. elegansare reported. Likewise, proteins with
homologous functions are properly paired:

tubulins, which constitute microtubules in both species;
PMS1 and PMS2, required for DNA mismatch repair;
phosphotases (PP1) and kinases (PKC, P53739, Q18846lyadvim signal
transduction;

e proteins RFC, which are subunits of the replication facéguired for the dupli-
cation of the DNA strands.

There are also proteins of unknown function (Q08726, O01@BXW68), which
are all able to bind ATP, and proteins involved in glycogentlgsis, named Gsyl.

A further interesting issue that merits discussion corgdne possibility for our
technique to infer connections of not always well charaoéer proteins to specific
biological processes, even when involved sequence sitigaare not particularly
significant. Figur€ 55 (a) illustrates some examples afgingairs where the refined
similarity is higher than the sequence similarity, sincegmiicant neighborhood
similarity has been retrieved. It is understood that sucimareasing in similarity is
supposedly correct, since the proteins under considerati® actually biologically
related. Indeed:
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S. cerevisae | D. melanogaster S. cerevisiae C. elegans
Hsc70 Hsc70 ATP BP Q08726 ATP BP 001426
alfa-PDHE1 |PDHE1 (Q9W4H6)| ATP BP Q08726ATP BP Q9XW64
PP2A (P31383) PP2A beta-Tubulin beta-Tubulin
RPT4 RPT4 PMS1 P14242] PMS2 Q9TVLS8
Actin Actind2A alfa-Tubulin beta-Tubulin
CSE1 CSE1 PP1 (P20604)| PP1 (Q9XW79)
beta-PDHE1| PDH (Q7K5K3) RFC4 RFC2
Actin Actin5c Kinase P53739 Kinase Q18846
PP2A (P20604) PP2A (P23696) PKC PKC
alfa-Importin alfa-Importin Gsyl Gsyl

Table 5.3.Best score pairs of proteins ipeastandfly; yeastandworm

e Cyclin B1, Cyclin B4, MSA2 and Cyclin D are key switches oflogjcle pro-
gression in yeast and fly, respectively;

e Cnb1l is the calcineurin B, a regulatory calcium binding piotsuch as the pro-
tein P48593;

e Cofilin,twinfilin and Abpl are all involved in the regulatioof the actin cy-
toskeleton;
PTP2 and PTP-ER are both tyrosine phosphatases;
YPT11 and Rab-RP4 are both Rab like proteins regulated by iy@Rolysis.

Comparing yeast to worm (Figure 5.5 (b)):

Prrl and Mak-2 are kinases downstream of the MAPK activation

Tap42 is involved in Tor signaling pathway and Q9N4E9 protsisimilar to it;
Cdc37 and its worm homolog are kinase regulators;

Fcyl and Cdd2 are both pyrimidine deaminases.

It is important to note that the worm proteosome is less chiarized than the yeast
one, and that for many of its gene products, functions (antesines names) have
been assigned automatically on the basis of sequence hgynolo

We believe that our method can be much helpful for either cwmiirfig or not
this predictions by neighborhood analysis. This is, fotanse, the case for the pro-
tein QIN4E9 which is similar to Tap42 but no other informatere available; for
Q21021, similar to the yeast Ran BP2; and for Q21746, whicitains TPR repeats
like the co-chaperone yeast CNS1. The 044175 protein ispatdzably involved in
cell duplication as the yeast CTF18. Finally, note that thespreported in the last
three rows of the table in Figute 5.5 (a) and the last row inuFgfg.% (b) score a
sequence similarity close to zero.

Overall, this confirms that BGrarpiN is able to correctly reconstruct useful in-
formation from neighborhoods analysis (whenever avaglglthat is not predictable
from the sole sequence similarity.

However, it is worth pointing out thatiBSrappin results strictly depend on the
correctness and completeness of interaction data storddtabases, where false
positivgnegative may occur. Unfortunately, as already pointed andjlable data
are sometimes characterized by low reliability[[9, [47.]1938]e example illustrated
below shows how BGrappin results improve when interaction information become
more accurate. We considered proteins Rnpl1 of yeast ang béfling a sequence
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S. cerevisiae| D. melanogaster |Sequence similarity Refined similarity
Cyclin B4 Cyclin D 0.424 0.444
YPT11 Rab-Rp4 0.409 0.442
Cyclin B1 Cyclin D 0.350 0.431
Cofilin Cofilin 0.389 0.420
Cnbl P48593 0.327 0.419
PTP2 |PTP-ER (Q9W2F3) 0.293 0.405
Twinfilin Cofilin 0.006 0.314
MSA2 Cyclin D 0.004 0.326
Abpl Cofilin 0.002 0.251
@)
S. cerevisiae| D. melanogaster | Sequence similarity Refined similarity
Tap42 QI9N4E9 0.371 0.439
Prrl Mak-2 (Q9TZ16 0.322 0.394
RanBP2 Q21021 0.268 0.359
Cdc37 Cdc37 0.306 0.356
Ctf18 044175 0.336 0.346
CNS1 Q21746 0.291 0.343
Fcyl Cdd2 (Q20628), 0.015 0.352
(b)

Fig. 5.5.Some interesting pairings in (sg¢astandfly; (b) yeastandworm
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Fig. 5.6.Yeastandfly Rnp111-neighborhood(a) available and (b) enriched.

similarity equal to 1, that is, the maximum possible valudjoh is decreased by
neighborhood analysis as low a$85. Such a decrease is due to the fact that the
yeast Rnpll has 24 neighbors, whereas the fly one has onlghees (according

to the data stored in the DIP database). Fiduré 5.6(a) rditest such a situation.
The figure has been drawn by using PIVOT [151], &WISSPROT idsave been
adopted as node labels to distinguish proteins. In padictihe yeast Rnpll has
SWISSPROT iéqual to P43588, whereas that of the fly is Q9V3H2. We tried to
complete the neighborhood of the fly Rnpl11 with some misseg,dreferring to
[77]. The neighborhood shown in Figure5.6(b) was obtaindtre the proteins that
are not presentin the DIP database as Rnp1ll interactorbbhauedded. By running
Bi-GrapriN 0N the so obtained new data network, we obtained a refinedasityi

of 0.777, that may be considered more correct than the rathetesrwalue 0685
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previously obtained, since both the yeast and fly Rnpll prot#re indeed part of
the well known proteasome complex performing ubiquitidgieoteins degradation
in both organisms.

5.5 Concluding Remarks

In this chapter, we dealt with the problem of searching sinties in PPI networks.
In particular the aim of the proposed approach, calle@G&srriv, is that of identi-
fying functional similarities and detecting proteins itwed in common biological
processes.

The basic idea of BGrarpin is that proteins with similar neighborhoods are
probably involved in similar biological processes, indwria concept of similarity
which is based on both sequence and network informatioedadhe key step ofiB
GrapriN is the refinement of protein sequence similarity by expigitheighborhood
similarities (i.e., similarity between interaction prefl). One of the peculiarities of
B1-Grarpin is its capability of taking into account both quantitatieeq., interaction
strengths) and reliability information. The first is usedlistinguish nodes belonging
to different neighborhoods and the second one to weight the cotirils of diferent
interacting proteins in the refinement phase.

Experimental evaluations showed that our technique maydféably exploited
to detect functional orthologs when ambiguities may defiiven the sole sequence
similarity analysis, and also to correctly associate pnstéwvolved in the same bi-
ological processes. Thus, we argue thatd&appin can be regarded as a powerful
tool to analyze PPI networks, whose already satisfactocyiracy will be further
improved by the future availability of more complete andgise data about protein
interactions.

In the next part of the thesis, involving Chadiér 6 and Chdnt¢éhe problem of
protein-protein interaction networks alignment will bedd. In particular, in Chapter
the state of the art about protein-protein interactiomnets alignment will be
outlined.
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6

Network Alignment Techniques: an Overview

Summary. In this chapter, the state of the art about protein-protein interaction neakign-
ment will be outlined. Firstly, in Sectidn 8.1 the definition of the problem is jed. Then,
in Sectior 6., an overview of the techniques proposed to align PPI Nehioreported. In
particular, Section 6.2 1 discusses about local network alignmenmtiteers whild 6,22 intro-
duces global network alignment techniques. Se¢fioh 6.3 reports aallas@mparison of the
discussed methods and, finally, in Secfiod 6.4 some conclusions ane.dra

6.1 PPI Network Alignment

Network alignments the process of globally comparing two or more networks of
the same type belonging tofflirent species in order to identify similarity and dis-
similarity regions. Network alignment is commonly appliedietect conserved sub-
networks, which are likely to represent common functionatoies. As already dis-
cussed in Chaptét 2, the input of a network alignment allgorire two (or, possibly
more) biological networks of éierent organisms and the output are pairs (or, possi-
ble sets) of subgraphs (or, possibly simpler structuresh sis paths), one for each
input network, that have been recognized to be similar. Rstaince, the identifica-
tion of conserved linear paths may lead to the discoverygrfading pathways, while
conserved clusters of interactions (subgraphs) may qamwresto protein complexes.
The word “conserved” means that the two (or more) identifidzhsaphs contain
proteins performing similar functions and having simitateraction profiles. Itis im-
portant to underline that the key word here is “similar” amd fidentical”. In fact,
the identified subgraphs often correspond to approximadtter than exact align-
ments. Approximation handling is needed for dealing witsgible occurrences of
evolution events modifying a network structure and alsovedlto suitably take into
account the significant number of both false negative ars fpbsitive interactions
found when looking up existing databases. Hendgerint types of approximations
should be taken into accour(t) node insertionscorresponding to the addition of
nodes in one of the input networks (see, Fidure 6 1(&))node mismatchesor-
responding to pairs of nodes characterized by a low sirhjldout sharing similar
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Fig. 6.1.(a) Node insertion; (b) node mismatch; (c) edge insertion.
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biological characteristics (e.g., proteins performing #ame function) (see, Figure
[6-1(b)); andiii) edge insertionscorresponding to the addition of interactions in one
of the input networks (see, Figure 6.1(c)). Examples of wimh events that may
affect protein interaction networks are gene duplication, thases the addition of
new nodes (proteins), and link dynamics, correspondingato gr loss of interac-
tions through mutations in proteiris [20].

6.2 An Overview on PPI Network Alignment Techniques

As already pointed out in the previous section, the goal ofvaek alignment ap-
proaches is to identify one or multiple possible mappingsvben the nodes of the
input networks. Moreover, for each mapping, the set of caeskeedges, correspond-
ing to conserved interactions, have to be revealed. Magpimay be partial or com-
plete and this distinction led to the definition of two classéalignment algorithm:

e Local Network Alignment (LNA): comprises those algoriththat do not require
that the identified mapping covers all the nodes in the inptwarks.

e Global Network Alignment (GNA): involves those algorithrtigat require that
all the nodes of the input networks have to be involved.

LNA algorithms are intended for discovering similar motifetween two (or,
possibly, more) networks, which may also lead, sometintespie inconsistencies
to characterize discovered motifs. Indeed, a protein ofiopet network may corre-
spond to diferent proteins of another input network if considerinfjedent matched
subgraphs.

In GNA, instead, the goal is to find a single consistent magppovering all nodes
of the input networks. Thus, by solving the GNA problem soradipl suboptimal
mapping can be discarded in the light of a global alignmedtalhnodes have to be
paired or explicitly marked as unpaired nodes.

In the two subsequent sections, the techniques belongibAcand GNA will
be described. In particular, Sectibn 612.1 focuses on LNAhods while Section
on GNA approaches.

6.2.1 Local Network Alignment Methods

The goal of LNA techniques is to find multiple, correspondéirgilar regions among
the input networks. In this type of alignment, each partialpping is independent
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from the others. Several local network alignment apprositiaee been proposed in
the literature[[917, 182, 112, 71,170,/ 14]. The aim of thisisecis to survey on them.

PathBlast and NetworkBlast

PathBlast[97] is a procedure to align two PPI networks by combiningiattion
topology and protein sequence similarity, in order to idgrdonserved interaction
pathways. The method searches for high scoring pathwagraégts involving two
paths, one for each network, in which the proteins of the fiegh are paired with
putative homologs occurring in the same order in the secattial o this aim, this
approach builds a network alignment graph where each npdesents a pair of ho-
mologous protein (one for each input network) and each letlwben a pair of nodes
represents a conserved protein interaction. To take irtowt possible errors in the
available data and the role played by the evolution in nektwitiferencesPathBlast
also allows for gaps and mismatches. A gap occurs when twesmmonding pairs
of proteins interact directly in one networks, and via a camrprotein in the other
network (i.e., a node insertion). A mismatch occurs when ¢aesponding pairs
of proteins interact via a protein in both networks and thasteins do not share
relevant sequence similarity.

PathBlasthas been extended inttetworkBlasin a subsequent work [182\et-
workBlastis a tool for discovering conserved pathways and complesesa more
than two PPI networks. Such an extension is based on thehdeadch node of the
alignment graph identifies a group of homologous proteimsteiad of a mere pair
of them. Moreover, this approach is able to search for botsli paths, correspond-
ing to signal transduction pathways, and clusters of ictéras, corresponding to
protein complexes.

NetworkBlast in its turn, has been subsequent extendedlébworkBLAST-M
[92], which allows to identify protein complexes in protginotein interaction net-
works based on a particular representation of the input erésvthat is linear in
their size.NetworkBLAST-Ms based on progressive alignments and avoids the ex-
plicit representation of every set of potentially orthadog proteins, thus gaining in
efficiency.

Graemlin

Graemlin[[71] is an algorithm for multiple network alignment and is ané to in-
dividuate conserved functional modules across specigas.afproach introduces a
probabilistic formulation of the topology-matching prebi. The method represents
the input networks as weighted graphs in which the weighteesent the interaction
probabilities. The alignment produced Braemlinis made of a set of subgraphs
and a mapping between corresponding proteins.

It is important to note that, according to the algorithm fatation, the groups
of aligned proteins are disjoint and must represent honmlsgroups that gener-
ally are proteins belonging to the same protein family. Tiiservation leads to the
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definition of the alignment as a collection of protein faeslhaving conserved inter-
actions. This way, it is possible to use evolutionary infatimn to score the potential
alignments.

To search for alignment between two input netwo&saemlingenerates a set
of seeds from each input network, where each seed is a setsef ptoteins, in order
to cut the search space. Then, by enumerating the seedsnetvestwo networks, it
tries to transform each of them, in turn, into an high-sagetignment. When applied
to multiple networksGraemlinuses a phylogenetic tree and successively aligns the
closest pairs of networks. After each alignment, it obtaimgeral new networks, each
of which is placed as a parent of the two aligned networks.mbthod iterates this
process until all the networks are at the root of the tree.

Graemlinhas been extended with a novel scoring function, an alguorithat
automatically learns the scoring function’s parametetsamalgorithm that uses the
scoring function to globally align multiple networks gigiirth to a GNA algorithm
calledGraemlin 2.0[70].

Bandyopadhyay

Bandyopadhyay et al. [14] proposed a strategy to identificfionally related pro-
teins supplementing sequence-based comparisons withmafmn on conserved
protein-protein interactions. The idea is that the prolgitnf functional orthology
of a pair of proteins is influenced by the probability of fuoail orthology of their
neighbor proteins.

This method first aligns two PPI networks using only sequesitdarities, and
in particular by Inparanoid clusters [149], for pairing theoteins of the two input
networks. The result of the alignment is a graph where eadb represents a pair of
proteins and each edge is a conserved interaction. A stalieating if the pairs of
proteins are likely to identify a true functional ortholQgy associated to each node.
In particular, the protein pairs in each Inparanoid cluktering the lowest BLAST
E-Value are marked as a true orthology and are stihgly conservedvioreover,
for each node of the alignment graph, a conservation inddefieed. This index is
a measure of the portion of strongly conserved interactiansthe total number of
interactions involving it.

Starting from the alignment graph, the approach perforrabatilistic inference
(based on Gibbs sampling) to identify pairs of proteins, fsom each species, that
are likely to feature the same function with the aim of res@vambiguous func-
tional orthologs in the Inparanoid clusters.

The approach has been specifically applied to resolve ambgyfunctional or-
thology relationships in th8. cerevisia@andD. melanogastePPI networks.

MaWISh

MaWwISh [112] is a tool that implements a duplication divergeemodel to carry out
pair-wise network alignment. In particular, this systenrges pairwise interaction
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networks into a single alignment graph, formulates netvadignment as a maximum
weight induced subgraph problem and proposes severaktiestio solve it.

The duplicatiofdivergence model is used to accurately identify and ingrpr
conservation of interactions, complexes, and modulessacspecies. Indeed, this
model enables the introduction of the concept of match @wmagion), mismatch
(emergence or elimination) and duplication, which allowdigcover alignments that
take into account conjectures about the structure of thearktin the common an-
cestor. These observations led to the possibility of alsoaliering indirect interac-
tions.

A similarity score between two protein pairs is defined toetahkto account
matches, mismatches and duplications. This allows tolanthe problem of distin-
guishing orthologband in-paralodbfrom out-paralod$into an optimization prob-
lem that accounts for the tradéFdetween conservation of sequences and interac-
tions.

QSim

QSim[64] is a tool proposed to align two protein-protein intdiac networks ob-
tained by an adaptation of an existing algorithm for netw&irkulation. The pecu-
liarity of this tool is that of performing an asymmetric sefaiin the sense that it
searches for local matches of one network into another. pheoach is based on the
same idea exploited byiEGraprPIN (See Chaptdr]5) according to which two proteins
are similar if both they share a significant sequence siityiland their neighbor-
hoods are similar.

QSimstarts by computing an initial similarity value for eachrpafi proteins (the
first protein belonging to the first network and the secondtorike second network)
based on the Inparanoid clusters and the BLAST E-valuesiiicplar, a similarity
value of 1 is assigned to protein pairs belonging to the sanstar, a value computed
exploiting the BLAST E-value otherwise. As a second s@gjmrefines the initial
similarities by estimating the similarity of protein nelgdrhoods.

In more detail QSimproceeds iteratively, computing a series of refinements, un
til the estimates converge to a unique global optimum. AspEmed to existing ap-
proaches, the peculiarity @Simis that the alignment is asymmetrical in the sense
that it internally exploits an asymmetric graph matchingogdure.

Ali & Deane

Ali and Deane proposed a methaod [2] to align protein-protei@raction networks,
which also exploits a protein functional similarity measwuith the aim of detecting
functional modules. The authors observed that the linoitetiof existing approaches

1 homologous proteins of fierent species

2 proteins that derive from an ancestral duplication and do not fornolarglous relationships

3 proteins that derive from a lineage-specific duplication, giving rise tortioologous rela-
tionships
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for PPI networks alignment may derive from the mere use ofieece information
to identify protein orhtologous. Thus, their tool is basedaodiferent measure of
protein similarity that exploits also functional inforn@t and, in particular, protein
GO annotations related to the biological process sub-ogyalfor more detail about
the GO see ChaptEl 3).

Four scores are assigned to each edge (representing aactiaej to take into
account diferent contributions. The first two contributions are olgdiby two align-
ments of the input networks according to sequence and furadtsimilarity, respec-
tively. The two alignments provide, for each edge, twiadent alignment scores,
one from the sequence based alignment and the other frorankb#dn based align-
ment. The third score is a graph based score computed bygradtuster cofficient,
that is a local network measure of how close a node and it$heig are to being
a clique, and a normalized edge betweenness value, whiek tato account, for
each edge, the number of shortest paths between its enddlyFihe fourth score
encompasses the information obtained from co-expressitmn @hese four scores
are combined to obtain a single edge weight.

Starting from the so built graphs, the algorithm extractetacs modules that
potentially correspond to functional modules.

Dutkowski & Tiuryn

Dutkowski and Tiuryn proposed an approachl [54] for protgiotein network align-
ment, based on the reconstruction of an ancestral PPI netWbe alignment algo-
rithm is based on the phylogenetic history of proteins anthehastic evolutionary
model of interaction emergence, loss and conservation.

The first stage of the approach is the reconstruction of theexwed ancestral PPI
(CAPPI) network. In more detail, it concerns the reconstamcof the hypothetical
sequence of evolutionary events (duplications, deletiorsspeciations), by which
the proteins of the input PPI networks evolved from theintetparts in the common
ancestral network.

In the second step, the posterior probabilities of intévacbetween proteins
at each stage of evolution is determined. The probabilitprotein interaction is
calculated under a proposed stochastic model of netwolkiémo. The topology of
the ancestral network (and each network at every stage dftew) is determined
by the most probable interactions. Finally, conserved stngkinteractions in the
CAPPI network are identified and they are projected back trednput networks to
determine the alignment.

Domain

Domain|[78] is a tool for domain-oriented alignment of protein-f@io interaction
networks. It follows an alternative direct-edge-aligntnparadigm. According to
this paradigm, the peculiarity @omainis that it does not explicitly identify homolo-
gous proteins, but directly aligns protein-protein intti@ns (PPIs) across species by
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decomposing them in terms of their constituent domain-donméeractions (DDIs)
and by looking for conservation of these DDIs.

In more detailDomainconsists of three stages. The first stage is the construction
of a complete set of alignable pairs of edges (APES). A pa&dufes is said to be
alignable if there exists a DDI that can plausibly mediatettho associated PPIs. A
DDl is said to plausibly mediate a PPI if the correspondirtgraction probability
between the two domains is above some fixed threshold.

The second stage is the building of an APE graph. The APE gsmph undi-
rected weighted graph, where nodes correspond to the fidenPEs, and edges
correspond to one of the following four evolutionary redathips: alignment exten-
sion, node duplication, edge indel and edge jump.

Finally, the last step is the exploitation of a heuristicrshao identify high-
scoring non-redundant subgraphs from the resultant APghgra

HopeMap

HopeMap[204] is an iterative connected-components-based algorivith linear
cost for pairwise network alignment. This tool is focusedtmmfast identification of
maximal conserved patterns across species.

HopeMapis based on the observation that the number of true homofogonoss
species is relatively small compared to the total numberrofgins in all species.
Thus,HopeMapstarts by picking up highly homologous groups and, theratshes
for maximal conserved interaction patterns according ter@egc scoring schema.
Finally, it validates the results across multiple knowndtional annotations. In par-
ticular, the results are evaluated in terms of statistinacbment of Gene Ontology
(GO) terms and KEGG ortholog groups (KO) within conservedriaction patters.

In more detailHopeMapconsists in five steps. The first step is a initial stage in
which the data obtained from PPI network databases arequessed. In the sec-
ond stepHopeMapuses homologous clustering to identify homologous grougs a
thus, to find highly similar protein sequences across theisp@nder consideration.
In the third step, the tool uses the clustering results tédbaiinetwork alignment
graph, where nodes represent sets of proteins and edgeseapconserved protein-
protein interactions. In the fourth step, the network atigmt graph is searched for
the strongly connected-components (clusters) which arkedhby combining ge-
nomic similarity scores, interaction conservation, andcfional coherence. At the
end, in the fifth step, the functional coherence of the disoes homologous groups
is evaluated in each species using the Gene Ontology (G@. thie fourth step, the
local alignment procedure can be iteratively applied torimp the cluster scores, if
necessary.

6.2.2 Global Alignment Methods

The aim of global network alignment is to find the best oveaiinment between
the input networks. This implies that all the nodes of theuinpetworks must be
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covered by the mapping. Therefore, each node has either toabehed to some
node or explicitly marked as a node insertion.

The GNA problem has received less attention than the LNA pried last years.
However, some global network alignment approaches have fireposed in the lit-
erature[[185, 92, 124]. The aim of this section is to surveyhem.

IsoRank

IsoRanl184] is an algorithm for pairwise global alignment of PPtwerks aiming
at finding a correspondence between nodes and edges of thienegpvorks that
maximizes the overall match between the two networks.

IsoRankworks in two stages. In the first stage it associates a sctheaach pos-
sible match between nodes of the two networks. In the secnedibconstructs the
mapping for the global network alignment by extracting nallfitconsistent matches
according to a bipartite graph weighted matching performedhe two entire net-
works.

IsoRankhas been extended to an approach for multiple network akagwalled
IsoRank-M[185]. IsoRank-Mis based on the exploitation of an approximate multi-
partite graph weighted matchingoRank-Mhas been subsequently extendetsts
RankN (IsoRank-Nibble)[[124]IsoRankNis a global multiple-network alignment
tool, which relies on spectral clustering on the inducegfraf pairwise alignment
scores. Being based on spectral methods, IsoRankN is bathtelerant and com-
putationally dficient.

Zaslavskiy et al.

Zaslavskiy et al. proposed an approach [234] to globallyrafirotein-protein inter-
action networks by reformulating the PPI alignment probksma graph matching
problem.

Two types of problems have been considered in this work. Tisé groblem
considers strict constraints on the sequence similaritynafching proteins while
the second one aims at finding an optimal compromise betwesgreace similarity
and interaction conservation in the alignment. In particuhe authors investigate
the use of modern state-of-the-art exact and approximatieaue to solve the graph
matching problem representing the GNA problem.

In more detail, the authors consider two possible formareti theConstrained
GNA where some constraints (e.g., edge weights) are providetiree Balanced
GNAwhere the aim is to automatically balance the matching oflainertices with
the conservation of interactions. Several algorithms teesthe above mentioned
problems are considered and, in particular two algorithongHe first problem and
three algorithms for the second one are discussed.
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6.3 Discussion

In this section, an overall comparison of the techniquestihae been presented in
this chapter is provided. In general, network alignmenbathms may be classified
along the two directions:

1. local versus global alignment;
2. pairwise versus multiple networks alignment.

In Table[6.3, the methods discussed in this chapter are aeahpéth respect to
the above mentioned directions, suggesting some obsamgati

The first observation is that the LNA problem has receivedenadtention in the
literature than the GNA one, indeed 11 of the 16 discussetiodstconcern LNA
and only 5 have been proposed to solve the GNA. Moreover, ti& téchniques
are more recent than the LNA ones, suggesting that the GNBlgmohas became
relevant only in the last few years.

As for parwise vs. multiple network alignment techniquesthbproblem have
received great attention in the literature. However, thienygse alignment, that is the
most simple one, was the first to be investigated. Then, ina$iefew years, with
techniques becoming mordfieient, the multiple network alignment problem has
been receiving an increasing attention.

| Tool [local[global[[pairwise[multiple |
PathBlast[97] X X
NetworkBlast [182] X X
NetworkBlast-M [92] X X
Graemlin [[71] X X
Graemlin 2.0[70] X X
Bandyopadhyay[14] X X
MaWwIsh [112] X X
QSim [64] X X
Ali & Deane [2] X X
Dutkowski & Tiuryn [54](| x X
Domain [78] X X
HopeMap [204] X X
IsoRank [184] X X
IsoRank-M [185] X X
IsoRankN [124] X X
Zaslavskiy et al.[234] X X

Table 6.1.0Overall comparison of the PPI network alignment methods.

Summarizing, alignment of protein-protein interactionwarks went through
three major generations. In the first generation, the pagwiignment, conserved
pathwaygcomplexes between two species were indentified (€athBlast[97]).
The second generation concerns the multiple alignmenthiawtools such ablet-
workBlast[182], aiming at aligning multiple networks, have been megd. The
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tools belonging to the two first generations concern LNAgsitheir algorithms,
searching for conserved regions, start from small locabregand then greedily ex-
pand. The third and last generation of alignment tools gtire GNA problem and
has produced several methods, such as IsoRank [184].

6.4 Concluding Remarks

In this chapter an overview on the technigues proposed ¢go @liotein-protein in-
teraction networks has been provided. This investigatamtieen useful to identify
missing requirements in current PPI network alignmenttgmis and open paths of
research in this context. This analysis has been also hétpéunderstand the collo-
cation of the technique proposed in the next chapter in tHenBfvork alignment
techniques landscape.
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SuB-GrappIN: Extracting Similar Subgraphs across PPI
Networks

Summary. This chapter describes a novel method for discovering similar subgrppssibly
representing similar functional modules, across the PPI networks difierent species. In
particular, in Sectioh 711, some background on protein-protein interacétwork alignment
is provided; in Sectioh’712, some basic concepts useful to understamighosed approach
are defined. In Sectidn_7.3;&&rarpin is briefly recalled. Moreover, heres&Grappiv is de-
scribed in detail along with an example showing how the method works. 8&€#mrovides
a comparison with the main techniques proposed to align biological netwarksliscussed
in Chaptef®. In Sectidn_4.5, the experimental evaluations carried outtGite Grarpin are
described and discussed in detail. Finally, in Sedfioh 7.6, some condumienrawn.

7.1 Introduction

One of the big challenges in computational biology is to ust@d how evolution
influences the variation of functional components acrogsisg. In this context,
studying how proteins interact inside the cell is necestannderstand several bi-
ological processe$ [211], and the analysis and comparisprotein-protein inter-
action networks associated tdfgrent organisms is becoming a key issue thereof.
Discovering similar sub-networks in PPl networks offelient organisms is useful
both to uncover complex mechanisms at the basis of evolaryotonservations and
to infer the biological meaning of groups of interactingteins belonging to not yet
well characterized organisms. As a result, a number of @ges have been recently
presented in the literature for local [144, 112] 71,1182, &2 global [184] 124]
alignment of PPI networks. Since PPI networks are large pedationally demand-
ing methods, such as those based on exact subgraph isosrarphiecking|([75],
cannot be applied on real interaction networks. Moreousg, td the nature of high-
throughput experimental techniqu2s|[89,1114] and comjauakt method<[140, 211]
often exploited to discover new protein interactions, etianformation about inter-
actions is not always completely reliable [193], as alstifted by several studies
[9,[47]. This may potentially fiect any attempt to extract useful information from
them.
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In this chapter a technique, calledsSGrarpiN, designed to extract conserved
subgraphs across PPI networks, is presentedrBrriN, presented in Chaptél 5,
based on computing the maximum weighted matching of celifartite graphs,
is exploited to assess protein similarities according tth wyotein sequence and
network structure similarities. Conserved subgraph ektra is then carried out by
performing a node collapsing based technique (referred @a.apse) which is the
main topic of this chapter.

The basic intuition underlying the development accountedrf this chapter is
as follows. Since BGrarpin is efective in discovering significant functional sim-
ilarities among single proteins, then it is sensible to seva technique based on
collapsing subgraphs into nodes, by which the basiGBprin can be exploited to
discover highly matching subgraphs in PPI networks as Wellsummarize, while
Bi-Graprin is used to characterize the functional orthology betweéns paproteins
according to sequence and neighborhoods analysis (sefL8K39, Sus-GraprpIN iS
a local search and collapse based technique which, by ¢éxgldsi-Grarpin and
CoLLaPSE, extracts similar protein modules in two input PPI networks

Sus-GrappiNn WOrks as follows: it takes in input two PPI-networks and &iddal
information about similarities between their proteingrtht interleavedi) a call
to Bi-Grarpin, by which node similarities are refined, afij a call to GrrapsE,
for collapsing subsets of nodes according to maximum siitida. This process is
iterated until a fixed threshold on the similarity betweeirgaf collapsed nodes is
reached, whereby highly matching subgraphs are recognized

We point out that while exploiting BGrappiN as a submodule, UB-GrappIN
has a rather dierent purpose. In fact, while the former algorithm only Higits
functional similarities between pairs of proteins belamngio diferent networks, the
technique presented here serves the purpose of extraatiilgrssubgraphs across
PPI-networks.

Differently from other known techniques (e.0../[97]) our metisaable to recog-
nize similar sub-networks of arbitrary structure, and tetato account both protein
sequence similarity and network topology similarity byeging, in this respect, with
most of the recent approaches presented in the literatuye (B84 70 92]). Difer-
ently from previous techniques, however, our method alss bsth quantitative and
reliability information about interactions. This is sifjpant since quantitative infor-
mation can be used, for instance, to characterize groupotdips interacting with
high strength[[120, 194]. On the other hand, reliabilityormation is useful to avoid
mistaking mismatches caused by false positive. In facr@utions data obtained by
different methods (e.g., experimental or high-throughput atghmay be weighted
differently, thus automatically handling problems relatechtofossible dirtiness of
PPI networks.

We tested 8s-Grarpin 0n the PPI networks dfiomo sapienghuman) andac-
charomyces cerevisiggeast). Experimental results showed its ability in disrev
ing biologically relevant associations. Interaction diats been collected from the
MINT database [33], that also supplies reliability infortioa about stored data. In
order to assess the quality of computed results, we intiexdlacnew accuracy pa-
rameter based on both Gene Ontology (GO) [7] annotationspestgin sequence
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similarities. Eventually, we comparedisGraprpin with NetworkBlast-M [92], a re-
cently proposed technique for extracting similar subgsdpbm PPI networks. This
comparison showed that/&Grappix is actually able to find more biologically mean-
ingful conservations.

The remainder of this chapter is organized as follows. IntiGe&.2, we de-
fine some basic concepts useful for understanding&arpin. In Sectio 7Z.B, B
GrappiN is briefly recalled. Moreover, @Lapse and SB-Grappin are described in
detail and an example is provided to show how the method w&&stior "7} pro-
vides a comparison with the main techniques proposed to hligogical networks,
which have been discussed in detail in Chapter 6. In Settlantile experimental
evaluations we carried out to testéSGrarpin are described and discussed in detail.
Finally, in Sectiori 76, some conclusions are drawn.

7.2 Preliminaries

As already introduced in Chapfdr 5, the most common reptasen for the protein-
protein interaction network of an organism is that of an wexted graph, where
nodes represent proteins and edges denote interactiamsdyeproteins. We slightly
generalize this definition, letting a node to represent alset of proteins instead of
a single protein.

Definition 7.1. (Graph PPI Network) A graph (PPI) network is a labeled (undi-
rected) graphgn = (P, ) where:

e P ={p1,p2...,Pn} are the nodes (called alsabjectsin the following), where
each node denotes a (initially singleton) set of proteisshatter explained be-
low.

o | = {{{p Pj}, (W, C))} is the set of edges, each denoting that an interaction oc-
curs between (a protein in); @nd (a protein in) p (i # j,i,j = 1,...,n); the
label{w, ¢) is a pair of real numbers in the intervflD, 1], called weakness and
confidence, resp.

For completeness, some basic definitions, already intedlirt Chaptef]5, are
recalled. Edge labels are used to encode both “quantitatiad “reliability” infor-
mation about protein-protein interactions under analy@igantitative information,
encoded in the cdicientw, may concern, e.g., protein-protein interaction strength
[120,[194], where larger values of denote weaker interactions. The tecrof the
label pair weighs to what extent a stored interaction canehahly taken into ac-
count in the overall analysis [193]: interactions betwesstgins can be discovered
using several not equally reliable techniques, which isanéd in thec value. In the
following, for an edgee = ({p;, pj}, (W, C)), We denotesv andc, denotesc.

Now, letr be a path connecting a noggto a nodep; in a graph networlgy. De-
fine thelengthof  aslen(r) = } e, We. Given two nodeg; andp;, defineshorf(i, j)

asshorf(i, j) = argmin len(r), that is,shorf((i, j) denotes a shortest path
{m path connectingy; and p;}

connectingp; andp;. Given a pathr, we define its overall confidence as follows.
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Definition 7.2. (Cumulative Confidence @iven a graph networ&y, the Cumula-
tive confidence (x) of a pathr in Gy is defined a€ () = [;gec Ce: fOr each edge
einr.

In order to gain the capability to finely distinguish nodestbe basis of their
distance from a given nodp (e.g., the case where all’s in the graph are very
close to zero), we introduce a normalization function pas@m7 that, given an
integeri > 0, allows to single out nodes “at distan¢e from p and to define the
i-neighborhood of a node.

Definition 7.3. Given a graph networlgy, a function : N — N and a node p; we
say that a nod@ is at distance from p if #(i — 1) < len(shor{p, p)) < ¥ (i).

Definition 7.4. (i-th Neighborhood) Given a node p&y\ = (P, 1), the i-th neighborhood
of p (i> 0) is the setN(p,i) = {qlg € P, q is at distance i from p > 0}.

Note that, while the length of a path determinesitheighborhood which a node
g belongs to, the associated cumulative confidence may bédeved representative
of the probability that] actually belongs to thatneighborhood.

Example 7.5Consider the two networkg,, and Gy, represented in Figuie 7.3(b).
Assume that¥ (see Definition_713) is chosen to be the identity functioneTh
1-neighborhood of the nodp; in G is the set{p,, p, P§, Pg. Py, P4}, While its
2-neighborhood igp;, p. Pjo. P14- P1,). FOr instance, the nodg;, belongs to the
1-neighborhood of the nod# becauséen(short(p;, p;,)) = 0.99 < 1.

Given two labelsw, ¢) and(w’, ¢’), we say thatw,c) < (w,c’) if w < w’ or,
otherwisew = w andc > ¢’. The notion of<—minimality in a set of labels is then
obviously defined. Next, we define an operator twtapseswo or more nodes of
a graph network.

Definition 7.6. (Collapsing Operator) Legn = (P, 1) be a graph network. The col-
lapsing operator cdign, P, D), whereP ¢ P, returns a graph networ@N obtained
from Gy by:

substituting the subgraph induced Byin Gy with the nodep;
deleting all edges of the forip;, p;}, (w, c)) with p € P\ Pand pe P;

e adding one edgé€{p;, P}, (W, C)) for each node jpe P\ P such that the set;P-
{{pi, pjl, (W, 0, pj € P} of deleted edges is not empty, whérec) is the <—
minimum label occurring in P

Givenp, de€p) returns the set of noddp;, - - - , pn} which were (possibly itera-
tively) collapsed int@ (with de€p) = {p} for “singleton” nodesp).

Example 7.7Consider the networg’N represented in Figufe_7.4(b); this is obtained
asG, = col(Gy. 1P P5), 571), wheregy is illustrated in Figuré€ZI3(b). In particular,
the subgraph induced Ky, p;} has been substituted kﬁg The following edges
have been deleted:



7.3 Methods 89

(P, Po), €0.78,0.45)), ({py, Pl 0.45,0.97)), ({py, Pyl €0.78, 1)), ({py, Pyl
(0.90,0.80), ({pg, P4}, (0.86,0.96)), ({pg, Py}, (0.78,0.99)).

The following edges have been adde(ﬁ’,(l]:
{py, Pob, €0.78,0.45)), ({py, Pgl, 0.45,0.97)), ({py, Pl (0.78, 1)), ({PY, Pgl,
(0.90,0.80)), {py. p3}, (0.86,0.96)), ({p;, P}, (0.78,0.99)).

Clear enough, the collapsing operator can be applied itehatseveral times.
Thus, letg* = (P]) be equal to an iterated application of the collapse operstat-
ing with a graphgn = (P, 1), thatisG° = Gy andG = col(- - - col(Gn, P1, P1) - - - ), Pw. Pi)
for somek. Then, for eaclk > 0, nodes irgX are callecbbjectsof Gy, that are nodes
of Gy itself, or subgraphs afy reduced to single nodes through (iterated) collaps-
ing.

In the following, we assume that the graph representingrtezaction network
of a given organism is connected. This is in general readendoreover, if this
condition is not met, the technique discussed below can péeapto connected
components of the graph network by their own. Furthermarialsle dictionaries
will be exploited to store similarities values between gaif proteins in dferent
organisms. These dictionaries store triplets of the fopmp”, f), wherep’ andp”
are nodes of the two input network, and Gy, and f is a similarity codicient,
usually in the real interval [A]: the largerf the more similap’ andp”. For each of
the considered dictionary, a cutfovalue of similarity is always provided such that
only triplets with f greater than the cutfiovalue will be considered in the analysis.
Such triplets will be referred to asgnificantin the following.

7.3 Methods

7.3.1 Br-GrarpIN

In this section, we briefly recall theiBsraprpin algorithm, described in detail in
Chapte’b. Assume Basic Knowledge Dictionary (BKD} given in input, which
stores similarity values associated to protein strucpn@perties (e.g., sequence sim-
ilarity). The Br-Grarpin algorithm constructs a nelRefined Similarities Dictionary
(RSD)where similarities also encode network topology informatisince they are
refined via neighborhood analysis.

The Bi-Grappin algorithm starts by initializing th®SD setting it equal tdKD.
Then, each significant triplép’, p”, f) in BKD is considered in order to refine the
f value. To this end, theneighborhoodsV/ = N(p',i) andN/” = N(p”,i) of p’
andp”, resp., (> 0) are iteratively generated. At the generic iteraiioN; and N\’
are compared in order to refine thevalue. In particularf will embed the following
contributions:

e the objective function of a maximum weight matching|[74] tbe bipartite
weighted graph consisting of the tismeighborhoodsV, and ;" with weights
Ohk = Chk- fnk, Wherefyy is the similarity betweemp, € A} andp; € N/ as stored
in the input dictionanBKD andCpy = min{C(short(p;,, p’)), C(shor{(p, p”))};
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e the proportion of the unmatched nodes in the tweighborhoods w.r.t. matched
ones, suitably weighted by the corresponding cumulativéidences;
e the value off atiterationi — 1.

Note that, while B-Grappin proceeds toward farthest neighborhoods, their influ-
ence on changing thevalue becomes weaker.

Once thatRSDis filled in and, thus, combined information about proteim an
network topology similarity is stored, a subgraph collagsphase starts, which is
accounted for in the next section.

7.3.2 COLLAPSE

Our collapsing technique takes in input the diction®$0 and a threshold value
fse denoting the minimum similarity value to be scored by a jsaich that it is
considered matchable (see below). The output a@fi&sk is the dictionaryOS D
storing triplets of the forrdp’, p”, four), Wwherep’ andp” are objects ofy, andgy,
respectively (so, they might be derived from collapsingyl dout (also denoted in
full as fou(P’, P”)) is a codlicient in the real interval [l] expressing the value of
the similarity betweerp’ andp”’. As usual, the largef,, the more similai@ and
P

The algorithm starts by copying int@S D all the significant triplets oRSQ
and ordering the entries of t@S Don the basis of the similarity values. Thus, the
algorithm works according to the steps illustrated below.

1. Each tripleXp’,p”, f;uo in OS Dfor which f;ut is maximum is considered, and
the two sets\V(p', 1), N(p”, 1) from the graph networkg;, andGy, are ana-
lyzed.

2. If N(P,1) (resp.,N(P”,1)) is equal to the empty-set, dgy < o thenp
(resp.,p”) will not be further involved in collapsing. Note th&S Ddoes not
containall the entries 0RSD Otherwise, two nodeg, € N(P',1) andpx €
N(p”,1) are chosen such th&,(pn. k) - (C;, + C)) is maximum.

3. Gy andgy| are collapsed by computir@\’N = colGL, {P. P}, P) and’g\’,\’I =
coligy. (", P, P7).

4. TheOS Dis updated as follows.

a) The triplet(P, 7", fou is changed by computing a new value fig; ac-
cording to the following formula:

fout(’ﬁsﬁ”) = [(1 -a- fout(’ﬁ’ﬁ’) +a- fout([’)\h’ ﬁ()]

wherea is a tuning parameter that we set in twdfdient ways in our ex-
perimental campaign, in order to compare twfiatient answers of the sys-
tem. In particular, as we will explain in detail in Sectlof]Ave exploited a
first configuration in which both the cumulative confidencestwortp, P'),
short(pk, p”’) and the cardinality of the subgraphs (in the original gsa@(j
andgy)) associated to the four involved nodes have been taken cotmiat.

Then, we used a second configuration for thei@rse module, where the
arithmetic means of,(p’, p”’) and fou( P, Px) has been considered.
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b) For those entrie§p’, Ps, fou) whereps # P, P« ﬁut(’ﬁ,’p‘s) is updated ac-
cording to the following formulafoy = b+ fou(P’, Ps) + (L= b) - fout(Ph, Ps)
whereb is a tuning parameter used to weigh the two similarities.

¢) The triplets(p, P, fouy Wherep; # P, Pn are updated, analogously to the
case (b), as:

fout = b+ fou(Ps B) + (1~ b) - Tout Pt PW)-

d) All entries where one g, andpx occurs are deleted from the dictionary.
5. TheOS Dis ordered according to the (new) valuesf\aﬁ
6. If there are any triplet$p’,p”, fout) Such thatfoy i is maximum andy’ andp”

may be further collapsed, go to step (i), with m@g andg” Otherwise, stop
and return th&©S D

Thus, the algorithm stops when no further collapsing is iessthat is, one of
the nodes under consideration has empty neighborhood dg,jfie less or equal to
the threshold valué,, ... Figure[7.1 shows the pseudocode of the algorithm.

Algorithm Covrapse
Input:
- an input protein similarity dictionarRSD
- afixed threshold valué,,q.
- areal value
Ouput: an object similarity dictionarDSD
fill OSDwith significant triplets irRSD
orderOSDaccording tofoy
for eachtriplet(p’, p”, ﬁuo in OSDfor which ﬁm is maximum
andp” may be further collapsed
generateV (P, 1) andN(p”, 1)
it (N(P,1),N(P”,1) # 0 and fou > s
choose two nodep, € N (P, 1) andpx € N(p”, 1)
st Tou(Ph, Bi) - (C;, + Cy') is maximum
Gy, = coliGy, (7, Pul, )
Gy = col(Gy, {P”, Pk, P7)
updateOSDas follows:
fou(P,P") = [(1 -2 fou(P, P”) +@- four(Pn, PK)]
eachmplet<p Ps, fom> s.t.Ps # P, Pk is updated according tof
fout b- fou!(A’ ps) + (l - b) . fout(ﬁhab\s)
eachtnplet(pt P, fou) S.t. P # p Pn is updated according to
fout b- foul(pl P ) + (l b) foul(pl pk)
delete fromOSDthose entries wherg, andpy are involved
sortOSDw.r.t. fout
elsep’ andp” cannot be further collapsed
return the dictionaryOSD

Fig. 7.1.The Gorrapse algorithm.

As for the worst case complexity of the collapsing technjdmen = maxm, n'’},
wheren? andm’” are the number of nodes gf, andgy, resp., involved in signif-
icant triplets ofRSD andn is the maximum number of nodes 6f, andGy; then,
in the worst case, the collapse algorithm run®{maxm?log(n?), n?) time. In fact,
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the two predominant terms correspond to the fillin@&Dwith triplets inRSD that
costsO(n?), and ordering of th©SDfor each of the triplets candidate for collapsing
(at mostO(m)), for an overall cost 0O(m? - log(m?)).

7.3.3 SuB-GRAPPIN

The final procedure &-Grarrin (SUB-GRAph extraction through PPI Networks)
implementing the proposed approach consists in intemgeasalls to the BGrarpiN
and Gorrapse procedures, so that the output dictionary produced by olhesdaken

in input by the following one. Figurle~4.2 illustrates the pdecode of the final algo-
rithm Sus-GrappiN.

Algorithm Sus-GrappIN
Input:
- an input protein similarity dictionarpBKD
- a threshold valué .
Ouput: an object similarity dictionarDout
Dout = BKD
iterate
call Bi-GrappIN 0N Doyt to obtainDiemp
call CoLLaPSE ON Diep With the thresholdf, msc {0 obtainDoyt
until no nodes are collapsed by the last.Gpsk call
return the dictionaryDoyt

Fig. 7.2.The SB-GrappiN algorithm.

Before proceeding, we note that, in our algorithms, patih&rothan the shortest
ones linking two nodes are disregarded and, in addition, hese the cumulative
confidence value to approximate reliability of interactipsths. In these respects,
we argue that since proteins that interact are linked by ge @dthe corresponding
PPI network, the significance of the shortest path subsuh@of other paths po-
tentially linking two nodes. Furthermore, the choice wefpened to approximate
path reliability by the Cumulative Confidence seems to wadpprly, as confirmed
by our experimental results. We leave as future work a motaildd analysis of
other approaches to combining interaction quality factdhe list of acronyms and
abbreviations exploited in the chapter is reported in TaGle

A Comprehensive Example

Consider the two networks), andGy, shown in Figuré 713(b) (the reason why such
networks are significant is explained below)-@raprix is called first. Assume that
the RSDdictionary returned by BGrarpix for G|, andGy is as reported in Figure
[Z3(a). The identity function has been usedfasthe threshold values.460 and
0.700 have been exploited to single out significant triple®$DandOS D, respec-
tively, while f,.. has been set equal to480. Thus, at the beginning, the dictionary
OSDis filled in using the first 10 entries &2SD During the first call to the col-
lapse algorithm, the triplet ddSDhaving maximumf, is (p}, p;, 0.900), thus the
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Gy A Graph PPI Network
P The set of proteing of a Graph PPI Network
I The set of interactions of a Graph PPI Network
We The weakness of the edge
Ce The confidence of the edge
A path connecting a nodg to a nodep;
len(r) The length of the path computed as

the sum of the weaknesses of the involved edges
short(i, j) A shortest path connecting the nopieto a nodep;
C(n) The Cumulative Confidence of the patlftomputed as

the product of the confidences of the involved edges
N(p,i) Thei-th neighborhood of the node
col(Gn, P, p) The collapsing operator building the collapsed node

p from the set of protein® c P

dedp) The decollapsing operator that returns the set of npdes
{p1,-- ., Pn} previously collapsed intp ~

BKD The Basic Knowledge Dictionary

RSD The Refined Similarities Dictionary

OsD The Object Similarities Dictionary

fout A similarity value computed after adCiapse step

Frnsc The minimum similarity collapsing threshold

SASx The Sub-graph Alignment Score w.r.t. the ontology

fx The functional similarity w.r.t. the ontology

fo The basic similarity of nodes

SBS the basic similarity of subgraphs

Table 7.1.List of acronyms and abbreviations

1-neighborhoods of; andp/ are analyzed Nodegs; and p; are considered since
they present the maximum value faf,t(ph, ) - (C+ C”) = 1.568, and the networks
g' andg” represented in Figuie 7.4(b) are obtame@;@s_ col(Gy. {Py. L), P1)
andg” = col(Gy. {py, PL}, P1”), respectively. Figurg7.4(a) shows the r@@Dob—
tained after the collapsing process. In particular, thelaity betweenp;” andp;”
is computed asou(p1’, p1”) = [(1 — 0.490)- 0.900+ 0.490- 0.800] = 0.851
Following the same line of reasoning, during the second hind iterations, also
nodesp, and p (p; andpy, resp.) have been englobedpi’ (p1”, resp.). During

the fourth iteration, the pair of nodes with maximufgy; are py, andpy;, and they
have p}, and p/; as neighbors satlsfylng the condition for collapsing; thatsthis

—

iterationG}, = col(Gl, (Pyy, Pia)s Pii) @ndGY, = oG, {PYys Pl P11”)-

During the next three iterations, the following subsets ofles are collapsed:
(P Py} and{py, py}, {07, P5) and {pY, py ), {9y, Py} and {py, p5 ). In the last iter-
ation our algorithm collapse;;, pj,} and {pY}, pf,}, obtaining a similarity value

fout(P14> P71) = 0.710. The networks obtained from this last iteration of.Grsk are
shown in Figuré_7]5(b). Then, the collapse algorithm stdgia iteration. At the
next iteration of $s-GrarpiN, Br-Grappin is called again and, since the following
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RSD Dictionary
Ph P foulPh. Pi)
P, P, 0.900
P, P, 0.650
p; p; 0.680
P, p; 0.720
p: p¢ 0.800
p; b 0.720
P, p;_ 0.750
Py P;;  0.800
Py, P, 0.630
Py Pj; 0.680
P, Py, 0350
P, Py, 0.300
p; P, 0.310
@

Fig. 7.3.(a) RSDfor G, andgy;; (b) the two networkgy, andgy;.

OSD Dictionary
P By foulPhs P)
P, p, 0.851
P, P, 0650
P, P, 0680
p, p; 0720
P, Py 0.720
p; p; 0.750
Py Py, 0.800
Py, P, 0.630
Pi; P 0.680 (b)
@)

Fig. 7.4@\’N andé’,\] (a) OSDand (b) after the first iteration ofdCLapse.

OSD Dictionary

ﬁ;] ﬁf(, fout(f’;"ﬁw

p, By 0.763

p, P, 0.710
@)

(b)

Fig. 7.5.(a) OSDfor G}, andGy; and (b)G}, andGy;.
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s <0.950.04>Q P,
7

P <1,1>
)
<0.89/0.97> "

P, Py,
<1,056 <0.88,1> <0.87,0.972
, P
P, <1088 P}, <0.98,0.87> P},

(b)

Fig. 7.6.The two pairs of subgraphs extracted hy$5rappIN.

call to CorLapse does not cause any further collapsing of nodes, the restdtraul
at this iteration is not modified and is as displayed in Figufe

The example illustrated above shows that our approachésalgirasp evolution-
ary mechanisms shaping the PPI networks. As pinpointeddj furing evolution,
two main processes mayfect protein interaction networks, that atek attach-
mentdetachmenandgene duplicationLink attachmentietachment corresponds to
addingdeleting an edge involving a particular protein for whichugleotide substi-
tution occurred in the gene encoding for it, while gene dugtion causes the addi-
tion of new nodes in the network. For instance, Fiduré 7.6fimws that the method
is able to suitably cope with link detachments (look at noggspy, and the edge
missing in between).

7.4 Related Work

In this section a comparison with the methods proposed ¢m &Pl networks and
siscussed in Chaptel 6 is provided.

The approaches that are less similar te-&rappin are PATHBLAST [97] and
the method proposed by Bandyopadhyay ef al. [14].
The main diference between PATHBLAST [97] and our approach is that athr-te
nique does not limit itself to consider linear paths acrds rietworks, but more
generally considers subgraphs of arbitrary structure.
The approach presented [n [14] is similar to@appiN, although the two methods
are based on fierent strategies, butftierently from $B-Graprin, it does not extract
connected subgraphs from the input networks.

The approaches that are more similar te-&rarpin are those also searching for
subgraphs of general structure repeatedfirecint networks [41, 184, 185,192, 124].

Besides technical fierences characterizing our algorithms with respect to the
methods cited above, fiierently from our approach, all the techniques recalled abov
do not exploit neither reliability nor quantitative infoation. This two kind of infor-
mation together can make conversely the analysis more @ecwas also confirmed
by our experimental analysis.
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7.5 Results

This section describes the evaluation ob&raprpin on PPI networks of well char-
acterized organisms. Datasets have been collected froMIME database [33] and,
in particular, two PPl networks have been considered. Tkedine is theSaccha-
romyces cerevisia@yeast) network, which contains 84 nodes and 2870 interac-
tions. The second one is ti#omo sapienghuman) network, which contains &8
nodes and 1237 interactions.

Roughly speaking, our system returned the alignment eButtome hours, that
is the time required also by other techniques performingtmee task.

7.5.1 Validation Measures

Recently, some authors [216, 228] have proposed to assefaitttional similarity
between two proteins by exploiting Gene Ontology (GO) aations [7].

At the same time, protein sequence similarity is often useatder to infer pro-
tein homology([20F7], showing to be a valuable indicator ofvirauch proteins share
similar features and behaviors.

We validated our results by exploiting a combination of bibila GO annotations
and the sequence similarities of pairs of proteins.

Basic similarity of nodes

We consider abasicsimilarity between two proteins their sequence similasitive
exploited the Blast 2 sequences algorithhm [202], availabtbe Blast website and
referred to the BLASTE-valueparameter to measure protein sequence similarity. In
particular, after aligning two proteing andp” of two different organisms, we com-
puted the sequence similarity functidmaccording to the following transformation:

(P ) 0, if E> 102
oP-PU= 2k ifE <102
whereE is the BLAST E-value returned fqv andp”.

Note that theE-valuecan assume, in general, values greater than 1, and the lower
it is, the more similar the protein sequences are. The farfarl f, reported above
serves the purpose of both normalizing the sequence sityifanction (thus that it
varies between 0 and 1) and obtaining significant variatidmen the E-value reaches
very small values (corresponding to very similar sequences

Given two nodegy’ and p” in two collapsed networks, lety,, and pry, be two
proteins belonging to the collapsed subgraphs identifieg’bgnd p”, resp., such
that fo(p,, Piy) iS maximum. Thenpy, andpy, are fixed as representative elements of
p’ andp”, and the basic similarity of two nodes is defined as:

fo(P'. P7) = fo(Ph. Pin)-
1 ftp://ftp.ncbi.nim.nih.goyblasfexecutables
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Basic similarity of subgraphs

Let S ‘irld S” be two subgraphs, identified by the corresponding collapsetts
p;, and p; resp., that have been associated during the alignmentgzoliete that
|dedpn)| = |dedpk)|. TheSub-graph Basic Scoie defined as:

Z(p ) fO(p p")
(S')) ’

where @, p”) are pairs of nodes i’ andS’, resp., that have been associated in
the alignment process. Thus, th denotes a cumulative measure of the sequence
similarities between nodes in two aligned subgraphs.

Functional Similarity of Nodes

The Gene Ontology is a structured and controlled vocabuletydescribes proteins
based on their functions in the cell. We encoded the bioldgieanings of GO terms
into a numeric value by using the notion of Intrinsic Infotina Content([[179] and
computed the similarity between two GO terms by exploitihg P& S similarity
measure [166]. The GO annotationsyefastandhumanproteins used in our evalu-
ation have been obtained from the GO welfsite particular, 9646 of the 11062
proteins belonging to theumanandyeastnetworks were annotated at least to one
GO term.

The Gene Ontology contains three kinds of terms (belongintpriee indepen-
dent ontologies): biological process), molecular functionsr), and cellular com-
ponent ¢c). The GO terms of each of these ontologies are related to @haen by
inheritance ofs-arelationships and form three directed acyclic graphs (DAGs

Let x, with x € {sp, MF Or cc}, be a sub-ontology of the Gene Ontology and let
Ax(P’) (Ax(p”), resp.) be the set of annotations of the profgifp”, resp.) w.r.tx.

Let simy(al ,aJ ) be the similarity between the two GO terms correspondiniié¢o
annotatlora' e Ax(p) andal € Ax(p”) computed by exploiting thB& S similarity
measure.

The functional similarityfx(p’, p””) between two proteing’ and p” w.r.t. x is
computed according to the following formula:

fx(p'.p") = max sim(a, al).

aly eAx (p).ay eAx (p)

Given two nodegy’ and p” in two collapsed networks, lgtr,, and py, be two
proteins belonging to the collapsed subgraphs identifieg’bgnd p”, resp., such
that fx(pf, Pm) is maximum. Thenpy, and pr, are set as representative elements of
p’ andp”, and the functional similarity of two nodes is defined as:

(P, P7) = fx(Phns DI

2 httpy/www.geneontology.org
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Furthermore, we build threefiiérent dictionaries, one for each ontologies, called
Dgp, Dmr andDcc, respectively, such that eaEly stores tripletsﬁ, 57 fx), where
triplets are considered significant if the correspondings greater than a fixed cut-
off value fy (one cut-df value for each ontology out @b, mr andcc).

Functional Similarity of Subgraphs

Let S’ andS” be two subgraphs. Thregub-graph Alignment Scoresaf) can be
defined, each of which refers to one of the three GO ontoldgigssr for the Bio-
logical Process ontologyas-mr for the Molecular Function ontology ands-cc for
the Cellular Component one).

Let Dy be one of the three dictionaries described above ani/éte associated
cut-of. The subgraph alignment scores-x for S’ andS” is defined as:

Z(H,E;)ENX fX(b\,a 57) + |N_X| X ?x
(INx| + INx]) x Ty

SAS-X =
whereNy is the set of significant triplets iDy andN = Dy \ Ny.

Normalized Sub-graph Alignment Score

In order to obtain our combined alignment score, we norredliesass w.r.t.sss as
follows:

NSAS-BP = SAS-MP X SBS
NSAS-MF = SAS-MF X SBS

NSAS-CC = SAS-CC X SBS.

7.5.2 Settings and Configurations

In this section, we describe theffdirent parameter settings and system configurations
adopted in our validation campaign.

Bi-GrapriN: Parameter Setting

Let fnax be the maximum similarity value in the dictionaDy, fed as input to B
GrappiN during a generic iteration ofu8-GrapriN (see Figuré 7]2). We exploited the
reliability information on interaction data provided byetMINT database. In partic-
ular, we carried out two sets of experiments by setting thfflvalue associated to
Doyt in two different ways.

In the first set of experiments we set thg,; cut-of equal tofyax/2 x 0.1, and
referred such cutfto g = C - f rather than tof (see Sectioh 7.3.1). In particu-
lar, 0.1 was assumed as the default reliability value for thoseantens for which
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the MINT database does not provide any reliability inforimat Hence, a triplet
(P, p’, ) is considered significant, and then involved in the maximupatite
graph weighted matching, @f = C - f is greater than the cutfo

In the second set of experiments, g, cut-off has been set equal fgax/2 and
forced onf, as usual.

Finally, during the execution of IBGrappiN, we stopped neighborhood analysis
after looking at the 2-neighborhoods.

CoLLapse: Parameter Setting

Let fax be the maximum similarity value in the input dictiona®s D. We fixed
the minimum similarity collapsing threshold valdig,, = 0.8 x fnax. Moreover, the
tuning parametebp has been set equal to the valub.0

For collapsing offp’, Pn} and{p’, P}, the tuning parameté in the resulting
similarity fou(P’, P”’) (see Section 713) has been computed in twetgnt ways,
in order to understand how the system responded fterdint ways of weighting
collapsed node cardinalities.

Let:

e s =|deqp),
e s’ =|deqp”)l,
o s = [dedpn)l,
o S =|dedpy)l.
In the first GrLapse configuration, we séd as:

S (C,+C))

=a—o—,

whereC;, andCy are the cumulative confidences stior{pn, p’) and shor{(px, p’),
resp., before the collapsing, white= ﬁ is proportional to the cardinality

of the subgraphs (in the original grap&§ andGy) associated to the four involved

nodes.

__In the second Giapse configuration, we seé& = 0.5, thus that the resulting

fout(P’, P’) has been obtained as the arithmetic mearfs g, ') and foud(Ph, Pk)-
_Inthe following, we refer to thé,, computed according to the first configuration

asf;,, and to thefy, computed according to the second configuratiof;gs

Sus-GrarpIN: Configurations

Table[7.2 shows the filerent configurations ofi&-Grappin exploited in the exper-
imental evaluation and obtained by usingtelient parameter values For instance,
Sus-GrappIN(1-1) uses the cutfbon g for Bi-Grappiv and thef;, function for Gor-
LAPSE. For each test we performedyiSGrarpin Was stopped after two consecutive
iterations.

Table[ 7.8 summarizes the number of subgraph pairs disabbgreunning Ss-

GrapriN for each configuration.
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B1-GraPPIN
cut-af ong cut-of on f
Corrapse f,{ SuB-GrappIN(1-1) SuB-GrappPIN(1-2)
fZ(, SuB-GraprpIN(2-1) SuB-GrapPIN(2-2)

Table 7.2.The SiB-GrappiN System configurations.

B1-GrappIN
cut-of ong cut-of on f
CoLLaPSE fj 22 37
ful 17 76

Table 7.3.The total number of discovered subgraph pairs.

Table[7.4 shows the maximum sizes of the conserved subgpaites! by run-
ning Su-Grappin for each configuration. We note that&SGrappin(2-1) is the con-
figuration returning the lowest number of common subgrapitis smallest sizes.

B1-GrappIN
cut-of ong cut-of on f
CoLLapsE fJ{ 42 304
fow 7 27

Table 7.4.The maximum sizes of the conserved subgraphs pairs discovered.

To validate the results obtained by#&sGrarpin we adopted our accuracy mea-
sure encompassing both protein functional information seguence similarity, as
described above in Sectidn 76.1 These measures are exptoitcompare &-
GrappiN t0 NetworkBlast-M [92]. Also, a biology-oriented discussiof the bio-
logically most significant alignments identified by#sGrarppin is provided.

7.5.3 Comparison with Existing Methods

Table[Z.5 summarizes the comparison between the resulitnettby running the
four different configurations of &®-Grarpin and the results ofletworkBlast-Mon
the same interaction data. The validation measures takeraatount for the com-
parison are the means, the maximum and the minimum valsigeafp, Nsas-mr and
Nsas-cc, Which are computed on the set of subgraph alignments disedwby the
tools under consideration. The firsts four columns of TabBcHrrespond to the re-
sults obtained by runningus-Grarpin according to the four configurations defined
above. The last column contains the values of the validatdmmes computed on the
results returned by NetworkBlast-M. Talple]7.5 highlightattSis-Grappin outper-
forms NetworkBlast-M w.r.t all the considered parametditse best configuration
of Sue-Graprpiv is SuB-GrappIN(2-1). It is also worth noting that the mainfdir-
ences obtained on the returned results are related to the vagses on all the three
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measures. In particular,usGrarpin(2-1) obtained 1131, 1240 and 1185 as the
means forsac-sp, sag-mMr andsag-cc while NetworkBlast-M obtained .830, 0648

and 0667.

parameter 8s-GrappiN SuB-GrappiN SuB-GrappiN SuB-GrarpiN NetworkBlast-M

(1-1) 1-2) (2-1) (2-2)

mean of

SAG-BP 0.998 Q981 1131 1079 0630
maximum

SAG-BP 1.446 1548 1446 1548 1079
minimum

SAG-BP 0.371 Q371 Q371 Q371 Q206
mean of

SAG-BP 0.371 Q371 Q371 Q371 Q206
maximum

SAG-MF 1.667 1667 1667 1667 1061
minimum

SAG-MF 0.371 Q371 Q371 Q371 Q225
mean of

SAG-CC 1.048 Q983 1185 1091 Q667
maximum

SAG-CC 1.637 1667 1637 1667 1122
minimum

SAG-CC 0.371 Q350 Q371 Q350 Q216

Table 7.5.Comparison betweenus-Grarpin and NetworkBlast-M

7.5.4 Discussion

This section presents a discussion about the most releligntreents found by run-
ning the four diferent configurations ofu®-Grarprin. For each of the discussed sub-
graph alignments, a table reporting the sequence and turattsimilarities between
corresponding proteins or subgraphs is shown. In particptateins are identified
by their SWISS-PROT igshe sequence similarity is reported in terms of the Blast
E-value while the functional similarity is expressed in termdgf, fyr andfcc. The
functional similarity value isiafor those pairs such that at least one of the proteins is
not annotated. Moreover, a graphical representationsecdlignments (for the sake
of space the last one is not reported though), showing teedation structures of the
corresponding subgraphs, is provided. In the figures, tidesdlled with the same
color represent aligned proteins. Note that, as resultiogn four analysis, our sys-
tem also allows for multiple pairings, that is, nodes in oeenork to be paired with
different nodes in the other one (see e.g., prafdin566 in Tablg€ 717). Table 7.6 re-
ports the scores computed for the discussed alignmentdhe validation measures

SAS-BP, NSAS-BP, SAS-MF, NSAS-MF, SAS-CC andnNsas-cc.
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SAS-BP NSAS-BP  SAS-MF NSAS-MF  SAS-CC SASG-CC

First alignment 573 1333 1667 1413 1628 1380
Second alignment 438 1304 1510 1369 1465 1329
Third alignment 1421 0826 1482 0928 1457 Q911

Table 7.6.Validation scores for the three discussed subgraph alignments

The Proteasome Complex

Table[Z.T illustrates the sequence and functional sirtigariof the pairs of corre-
sponding nodes (proteins or smaller subgraphs) of the figgtraent under consid-
eration, that has been obtained using the configuratierGaarpin(1-1). Figurd 7.7
reports a graphical representation of the two correspgrslibbgraphs discovered by
Sus-GrappiN. In particular, Figur¢ 7.7(h) represents the subgraphtifitesh on the
PPI network of theyeastand Figur¢ 7.7(b) represents the subgraph identified on the
PPI network of thdnuman

The proteins aligned in the two subgraphs are componentsaalgoreserved
complex known aproteasomgwhich is a multicatalytic proteinase complex consist-
ing of many diferent proteins, organized in a catalytic core and two reiyelsub-
units. It is involved in the ubiquitin-mediated degradatif proteins, where the co-
valent, regulated attachment of ubiquitin to proteinsgatiyem for degradation, thus
controlling the half-life of cell components. Two of the ropairs P53091 Q14566
andP29496 Q14566) are instead proteins involved in dna replicatioat thnctions
as dna elicase. They are connected to the subgraph sincarthpyobably regulated
through the cell cycle by proteasome mediated degradation.

yeast human pro-E-value &p fmE fcc
protein tein

P29496 Q14566 RE-81 1000 1000 1000
P53091 Q14566 .0 1000 1000 1000
P40302 pP25786 .QE-68 1000 1000 1000
P23638 pP25789 .BE-74 1000 1000 1000
P23639 pP25787 .@E-71 1000 1000 1000
P40303 014818 BE-79 1000 1000 1000
P21243 P60900 .BE-69 1000 1000 1000
P21242 pP25788 .BE-70 1000 1000 1000

Table 7.7.Protein similarity scores for the proteasome complex

The PP2A Complex

Table[ 7.8 reports the sequence and functional similaritiése pairs of correspond-
ing nodes in the second alignment. Figlure 7.8 reports a gralptepresentation of
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P29496 P21242 P25788

P23639

P25789

P60900
P40302 P25786

(@) (b)

P21243

Fig. 7.7.The alignedbroteasomeubgraphs of (ayeastand (b)human

the two corresponding subgraphs discovered by-Grappin in the configuration
(2-1). In particular, Figurg 7.8(g) represents the sulgidpntified on the PPI net-
work of yeastand Figur¢ 7.8(B) represents the subgraph identified onrRhed?work
of human

Most of the paired proteins are subunits of the serine phaisghPP2A com-
plex, composed of catalytic, structural and regulatorytgins. This crucial enzyme
is conserved from yeast to human, acting on a broad rangebsfraies and being
involved in diverse cellular processes. AR3(1749) is instead a known substrate of
PP2A.

yeast human pro-E-value tp fme fec
protein tein

Q00362 P63151 .000 Q964 1000 1000
P23594 P62714 .000 Q964 1000 1000
P38903 Q7L7W2 @O0 na na na
P31383 P30153 .000 Q964 Q744 1000
P23595 P67775 .000 Q9640 1000 1000
P08458 P31749 BE-26 0791 1000 Q955
Q12469 Q13043 DE-53 (0791 1000 Q368

Table 7.8.Protein similarity scores for theP2A complex

The Cytoskeleton Complex

Table[7.9 reports the sequence and functional similarti¢lse pairs of correspond-
ing nodes in the third alignment, obtained via the configaraBus-Grappin(1-1).
The two networks are composed by proteins that are compoh#re cytoskele-
ton structure (actins, myosins, cofilin etc), or implicatedytoskeletal reorganiza-
tion (Rvdl67,lasl?7, and their human counterpansblandwasp. Many regulative



104

7 SB-GrappiN: Extracting Similar Subgraphs across PPI Networks

Q00362 P23594 P63151 P62714

P38903 Q7L7W2

Q12469 Q13043

P31383 P30153

P31749 ()

P23595 P67775

(@) (b)

P08458

Fig. 7.8.The alignedPP2A subgraphs of (ayeastand (b)human

enzymes or enzymatic complexes are also included: phasggstkinases and GT-
Pases are all known to regulate cytoskeleton assembly dssvekll morphology
and polarization acting on cytoskeleton subrates.

7.6 Concluding Remarks

In this chapter, we dealt with the problem of discovering omm modules in PPI
networks. We presented a technique based on the explaittidictionaries storing
similarities between pairs of nodes belonging téfetent networks. We presented
an algorithm, called &-Grarpin, based on the iterative exploitation of twdférent
stages, that are, protein similarities computation anchirefi and connected sub-
graphs extraction. The first stage is based os-GraprpiN (See Chaptdr]5), while
the second one consists in a node collapsing techniquerilngr&al evaluation on
the yeast and human PPI networks showed thectveness of our approach, also
validated by some suitable accuracy parameters we defined.

In the next part of the thesis, involving Chadiér 8 and Chd@t¢he problem of

protein-protein interaction networks querying will bedac In particular, in Chapter
a new PPI network querying algorithm will be described.
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yeast human pro-E-value Bp fmE fcc
protein tein

P39940 Q9HAU4 OO Q844 Q964 1000
P25039 Q96RP9  .000 Q948 1000 1000
P32381 P68133 OE-95 0806 1000 Q955
P47029 Q6ZNA4 @020 0452 0556 Q955
P39743 076041 QE-5 0302 Q955 Q000
Q12344 Q15797 0030 0458 Q325 1000
P52490 P61088 QE-64 0964 1000 Q955
P53152 Q13404 W©@E-34 1000 Q925 Q964
P10862 Q9Y3C5 0050 0839 1000 Q908
P60010 P63261 .000 0525 1000 Q955
Q03048 P23528 BE-27 0955 10 1000
Q04439 Q9UM54 @O0 Q914 1000 Q955
Q01389 Q99759 DE-56 0888 1000 Q000
P36006 094832  .000 Q000 1000 Q897
P06787 P62158 OE-54 0412 1000 Q560
P38903 Q7L7W2 @O0 na na na
P31383 P30153 .000 Q964 Q744 1000
P23594 P62714 .000 Q964 1000 1000
Q00362 P63151 .000 Q964 1000 1000
P53049 P13569 .BE - 61 1000 1000 Q974
P23595 P67775 .000 Q964 1000 1000
P08458 P31749 BE-26 0791 1000 Q955
Q12469 Q13043 DE-53 0791 1000 Q368
Q12163 Q96EX0 DE-7 na na na
Q03497 Q13153 000 Q739 1000 Q955
P19073 P63000 BE-82 0922 1000 1000
P39083 Q53QZ3 DOE-19 0816 0925 1000
P06780 P60953 BE-55 0922 1000 1000
Q12434 P52565 BE-37 0867 1000 Q955
P48562 P42685 QE-19 0870 1000 Q610
P08018 015530 BE-18 0840 1000 Q955
P08018 P23443 QE-20 0870 1000 Q955
P19524 P46940 .OE -5 0458 1000 0696
Q12446 P42768 RE-14 0910 Q505 Q955
P38822 060592 QRE-8 na na na
P32793 060593 .(ME-11 na na na
P32790 P06241 BE-9 0504 Q0542 Q978
Q08581 Q99816 QE-9 0917 (0634 0908
P13186 Q13464 B6E-25 0870 1000 Q712
P53281 Q99962 RE-11 0554 Q547 Q955

Table 7.9.Protein similarity scores for theytoskeletortomplex
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Network Querying






8

PInG-Q: a Tool for Protein Interaction Graph
Querying

Summary. This chapter describes a novel method for querying protein-proteiraatiien
networks. In particular, in Sectién 8.1 some background informatioprotein-protein inter-
action network querying is recalled. Section|8.2 illustrates in detail the peabapproach. In
Sectior 8.8, a brief comparison with existing methods is provided. Noteatugtailed com-
parison among PPI network querying techniques is discussed in theifujlavapter. Section
[8:4 discusses some preliminary experimental results obtained anly, fm&ection 8.5 some
conclusions are drawn.

8.1 Introduction

As already discussed in Chapfér 2, one of the main modes tpa@nbiological
networks isnetwork queryinghat has the aim of transferring biological knowledge
within and across species, as also stated by Sharan and [A&43. In fact, PPI
subnetworks may correspond to functional modules made agims involved in
the same biological processes. Unfortunately, as subgemphorphism checking
is involved, the applicability of exact approaches to saigevork querying is rather
limited due to the NP-completeness of the problen [75]. TRpproaches have been
proposed where the search is constrained to simple stasctauch as paths and
trees[[97/ 165, 183], some heuristic methods have beenmeest deal with true
subgraph querie$ [205], whereas only a few techniques heee proposed based
on exact algorithms, so that their practical applicabiktyimited to queries that are
sparse graphs or containing a small number of nddes [231].

This chapter provides a contribution in this setting, bypmsing a new tech-
nigue to network querying, called PInG-Q. The main charésties of PInG-Q are
as follows:(i) it allows to manage arbitrary topology networki), it allows to take
into account reliability values associated with interaiet and(iii) it is capable of
singling out also approximated answers to the query grapboaesponding to evo-
lution determined variations in the sets of nodes and edgethe best of our knowl-
edge, this is the first technique that comprises all thosetbharacteristics, as also
pointed out in the following Sectidn 8.3.
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To illustrate, given a target protein-protein interactimtworkG™ and a (typically
much smaller) query networ&®, we are interested in finding a (possibly approxi-
mated) occurrence @§? in G'. To this end, PInG-Q firstocusesa portion of the
target network being relevant to the query as resulting lgyadg the two networks.
To do that, a minimum bipartite graph weighted matching [g4]sed, which work
by relying on protein sequence similarities. This initigldbal” alignment produces
a preliminary solution, whose topology may, however, digantly disagree with
that of the query network. Therefore, our algorithm “zoortesVard a suitable solu-
tion, that matches with a ficiently large extent the query topology. This is obtained
by refiningsimilarity values associated with pairs of proteingfhandG"™ taking into
account topology constraints, and then looking for a negnafient of the networks.
The process is iterated, going through a number of alignsnentil one is obtained
that satisfies both protein similarities and topologicaisteaints.

Note that repeatedly computing such global alignmentsigesvsome guaran-
tees that the resulting solution remains close to the diplogitimum match. Fur-
thermore, diferently from other network querying techniques, which gpacally
based on a oil-stain visiting strategy, our global aligntretrategy permits to nat-
urally deal with missing edges (possibly correspondingnformation missing in
the database): this case corresponds to producing an aigrofithe query network
with a generally unconnected subgraph of the target one.

The rest of the chapter is organized as follows. The neximediscusses in
detail the proposed approach. In Secfion 8.3, PInG-Q is epegpwith some related
work. Sectior 81 discusses some preliminary experimeegallts and, finally, in
Sectior 8.6 some conclusions are drawn.

8.2 The Proposed Approach

Before explaining the technique in detail, we give two préhiary definitions useful
to formulate the problem under consideration.

Definition 8.1. (Protein Interaction Graph) Rrotein Interaction Graplis a weighted
(undirected) grapl = (P, I, such that:

P ={p1, p2,-. .., Pn} is the set of nodes, each of which represents a protein;

o | = {({p, pj}. G is the set of weighted edges, each denoting an interaction
between proteins, and the lalwg| is thereliability factor associated to that in-
teraction.

Definition 8.2. (Distance Dictionary) Given a query protein interactioaghg? and
a target protein interaction gragfi, the Distance Dictionary DDs a set of triplets
(p?, p},di,p, WherepiQ belongs tag?, p} belongs taz" andd, j is the distance value
associated to the paf andp;.

Thus, letg? = (P, 1% andG" = (P",I") be two protein interaction graphs.
In particular,G® denotes the query network to search for in the target net@brk
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Assume that a distance dictiond®pD® is available, which stores information about
protein sequence similarities g andG™ (details about the computation BD®
will be given in Section 8.2]1).

At step 0, the algorithm first aligng® andG" by exploiting a minimum bipar-
tite graph weighted matching procedurel[74] applied to fparite weighted graph
G = (P, 197 such that:

PO = PRU P,
197 = {({p}, p}}dl“’} } is the set of weighted edges, where the Iaﬂf%l is the
distance score betweg and p; as stored in the distance dictiondd®.

The result of running the weighted matching algorithm@ is returned in a
dictionaryDD*® c DD® storing the tripletgp?, p}, df°}> corresponding to computed
node pairings.

Algorithm for protein interaction graph querying

Input:
a basic distance dictionafyD;
a query protein interaction gragf = (P<, 1?);
a target protein interaction gragh = (P", 17);
real valuestins, Tdel, Tegd Temy Imax > @, B V5
an integer value MxITerATION
a threshold valu®y;;

Ouput:
an approximate occurreneg of G2 onG" s.t.D” < Dy;

1:h=0;

2: for k = 1 to MaxITeraTION dO

3: computec® = (G5, DD*"+) solving minimum bipartite weighted

matching problem og?" = (P¥", 1°7) s.t.

PoT = PRUPT,
I'={(p7 pj, A} if (p?, pj, df}) € DD®;

4 compute D7®;

5 if (D7® > Dy)

6: h=h+1;

7: for each (p?, Py, dff“j’l)) € DDS(™

8 refine DD to obtainDD™ using:

9 d|(hj) = di(,hj-l) + a"ﬂi/ns' Oins + ﬁ',u&er Qe + V'Négd' degd+

—Hem' dem;
10: else stopandreturn o* = ¢;

11: return “No solution found.”

Fig. 8.1.The PInG-Q algorithm.
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Before going on with illustrating our algorithm, we need méroduce some fur-
ther concepts. Thus, definmmatchet{DD3) the set of nodeg! € P such thaii)

P is on the shortest path connecting two noqh%sand pT in P, (ii) the triplets
(P, P} A7 1) and (py, pi,. d3 ) belong toDD*, and (|||) p5 and p;, are di-
rectly ilnked by an edge |§Q Moreover definenmatche®(DD*?) the set of nodes
p? € P? that have not been paired with any nodeggdfin DD,

Define theextended dictionary D&+ = DDS®u DD;®u DDY, whereDD?® =
{(s, pj, )} for p] a node inunmatchef{DD*?), and DD = {(p?,e,—)} for p? a
node munmatche@i(DDS(‘”) Let G® = (PS5, 1°) be the subgraph @§" such that?s is
the set of nodes @™ occurring inDD3?+, and the set of edgd$§ is as follows. An
edge is added ig° between proteing] and p, if (i) there is an edgeph, Py> Chk)
in G", (ii) there is an edgep?, pf, ¢ij) in G°, and(iii) the triplets(p?, py, d?) and
(p P d‘°)> belong toDD®®. Moreover, for those pairs of proteing, and py for
WhICh condmons(u) and(iii) above hold, but conditiofi) does not, all the edges in
the shortest path connectimj andpy in G" are added t@°. The edge labels @&*
are those off". We refer tar® = (G°, DD%9+) as anapproximate occurrencef G°
inGg".

Note thato® may well encode a suitable matching 8% in G' or, otherwise,
some relevant topological fiierences might be there significantly distinguish@fy
andg®. In order to evaluate the “quality” @f®, we introduce a measure of “distance”
between subgraphs, which is encoded tlistance score B that, for the sake of
the readability, will be detailed in Sectibn 82.1. For thement being, let us just
state that the largdd”® the moreg*® differs fromg?. Thus, we are going to consider
o® an acceptable solution if the corresponddiff® is less than a given fixed quality
thresholdDyp.

Hence, we can summarize PInG-Q algorithm. Its next step ev&tuateD7®
for c® and compare it tdy,. If D@ < Dy, theno® is returned as the output.
Otherwise, a further minimum bipartite graph weighted rhitg step is performed
as explained below. Let™ = (G°, DD3"+) be the approximate occurrence computed
at the generic stelpof the algorithm using the dictionafyD® such thaD"® > Dy,.
The next run of the bipartite weighted matching algorithreausn updated dictionary
DD™ obtained fromDD® and DD*"+ as explained next. InitiallyDD™" is set
equal toDD®, then some of its entries arefined usingDD*"+ as follows. Let:

_ d<h> 1-d"
L) + B pder (1= A7) + - prega (——2)+  (8.1)
Ci- L C

d(h)
—Hcme (

(h+1) (n)
d d + @ Uins’ (

where:

o the triplet(p?, S d(“’> belongs taDD®,
e the termGC; is defmed as the sum of the reliability factors of the edge&lant
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lwax Serves the purpose of bounding from above the number oftiossrper
single edge that we use in the computation,

e uins IS the penalty score for node insertiopge that for node deletiongieqq that
for edge deletions,

Uem IS @ bonus score that rewards correct matches of edges,

@, 8, v are real values used to weigh the penalty fact@is tdel aNdpegq SO that
a+f+y=1.

The rationale of the formula, whose terms will be detailethia following Sec-
tion[8.2.1, is that of modifying the original values of priatsimilarity in such a way
as to take into account information about the topology mishes of the current
solution. By the virtue of this update, the following run diet bipartite weighted
matching produces a new solutiofi*?.

Iterations proceed until to either a good approximate gmtut™ is found (that
is, D7* < Dy,) or, otherwise, a maximum number of iterationsaVireration) is
reached, in which case no solution is returned.

The pseudocode of PInG-Q is shown in Figuré 8.1.

The following result holds.

Proposition 8.3.Let n and m be the number of nodes in the target and query net-
works, respectively. In the worst case the algorithm run©{MaxITerarion - n%)
time.

Proof. The shortest path between each pair of nodes in the targebrietan be
pre-computed by the Floyd-Warshall algorithm®?). During each iteration, two
steps are performed. The first one is the computation of apatsolution, obtained
by solving a bipartite graph maximum weight matching. Theosel step is the re-
finement of the similarity values associated with matchiades. The time required
to compute the maximum weight matching of a bipartite gragdenofn nodes
is O(R°) [74]. Sincen is always larger tham, the maximum number of nodes in
the bipartite graph i©(n), thus the first step cos®(n®). The refinement step costs
O(m?) because the number of the edges in the query graph is atmiestd all the
edges (interactions) have to be explored once to refinethi@sities of correspond-
ing nodes. The maximum number of iterations igxdVkerarion, thus, overall, the
algorithm runs inO(M axITeraTioN - n°) time.

8.2.1 Technical details

This section is devoted to illustrate some technical detajarding the parameters
and other concepts we have used above.

Basic distance dictionary

As already pointed out, a preprocessing of the proteinacten graphg° andG"
in input is necessary in order to evaluate the sequencessityibf pairs of proteins
(p, p") such thatp? belongs tog®? and p" belongs tag™. All information obtained
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during the preprocessing stage are stored in the basindéstiictionaryDD®, that
is computed as follows. ThBlast 2 sequenceagorithm [202] is executed to align
the amino acid sequences of pairs of proteins fil@mand G', respectively. The
resulting BLAST E-values are used to compute a distanceesi‘;pfor each pair of
nodesp? of G° and p} of G, according to the following formula:

4o — 1, if E> 1072
ij 20 . 2
1-2m00E, jf E< 10

whereE is the BLAST E-value as returned by Blast 2 on inpfitand p}.

Note that the E-value can assume, in general, values gtbated, and the lower
it is, the more similar the protein sequences are. The fameported above serves
the purpose of both normalizing the distance score thustthaties between 0 and 1
and obtaining more significant variations when the E-vadaehes very small values
(corresponding to very similar sequences).

Node insertiorydeletion

As pointed out in Section 8.1, given a query graph in input, approach aims at
searching for it@pproximateoccurrences in the target network. In fact, as discussed
in [20], during the evolution of an organism, some events megur that modify
the associated network structure. Those eventg@me duplicationthat causes the
addition of new nodes, arlthk dynamicscorresponding to gain and loss of interac-
tions through mutations in existing proteins. In its turrgeme duplication may be
associate to bothode insertiongndnode deletion§51),[183].

Thus, a node insertion event may be associated to the peeséne or more
surplus nodes in the path connecting two nogleand p} in the target network, when
they are recognized to correspond to two nogésand p‘l? in the query network,
connected by just one edge. Fig{ire 8R(a) clarifies thiejsabere the case of a
single node insertion is represented.

To take into account node insertions, we defineribenber of node insertions
between each pair of nodgsand p} belonging to a connected subgraphgdfw.r.t.
the query networlG® as the number of nodes in the shortest path linkjhgnd p}
inGg".

;
o el
o Py
Q L T
o--Ogf woOn

() (b)

Fig. 8.2.(a) Node insertion; (b) node deletion.
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A node deletion event occurs when there is a node in the quaphghat does
not correspond to any node in the target network (see Fig@&@})3. This is taken
into account using scores, as will be detailed below.

Distance Score

The distance scorB? for an approximate occurreneeis obtained by evaluating:
(i) protein sequence similaritfij) network topology(iii) number of node insertions,
(iv) number of node deletions afd) number of edge deletions, where edge deletions
are intended in terms of edges that occur in the query bunrbeitarget graph, and
that are interpreted as lack or incorrectness of informatio

Thus, letGg® be the query protein interaction graghl, be the target protein in-
teraction graph and® = (G5, DDS"+) (DD"+ = DDs® u DD" u DDY) be an
approximate occurrence ¢f2 on G'. The distance scord’"” associated to® is
computed according to the following formula:

o _ (h) s s S S
D™ = Z di,j + Hins t Hael T Hegd — Hem (8.2)
(p.p].0))eDDS™

whered" is the distance score of node§ and pj as stored inDD*® (if such a
triplet exists) u; . is the penalty score for node insertiop§,, is the penalty score
associated to node deletior@gd is the penalty score associated to edge deletions
andug,, is a bonus score to reward presumably correct matches. ticydar, the
three penalty scores are computed as follows:

e LetE = {({p?, pIQ},ciJ)} be the set of edges i&°, each of which corresponding
to a pair of triplets(pf, p;, df“}) and(py, pg, d}) in DD®.
Then: ’

:uisns = Z Tins * Nins * Gi)|
({p?.pP).cineE
whereris is a fixed given penalty associated to a single node inseatiaimn;,g
is the number of nodes on the shortest path betv'zﬁ.ramd py (if any).

o 5, = |DDEY| - myel Wherenge is the penalty associated to a single node deletion.
Let F = {({p{, p). ci.1)) be the set of edges G°, each of which corresponding

to a pair of triplgts( P, P}, dﬂ) and(pf, pi, d3) in DD*" such thatp; andpj are
non connected ig". Then:

Hoga = Z Ttegd - CiJ
({p2.pR).cii)eF

whereregqis a fixed given penalty associated to a single edge deletion &?.

The bonus scorgg,,, is computed as follows:
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o LetG = {({py. p).Cin)} be the set of edges ig°, each of which corresponds
to a pair of triplets(p?, p}. d}) and(p}, p, d}) in DD®, such that the edge
AP}, P Cix) is InG". Then:

s G + Cj,k
Mcm = E Tem *
Q Q 2
{py.peheineG

whererngn, is a fixed given score associated to the correct match betthedwo
edges ing? andg".

Note that, in the formulae above, reliability factaxsare exploited in order to
weigh penalty and bonus scores between proteins by thelmhitiea that the corre-
sponding interactions actually hold.

Refined similarity scores

Let G° be the query protein interaction graghi; be the target protein interaction
graph,DD® be a distance dictionary involving all the pairs of protetigz® and
G'. Furthermore, let® = (G5, DDS"+), s.t. DD+ = DDs® uy DD™ u DDSY
andDD™ c DD®™, be an approximate occurrence@f in G'. The penalty scores
Hins, Mdel @aN0uege, NECESSArY to compute the refined similarities accordifgrtoula
(B.1), are evaluated as follows:

o LetE = {({p% p}. ci))} be the set of edges incident onidin G°, each of which
corresponding to a pair of tripletgf, p], dl(“;) and(p?, p;, d}) in DD*". Then:
fis= Y. MM, L) - Gy
(p2,pR),ci)eE;
wherely.x, Nins @andly.x are as explained in the previous section.
e Let DDy be a subset dbD*™+ that contains the tripleégy, ¢, —) such that the

nodespj2 are connected by an edgep,%in G°, andngg;; be the number of nodes
directly linked by an edge tp{ in G°. Then:

tgq = DD
© Nadiji

o LetF = {({p3 B, cii)) be the set of edges incident @i in G°, each corre-

sponding to the tripletgp?, p]df“}) and(py, pi. d’}) in DD*" such that there

does not exist any path @' connectingp} andpy. Then:
Megd = Z Ci
(Ap2.pR).CeF

The bonus scorgm of formula [8.1) is computed as follows:
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o letG; = {{{p?. p’}. ¢} be the set of edges incident pfiin G°, each correspond-
ing to the triplets(pf, pi, d’h) and(py, p;, d'}) in DD such that there exists the
edge({p;, P}, Cjw in G'. Then:

Ci| +Cjk
pm= Y StOk
Q Q 2
({P, By $.CiieG

8.3 Related Work

Network querying techniques, briefly surveyed below, adiagpo biological net-
works, can be divided in two main categories: those seagdoineficient solutions
under particular topological constraints imposed on therygjgraph, e.g., the query
is required to be a path, and those more general that, like4€lnmanage arbitrary
query topologies.

Specific query topologies

Kelley et al. develope®athBLAST97], a procedure to align two PPI networks in
order to identify conserved interaction pathways and cewes. It searches for high
scoring alignments involving two paths, one for each nekwior which proteins of
the first path are paired with putative homologs occurringhsn same order in the
second path.

The algorithmMetaPathwayHunterpresented in [165] solves the problem of
querying metabolic networks, where the queries are maliree trees. MetaPath-
wayHunter searches the networks for approximated matchitaying node inser-
tions (limited to one node), whereas deletions are not a&tbw

The references [183] and [51] illustrate two techniquesrfetwork querying,
calledQPathandQNet In particular, QPath queries a PPI network by a query path-
way consisting of a linear chain of interacting proteinse ®igorithm works sim-
ilarly to sequence alignment, so that proteins in analogmsstions have similar
sequences. Interactions reliability scores of PPI netwark considered, and inser-
tions and deletions are allowed. QNet is an extension of QiRathich queries can
take the form of trees or graphs with limited tree-width.

As already stated, fierently from the approaches surveyed above, our technique
deals with arbitrary topologies in both the query and thgganetworks. In that, it is
more closely related to the approaches described below.

General query topologies

The systemGenoLinkpresented in[[53] is able to integrate data fronffedient
sources (e.g., databases of proteins, genes, organisragjyasomes) and query the
resulting data graph by graph patterns with constrainéehéd to both vertices and
edges. A query result is the set of all subgraphs of the tgmggih that are similar to
the query pattern and satisfy the imposed constraints. ohts @f [53] are clearly
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different from our own, since the aim here is that of comparingrbgeneous graphs
via constrained network querying.

Ferro et al. in[[67] presented a tecnique calldetMatch a Cytoscape plug-in
for network querying allowing for approximated queryinggéery in NetMatch is a
graph in which some nodes are specified and others are wdlsl¢ahich can match
an unspecified number of elements). Although dealing, asavevith approximate
network querying, the technique in_[67] mainly focuses opotogical similarity,
whereas our results are deeply influenced by informationtatade similaritiesas
well. We argue that this information is essential for thelysia of PPI networks.

In [205], a tool for querying large graph datasets, caBéddGA is described. The
tool allows for searching for all the subgraphs contained graph data-set that are
similar to a query graph. The authors define a score of siityilaetween subgraphs
based on the structural distances of the match, the numhmeisofiatches and the
number of gaps. An index-based heuristic is exploited fer plarposes of query
processing. SAGA has been successfully exploited to guelgdical pathways and
literature data-sets, although it shows some limitationgealing with dense and
large query graphs.

In [231] the problems of path matching and graph matchingcarsidered. An
exact algorithm is presented to search for subgraphs afampistructure in a large
graph, grouping related vertices in the target network &mhevertex in the query.
Being an exact matcher, it is only practical for queries hg\a number of nodes as
large as 20 in the query network, though its performancesawepif the query is
a sparse graph. However, for the same reason of being anresaaiter, this is the
reference technique we chose in our comparative expergrieae, below, Section
B.41).

The techniques presented in [%3] 67,1205,/231], are closédyed to PInG-Q,
but with the following diferences:ij none of them exploits edge labels to manage
interaction reliability factors which, considered the atise trustability of methods
used to establish the various protein interactions to tesklpractically very relevant
to correctly single out, in the target network, highly-pablke matchers of the query
network; i) our technique does not imply any constraint on the numbanolved
nodes or the density of the query subgrajin) &s far as we know, our technique is
the first one naturally dealing wittdge deletionsThis way possible incompleteness
in the available information about interactions is deattwi

8.4 Experimental Results

In this section, we illustrate some preliminary results va¢amed by running our
algorithm on the four PPI networks &. cerevisiagD. melanogasterC. elegans
andH. sapiensIn particular, as described in detail in Sections 8.4.1 ewgloited

S. cerevisiagD. melanogasteandC. elegansetworks to compare our results with
those presented il [2B1] for the same organisms. SeclioP Bubtrates how th&.
cerevisiaeandH. sapiensetworks have been queried to further assess the ability of
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our technigue in recognizing conservations across spebiethis end, we consid-
ered some well characterized groups of bghstandhumanproteins for which the
biological processes they are involved in are well known.

In the experiments, we fix the parameter values as followstoFsins, el Tegd
andrncm, have been all set to &, has been set to.8,5to 0.1,y to 0.6 andl,,.x to 5.

Note that, within the preliminary test experiments disealsbelow, we did not
perform a fine tuning on such parameters, which is deferrddrtber experimental
work. The algorithm was implemented on & &Hz PentiumV with 4 GB RAM.
The resulting running times of the experiments vary from aimum of 53 seconds
to a maximum of about 17 minutes.

8.4.1 QueryingD. melanogaster and C. elegansby S. cerevisiae

We compared our method with the one presented_inl [231]. lticodar, we focused
first on a path of th&. cerevisia@etwork to query th€. elegansietwork. This path,
denoted by “Query” in Figurg 8.3(b), corresponds to the &angating-pheromone
response pathway from the protein interaction networlSoterevisiad79]. The
same figure also shows the output returned by the approacangf &hd Sze [231],
and the outputs returned by our algorithm when run on “whotbe C. elegans
network and on a “connected” part of it, resp. In the figureaph nodes are labeled
by protein names, dashed edges correspond to node insertibareas cross edges
represent edge deletions. In particular, we obtained at mmsnode insertions per
edge on this example, whereas Yang and Sze fixed a priori thkémam number
of node insertions per edge to be equal to one. Note that Blrdées not require
any such a limitation about the maximum number of node if@esto be fixed. The
table in Figur¢ 8.3(%) reports the E-values correspondirige solutions returned by
the considered approaches.

Looking at the results shown in Figure 8.3(b), the first intaot observation
is that our algorithm is able to associate the MAP kinaSes3pof S. cerevisiae
with mpk-1of C. elegansin this case, the associated E-value is equals zero, which
agrees with the results reported in [231]. The results ofi lmatr executions agree
with Yang and Sze also for th®. cerevisiaeand C. elegansproteins Ste7pgMig-

15 andMat1apK09B11.9 Furthermore, the result on the connected subnetwork of
C. eleganss the same of Yang and Sze also fte4g-08G12.2 Ste5gtx-1 and
DiglpY42H9AR.10n the contrary, both executions of our algorithm returaeif-
ferent result for the proteiStel1pof S. cerevisiaghat, in [231], is paired again with
Mig-15 (which was paired wittste7pas well). This incongruence might be caused
for Yang and Sze admit multiple pairings of proteins; on thetrary, our approach
search for one-to-one pairings. In any case, the resultganoach returns is signifi-
cant from the biological standpoint, since prote8te11pandF31E3.2both belong

to putative seringhreonine-protein kinase family (as well &&7pandMig-15). Re-
sults returned in both executions of our algorithm are $lyghetter, in terms of
E-values, than those reported in [231] for the two prot@&resl2pand Gpalp Fur-
thermore, we are able to pair also prot8ie18pthat Yang and Sze do not associate
to any protein ofC. elegans
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pe E-value | E-value | E-value
Yang and SzpNhole net subnet
Matlag 3-10° 3.10° [3.10°3
Stel2g 1-10° 2.10% [2-10°
Diglp| 2-10° | 3-10% |2-10°
Fus3p 0 0 0

Ste7p| 7-10%% |[7-103*[7-10%
Stebp| 5-10°3/ | 2-10° [5-107
6-10°
Stellg 2-10% [2.107 [3.10™
Gpalp| 1-102/= | 4-10° [2-10°
Stedp| 2-10%/ [7-100 [4-1055
4.10715
Ste18p = 1-10° [2-10°°

@)

CO06A5.9

- 00d
U

Y42H9AR..

C16B8.3

C16B8.3

K09B11.9 KO09B11.9

Yang and Sze

Query Whole
Fig. 8.3.Comparison on the longenating-pheromone responpathway.

In the second example, the query is a yeast graph with getapalogy rep-
resenting a related functional module from Spirin and Mifi92]. Figure[8.4(3)
illustrates the yeast query, Figre 8.4(b) shows a tabl¢éaguing the E-values cor-
responding to the results returned by our algorithm (apptie connected sub-
networks) and by Yang and Sze, resp., when applied on Gotblegansand D.
melanogasterFigurg 8.4(d) and Figufe 8.4{d) illustrate the correspogdesult sub-
graphs. In this experiment, the bait used to quergleganandD. melanogastenet-
works is a well characterized yeast signalling cascades Jéast pathway controls
peculiar yeast processes that are pheromone respongeu@@p) and pseudohyphal
invasive groth pathway (viK sslp) through a so-calleM APK pathway (Mitoge ac-
tivated protein kinase). ThEIAPK signalling cascades are likely to be found in all
eukaryotic organism although the substrates phosphedylay these kinases and
the final response can beffdirent in diferent organisms. Thus, in response to the
query network, our technique retrives t elegansandD. melanogaster MAPK
cascades (Figufe 8.4(c)-left an Fig{ire 8.4(d)-left), ayested by the presence of
severaMAPK (i.e. proteinankk-4, pmk—1, mpk-1, jnk—1in C. elegansand pro-
teinsERKA CG7717 inD. melanogasterresp.) and other/3 kinases (i.e. proteins
mig— 15,gsk— 3 in C. eleganaandCG7001,cd2c, CG17161 inD. melanogaster
resp.). This example illustrates well a peculiarity of oppeoach, that is, trying to
find a good compromise between node similarity and netwqgskltayy. In fact, the
solution of [231] presents, in some cases, lower E-valumstine correspondent ones
in our solution, but our algorithm is able to pair all the @iot of the query network,
which the technique in_[231] does not, where three nodeidekeinC. elegansand
four ones inD. melanogastemrespectively, can be observed.
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C. Elegans D. Melanogaster
piQ E-val E-val E-val E-val
Our Alg.|Yang and SzgOur Alg.| Yang and Szp
Hsc82g| 1-10°° 0 2.10°3 0
Stellp|[4-10%0| 2-10% |[[2-107® B

Bud6p|[ 11073

- 3.10° .10

Ste5p|| 8- 1077

6-10° 103

Spa2p|| 1-10°%

Ste7p||7-103*

~

5

- 6
3.10° 7-10%| 6-10°
-103% [[6-107%] 6-107F

Sphip|[ 4-10°°

1.10°

MKK1 [[8-10T°

2.-10% [|7-10%®] 5.10%

Mkk2 [[8-10"%%

[y

-10% [|3-10°%| 4.10%®

Fus3p||6-10 0L 0 0 0
Ksslipl|[4-107°7 1097 3107 7.-10%
Diglp || 2-10™® 107> 8.107 =

Dig2p || 1-10°3

10° 4.107 1.10°

Mpt5p |[ 8- 1072

IR

10°° 3.10° -

(b)

Our Algorithm Yang and Sze Algorithm

(c) C. Elegans

Our Algorithm

Yang and Sze Algorithm

(d) D. Melanogaster

Fig. 8.4.Comparison on the functional module from Spirin and Mirny [192].
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8.4.2 QueryingH. sapiensby S. cerevisiae

In Figure 5 and Figure 6 two yeast queries are shown that arehedto the target
human network. In particular, the query network in FigureoBaerns proteins that
control cell-cycle transitions. The progression througg ¢ell-division cycle in eu-
karyotes is driven by particular protein kinas€DK), which trigger the transition
to the following phase of the cycle. These enzymes are g#tirenine kinases that
require for their activation to be associated with reguatiubunits known as cyclins.
The query is composed of the budding ye8sterevisiaeyclin dependent kinase
(CDC28) which associates with all fiérent cyclins CLN1, CLB2, CLB5, CLN2,
CLNB). In yeast, dierent cyclins work in dferent phases of the cell cycle binding
the sameCDK. Mammalian cells, instead, have evolved multigiBKs, each one
working only with some cyclins. Consequently, in the hur@ddK network retrieved
by applying our algorithm, some yeast interactions cowado multiple-edge in-
teractions in the human. For example, human cyBlifCCND1) does not interact
directly with CDK2 (CDK2) because it binds the homoloG9K4 andCDKS6, but
they have as a common partner the inhibitory profetd (CDKNZ1A) that is found
as a node insertion in our approach (not explicitly shownigufe 5). Instead cyclin
A2 (CCNAR) and cyclinE (CCNEL) are directly connected ©DK2.

P, p! |E-value

CDC28 COKZ | 0

CLN1|CCNA2[2- 10D
CKS1|CKS1B[1 102
CLB2 [CCNA1|[3- 10|
CLB5 [CCNB2[7- 105
CLN2 [CCND1|7-10°
CLN3 [CCNE1|2.-107 Query (yeast) Result (human)

@ (b)

Fig. 8.5.QueryingH. sapiensdy S. cerevisiaeexample 1

In the second experiment, we queried the human network Wwihyeast actin-
related-proteins graph. Results are illustrated in Figuréctin is well conserved
among eukaryotes being a main component of the cytoskeletgaast, it binds sev-
eral proteins which regulate its polymerizatidepolymerization and which are pre-
sented in the graph. Human homologs of the yeast proteirestie®n correctly paired
(i.e., ACTI/ACTG@GL, COF1/CFL2, VRPYWIPFL, PFY1/PFN2, LAS17/WAS in
yeast and human, respectively). Furthermore, as in thdqugexample, the net-
work has increased its complexity moving from yeast to hunidwus, whilePFN2
andCFL2 are still directly linked to actin, an insertion node, nlebwn in Figure 6,
divides the regulatorg/IPF1 andWASfrom it.

This latter set of experiments has preliminarily confirmiedttour technique is
indeed able of retrieving biologically meaningful subdramatching the query net-
work in the target one.
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pe p; |E-value
ACT1 |[ACTG1| O
COF1 | CFL2 [6-107%
RVS167 NCK1 [9-10°0
VRP1 [WIPF1[4-107°
PFY1 [ PFN2[2-1077
LAS17| WAS [2-107%%
SRV2 [TRAF7[4.-107°
ABP1 | GRB2[4-10° Query (yeast) Result (human)

@ (b)

Fig. 8.6.QueryingH. sapiensdy S. cerevisiaeexample 2

8.5 Concluding Remarks

In this chapter a novel approach to search for approximataroences of a query
module in protein-protein interaction networks, based ratite graph weighted
matching, has been presented. To summarize, the technigaents the following
characteristics(i) it manages graphs of arbitrary topology, both as query and as
target networks(ii) edge labels are used to represent and manage the reliability
involved interactions anglii) node insertions, node deletions and edge deletions are
dealt with. The preliminary experimental results are emagimng, since the approach
is able to find significant results from a biological point aéw while having a
polynomial running time.

In next chapter an analysis and comparison of protein-praigeraction network
querying techniques is provided.






9

Biological Network Querying Systems: Analysis and
Comparison

Summary. This chapter analyzes and compares some recently proposed texshtigquery
biological networks, including the PInG-Q approach described in Ch8pta particular, the
analysis performed in this chapter is meant to provide a comparativeiewe which will
be useful to understand problems and research issues, state of #mel apportunities for
researchers working in this area.

Sectior{ 9.1l recalls the problem under consideration. Secfidn 9.2 psowidasic comparison
of the network querying techniques, based @nthe adopted network moddilj) biological
information exploited(iii) exact versus approximate results givj types of approximation
supported. Sectidn 9.3 describes the methods and systems by foousiegtypes of networks
they can handle. In Sectidn 9.4, a further comparison is carried oabbgidering(i) the
structures of the querie@i) exact versus heuristic algorithn{§i) computational complexity
and(iv) data used for the evaluation. Section] 9.5 discusses the strengths datbases of
the considered approaches and, finally, Seéfidh 9.6 draws somlesions.

9.1 Introduction

Network queryingechniques search a whole biological network to identifp-co
served occurrences of a given query module, which can befas&ansferring bio-
logical knowledge from one species to another (or possilitlyiwthe same species).
Indeed, since the query generally encodes a well-chaizetefunctional module
(e.g., the MAPK cascade in yeast), its occurrences in theepiaeetwork (e.g., the
MAPK cascade in human) suggest that the latter (and therotihesponding organ-
ism) features the function encoded by the former.

This chapter focuses on some techniques devised to qudngimial networks. In
this respect, two important issues must be taken into accdine first one is that
sub-graph isomorphism checking, which is a sub-problenebfark querying, is a
well-known NP-complete problermn [75], thus limiting the &ipability of exact tech-
niques. The second one is that affieetive approach should look for approximated,
rather than exact, occurrences of the query sub-netwoik vildy, the possible modi-
fications of functional modules, determined by evolutivegaisses, can be taken into
the right account [20].
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In the last few years, the problem of querying biologicalwwks has been studied
by several researchefs [51,)53] 67,/97,1165] 183,205/ 219,223 170]. However,
computational technigues for network querying are stiimearly stage, thus mak-
ing this research area still open and worth to investigate.

In this context, the goal of this chapter is to analyze andpame various facets of
network querying algorithms, including the PInG-Q apptodescribed in Chap-
ter[8. In particular, the following specific aspects will bensideredi(a) adopted
network model(b) biological information exploited (e.g., sequence sinitijainter-
action reliabilities, etc.),c) delivery of exact versus approximate result;types of
approximation supported (e.g., node insertions and delglj(e) handling of gen-
eral versus specific types of netwo(R) supported query structure) adoption of
exact versus heuristic algorithml) computational complexity an@ data used for
the evaluation. Some relevant data pertaining the compadarried out in this paper
are listed in Table_ 912 (concerning poirfty - (h)) and Tablé_ 813 (concerning point
().

The analysis performed in this chapter is meant to providegarative overview
on the network querying techniques developed in the lastykavs. This will help
to understand problems and research issues, state of thedaopportunities for re-
searchers working in this area.

The remainder of this chapter is organized as follows. T section starts by pro-
viding some background information. Moreover, a basic canspn of the network
guerying techniques, focusing on points (a)-(d), is penfed. Sectioh 913 briefly
describes the methods and systems and compares them eintt(g). In Section
[9:4, a coarse-grain comparison is carried out w.r.t. pgfiMg). Finally, Sectior{ 9.b
discusses the strengths and weaknesses of the consideredeipes and 9.6 draws
some conclusions.

9.2 Preliminaries

This section starts by recalling some background inforomatibout the network
querying problem. Hence, network querying algorithms béicompared along the
following directions:

(a) adopted network model;

(b) biological information exploited (e.g., sequence sinifyainteraction reliabili-
ties, etc.);

(c) delivery of exact versus approximate results;

(d) types of approximation supported (e.g., node insertiodsdatetions);

Some relevant data pertaining the comparison carried dhtsrsection are listed in
Table[9.2.
9.2.1 Biological Network Modeling

Biological networks, which store information about molkecuelationships and in-
teractions, as already discussed in Chalpter 2, can be dendignrepresented as
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graphs. A graph is built from of a set of nodes or verticesrasgnting cellular
building blocks (e.g, proteins or genes), and a set of eddjescfed or undirected),
representing interactions (see Figlre 9.1). A graph is aQat (V, E), whereV is
the set of nodes anf is the set of edges, so that the elements fib@re pairs of
elements ol. In an undirected graph, an edge linking nodeand B represents a
mutual interaction. Conversely, in a directed graph, ealgfe@epresents the flow of
material or information from a source node to a target node.

() (b)
Fig. 9.1. An example of (a) undirected and (b) directed graph

As discussed in detail in Chapfér 2ffdrent types of graphs are used to represent
different types of biological networks, each of which storesrimation about inter-
actions related to specific entities or moleculgs [1]. Ratkinds of networks for
the scope of this chapter include metabolic networks anteprgrotein interaction
networks.

Some techniques[165, 205] proposed to query metabolicanksyrepresent the
networks as directed graphs in which nodes represent erszgntkdirected edges
connect pairs of enzymes for which the product of the sounzgree is a substrate
of the sink enzyme. Another reviewed technique[219] uséseated graph in which
nodes represent metabolites and directed edges repressmhes that catalyze a
reaction having the source metabolite as the reactant ansiritk metabolite as the
product. A slightly more complicated model is used in the fesiewed technique
that handle metabolic networks [231], which considers type$ of nodes, chemical
compounds and enzymes. For each enzyme node, an incomiagetgs with each
of its substrate nodes and an outgoing edge occurs with dédishpooduct nodes.

All the techniques proposed to query protein-protein exddon networks[[97,
183,231 51, 170, 25], and analyzed in this chapter (encesgubPING-Q), model
PPI networks as undirected graph in which the nodes reprgseteins and the
edges, that are possibly weighted, connect two proteiteif bind. However, only
some of the analyzed techniqués [1183,/51, 170, 25] incotpasediability informa-
tion encoded as edge weights.

As already discussed in chapiér 2, a biological netwéris commonly repre-
sented by a grap@N = (VN, EN), directed or undirected (see Figlirel9.2), in which
the set of nodes (or vertice¥)¥ denotes a set of cell building blocks (proteins, en-
zymes, metabolites, genes, etc.) and the set of eBfesncodes the interactions
between pairs of nodes.

In the most general definition, each edge € EN takes the form of a triplet
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el’\j‘ = (ViV}, li ;) wherev;,v; € VN are the interacting cell components angdis
the label associated to that edge (in PINs, for example, dige éabel may encode
the reliability of that interaction to actually occur).

Fig. 9.2.An example of biological network grap®\.

Biological networks can be queried in order to extract udgfalogical information.
LetGQ = (VQ, EQ) andG™(VT, ET) be a pair of biological networks, corresponding
to the sub-network used as query and the network to be queesgectively. The
goal of a network querying algorithm is to retrieve the s@works ofG' similar to
GQ.

9.2.2 Node Similarity Computation

Usually, the similarity between the nodes of the query netvemd the nodes of the
target network is computed and exploited by querying atgors. In our analysis we
noted that only two techniques [53,167] do not consider sirtil between nodes.
Similarity values, if exploited, are computed irffiérent ways depending on the kind
of the biological networks under inspection.

For example, in protein-protein interaction networks, ikinty between proteins
is often computed by exploiting the score obtained by afigrtheir amino acid se-
quences by exploiting existing tools such as BLAST (Basicdld\lignment Search
Tool) [202] and the PRSS routine of the FASTA package [161e Butput of a
BLAST and PRSS alignment is accompanied by an expectatioe yehe so called
E - valug. The lower theE — valug the more significant the alignment.

Among the analyzed techniques only ohe [170] exploits th8 P Routine, whereas
all the others([97, 183, 51, 231,125] (including PInG-Q) usABT. Another inter-
esting remark is that the analyzed techniqu&®&dfrom one another in the threshold
value used to assess if two proteins are similar. As an exgrTHBLAST [97]
considers two proteins similar if they are characterized B AST E — valuesmall
than or equal to 1%, whereas Torqué [25] considers two proteins similar if thei
E — valueis less than 10. Finally, differently from the other approaches, the PInG-
Q software, discussed in the previous chapter, exploit€thevalueto compute a
distance value rather than a similarity value (in particulae lower the BLAST E-
value, the lower the node distance).

Another way to assess protein similarity is by exploitingneodatabases like COG
(Clusters of Orthologous Groups) [200] or KEGG (Kyoto Eropedia of Genes
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and Genomes) [94]. These databases organize proteinsrthtwagous groups, so
that two proteins are similar if they belong to the same group

On the other hand, in dealing with metabolic networks, tineilarity between
pairs of enzymes is measured according to the EC (Enzyme @wiom) classifica-
tion, that is, a numbering system, consisting of four setsunfibers, that categorize
the type of the catalyzed chemical reaction [206]. Note thatEC numbers give
a functional classification that does not necessarily reflequence similarity. All
the techniques for metabolic networks analyzed in this pfl®5,219) 231, 205]
exploit EC-numbers to compute enzyme similarity.

9.2.3 Approximation Handling

Given a query networle® = (VQ, EQ) and a target networ&™ = (VT,ET), a po-
tential solution of the querying problem is a sub-graplGdf hereafter denoted by
o, which represents a (possibly approximated) occurren&@&®dh G' (see Figure
for a summary on the notation used in this paper). Appnaxion handling is
needed for dealing with possible occurrences of evolutimnts modifying a net-
work structure. This also allows to suitably take into agtdhe significant number
of both false negative and false positive interactions fbwhen looking up existing
databases. Overall, féitrent types of approximation should be taken into account:
(i) node insertionscorresponding to the addition of nodes in the target netw(@y
node deletionscorresponding to the additions of nodes in the query ndtwamd
(iif) node mismatchescorresponding to pairs of nodes characterized by a low sim-
ilarity, but sharing similar biological characteristios.q., proteins performing the
same function). Examples of evolution events that nfgcaprotein-protein interac-
tion networks are gene duplication, that causes the addifioew nodes (proteins),
and link dynamics, corresponding to gain or loss of intéoast through mutations
in proteins[[20].

Using approximate matching allows to obtain a solutioin which: (i) some
nodes belonging t&° may not correspond to any node @f(node deletions)(ii)
some nodes belonging tomay not correspond to any node®@® (node insertions),
and(iii) some corresponding pairs of nod@8, v') may have low similarity (mis-
matches), but the retrieved (approximated) occurreno&€GR within G is still bi-
ologically meaningful. Figure 913 shows an example of a yuetworkG® (Figure
[0:3(@)) and a target netwofX" (Figure[9.3(H)). A potential solution of the querying
problemo is shown in Figur€ 9.3(F). Note thatis an approximate solution since it
contains node insertions, node mismatches and node awetio

It is important to point out that approximation occurrensbsuld penalize the
ranking of a given potential solution within the overall sésolutions. However, not
all the approaches developed for network querying takedntmunt the same types
of approximations (Table 9.2). Rather, some of them [53,582ch for sub-graphs
that satisfy all the structural constraints imposed by terg However, the analyzed
network querying techniques use a scoring schema to ransotieatial solutions.
For instance, as for PIN querying techniques, PATHBLAS Edetthe best solutions
by computing a score that takes into account the probalaifign actual homology
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. Node deletion
(O Node insertion
. Mismatch

(c)
Fig. 9.3.(a) The query sub-network; (b) the target network; (c) a solution.

to occur within corresponding pairs of proteins (given themilarity value) and
the probability that the interactions are true (and no&fgdssitive). In other systems
[183,51/[231, 20%, 170, 25] solutions are ranked accorditiget sequence similarity
of matching nodes and penalties for introduced approxonat{only node insertions
and deletions [183, 231, b1, 125] or also mismatches[[97,[238,[170]). Besides,
when applicable [183, 51, 10,]25], the ranking scores dekiso edge reliabilities.
In this respect, PInG-Q is able to handle node insertiondereletions and edge
reliabilities.

On the other hand, all the techniques developed to queryholtanetworks
[165,[219) 205 231] rank the potential solutions on the $asimatched enzyme
similarities and penalties for approximations (only nateirtions[[165] or both node
insertions and deletion§ [2119, 231, 205]). Finally, one & proposed technique
[205] also takes into account graph structurdletiences, that is fierences in node
connectivity relationships.

9.2.4 Problem Statement

Thebiological network querying probleigan be stated as follows:

Given a query sub-network®%and a target network &, the biological network
querying problem consist in finding the solutiansorresponding to matching G
onto GR attaining the maximum scores, according to a given scorahgsa.
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[Symbol Meaning |
GP The query sub-network
Ve The set of nodes of the query sub-network
EQ The set of edges of the query sub-network
G’ The target queried network
VT The set of nodes of the target network
ET The set of edges of the target network
o |A (possibly approximated) occurrence®® within GT
Table 9.1.Notation used in the chapter.
9.3 Methods

In the last few years, the problem of querying biologicalwwks has been studied
by several researchers. Hence, several tools [51, 53, 571697183, 205, 219, 231,
25,[170] have been made available. Some of these tools weetoded with partic-
ular focus on specific types of networks (e.g., proteingirointeraction networks
[51,197,183, 231, 25, 170], or metabolic networks [|165, Z,[219]), while oth-
ers were designed to be generally applicable, being thded@buery any type of
biological graph([53, 67].

In order to evaluate the above mentioned tools and PInG-Qichapter, a
synthetic example shown in Figure ®.4 will be used throughidote that, all edge
weights are assumed to be equal to one. Moreover, we do nouuaserical similar-
ity values, but we use "high” or "low” to denote high or low r@dimilarity, respec-
tively. If no similarity value is indicated, no relevant slarity is assumed to hold
between the corresponding nodes. For techniques dealifigundirected graphs,
undirected graphs underlining those shown in Figurk 9.4@msidered. Note that in
the following figures similar filling tones denote similardes.

[Query nodéTarget nodgSimilarity valug

@ e
e’ o] T -
@ A A High
vy v Low
oy Q T :
0, g v% v% H?gh
@ - V3 A High
®) Vg v Low
Q T
- 43 V3 \ZN ng
{ugs vy vl High
© @ (e)

Fig. 9.4.(a)-(c) Query examples; (d) target network and (e) similarity ratings.
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9.3.1 Methods Developed to Query PPI Networks

Some of the approaches developed in the last few years tondisathe network
query problem, as well as PInG-Q, are oriented to proteinteim interaction net-
work analysis.

The first approach proposed in this contexPATHBLAST]97]. PATHBLAST
in its original formulation identifies the conserved patl/across a pair of input
networks. However, it has been subsequently extendedndifigprotein interaction
complexes and pathways by aligning more than two netw@r&2,(23]. Neverthe-
less PATHBLAST was conceived to align the whole networksaad brganisms, it
can also be exploited to query a whole network against afspeeithway by merely
using that pathway as one of the two input networks. The naesitarts by building
a global alignment graph, where each nadepresents a pair of similar proteins
(VQ, vy, one from each of the input networks. Moreover, each edgesepts either
a conserved interaction, a gap (corresponding to both nmedgtions and deletions)
or a mismatch. Each pathway in the global alignment graphesponds to a se-
quence of conserved interactions across the two input AlNs problem of finding
the highest scoring path of lengthin acyclic graphs can be solved in linear time
in the number of edges. Nevertheless, the global alignnrapthgmay contain some
cycles. To overcome this fliculty, PATHBLAST generates bm! random acyclic
sub-graphs by randomly deleting some of the edges, wimdrethe length of the
query pathway. Then, it collects and combines the resuttsodiered from each of
those acyclic graphs. Note that the same protein pair cayuootr more than once in
a resulting pathway and neither gaps nor mismatches cam ogogecutively.

Examplel. As an example, assume that the query pathway and the tatgetrike
shown in Figur€ 9]5 (a) and 9.5 (b) are given to PATHBLAST gaitnThe result-
ing global alignment graph is shown in Figlire]9.5 (c). Ead pdi such a graph
is a potential solution of the querying problem, thus theisoh paths found by
PATHBLAST are(vj, v, Vi) and(vy, vy, vi).

—==- gap

direct
@ interaction
N,
N\,
\\

(2) (b) (c)
Fig. 9.5.(a) Query; (b) target network; and (BATHBLASTalignment graph.

QPath[183] andQNet[51] are other two techniques to query PINs, both based on
the color coding technique. QPath limits itself to pathistured queries, while QNet
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is able to deal with queries shaped as trees or graphs hawingdbd treewidth. In
both methods, the number of node insertions and deletioteipotential solutions
are bounded by two threshold values, caldg; and Ny, respectively. In a prepro-
cessing phase, according to the color coding techniquethQdPal QNet assign to
each node a randomly chosen color friin . ., k+ Nins} (K+ Nins distinct colors are
used to take into account tiNg,s allowed node insertions). Several random coloring
trials of the graph are to be executed since any particularygstructure may be
assigned non-distinct colors and, hence, may fail to beodesed. Both approaches
exploit dynamic programming techniques to search for tis¢ &lignment. In particu-
lar, for each coloring, QPath searches for a path of lekhgitlat spans distinct colors.
Similarly, QNet starts by rootinG° at a generic node and proceeds by searching
for the optimal colorful alignment. The algorithm used tatike tree queries can be
easily extended to handle graph queries with bounded tig#iras well. In this case,
a tree-decompositiofX, T) of G? is computed and the coloring method is extended
to be applied tdl, taking into account thafi) a set of query nodes, representing a
super-node of the tree-decomposition, may have an anpiwpology (e.g., forming
a clique) andii) a query node may appear in more than one super-node. However,
in the current system release, only tree-shaped queridsaadied. It should be fi-
nally noted that the two algorithms search for solution®imng at mostNge hode
deletions and both of them guarantee that each resultingigolincludes distinct
proteins.
Example2. As an example, supposSé,s = Nge = 1 and consider for QPath
the query pathway and the target network represented inrél@4d(a) and Fig-
ure[9.4(d) and for Qnet the query tree and the target netvegrfesented Figure
[©.8(a) and FigurE916(b). For this example, QPath finds theesasult pathways
discovered by PATHBLAST (see Figure P.5 (c)) whereas QNabils to retrieve
the solution trees reported in Figlire]9.6(c).

Fig. 9.6.(a) Query; (b) target network; and (@Netsolutions.
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Torque(TOpology-free netwoRk QUErying) [25] is another approfmiused on
querying PINs, where a bound on both the maximum number of itbrtions and
node deletions is imposed. Torque is a topology-free qugrglgorithm, that is, the
query "network” solely specifies the set of involved protgiand does not carry out
any information about the interactions among them. Thervatien underlying this
choice is that most of the protein complexes reported initbeature are not corre-
lated with any information about their interaction pattérhus, the goal of Torque is
to find a connected set of proteins in the target network nragathe query proteins.
Torque has been implemented using several fixed-paramegteitams based on dy-
namic programming. Each vertex in the target network is@ated to a subset of
colors, on the basis of the similarity scored to the querygins. In a preprocessing
phase, Torque assigns dfdrent color to each query node. To handle node inser-
tions, the algorithm is not applied ®', but it uses a new grap®’ = (V’, E’), such
that for each node| € VT, a non-colored copy; of v is added tov’. Moreover,
an edge,v;) and an edgev(, v;), such that the edge/{,v]) € E", are added to
E’. Torque tries to find a solution to the querying problem byciag for a colorful
tree. Note that each sub-graph has a spanning tree, soiit ie fearch for colorful
trees in lieu of colorful sub-graphs. The authors also gtewan integer programming
formulation of the querying problem to allow commerciah&sk to be exploited.

Example3. By applying Torque to the query proteins reported in Figuaé#) and
the target network in Figufe 9.7(b), the solutions returmgdorque are shown in
Figure9.7(c). Note that only one node insertion and one detktion are allowed
in the solution sub-graphs and recall that Torque considerguery structural
information.

Along the same line, another approach [170] has been deaeIdjhis approach,
similarly to PInG-Q, imposes no simultaneous bound on thaber of node inser-
tions and deletions. However, while in PInG-Q neither thenhar of node inser-
tions nor node deletions is "ex-ante” bounded, the algoritfy Qian et al.[[170],
hereafter denote®ian, imposes a bound only on the maximum number of node
insertions. Qian is based on computing hidden Markov mo@¢idMs) and, as in
PATHBLAST, the query stucture is constrained to pathwayshis framework, PPI
are modelled using the HMM formalism that embeds into itbphmlistic framework
both protein similarities and interaction reliabilitiés.particular, an hidden staté
in the HMM corresponds to each prote/iiﬁ € VT and the HMM has the same edge
structure ass". On the one hand, in order to take into account node deletfons
each state], a new statel] is added to the HMM, and an outgoing edge frafro
each state/iT in the neighborhood oiJT is added. Varying the transition probability
t(ujT|va), the probability to have deletions occurring can be cdleido Moreover, a
self-transition au] is added and, suitably settingu;|u;), the probability to have
consecutive deletions is set up. On the other hand, to maxtid insertions, each
stateviT in the HMM may emit a gap symbdl. Setting the gap emission probability
e(¢|va), the probability (and penalty) to have node insertionstmaalso tuned. Using
the above construction, the problem is reduced to the onadifify the most prob-
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Fig. 9.7.(a) Query proteins; (b) target network; and {orquesolutions.

able path within the so constructed HMM. To retrieve the kogimilar pathways,
instead of just one, themost probable paths are searched for.
Example4. By considering PInG-Q as applied to the query graph repdrted
Figure[9.8(a) and the target network reported in Figurébh,&he algorithm is
able to find the solutions shown in Figlire]9.8(c).

Example5. As an example, by assuming that the maximum number of allowed

node insertions is equal to 1, Qian applied to the query paghrepresented in Fig-
ure[9.4(a) and the target network reported in Figuré 9.4¢kgble to discover the
same result pathways as those identified by PATHBLAST andiQBad reported
in Figure[9.5(c).

9.3.2 Methods Developed to Query Metabolic Networks

In this section, an overview on the techniques developedigryggraphs encoding
metabolic networks is given.
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()

Fig. 9.8.(a) Query; (b) target network; and (B)nG-Qsolutions.

MetaPathwayHuntef165] is probably the first tool designed to work on metabolic
networks. The system takes advantage of the particulatdgp@f most metabolic
pathways, usually shaped as multi-source trees (i.e Gtdileacyclic graphs whose
underlying undirected graphs are trees). In fact, this ooy deals with queries
and target networks shaped as multi-source trees. Mordbdees not handle node
deletions from the query module, but only node insertiorte@retrieved target sub-
modules (that can be also viewed as deletions from the tasp=t). The method ex-
haustively computes both all optimal solutions and sevarabptimal solutions (up
to a predefined threshold score), which are ranked by thatiisgtal significance.
All of the query and target nodes are labeled byE@=number®f the enzymes they
encode. Moreover, a label scoring table, reporting thelaiity scores between the
target labels and the query labels, is built. The tréilbetween an insertion and a
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mismatch, in the retrieved solution, is established byrtgiihe node insertion score.
This system exploits a bottom-up dynamic programming agghdased on a sub-
tree homeomorphism computation, which is based on the cidagonship holding
for subtree homeomorphism and weighted assignments imtidgpgraphs. In par-
ticular, MetaPathwayHunter is based on the computatiom@fsubtree ofs" for
which, given a scoring table ad a node insertion penaltysthelarity score with
GQ is maximal. This problem is recursively translated into #emion of smaller
problems, which are solved using weighted assignmentisigas.
Example6. To apply MetaPathwayHunter to the example of Fiduré 9.9(&) i
necessary to modify the target network illustrated in Feg8rd(d) as shown in
Figure[9.9(b), since the tool requires a forest of multirseurees. The solutions
discovered by MetaPathwayHunter are shown in Figure 9(8te that at most
one consecutive node insertion is allowed by the algorithm)

Fig. 9.9.(a) Query; (b) target network; and (®)etaPathwayHuntesolutions.

MetaPAT [219] deals with metabolic network querying as well. The enhygt
ing technique partitions the query vertices into two sel:p@h vertices, that are
those vertices having exactly one incoming edge and oneomgigedge, and (b)
branch vertices, that are all the other vertices. The astbhbthe system observed
that branch vertices must be conserved, whereas paths edorigated or shortened.
The approach exhaustively examines all the sub-graphedathet network that are
homeomorphic to the query sub-graph. Two graphs are hommgtriedf their edges
can be split (i.e., edges can be replaced by paths of agpitragth in the same di-
rection) in a way that the resulting graphs are isomorphie @lgorithm starts out
by aligning a branch vertex of the query pattern with a bravetiex of the target
graph, and then it uses a recursive sub-procedure to ddahiljtossible extensions
of the attained partial solution. To reduce the search spgdetaPAT exploits the
principle of local diversity Given a real number & f < 1, a gap scorg, a path
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pl with x vertices and a patp2 with y vertices,pl andpz2 fit if a maximum-score
alignment between them aligns at most (ffh— f) - x],[(1 - f) - y]} vertices to a
gap. An extension of a partial solution fits if every simplehpbetween two branch
query vertices fits the corresponding simple path in thestangtwork.
Example7. If MetaPAT is applied to the query graph and target netwoporged
in Figure[9.ID(a) and Figuile 9]10(b), it returns the sohgishown in Figure
[©.10(c).

Fig. 9.10.(a) Query; (b) target network; and (®)etaPATsolutions.

9.3.3 Methods Developed to Query Varied Biological Networks

This section illustrates techniques developed to quenerti@an one kind of biolog-
ical network (e.g., both protein interaction and metaboé&tworks).
SAGA(Substructure Index-based Approximate Graph Alignm&gak] is a gen-
eral system to search for a query sub-graph in a databasaptigrA label is as-
sociated with each node of the query and each node of the giaghe database
with the aim to identify node mismatches. Indeed, if a nodenftthe query and a
node from a target graph haveférent labels, they correspond to a mismatch. The
search is based on the construction of an index, c&tadment Indexcontaining
substructures of sizk extracted from the graphs in the database. In particular, fo
a subset ok nodesvs, ...,V extracted from a target graph, a pseudo edge between
each pair of nodesv(,vj),i,j € 1,...,k is added if their distancd(v;, v;) is less
then a predefined threshottax (in order for node insertions to be allowed). This
fragment is then added to tikeagment Indexf the resulting subgraph is connected.
During the search process, the query sub-graph is dividedrexgments (i.e., sets of
k nodes) in the same way as done for the database graphs. Gheefits extracted
from the query are then used to probe Enragment IndexThe matching fragments,
retrieved from the index, are then combined into larger hiegc
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Example8. Consider SAGA as applied to the query graph shown in Figuliep.

and the target network reported in Figlre]l 9.4(d) and rekatldnly one consecu-
tive node insertion and only one node deletion is allowee rEsulting subgraphs
retrieved by this approach are the same as those discoverBatdue (see Figure
©.7(c)).

PathMatchand GraphMatch[231] are two other examples of tools suitable for
querying ditferent biological networks. PathMatch has been proposedaxcis for
paths, whereas GraphMatch to look for general graphs. Aljgeity of these two
approaches is that each node of the target network may pomdso more that one
node of the query sub-network. In a first phase, for each nSde VQ, both algo-
rithms build a set of correspondencés= {Vi1,...,Vit}, wherevis,...,viy € V'.

In particular,v; 1, . . ., vi; correspond to those nodes®f sharing a significant simi-
larity with viQ. Moreover, both algorithms fix the maximum number of allowede
insertions and mismatches for each direct edg&tby a threshold valuéNi,s.
While PathMatch takes advantage of the linearity of the quesglule, thus reducing
the query problem to that of finding the longest weighted prath directed acyclic
graph, GraphMatch exploits an exact algorithm. In particuPathMatch builds a
directed graplG’ = (V’,E’), whereV’ = JL, V; U {s t} and s andt are two addi-
tional nodes representing the source and the sink of pat@s iBach vertex; ; has
associated a weigly, j, that encodes the similarity score betweﬁ?nand the node
of GT associated t@; ;. The weights fors andt are set to 0. An edge between the
nodesv j, vi.q) € G’ is added tcE’ if (&) 0 < d < m(m bounds the number of node
deletions) and (b) the number of nodes in the shortest patheming the nodes
corresponding t@; ; andviq) in G is smaller tharNins. Moreover, each node ; is
connected by an edge to the source and sink node. Finallyeslaee has associated
a negative weight proportional to the number of mismatcimesgaps in the path it
denoted. Clearly, the above construction reduces the pagtyimpg problem to that
of finding a pathP’ in G’ with the maximum sum of vertex and edge weights.
Example9. By applying PathMatch to the query path shown in Figurel®jlagd
the target network reported [n 9]11(b) and allowing only enasecutive node
insertion and one consecutive node deletion, the g&ipbuilt by PathMatch, is
shown in Figuré¢ 9.71 (c). Note that ties used to identified the nodes Gf are
the sameds of the nodes oG
On the other hand, GraphMatch enumerates all the potentisi@gns so that the
query process turns out to bffective only if the query network and the correspon-
dence lists are small enough. To handle node deletions)dgbétam partitionsv?
into two setsv~ andV*; the first set represents the set of nodes deleted in the resul
subgraph and the second one the set of nodes for which a jpongiag node inr
exists. To solve the graph matching problem, all the comtkitduced subgraphs
of GQ are enumerated, to obtain all the possible partitioning afay? into V- and
V*. To enumerate all solutions, GraphMatch builds a grégph= (V’,E’), where
V' = U, Vi and an edge between the pair of nodgsandyv, is added toE’ if:
(a) there is an edge iG° connectingv? andka and(b) the number of nodes in the
shortest path connecting the nodes corresponding; tandvy, in GT is less than or
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(a) (b) (<)

Fig. 9.11.(a) Query; (b) target network; and (BathMatchgraphG’.

equal toNiys. Given the seV* c VQ, a valid solution is represented as a set of nodes
{Mi,j,...,V}, such that for each edg{e?,v,?) e EQ, the nodes/; j andvi must be
connected by an edge Gi.
ExamplelQ. As an example, leli,s be equal to 1, and suppose to apply Graph-
Match to the query and target graphs shown in Figure]9.12{d}%a12(b), re-
spectively. The subgraphs found out by GraphMatch are showigure[3.12(c).

.'u'a\
.
©) »fq

(2)

Fig. 9.12.(a) Query; (b) target network; and (GraphMatchsolutions.

9.3.4 Methods Developed to Query General Biological Graphs

This section surveys on techniques developed for queryéngigl graphs, the nodes
of which may possibly denote biological entities.

GenolLink [53] is a software platform developed for graphrguey and explo-
ration. A query consists in a graph pattern in which nodeseatyis are constrained.
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The nodes of the graphs may represent biological objeags, @rganism, Gene,
Chromosome, Protein) with the edges modeling the reldtipssholding among
the nodes (e.g., ChromosomBelongsTdrganism, GenéstranslatedTdProtein). In
more detail, a GenoLink query is a graph pattern where nodégdges are marked
with data types. Moreover, nodes and edges may carry soreéralg expression
constraints defined on the node or edge attributes. Firzatjyery may define global
algebraic expression constraints involving attributesliffierent vertices or edges.
An occurrence of the query graph in the target graph is a syigof the target
graph that must featuréa) the same topology as the query grafi),all its nodes
and edges must have the same data types (or subtypes) afpmrding query nodes
and edged(c) all the query constraints on attributes must be satisfieluilding the
result set, the algorithm performs a depth-first searchchvguarantees to find all
matching sub-graphs.
Examplell. GenoLink as applied to the example queries shown in figuZsp.
B.4(b) and9M4(c) and the target network reported in Figudiédd, is not able to
return any solution, since there does not exist any subgrifite target network
that satisfy all the structural constraint imposed by therigs.

NetMatch [67] is another tool devised along the same idebghwwvas built as a
Cytoscape plugth NetMatch queries may ttructurallyapproximated in the sense
that some of their parts may be left unspecified. Each nodeedgd may have as-
sociated a list of attributes specifying query constraifitais, some elements of the
query sub-graph are marked as constants, whereas othamsspecified. In partic-
ular, a node or an edge labeled with a wild card symbol ?’ mayespond to any
single value of a node or edge attribute, whereas an ungxbgiéith (identified by
a dashed edge in the query graph) may correspond to a pathgthlbounded by
n, wheren is a positive integer. The resulting sub-graphs are coedeatcording
to the same structure as the query graph. The query procetstsy independently
handling all maximal specified subparts and then combirtiegrésults of the sub-
queries in all the possible ways. The combination procéss to connect the partial
sub-graphs through all paths satisfying the approximagrygpaths. NetMatch is
able to handle query and target graphs with more than one leelgeeen a pair of
nodes, loops (that are, edges starting and ending at the rsadeg and lists of at-
tributes for each node and edge.

Examplel2. Similarly to GenoLink, NetMatch as applied to the examplerigs

shown in figure$ 9l4(a), 9.4(b) ahd©.4(c) and the target ovtieported in Fig-
ure[9.4(d) does not return any solution. However, suppospy the algorithm to
the query and target graphs shown in figlires19.13(aj andils), ir@&pectively. The
subgraphs found out by NetMatch are, in this case, shownginr&i9.13(c).

9.4 Coarse-Grain Comparison

In the previous sections of this chapter, network queryaaist have been analyzed
with respect to:(a) adopted network mode(p) biological information exploited

1 httpy/www.cytoscape.org
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Fig. 9.13.(a) Query; (b) target network; and (NetMatchsolutions.

(e.g., sequence similarity, interaction reliabilitiet;. (c) delivery of exact versus
approximate resultgd) types of approximation supported (e.g., node insertiods an
deletions);(e) handling of general versus specific types of network. Indkigtion a
comparison will be carried out for the given tools along thkofving directions:

(f) supported query structures;

(g) adoption of exact versus heuristic algorithms;
(h) computational complexity;

(i) data used for the evaluation.

Some relevant data pertaining the comparison carried dhtsrsection are listed in
Table[9.2 (concerning point§) - (h)) and Tablé 913 (concerning poii}).

9.4.1 Supported Query Structure

Network querying technigues can be classified with refexgéndhe structural con-
straints imposed on the query networks. Some of the techrifjare discussed (i.e.,
PATHBLAST, QPath, PathMatch and Qian) only handle pattpshajueries. Other
techniques, such as MetaPathwayHunter and QNet, wereogeekto manage tree
queries. Actually, QNet might also be used to search fortycpmeries (of bounded
treewidth), but in the current system release this lattatui@ is not available. The
most general techniques (i.e., GenoLink, NetMatch, SAGAapBMatch, Meta-
PAT and PInG-Q) can handle queries shaped as general giéplatly, Torque is
a topology-free querying technique, where no informatibaud the interaction pat-
tern as encoded in the query graph is taken into account.

Moreover, the constraints in some cases imposed in theitlgw allow for
the use of heuristic techniques tfiielently perform the search (for example, the
color coding technique_[3]). In some cases (e.g., for MetaRayHunter) the re-
strictions imposed on the query structure are dictated byp#rticular topology of
the most interesting biological substructures in the lgmal networks of interest
(e.g., metabolic networks).
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9.4.2 Adoption of Exact versus Heuristic Algorithms

Because of the typical size of the graph structures encdgimiggical networks,
the adoption of exact vs. heuristic search techniques catfupe significant dier-
ences in performances. In fact, only five of the eleven apres under analysis
(i.e., GenoLink, NetMatch, MetaPathwayHunter, GraphMadoad Torque) imple-
ment exact algorithms. Thus, on the one hand, due to the exibpbf the sub-
graph matching problem (recall that sub-graph isomorphssiMP-completel[75]),
exact algorithms can be applied only to small problem intanOn the other hand,
since other methods (i.e., QPath, QNet, PATHBLAST, SAGA1&PAT, PathMatch,
PInG-Q and Qian) exploit heuristic algorithms, they do na&gntee optimal solu-
tions to be necessarily returned.

9.4.3 Computational Complexity

A further analysis dimension regards the computationalpterity of the considered
approaches. In this respect the following parameters &medinced:

n is the number of nodes of the target network;

mis the number of edges of the target network;

g is the number of nodes of the query sub-network;

Nins is the maximum number of allowed node insertions;
Ngel is the maximum number of allowed node deletions.

Note that, for three of the analyzed techniques (i.e., GENQISAGA and MetaPAT)
complexity figures are not reported since complexity rasafle not available.

Polynomial Time Techniques

Some the analyzed techniques, that is, MetaPathwayHupé¢hMatch, PInG-Q
and Qian, run in polynomial time. In particular, MetaPathitanter [165] has a

time complexity ofO(% + gnlogn). Therefore, its running time is polynomial
both inn and ing. PInG-Q’s running time iOQ(MAXITERATION- n®), where
MAXITERATIONis a constant denoting the maximum number of iterations the
algorithm is allowed to perform, and the factotis implied by the computation of
the minimum bipartite weighted matching problem. The tinoenplexity of Path-
Match [231] isO(m + n + k), wherek is the number of best scoring hits returned
by the algorithm. Finally, the time complexity of Qian [178]O(k - q - Nins - M)
where, also in this cask,s the number of highest scoring pathways retrieved by the
algorithm.

Exponential Time Techniques

Five of the discussed systems, that are, PATHBLAST, Netha@Path, QNet,
GraphMatch and Torque, run in exponential time in the nundfemodes of the
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query sub-network. Therefore, these techniques are aybdiconly to relatively
small problems. In detail, PATHBLAST_[97] runs in tim@(q!l), wherel is the
number of edges of the global alignment graph. NetMatch’e ttcomplexity [[67]
is O(q!q), while QPath[[18B] runs ifn?2 . 29(@Nes) . mNyg,, wheree is the proba-
bility that the algorithm does not find an optimal solutiomeltime complexity of
QNet [51] isIni . 29@Nes) . mfor tree queries and®? - nt*! for bounded treewidth
graph queries, where has the same meaning as above, aiglthe maximum al-
lowed treewidth of the query graph. The initial phase of Gidptch [231], where
all the connected subgraphs®® are enumerated for the construction of all the po-
tential solutions, runs i®(29¢?). Finally, the computational complexity for Torque
is O(qI3IMNE ).

Note that the exponential trend qnmight not be as much problematic as an
exponential trend im, since in real applicationgis expected to be relatively small
as compared to.

9.4.4 Data Used for the Evaluation

The approaches developed for querying biological graphie tested by their devel-
opers on dierent organism networks. The data used for the evaluatiomibeen ex-
tracted from several databases, as reported in Talle 9.theMechniques proposed
to querying PINs|[[51, 97, 183, 231,125, 170] (including PI@pwere evaluated
on networks downloaded fromIP (Database of Interacting Proteins) [175], though
some of them also used other databases to obtain additidoaination (e.g., func-
tional classification) or to perform evaluations offglient data. For example, QPath
[183] and QNet[[51] use&lyGrid (the section oBioGRID containing the interac-
tion data pertaining the fly) [195]; PInG-Q also exploitsaddbwnloaded frofMINT
(Molecular INTeraction databasé) [33]; and Torquel [25] dimaded the interaction
data also fronFlybase(a database of Drosophila genes and genomes$) §GD
(Saccharomyces Genome Database) [AThiGo (Gene Ontology database) [31],
CORUM(the Comprehensive Resource of Mammalian protein comp)¢k&4] and
HPRD (Human Protein Reference Database) [168].

Similarly to the approaches working on PINs, the approaphgsosed to query-
ing metabolic networks [165, 231, 205, 219] were evaluatedatasets downloaded
from several databases. In detail, PathMatch, GraphmattBAGAwere evaluated
on the data downloaded fro’EGG (Kyoto Encyclopedia of Genes and Genomes)
[94]. The information stored itEcoCyc[99] was used in PathMatch, Graphmatch
and MetaPathwayHunter. Furthermore, this latter systesmeploited th&GD[37]]
data, SAGA usedReactomdgl36] data and MetaPAT downloaded information from
BioCyc[96]. Finally, GenoLink was evaluated on the data downloafiem COG
[201]], InterPro [87] andBRENDA[32]. The systems were evaluated on networks of
different organisms (see Tablel9.3). In detail, PATHBLAST watetkton the PIN of
S. cerevisiagyeast); QPath and QNet were evaluated using the networsadre-
visiag D. melanogaste(fly) andH. sapienghuman); PathMatch was run on the net-
works of S. cerevisiagD. melanogasterC. elegangworm), H. pylori (bacteria) and
E. coli (bacteria); for GraphMatch, the networks $f cerevisiagD. melanogaster
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Table 9.2.Comparison summary

Types of networks(e) Query structure (f) biological information
exploited (b)
PATHBLAST Tested on PPI networks Pathways BLAST E-values
971
MetaPathwayHunter Tested on metabolic pathways| Trees in a forest Functional classification
1165]
QPath Tested on PPI networks Pathways Interaction reliability, BLAST
1183] E-values
GenoLink General General graphs None
153]
QNet Tested on PPI networks Trees or graphs with Interaction reliability, BLAST
51 bounded treewidth E-values
NetMatch General General graphs None
167)
SAGA Tested on metabolic pathways| —General graphs Functional classification
{205]
PathMatch Tested both on PPI networks and Pathways BLAST E-values, Functional
[231] metabolic pathways classification
GraphMatch Tested both on PPI networks and General graphs BLAST E-values, Functional
[237) metabolic pathways classification
MetaPAT Tested on metabolic networks General graphs Functional classification
1219]
PInG-Q Tested on PPI networks General graphs | Interaction reliability, BLAST
E-values
Torque Tested on PPI networks topology-free Interaction reliability, BLAST
[25] E-values
Qian Tested on PPI networks Pathways Interaction reliability, FASTA
1170] E-values
Exact vs approximate Types of Exact vs heuristic Time complexity (h)
results (c) approximation (d) algorithm (g)
PATHBLAST Approximate Node insertions, Heuristic O(q!l)
o7 node deletions,
mismatches
MetaPathwayHunter Approximat N insertion: Exact 2
|165]y pproximate ode insertions O(,% +anlogn)
Path Approximate Node insertions, Heuristic n . ,0(a+N; .
?183] PP node deletions ne-2 (@+fing MNel
GenoLink Exact None Exact Not evaluated
193]
QNet Approximate Node insenjons, Heuristic n % . 20@+Nins) . . Ngel (trees)
151 node deletions 20(0) .+l -
. (bounded treewidth graphs)
NetMatch Exact (but wildcards None Exact O(q'q)
1671 allowed in the query)
SAGA Approximate Node insertions, Heuristic Not evaluated
[205] node deletions,
mismatches
PathMatch Approximate Node insertions, Heuristic O(m+n+k)
1231] node deletions,
mismatches
GraphMatch Approximate Node insertions, Exact 0(29¢2)
1237] node deletions
MetaPAT Approximate Node insertions, Heuristic Not evaluated
1219] node deletions
PInG-Q Approximate Node insertions, Heuristic O(MAXITERAION n3)
node deletions
Torque Approximate Node insen_ions, Heuristic O(q!aquzns)
125] node deletions
Qian Approximate Node insertions, Heuristic O(kgNpsm)
1170] node deletions,
mismatches

andC. eleganavere used; PInG-Q was tested on the networkS.oferevisiagD.
melanogasterC. elegansand H. sapiens Torque was evaluated on the networks
of S. cerevisiagD. melanogasterH. sapiens M. musculugmouse),R. norvegicus
(rat) andB. taurus(bovine); Qian was tested on the networksSfcerevisiagD.
melanogasterH. sapiensC.elegansandE. Coli.

With regard to the systems tested on metabolic networksaR&hwayHunter
was evaluated using the networksEf Coli andS. CerevisiaeSAGA on the net-
works ofH. Sapiensand MetaPAT on the networks &. Subtilis(bacteria),E.coli,
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H. SapiensS. Cerevisia@andT. Thermophilugbacteria). Finally, Genolink was eval-
uated on the networks &. ColiandH. Pylori.

The quality of the results obtained by thdéfdrent systems were evaluated from
a biological point of view, manually or using some well knoimformation stored in
biological databases, such as Swiss-Rrat [11]. In padicabme well-known query
modules characterizing some model organisms (e.g., the KA&se cascade of
yeast) were used as benchmark. Also the capabilities obtlimtques were stressed
by using less characterized modules and organisms (eedlyjh

Table 9.3.Exploited organisms and data sets

Analyzed organisms Databases used to build PPI networks
PATHBLAST
97] S. cerevisiae (Yeast) DIP
MetaPathwayHunter
1165] E. Coli (Bacteria) and S. cerevisiae (Yegst) EcoCyc, SGD
QPath
1183) S. cerevisiae, D. melanogaster (Fly), H. DIP, FlyGRID
sapiens (Human)
GenoLink
53] E. Coli and H. Pylori (Bacteria) COG, InterPro, BRENDA
QNet
=1 S. cerevisiae, D. melanogaster, H. sapiens DIP, FlyGRID
NetMatch
(] - -
SAGA
[205] H. sapiens KEGG, Reactome
PathMatch
12317] S. cerevisiae, D. melanogaster, C. elegans DIP, KEGG, EcoCyc
(Worm), H. pilori, E. coli
GraphMatch
1237) S. cerevisiae, D. melanogaster, C. elegans, DIP, KEGG, EcoCyc
E. coli
MetaPAT
1219] B. Subtilis (Bacteria), E.coli, H. Sapiens, BioCyc
S. Cerevisiae, T. Thermophilus (Bacterfa)
PInG-Q
S. cerevisiae, D. melanogaster, C. elegans, DIP, MINT
H. sapiens
Torque
125) S. cerevisiae, D. melanogaster, H. sapien®IP, Fly-base, SGD, AmiGo, CORUM||
M. musculus (Mouse), R. norvegicus HPRD (Human Protein Reference
(Rat), B. taurus (Bovine) Database )
Qian
[170] S. cerevisiae, D. melanogaster, C. elegans, DIP
E. Coli, H. sapiens
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9.5 Discussion

In this paper, a comparative survey of the methods develtpgdery biological net-
works has been carried out. As implied by the previous dgsaris, those techniques
are rather dferent from one another. There are methods that, due to theiadof
exact algorithms (e.g., GraphMatc¢h [231]), or becacausg iandle generic graph
queries (such as NetMatch [67]), result in rather high tiomlexity. Improvements
in execution times are obtained by exploiting heuristioathms, like in PInG-Q,
by restricting query structure (e.g., as done in PathM&8H]), or by only allowing
few types of approximations in the result sub-graphs (engMetaPathwayHunter
[165)).

However, all the tools seem able to find biologically sigmifitresults. Since all
methods are accurate with respect to the "biological” dyalf the returned results,
it is sensible to look at both the application domains ancctiraplexity in order to
find the best method to use.

In this respect, for pathway queries, the best choices se&mPathMatch [231]
and Qian[[170], which are able to deal with node mismatchesgrtions and dele-
tions and have the lowest time complexity among the consitigystems (linear time
complexity in target and query network size).

For queries shaped as general graphs the most promisisgsterh to be PInG-Q
and GraphMatch [231]. PInG-Q has the advantage of expip&ineuristic technique
that keeps the time complexity low, while at the same timesitering both node
insertions and deletions in the result sub-graph. GrapbiVanh the other hand, since
exploiting an exact search algorithm, guarantees to finbésesolution according to
the adopted scoring schema. Finally, Tordque [25] prove¥ it be quite appropriate
for it opening an appealing view on the topology-free quagyissue.

As a general trend, most of the tools do not yet exploit altikiof biological ad-
ditional information (e.g. GO terms or interaction religtiicoefficients) that might
improve the quality of the returned result. Besides, thetmpast do not take into
account all the possible biological diversities (e.g.,ragjmations in resulting sub-
graphs) that might permit to obtain more accurate results.

Despite these limitations, théferts within this research area have been steadily
increasing in the last few years. As such, this area seems @ [romising re-
search domain in the quest toward improving the knowledgeitabiological data
and mechanisms at the basis of life processes.

9.6 Concluding Remarks

In this chapter the analysis and comparison of some techgigtoposed to query
biological networks has been carried out. This analysissiciemed the biological
network querying problem from fierent perspectives, ranging from structural prop-
erties of the networks (e.g., query subnetwork shape aingt) to computational
complexity of network querying algorithms. Despite thefpened comparison, it
has not been possible to identify the “best” method in thekibs sense, since the
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most performant algorithms, in terms of running time, pra@lapproximated results,
whereas exact algorithms are very time consuming. Thig/aisdhas been useful for
better understanding research issues and future dirsdioimprove the quality of
solutions to the biological network query problem.
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Conclusions and Future Trends

Summary. The content of this thesis concerned three main strands of rese&ielirst in-
vestigated the problem of predicting protein functions. The second odedtthe problem
of aligning protein-protein interaction (PPI) networks. Finally, the last deat with the bi-
ological network querying problem, with particular emphasis on queriRgnetworks. In
this chapter, the content of this work will be summarized by remarking ita owntributions.
Besides, here a brief overview on future trends in the fields of resealated to this thesis
will be provided.

10.1 Content Summary

This section recaps the content of this thesis, briefly disitig the various research
issues that have been investigated.

A road map of this work has been given in Chapler 1. The matimatof this the-
sis have been laid out in Chaplér 2 by analyzing simple (reteins) and complex
(i.e., biological networks) biological structures. Thibaed to identify and investi-
gate some relevant problems concerning these structuoéis tfiee fundamental role
played by proteins in living organisms and the complex setolecular interactions
regulating cell life cycle have been described. Besidesyvanview on the most im-
portant bioinformatics tasks related to these simple antptex biological structures
has been provided. This has been useful to understand tinepepspectives in this
research field, which have been tackled in the subsequestqgfahe thesis.

In PartTl, the problem of predicting protein functions hagh analyzed. In par-
ticular, Chaptell13 charted the state of the art in this rebesea, which helped to mo-
tivate the two novel approaches proposed in Chdpter 4 angdt&f. In particular,
in Chaptef#, an approach for predicting protein quatersainctures, called PQSC-
FCNN, has been illustrated. PQSC-FCNN exploits proteircfiomal domain infor-
mation and the Fast Condensed Nearest Neighbor (FCNN)GLIEQSC-FCNN is
able to reduce both the portion of the dataset to be used analtinber of compar-
isons to carry out at classification time. This allows selesspace and time savings,
while achieving very good accuracy. In Chagtér 5, an apfreatled B-Grarpin,
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for annotating proteins with functional information by cpaming PPI networks, has
been presented. The algorithm is based on the exploratidrt@mparison of pro-
teins neighborhoods (interaction profiles). The basic id#aat proteins with similar
neighborhoods are probably involved in similar biologizadcesses. One peculiarity
of this approach is its capability of incorporating both iiative (i.e., interaction
strengths) and reliability information about interacgohe quantitative informa-
tion is used to distinguish nodes belonging tfietient neighborhoods. The reliabil-
ity, that is determined by the experimental method used teati¢he interaction, is
taken into account in the computation of neighborhood sirityl.

PartIIl has covered issues regarding the alignment of prqetein interaction
networks. In particular, in Chaptel 6 the state of the art Bhrietworks alignment
has been analyzed to unearth the open research paths imtiéxtc This analysis
was essential to motivate thesGrappriv tool that has been introduced in Chajler 7.
In particular, the goal of this approach is that of discavgiiommon modules in PPI
networks by exploiting the similarities between pairs ofles belonging to dlierent
networks. The algorithm is based on the iterative alteomatif two sub-stages: pro-
tein similarity refining, and connected sub-graphs exitvacfT he first stage is based
on Bi-Grarrin, While the second one consists in a node collapsing tecbnplled
COLLAPSE.

Finally, Par{TV has dealt with the problem of querying bigikkal networks. In
particular, in Chaptdr]8, a novel approach, called PInG&3,been proposed. PInG-
Q searches for approximated occurrences of a query modpletein-protein inter-
action networks by iteratively computing a minimum weightspartite matching.
This technique has the following peculiariti€y:query and target networks of arbi-
trary topology can be handl€d) interaction reliability information is taken into ac-
count by incorporating it in edge labdig) node insertions, node deletions and edge
deletions are allowed. Finally, in Chapiér 9, an analysts@mparison of biological
network querying algorithms, including PInG-Q, has beemied out. This analysis
considered the biological network querying problem frorfiiedent perspectives to
provide the reader with a rich overview on the existing téghes. The compari-
son ranges from structural properties of the input netw¢eks., query subnetwork
shape constraints) to computational complexity. This y@iglhas been useful for
highlighting open problems and research opportunitiekisfteld.

10.2 Contributions

The research developed in thesis has been motivated byfidega set of issues and
requirements in the bioinformatics research area (seet€tdp In the following,
we summarize the contributions of this thesis, which tattkédevant bioinformatics
tasks. Focus is given to both simple and complex biologitattures.

10.2.1 Simple Biological Structures

By looking at proteins as independent macromolecules, evaiat task is that of
predicting protein functions, with the aim of properly unstanding the role of un-
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characterized proteins within living cells. To this purppvo approaches have been
devised: PQSC-FCNN and4&rarpin.

PQSC-FCNN

PQSC-FCNN is a novel method for protein quaternary streatlassification, which
is able to exploit protein functional domain informationdathe Fast Condensed
Nearest Neighbor (FCNN) rule. Most of the approaches fotrgimajuaternary struc-
ture prediction, previously proposed in the literatureyavenly tested on homo-
oligomeric proteins. Besides, all of them need an entiras#dt(training set) of pro-
teins with known quaternary structure to be exploited fasslifying an unclassified
protein. In particular, each unclassified protein has todragared to each protein
belonging to the dataset. foérently from all previous methods, PQSC-FCNN has
been tested on both homo-oligomers and hetero-oligomet$ias been proved to
be more éicient than other techniques. Indeed, PQSC-FCNN extra@prasenta-
tive subset of the training set and uses this subset (instiethe whole training set)
during the classification. This enables to reduce the tatalbrer of comparisons to
be carried out without any significant loss in precision.

B1-GraprpIN

B1-Grarpin is a novel method for transferring biological knowledge atbprotein
functions, from characterized to uncharacterized prstelity comparing PPI net-
works. In particular, this tool is useful for discoveringthiological process in which
the uncharacterized proteins of a given organism are ieeblGiven two PPI net-
works of two diferent organisms, BGrappiN identifies the most similar character-
ized proteins in the second network starting from the sencharacterized proteins
of the first network. In particular, the most similar protguair is determined by
considering both sequence and interaction profile sinigsri The advantage ofiB
GrappIN, as compared to other techniques, is its ability of incaafing both quanti-
tative (interaction strengths) and qualitative (intei@cteliabilities) information in
the analysis of the input networks.

10.2.2 Complex Biological Structures

The observation that proteins, and macromolecules in génean be better char-
acterized by analyzing their interaction patterns suggtest development of graph-
based techniques to analyze and compare biological netwdHhis allows to infer
new information about cellular activity and evolutive pesses of the species. In this
context, two techniques have been devised, that eeeGaaprin and PING-Q.

SuB-GRAPPIN

Sub-Grappin is a novel method for discovering similar stdpbs, possibly repre-
senting similar functional modules, across the PPI neta/ofkwo diferent species.
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Sus-GrappiN exploits B-GrappiNn as a submodule during the sub-graph extraction
phase together with theoCLapse technique. The iterative alternation of these two
submodules led to the final achievement of two collapsed avés(corresponding

to the two diferent organisms under consideration) in which correspandiacro-
nodes identify similar subgraphs. Also in this case, thenmhanefit of $8-GrarriN

is the possibility of exploiting both reliability and quadtative information, which
can make the sub-graph search more accurate, as also cahfigmexperimental
analysis.

PING-Q

PInG-Q is a novel method for querying PPI networks based omoapthases(i)
global alignment andii) similarity refinement. PInG-Q, starts by globally aligning
the query and the target networks by considering node pamridasities. Then, it
refines the similarities of the corresponding nodes on tteshaf how much the
alignment satisfies the structural constraints imposedbyquery (i.e., how much
the query interactions are conserved). The main advant#g@isnG-Q, w.r.t. previ-
ously existing tools, ardi) its ability to handle query and target networks shaped as
general graphs ar(d) to take into account reliability information. While havingch
good properties, PInG-Q runs in polynomial time in the sizthe target network.

10.3 Future Trends

This section outlines possible future research directiefeted to the main topics
discussed in this thesis.

As for the protein quaternary structure classification, savork is required on
protein representation. Indeed, by enriching the set diifea used to represent a
protein (currently only the protein functional domain carsjtion is exploited), the
classification accuracy might be improved. For instanaeréipresentation may take
into account also protein sequence information (e.g., amaitid composition) or
some knowledge about the protein secondary structure.

Concerning B-Grarprin, an immediate extension is the adaptation of this tech-
nique to other types of biological networks (e.g., metabpkthways or gene net-
works). In this respect,fiorts should mostly involve the initial phase of node simi-
larity computation. Furthermore 1#5raprpiN can be extended to search for similari-
ties in multi-aligned networks instead of just one pair dfvarks. Supposedly, such
an extension would be easily achieved since it only requiresploit a multipartite
graphs maximum weight matching algorithm instead of a bijgaone.

Also for the similar sub-graphs extraction problem, a fattgsearch direction is
the extension of &-GrarppiN to align multiple networks and deal with other types of
biological networks instead of only PPI networks.

Finally, as for the network querying problem, possible egtens of PInG-Q can
concern the “fixing” of some pairs of corresponding nodeswfhich the homolo-
gous of the query proteins in the target network are knowis Tan help the biol-
ogists to guide the algorithm toward better solutions wikei@vn correspondences
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between proteins are imposed. Also in this case, a desiextémsion would be the
adaptation of PInG-Q to query other types of biological reeks.

10.4 Concluding Remarks

The work presented in this thesis has discussed some maimdstof research in
bioinformatics. In particular, a few hints and some realiohs to interesting bioin-
formatics tasks have been given. Finally, some tips reggnodssible improvements
of the proposed techniques have also been sketched.

Bioinformatics is a very active field of research and widelygstigated. Indeed,
many are the contributions still to be provided, the topmdé analyzed and the
discoveries to be attained.

Life conceals the deepest knowledge about the universeheAsame time, the
biggest and challenging mysteries are about life. To fi#§ trap, bioinformatics tries
to shed light on the mechanisms that regulate life proce3$esefore, this research
field becomes attractive for all the researchers yearninghfe mysterious knowl-
edge. However, one may wonder if there are some mysteriéhéva not to be
revealed; perhaps, tasting the absolute knowledge wilamnemnly a dream.
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