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Preface

Life is the point upon which the whole universe lies. However, the knowledge about
life machinery is very poor in comparison to the complexity of biological processes
regulating it. Many efforts have been done to better understand mechanisms under-
lying life, grasp the key concepts about the processes of birth, growth and death and
trim the incompleteness of the knowledge about life basic elements.

This thesis is meant to be helpful in this direction, trying to enlighten some shady
issues relevant in bioinformatics. In particular, the workthat has been done tries to
clarify some biological processes regulating cell life cycle in different organisms, by
comparing their simple and complex building blocks.

On the one hand, simple biological structures (i.e., proteins) have been analyzed.
This way, the unknown functions of uncharacterized proteins or the biological pro-
cesses in which they are involved can be determined. To this aim two approaches
have been devised:

• PQSC-FCNN: a tool for predicting protein quaternary structure, which is related
to the biological function of the protein when involved in specific biological pro-
cesses.

• Bi-Grappin: a tool for annotating proteins with functional information by com-
paring protein-protein interaction networks.

On the other hand, complex biological structures (i.e, biological networks) of
different organisms have been explored. This way, functional modules conserved
during the evolution can be identified. In this respect, two approaches have been
proposed:

• Sub-Grappin: a tool for the pairwise alignment of protein-protein interaction net-
works.

• PInG-Q: a tool for querying protein-protein interaction networks.



6 Preface

The above mentioned approaches have been proved, by experimental evaluations,
to be able to discover significant biological results. This is promising since it allows
to help in complementing the knowledge about biological processes regulating the
cell life cycle. This way, by looking within the simple elements of life (i.e., living
cells) the knowledge beyond these simple elements can be grasped.

A look to the future research perspectives, in this promising research area, hints
that the efforts payed in this direction can be greatly rewarded throughthe results
that will be obtained in the long term.

Rende (CS), Italy, Valeria Fionda
November 2009
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Part I

Bioinformatics: Background and Uptake





1

Introduction and Overview

The development of biotechnology, that is, the applicationof the principles of en-
gineering and technology to the life sciences, has led to thebirth of a new field of
research: Bioinformatics. Bioinformatics was born at the end of the 70s when the
emerging ICTs found a wide use in the project of genome sequencing.

Several definitions of Bioinformatics have been proposed, all of which underline
the role of this research area as a bridge linking life science and computer science.
The National Center for Biotechnology Information (NCBI),for instance, defines
bioinformatics as:

“Bioinformatics is the field of science in which biology, computer science, and
information technology merge into a single discipline. There are three important sub-
disciplines within bioinformatics: the development of newalgorithms and statistics
with which to assess relationships among members of large data sets; the analy-
sis and interpretation of various types of data including nucleotide and amino acid
sequences, protein domains, and protein structures; and the development and imple-
mentation of tools that enable efficient access and management of different types of
information.”

Generally speaking, bioinformatics tasks can be subdivided in two main groups:
the first group concerns the design and maintenance of biological data banks while
the second one is related to the design of algorithms and systems for data manip-
ulation and knowledge discovery. As matter of fact, these two strands of research
cross-fertilize each other, as also exemplified in Figure 1.1. In particular, on the one
hand, software and algorithms are developed by exploiting biological data banks,
from which biological data useful for their evaluation are extracted. On the other
hand, by exploiting bioinformatics systems, new information is inferred and, possi-
bly, used to enrich available data banks.

In this general context, this thesis focuses in particular on the design and im-
plementation of new algorithmic and software solutions to address relevant bioinfor-
matics problems, such asprotein function prediction, network alignmentandnetwork
querying.

In the last few years, biological data banks were populated with a very large
amount of data produced by research inSystems Biology. These data convey infor-
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Fig. 1.1.Relations between bioinformatics tasks.

mation about single macromolecules such as proteins and genes which can be seen
as the cell building blocks, as well as the interactions among such macromolecules.
Starting from these interaction data it is possible to buildmore complex bioinformat-
ics structures as shown in Figure 1.2. For instance, interactions among proteins are
exploited to buildprotein-protein interaction networks, whereas biochemical reac-
tions involving enzymes and metabolites are used to buildmetabolic networks.

To properly look up the large amount of biological data, available in the plethora
of biological data, banks and mine useful information, the design and development
of automatic tools has become crucial.

At the beginning, the interest of researchers was focused merely on tools to mine
bio-sequences. In fact, several efforts have been paid for genome sequencing and
designing procedures to compare biological sequences to search for similar regions.
In this respect, notable examples are the Needleman and Wunsch algorithm [146] for
global sequence alignment, and the Smith and Waterman algorithm [189] for local
sequence alignment. These basic tools, then, evolved giving birth to very popular
sequence alignment tools, such as FASTA [160] and BLAST [202]. At the same

Fig. 1.2. Simple and complex structures exploited in bioinformatics.
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time, algorithms for motif search1 and identification of coding regions in genomic
sequences were also developed.

More recently, the study of proteins, protein relations andmacromolecules com-
plex structures has gained momentum. In particular, by looking at proteins as inde-
pendent macromolecules, a relevant task has become the prediction of protein func-
tions, with the aim of properly understanding the role of uncharacterized proteins
within living cells. However, the observation that proteins, and macromolecules in
general, can be better characterized by analyzing their interaction patterns has given
birth to the definition of a formal model, grounded on the graph theory, to represent
the set of molecular interactions of an organism referred toasBiological Networks.
Hence, biological networks can be fed as input to graph-based techniques that would
try to infer new information about cellular activity and evolutive processes of the
species. Indeed, by comparing the biological networks of two different species the
transfer of knowledge, from one species to another, is also possible by identifying
similar regions in the two input networks.

The aim of this thesis is also that of investigating the applications and opportuni-
ties in this latter group of bioinformatics tasks and provide useful tools to overcome
some of the relevant problems thereof.

1.1 Main Contributions

The goal of this thesis is to provide innovative software tools for knowledge dis-
covery in bioinformatics concerning the analysis of both simple (i.e., proteins) and
complex (i.e., protein-protein interaction networks) structures. In particular, some ef-
forts have been paid to predict the functions of uncharacterized proteins and discover
functional modules in protein-protein interaction networks. A comprehensive exper-
imental evaluation is also provided to substantiate the effectiveness of the proposed
approaches from a biological point of view.

1.2 Problem Description

Proteins are essential parts of organisms which participate in virtually every pro-
cess within cells. Many proteins work as biochemical catalysators, also known as
enzymes, that catalyze the reactions occurring in living organisms. Proteins can in-
teract with other molecules to perform storage and transport functions. Moreover,
these fundamental components provide mechanical support and shape to tissues and
mechanical work as, for example, the muscular contraction.Finally, several proteins
have an essential role in decoding cellular information. Therefore, understanding the
functions performed by proteins within the cell is a key bioinformatics task.

The function of a protein is determined by its three-dimensional structure. The
tools developed to face this task, providing information about the three-dimensional

1 A motif is a nucleotide or amino-acid sequence pattern that is widespread and has, or is
conjectured to have, a biological significance.
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folding of a given protein, are also useful to understand thefunction performed by
the latter.

The first part of this thesis is oriented to protein function prediction, accom-
plished by using two different methods:

• PQSC-FCNN: a protein quaternary structure prediction toolthat leverages the
number of polypeptidic chains within a given protein;

• Bi-Grappin: based on the analysis of protein-protein interactions and, in particu-
lar, on the idea that similar proteins have similar interaction profiles.

However, biological processes regulating the cell life cycle stem from complex
interactions among cell constituents. Therefore, the behavior of the cell can be deeply
understood if the analysis is not limited to a mere individual study of cell building
blocks (e.g., proteins, genes) but also encompasses more complex structures (e.g.,
protein complexes). In this respect, recently, some automatic tools have been devel-
oped, which aim at mining new knowledge about cellular processes by exploiting
interaction data. These tools exploitBiological Networksas a formal model to en-
code molecular interactions among cell building blocks.

In this context, there are several ways to compare biological networks, butnet-
work alignment, network integrationand network querying, have surely to be re-
garded as the most significant ones [181]. In Figure 1.3 theseconcepts are summa-
rized.

Fig. 1.3.The three main ways of comparing biological networks.

Network alignmentis the process of globally comparing two or more networks
of the same type belonging to different species, in order to identify similarity and
dissimilarity regions. Network alignment is commonly applied to detect conserved
sub-networks, which are likely to represent common functional modules [184].
Network integrationis the process of combining several networks of the same
species, representing different kinds of interactions (e.g., protein, metabolic), to
study their interrelations. For instance, network integration techniques have been
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used to predict protein interactions and identify protein modules [98, 236].
Finally, network queryingtechniques search a whole biological network to identify
conserved occurrences of a given query module, which can be used for transfer-
ring biological knowledge from one species to another (or possibly within the same
species). Indeed, since the query generally encodes a well-characterized functional
module (e.g., theMAPK cascadein yeast), its occurrences in the queried network
(e.g., theMAPK cascadein human) suggest that the latter (and then the correspond-
ing organism) features the function encoded by the former.

The second part of this thesis concerns the comparative analysis of biological
networks and, in particular, protein-protein interaction(or PPI) networks. More pre-
cisely, two tools have been developed, namely:

• Sub-Grappin: a tool to preform network alignment;
• PInG-Q: a tool to query PPI networks.

1.3 Outlook

This section provides the reader with an overview on the content of this thesis. More-
over, a chapter dependency schema is also sketched. This schema is intended to help
the reader in following the path that motivated each individual chapter and under-
stand how chapters are connected to one another.

1.3.1 Thesis’ Structure

Part I comprises two chapters (i.e., chapters 1 and 2). Chapter 1 introduces and
motivates the work presented in the other chapters. Moreover, a reader’s guide is
presented. Chapter 2 provides some background; in particular, some information is
given both on simple (i.e., proteins) and complex (i.e., biological networks) biolog-
ical strictures . Moreover, an overview on the motivations behind the study of both
these structures (i.e., protein function prediction and biological network analysis) is
provided. Overall, the aim of this chapter is to grip the reader’s interest and create a
well-founded motivation for the work done in later chapters.

Part II comprises three chapters (i.e., chapters 3, 4 and 5).Chapter 3 charts the
state of the art in protein function prediction. This background is necessary to prop-
erly understand the motivations of the work presented in thetwo subsequent chap-
ters (i.e., chapters 4 and 5). In particular, Chapter 4 is focused on the prediction
of the quaternary structure of proteins, which characterizes the biological function
of a protein when involved in specific biological processes.In Chapter 5, the tool
Bi-Grappin, whose aim is to compute protein functional similarity across protein in-
teraction networks of different organisms, is presented. This tool can be useful when
comparing two networks, one of which is well-characterizedwhile the other one is
uncharacterized, to predict the unknown functions of proteins.
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Part III comprises two chapters (i.e., chapters 6 and 7). In Chapter 6, the ap-
proaches presented in the literature for aligning two or more biological networks
are described. This is useful to understand the advantages and disadvantages of the
approach we developed for the same purpose, which is called Sub-Grappin and is
discussed in Chapter 7.

Part IV consists of two chapters (i.e., chapters 8 and 9). In Chapter 8, a novel
approach to querying protein interaction networks, calledPInG-Q, is presented. The
aim of Chapter 9 is that of analyzing and comparing tools devised to query biolog-
ical networks, also considering the method presented in Chapter 8. This analysis is
intended to help in understanding problems and research issues, state of the art and
opportunities for researchers working in this area.

Finally, Part V sketches final conclusions and discusses future trends in the bioin-
formatics fields. Here, the contribution of the present thesis will be once more out-
lined w.r.t. the motivations and requirements identified atthe beginning.

1.3.2 Reader’s Guide

The present thesis has been written following a logical pathinterconnecting the var-
ious research contributions. However, it is possible to recognize two main threads.
The first is related to bioinformatics simple structures (i.e., proteins) considered as
single macromolecules and is discussed in Part II. The second part is related to Bio-
logical Network analysis and concerns Part III and IV.

As for the first thread, a reader interested in this specific problem can focus on
Part II even if the content included in the introductory chapter and the second one
have to be considered as compulsory premises to it. Part II has been logically divided
in three sub-parts. The Chapter 3 gives some background necessary to understand the
problem of protein function prediction and draws the state of the art in this area. This
introductory chapter is a must to understand the subsequenttwo chapters (Chapter 4
and 5). In facts, Chapter 3 motivates the tools proposed in chapters 4 and 5.

As for the second thread (i.e., Biological Network analysis), a reader interested
in this specific problem may only focus on parts III or IV; alsoin this case the intro-
ductory chapter and the second chapter become a must.
Part III has been logically divided in two sub-parts. Chapter 6 gives some background
necessary to understand the problem of network alignment and draws an overview
of the state of the art related to global and local alignment tools. This introductory
chapter is a premise to the subsequent chapter (Chapter 7). In fact, Chapter 6 moti-
vates the tool proposed in Chapter 7.
Part IV has been also logically divided in two sub-parts. In Chapter 8, a tool for
querying protein interaction networks is presented and evaluated. In Chapter 9, this
tool is compared with the state of the art. Moreover, Chapter9 also provides a com-
parative overview of biological network querying systems,by exploiting an illustra-
tive example.

Figure 1.4 summarizes chapters organization and provides links between the
work presented in the different parts and chapters in order to allow the reader to
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choose the parts on which s/he is interested. In particular, two kinds of dependen-
cies between parts and three between chapters are depicted.The relationconcludes
between Part I and Part V indicates that Chapter 10 analyzes the claims presented
in Part I on the basis of the research discussed in the variousparts. The relations
motivatesfrom a Part (or Chapter) to another Part (or Chapter) indicates that the
content of the former provides the information necessary tomotivate the contribu-
tions introduced in the latter. For example, the relationsmotivatesfrom Part I to parts
II, III and IV indicates that the content of Part I provides the information necessary
to understand why the tools presented in Parts II, III and IV have been developed.
The relationexploitsindicates that the contribution introduced in Chapter 7 uses as
a sub-procedure the method presented in Chapter 5. To correctly understand how the
system discussed in Chapter 7 works, the reader is suggestedto also read Chapter 5.
The relationanalyzes and comparesindicates that the tool described in Chapter 8 is
compared w.r.t. the state of the art in Chapter 9.

Fig. 1.4. Structure of the thesis and chapter dependencies
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1.3.3 Publications

Part of the material of the thesis has been published in some journals, conferences
and books :

Journals

• V. Fionda, L. Palopoli, S. Panni, S. Rombo. “A technique to search for functional
similarities in protein-protein interaction networks”.International. Journal on
Data Mining and Bioinformatics. Vol. 3(4), pp. 431-453, 2009.

Book Chapters

• V. Fionda, L. Palopoli. “Network Querying Techniques for PPI network Compar-
ison”. Chapter XVII.In: Biological data mining in protein interaction networks
(Xiao-Li Li, See-Liong Ng, Eds.), IGI Publishing. ISBN:978-1605663982. pp.
312-334, 2009.

Conferences

• Valeria Fionda, Simona Panni, Luigi Palopoli and Simona E. Rombo. “sc Bi-
GRAPPIN: Bipartite GRAph based Protein-Protein Interaction Networks sim-
ilarity search”.In Proceedings of IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM’07). Silicon Valley, USA, 2-4 November, pp.
355-361, 2007.

• Fabrizio Angiulli, Valeria Fionda and Simona E. Rombo. “Protein Data Conden-
sation for Effective Quaternary Structure Classification”.In Proceedings of Inter-
national Conference on Intelligent Data Engineering and Automated Learning
(IDEAL’07). Birmingham, UK, 16-19 December, pp. 810-820, 2007.

• Valeria Fionda, Simona Panni, Luigi Palopoli and Simona E. Rombo. “Singling
out functional similarities in graph databases”.In Proceedings of the Sixteenth
Italian Symposium on Advanced Database Systems (SEBD 08). Mondello (PA),
22-25 June, pp. 271-278, 2008

• Valeria Fionda, Simona Panni, Luigi Palopoli and Simona E. Rombo. “Protein-
protein interaction network querying by a ’focus and zoom’ approach”.In Pro-
ceedings of the 2nd International Conference on Bioinformatics Research and
Development (Bird’08). Vienna, 7-9 July, pp. 331-346, 2008.

• Valeria Fionda, Gialuigi Greco. “Charting the Tractability Frontier of Mixed
Multi-Unit Combinatorial Auctions”.In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI’09). Pasadena, CA, USA, 11-
17 July. pp. 134-139, 2009.

• Valeria Fionda, Simona Panni, Luigi Palopoli and Simona E. Rombo. “Extract-
ing similar sub-graphs across PPI Networks”.In Proceedings of the 2nd Inter-
national Conference on Bioinformatics Research and Development (ISCIS’09).
Northen Cyprus, 1417 September. pp. 183-188, 2009.
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Background

Summary. In this chapter, some background necessary to understand the topic and the mo-
tivation of this thesis is provided. In particular, across this chapter, someinformation will be
given regarding both simple biological structures (i.e., proteins) (Section 2.1) and complex
biological strictures (i.e., biological networks) (Section 2.2). Moreover, an overview of the
motivation behind the study of both these types of structure (i.e., protein function prediction
and biological network analysis) is provided in Section 2.3 and Section 2.4.

2.1 Background on Proteins

Genes are segments of DNA that code for proteins inside the cell. Transcription is the
process by which the enzyme (that is a protein working as a biochemical catalysator)
RNA polymerase, reads the sequence of bases on a gene and constructs an mRNA
molecule from that sequence. Translation is the process by which a ribosome, a
macromolecular assembly, reads the information containedin the mRNA molecule
and synthesizes a protein molecule from the sequence on the mRNA molecule. Thus,
each protein molecule is a product of the gene that codes for it. In turn, proteins are
responsible for carrying out various functions inside the cell. For instance, many pro-
teins work as enzymes that catalyze the reactions that occurin living organisms or
they can interact with other molecules for performing storage and transport functions.
Moreover, these fundamental components provide mechanical support and shape to
tissues and mechanical work as, for example, muscular contraction. Finally, several
proteins have an essential role in the decoding of cellular information and also regu-
late the transcription of a gene to an mRNA molecule.

Proteins are macromolecules composed by linear polymers, or chains, of amino
acids. All organisms use the same set of 20 amino acids as building blocks in the
protein synthesis. The variations of the order in which amino acids are connected
and their total number let to obtain an almost unlimited number of proteins.
The primary structure of a protein is the sequence of its amino acids, forming the
polypeptidic chain. The 20 amino acids are known asα-amino acids since they are
composed by an amide group and a carboxylic group, bind to theC-2, also known
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asα carbon. Theα carbon also binds hydrogen atoms and a side chain, called−R.
The side chain is distinctive to each amino acid. The amino acids are bound to one
another by the condensation of aα-carboxylic group of one amino acid to the amide
group of another amino acid to form a chain. This bond is knownas peptidic bond
and the involved amino acids are called residues. The free amide and carboxylic
groups at the opposite extremities of the peptidic chain arecalledN-terminal (amide
terminal) andC-terminal (carboxylic terminal). Conventionally, all theresidues of a
peptidic chain are numbered starting fromN-terminals.

On the basis of protein complexity, a protein can have at mostfour levels of struc-
tural organization (see Figure 2.1). The primary structureis the amino acid sequence
and describes the one-dimensional structure of a protein. The other three levels en-
code the protein three-dimensional structure. In more detail, the polypeptidic chain
patterns that regularly repeat into the protein denote the secondary structure. The ter-
tiary structure is related to the three-dimensional structure of the whole polypeptide.
The Quaternary Structure is related to the arrangement of two or more polypeptidic
chains in one polymer.
Alterations of the conditions of the environment, or some chemical treatments, may
lead to a destruction of the native conformation of proteinswith the subsequent loos-
ing of their biological activities. This process is called denaturation.

Fig. 2.1.Different levels of protein structures.

The central dogma of molecular biology was first enunciated by Francis Crick
in 1958 [43] and re-stated in a paper appeared in theNature journal published in
1970 [44]: “The central dogma of molecular biology deals with the detailed residue-
by-residue transfer of sequential information. It states that information cannot be
transferred back from protein to either protein or nucleic acid”. In other words, the
central dogma of molecular biology is that genes may perpetuate themselves and
work through their expression in form of proteins, but it is not possible to go the
other way around and obtain the gene sequence from the protein. Note that the ex-
pression of a gene is its product, that is, the protein for which the gene encodes
information.
The genetic information is encoded into the sequence of the bases of the DNA and
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perpetuate through the replication. More precisely, the genetic information is repre-
sented both by DNA and RNA. In fact, while cells use only DNA, some viruses, the
retroviruses, have their genome encoded into the RNA, which is replicatedinto the
infected cells.

The DNA uses four nucleotides: adenine (A), guanine (G), cytosine (C) e
thymine (T). Since it is not possible to represent each of the20 different amino acid
by a nucleotide, each amino acid corresponds to a group of nucleotides. By choosing
words composed by two nucleotides only 42 = 16 combinations can be obtained. In-
stead, by choosing words composed by three nucleotides 43 = 64 combinations can
be obtained, that are sufficient to encode the 20 amino acids. Thus, a code of three
or more nucleotides is necessary and the one made of three nucleotides seems to be
valid for all organisms. Each triplet is calledcodon. All the 64 codons specify amino
acids except three of them, that are stop triplets, and are stop signals in the transduc-
tion process. Since 61 codons are used to encode 20 amino acids, multiple triplets
may encode for the same amino acid, and in general these have the same first two
nucleotides and different third nucleotides. The starting triplet is the one encoding
the methionine amino acid: all proteins start with this amino acid. The transduction
process ends and the protein is released when one of the threestop triplets is recog-
nized.

2.1.1 Protein Primary Structure

The primary structure of a protein is the linear sequence of its amino acids. The
amino acid sequence of a protein is determined by the gene that encodes for it.
The differences between two primary structures reflect the evolutive mutations. The
amino acid sequences of related species are with high probability similar and the
number of differences in their amino acid sequences are a measure of how farin the
time the divergence between the two species is located: the more distant the species
are the more different the protein amino acid sequences are.

The amino acid residues essential for a given protein to maintain its function are
conserved during the evolution. On the contrary, the residues that are less impor-
tant for a particular protein function can be substituted byother amino acids. It is
important to note that some proteins have a higher number of substitutable amino
acids than others, thus proteins can evolve at different speeds. Generally, the study
of molecular evolution is focused on family of proteins. Proteins belonging to the
same family are called homologous and the tracing of the evolution process starts
from the identification of such families. Homologous are identified by using spe-
cialized amino acids sequence alignment algorithms that, by analyzing two or more
sequences, search for their correspondences.

2.1.2 Protein Secondary Structure

The secondary structure is referred to the general three-dimensional form of lo-
cal segments of proteins. It does not describe specific atomic positions in three-
dimensional space, but is defined by patterns of hydrogen bonds between backbone
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amide and carboxylic groups. The secondary structure is related to the spacial ar-
rangement of amino acid residues that are neighbors in the primary structure. The
secondary structure is the repetition of four substructures that are:α helix, β sheet,
β turn,Ω loop. The most common secondary structures are alpha helices and beta
sheets (see Figure 2.2).

A common method for determining protein secondary structure is far-ultraviolet
(far-UV, 170-250 nm) circular dichroism. A less common method is infrared spec-
troscopy, which detects differences in the bond oscillations of amide groups due
to hydrogen-bonding. Finally, secondary-structure contents may be accurately esti-
mated using the chemical shifts of an unassigned NMR spectrum.

Fig. 2.2.Two examples of protein secondary structure:α helix andβ sheet.

2.1.3 Protein Tertiary Structure

The tertiary structure of a protein is its three-dimensional structure, as defined by the
atomic coordinates. The function of a protein is determinedby its three-dimensional
structure and the three-dimensional structure depends on the primary structure. Ef-
forts to predict tertiary structure from the primary structure are generally known as
protein structure prediction. However, the environment inwhich a protein is syn-
thesized and allowed to fold are significant determinants ofits final shape and are
usually not directly taken into account by current prediction methods.

The biological activity of a protein is related to the conformation the protein
assumes after the folding of the polypeptidic chain. The conformation of a molecule
is a spacial arrangement that depends on the possibility forthe bonds to spin. In
physiologic conditions a protein has only one stable conformation, known as native
conformation.

On the contrary of secondary structure, the tertiary structure also takes into ac-
count amino acids that are far in the polypeptidic sequence and belong to different
secondary structures but interact with one another.
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To date, the majority of known protein structures have been determined by the ex-
perimental technique of X-ray crystallography. A second common way of determin-
ing protein structures uses NMR, which provides somewhat lower-resolution data in
general and is limited to relatively small proteins.

An example of tertiary structure as reported by the PDB database1 is shown in
Figure 2.3. This figure represents the tertiary structure oftheS-Adenosylmethionine
Synthetasewith 8-BR-ADP.

Fig. 2.3.An example of protein tertiary structure.

2.1.4 Protein Quaternary Structure

Many proteins are assemblies of more than one polypeptide chain, known as protein
subunits. In addition to the tertiary structure of the subunits, multiple-subunit proteins
possess a quaternary structure, which is the three-dimensional spacial arrangement
of the several polypeptidic chains, corresponding to protein subunits.

According to this structure, the protein can be subdivided in two groups: homo-
oligomers and hetero-oligomers. The first group is made of proteins composed by
only one type of subunit, while the second one is made of proteins that are composed
by different types of subunits. The proteins belonging to the first group are those
having structural and supporting roles, while the proteinsbelonging to the second
one have dynamic functions.

Protein quaternary structures can be determined using a variety of experimental
techniques that require a sample of proteins in a variety of experimental conditions.
The experiments often provide an estimate of the mass of the native protein and, to-
gether with knowledge of the masses and/or stoichiometry of the subunits, allow the
quaternary structure to be predicted with a fixed accuracy. However, it is not always
possible to obtain a precise determination of the subunit composition. The number
of subunits in a protein complex can often be determined by measuring the hydro-
dynamic molecular volume or mass of the intact complex, which requires native
solution conditions.

1 http://www.rcsb.org/pdb/home/home.do
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Table 2.1 reports the nomenclature used to identify proteinquaternary structures.
The number of subunits in an oligomeric complex are described using names that
end in-mer (Greek for “part, subunit”).

Number of subunits Name
1 monomer
2 dimer
3 trimer
4 tetramer
5 pentamer
6 hexamer
7 heptamer
8 octamer
9 nonamer
10 decamer
11 undecamer
12 dodecamer
13 tridecamer
14 tetradecamer
15 pentadecamer
16 hexadecamer
17 heptadecamer
18 octadecamer
19 nonadecamer
20 eicosamer

Table 2.1.The nomenclature used to identify protein quaternary structures

Figure 2.4 shows an example of the quaternary structure of a protein. The qua-
ternary structure reported in the figure is atetramerand is related to a potassium ion
channel protein fromStreptomyces lividans.

Fig. 2.4.An example of protein quaternary structure.
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The quaternary structure is important, since it characterizes the biological func-
tion of proteins when involved in specific biological processes. Unfortunately, qua-
ternary structures are not immediately deducible from protein amino acid sequences.

2.2 Biological Networks

Biological networks, which store information about molecular relations and interac-
tions, can be conveniently represented as graphs. A graph isbuilt from a set of nodes
or vertices, representing cellular building blocks (e.g, proteins or genes), and a set of
edges (directed or undirected), representing interactions (see Figure 2.5). A graph is
a pairG = (V,E), whereV is the set of nodes andE is the set of edges, so that the
elements fromE are pairs of elements ofV. In an undirected graph, an edge linking
nodesA andB represents a mutual interaction. Conversely, in a directedgraph, each
edge represents the flow of material or information from a source node to a target
node.

(a) An example of undirected graph (b) An example of directed graph

Fig. 2.5.Examples of graph structure.

Different types of graphs are used to represent different types of biological net-
works, each of which stores information about interactionsrelated to specific entities
or molecules [1]. Relevant kinds of networks include:transcriptional regulatory net-
works, signal transduction networks, metabolic networks, protein-protein interaction
networks(or PPI network), domain interaction networks, Gene Co-Expression Net-
worksandgenetic interaction networks.

2.2.1 Transcriptional Regulatory Networks

As already pointed out in Section 2.1, the transcription of agene to an mRNA
molecule is regulated by proteins referred to as transcription factors. A transcrip-
tion factor may activate or inhibit the expression of a gene inside the cell by binding
to regions upstream or downstream of the gene on the DNA molecule. This process
may, in turn, facilitate or prevent RNA polymerase from binding and initiating the
transcription of the gene. Thus, the genes inside cells interact with each other via
intermediate transcription factors to influence each others expression.



18 2 Background

The set of genes interactions inside the cell is referred to as thetranscriptional
regulatory network. This kind of network can be modeled as a graph having two
types of nodes, representing the transcriptional factors and the mRNAs of the target
genes, respectively. Moreover, it has two types of directededges, representing tran-
scriptional regulation and translation, respectively. A simpler graph model combines
genes with transcriptional factors they encode, to obtain agraph all the nodes of
which represent genes. In this latter representation, an edge connects a source gene
to a target gene if the former produces RNA or a protein actingas a transcriptional
activator or inhibitor of the latter. An activator gene is the source of a positive reg-
ulatory connection, while an inhibitor gene is the source ofa negative regulatory
connection.

2.2.2 Signal Transduction Networks

Cells use signaling pathways and regulatory mechanisms to coordinate multiple
functions. For instance, inside the cell, the proteins interact with each other to influ-
ence each other’s activity. Moreover, extracellular signals are mediated to the inside
of a cell by protein-protein interactions of signaling molecules. Thesignal transduc-
tion networksstore information about the processes through which a cell converts
one kind of signal or stimulus into another by protein-protein interactions. In partic-
ular, the signal transduction corresponds to the propagation of molecular or physical
signals (for example, sensory stimuli) from a cell’s exterior to its intracellular re-
sponse mechanisms.

In the graphs modeling signal transduction networks, vertices represent proteins
and directed edges represent the protein-protein interactions that work as signal con-
verters.

2.2.3 Metabolic Networks

Metabolic networksrepresent the set of biochemical reactions that are responsible
for the uptake of nutrients from the external environment and their conversion into
other molecules required for the growth and maintenance of the cell. Each reaction
takes in input some metabolites and produces as output othermetabolites. Moreover,
metabolic reactions are catalyzed by enzymes.

Metabolic networks can be represented as weighted tripartite graphs with three
types of nodes (i.e., metabolites, reactions and enzymes) and two types of edges
representing mass flow and catalytic regulation, respectively. The first type of edge
connects reactants to reactions and reactions to products.The second type connects
enzymes to the reactions they catalyze.

Simpler graph models have also been proposed. In particular, metabolic networks
can be represented as bipartite graphs consisting of two types of nodes, which are
metabolites and reactions. Each reaction node has an incoming edge from each re-
actant metabolite and one outgoing edge to each product metabolite. In the bipartite
metabolic graph, there are no direct links between either two metabolites or two reac-
tions. Another bipartite graph representation considers as the two partitions of nodes
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the chemical compounds and the enzymes, respectively. For each enzyme node, an
incoming edge occurs with each of its substrate nodes and an outgoing edge occurs
with each of its product nodes.

The metabolic networks sometimes are also represented as unipartite graphs
(which could be directed or undirected) in which there is only one type of node.
For instance, a simple model is a directed graph in which nodes represent enzymes
and directed edges connect pairs of enzymes for which the product of the source
enzyme is a substrate of the sink enzyme. In another simple model, nodes represent
metabolites and directed edges represent enzymes that catalyze a reaction having the
source metabolite as the reactant and the sink metabolite asthe product.

2.2.4 Protein-Protein Interaction Networks

A protein-protein interaction network stores the information about the interactome of
a given organisms, that is the whole set of its protein-protein interactions. In graphs
modelingprotein-protein interaction (PPI) networks, the nodes represent proteins
and the edges are undirected and possibly weighted, with twoproteins connected if
they bind. Edge weight may be used to incorporate reliability information concerning
the interaction.

Since protein-protein interactions are very important in regulating cell life cycle,
there are a multitude of methods to detect them. Each of thesemethod has its own
strengths and weaknesses, especially with regard to the sensitivity and specificity.
A high sensitivity means that many real interactions are detected. A high specificity
indicates that most of the interactions detected are also occurring in reality. Thus, the
reliability weights are important to take into account reliability, in terms of sensitivity
and specificity, of the method used to detect interactions.

It is important to note that, since protein interactions areoften obtained from pro-
tein complex detection and not really as binary interactions, a more complex model
may be more informative. In fact, the use of hyper-graphs, instead of simple graphs,
might be usefully adopted to model protein complexes.

2.2.5 Domain Interaction Networks

Domains are independently folded modules of a protein. Adomain-domain interac-
tion (DDI) networkis constructed when each protein in a PPI network is replaced
by one or more nodes representing its constituent domains. In this type of network,
edges connecting two proteins are transformed to connect the corresponding domain
nodes. Since most of the known proteins are composed by more than one domain,
a domain-domain interaction network usually gets much larger than the original
protein-protein interaction network. However, different proteins (often functionally
unrelated) frequently share identical domains and, therefore, one domain node in a
DDI network usually appears multiple times in the context ofdifferent proteins.



20 2 Background

A similar type of network is the domain co-occurrence network, in which each
domain is represented by a single node. In this type of network two nodes are con-
nected by an edge when the corresponding domains occur in thesame protein at least
once.

2.2.6 Gene Co-Expression Networks

The gene co-expression networksstore information about transcription that takes
place at the same time or under the same conditions. In these networks, each gene
corresponds to a node and edges connect genes that are co-expressed. These net-
works are constructed by large-scale DNA microarray experiments, and the un-
ordered composition of a pair of co-expressed genes leads tothe undirected nature
of the networks. Starting from microarray gene expression data, the concordance of
gene expression is measured with a Pearson correlation producing a Pearson cor-
relation matrix. According to a first type of model, this matrix is dichotomized to
arrive at an adjacency matrix. Binary values in the adjacency matrix correspond to
an unweighted graph. Using this representation some genes are connected and all
connections are equivalent.

A more complex model takes into account edge weights to storeinformation
about the absolute value of the Pearson correlation. In thistype of representation
all genes are connected and edge weights denote connection strengths between gene
pairs.

2.2.7 Genetic Interaction Networks

Inactivation of most genes, in any organism, has little discernible effects on cell func-
tioning under laboratory conditions. However, inactivating specific rare combina-
tions of such non-essential genes can have profound effects on the organism under
exactly the same conditions. In general, two genes are said to genetically interact if
a mutation in one gene either suppresses or enhances the phenotype of a mutation
in its partner gene. In the graphs modeling genetic interaction networks, nodes are
genes and edges represent genetic interactions.

2.2.8 The Cell: a Network of Networks

It is important to underline that all the kinds of biologicalnetworks discussed above
(e.g., metabolic, transcriptional regulatory or protein-protein interaction networks)
are not independent of each other inside the cell. For instance, the state of the genes
in the transcriptional regulatory network determines the activity of the metabolic net-
work. On the other hand, the concentration of metabolites inthe metabolic network
determines the activity of transcription factors or proteins which regulate the expres-
sion of genes in the regulatory network. Thus, the biological networks together form
a network of networks inside the cell that determines the overall behaviour of the
corresponding organism.



2.3 Protein Function Prediction 21

2.2.9 Biological Network Modeling

On the more formal side, considering only unipartite graphs, a biological networkN
is commonly represented by a (possibly directed) graphGN = 〈VN,EN〉 (see Figure
2.6). In this graph, the set of nodes (or vertices)VN denotes a set of cell building
blocks (e.g., proteins, enzymes, metabolites, genes) and the set of edgesEN encodes
the interactions between pairs of nodes.
In the most general definition, each edgeei j ∈ EN takes the form of a triplet
eN

i j = 〈vi , v j , l i, j〉 wherevi , v j ∈ VN are the interacting cell components andl i, j is
the label associated to that edge (in PINs, for example, the edge label may encode
the reliability of that interaction to actually occur).

Fig. 2.6.An example of biological network graphGN.

2.3 Protein Function Prediction

Proteins are essential parts of organisms and participate in virtually every process
within cells. Many proteins work as biochemical catalysators, known also as en-
zymes, that catalyze the reactions occurring in living organisms. Proteins can also
interact with other molecules to perform storage and transport functions. Moreover,
these fundamental components provide mechanical support and shape to tissues and
mechanical work as, for example, the muscular contraction.Finally, several proteins
have an essential role in decoding cellular information. Therefore, understanding the
functions performed by proteins within the cell is a key issue in bioinformatics.

Recently, a large amount of protein sequences has been made available as a result
of whole genome sequencing project of many organisms. However, it is almost im-
possible to reveal their potential functions by experimental methods only. Moreover,
there is a fast increasing in the number of proteins whose structures are known but
whose functions are not. Seeing that experimental methods alone are not sufficient,
a great attention is given to the computational approaches in which plenty of protein
functions can be predicted simultaneously with reasonableaccuracy. Therefore, com-
putational protein function prediction methods prove themselves a powerful tools for
biological research.

Protein function prediction methods can be basically classified according to in-
formation sources:
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• Sequence-based approaches, that are the most basic methods. They exploit se-
quence alignment, sequence motif and domain information;

• Structure-based approaches, that make use of structural information. They com-
pare whole three-dimensional shapes;

• Protein-protein interaction-based approaches. There areseveral different meth-
ods such as global mapping of unknown proteins or evidence integration in PPI
networks.

The fundamental idea of sequence-based protein function prediction is the de-
tection of similar protein sequences by database searching, assuming that similar
sequences might have similar functions. For this purpose, several alignment algo-
rithms, such as BLAST [202], can be used. But it is important to note that:(a) on the
one hand, similar sequences not always have similar function and(b) on the other
hand, dissimilar sequences have similar function at times.Thus, sequence space do
not correspond with function space.

Structure-based protein function prediction uses structure information and is sim-
ilar to sequence-based prediction. The basic assumption isthat proteins with similar
structure might have similar function. Protein function isstrongly related with its
structure since a protein works by interacting with other proteins or chemicals and
its structure limits the possibility of its interaction modes. Moreover, structure simi-
larity could fill the gap that is overlooked with sequence-based methods. In fact, low
sequence similar proteins may have a significant structuralsimilarity.

Protein-protein interaction (PPI) information have determined protein physical
interaction maps for several organisms. These physical interactions are comple-
mented by the other types of information discussed in Section 2.2 and shared evo-
lutionary history. The protein-protein interaction data can be used to predict protein
function by the observation that if proteinp and proteinp′ interact, they are func-
tionally close to each another. Moreover, similar proteinshave similar interacting
patterns. Thus, ifp and p′ interact withp1 and p′1, and p1 and p′1 are similar, it is
possible to infer that alsop andp′ are functional related.

2.4 Biological Network Analysis

Cell behavior and function cannot be deeply understood through a mere analysis of
its individualbuilding blocks(e.g., proteins, genes). In fact, biological processes reg-
ulating cell life cycle stem from complex interactions among cell constituents. In the
last few years, several techniques have been developed to discover such interactions
and the amount of data made available in several databases (e.g., DIP [175], MINT
[33], KEGG [94]) has grown steadily. These datasets promisenew and exciting in-
sights into the molecular machinery underlying biologicalsystems. However, their
analysis is fraught with a range of mathematical and statistical problems. This is par-
ticularly true for protein-protein interaction datasets,which suffer from being incom-
plete and subject to high error rates (both false positive and false negative). However,
to properly look up the large amount of available data and mine useful information,
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the design and development of automatic tools has become crucial. These tools lever-
age Biological Networks as a formal model to encode molecular interactions among
cell building blocks. As already pointed out in Section 2.2,at their most basic ab-
straction level, biological networks can be represented asgraphs, where groups of
connected biomolecules (corresponding to nodes of the graph) “collaborate” to form
relatively isolated biological functional unit (corresponding to subgraphs). Biologi-
cal graphs can be fed as input to suitable graph-based techniques able to perform
topological and functional comparisons. Such techniques exploit specialized algo-
rithms to infer new information about cellular activity andevolutive processes of the
species, which allows to gain better understanding about the mechanisms underlying
life processes [237].

A wide range of statistical and computational methods for the structural, func-
tional and comparative analysis of biological networks have been developed. In par-
ticular, there are several ways to compare biological networks, butnetwork align-
ment, network integrationandnetwork querying, have surely to be regarded as the
most significant ones [181]. Figure 2.7 summarizes the goal of each of these tasks.
Network alignmentis the process of globally comparing two or more networks of
the same type belonging to different species in order to identify similarity and dis-
similarity regions. Network alignment is commonly appliedto detect conserved sub-
networks, which are likely to represent common functional modules. As can be seen
in Figure 2.7, the input of a network alignment algorithm aretwo (or, possibly more)
biological networks of different organisms and the output are pairs (or, possible sets)
of subgraphs (or, possibly simpler structures, such as paths), one for each input net-
work, that have been recognized to be similar. For instance,the identification of
conserved linear paths may lead to the discovery of signaling pathways, as well as
conserved clusters of interactions (subgraphs) may correspond to protein complexes.
Network integrationis the process of combining several networks of the same
species, representing different kinds of interactions (e.g., protein, metabolic), to
study their interrelations. Since each type of network lends insight into a different
slice of biological information, integrating different network types may paint a more
comprehensive picture of the overall biological system under study. Commonly, net-
works to be integrated are defined over the same set of elements (e.g., the set of
proteins of a certain species), and the integration is achieved by merging them into a
single network with multiple types of interactions, each drawn from one of the orig-
inal networks. As shown in Figure 2.7, the input of a network integration algorithm
are two (or, possibly more) biological networks defined overthe same set of elements
(corresponding to graph nodes) that store different types of information (painted in
green for the first input network and in red for the second one). The output is a new
network, defined over the same set of elements, that integrates all types of input in-
teractions. In particular, in the figure, the interactions belonging to only one of the
input networks are reported with the same color used in the corresponding network
(green or red), while the interactions stored in both networks are painted in black.
A fundamental problem is to identify, in the merged network,functional modules
that are supported by interactions of multiple types (for instance, the cluster of nodes
{n1,n2,n4,n5,n6} in Figure 2.7).
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Fig. 2.7.Comparing biological networks: the three main ways.

Finally, network queryingtechniques search a whole biological network to iden-
tify conserved occurrences of a given query module, which can be used for transfer-
ring biological knowledge from one species to another (or possibly within the same
species). Indeed, since the query generally encodes a well-characterized functional
module (e.g., the MAPK cascade in yeast), its occurrences inthe queried network
(e.g., the MAPK cascade in human) suggest that the latter (and then the correspond-
ing organism) features the function encoded by the former. As shown in Figure 2.7,
the input of a network querying algorithm are a whole biological network (painted
in blue) and a query module (colored in violet) of the same type (for instance, both
reporting protein-protein interaction information). Theoutput are all the (possibly
approximated) occurrences of the query module into the target network.

2.5 Concluding Remarks

In this chapter some biological and bioinformatics background knowledge, useful
to understand the subsequent chapters, has been given. The subsequent parts of this
thesis will illustrate the state of the art, and several innovative contribution inprotein
function prediction(Part II),network alignment(Part III) andnetwork querying(Part
IV).
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Protein Function Prediction
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Protein Function Prediction: the State of the Art

Summary. In this chapter, the state of the art about protein function prediction will be out-
lined. Firstly, in Section 3.1, the notion of “protein function” is discussed. Then, in Section
3.2 an overview of the different methods proposed in the literature to predict protein function
is provided. Moreover, in the subsequent sections, two strands of research will be deepened:
quaternary structure prediction (Section 3.3) and protein function prediction by PPI networks
analysis (Section 3.4).

3.1 Protein Function

The concept of protein function is not very well-defined. In fact, this concept typi-
cally includes all the types of activities that a protein is involved in, from molecular
to physiological ones. Some categorizations of the types offunctions a protein can
perform have been proposed in the literature [23, 7]. The first categorization [23]
distinguishes among:

• Molecular function: the biochemical function performed bya protein, such as
ligand binding, catalysis of biochemical reactions and conformational changes;

• Cellular function: the function performed when many proteins come together to
perform complex physiological functions, such as operation of metabolic path-
ways and signal transduction, to keep the various components of the organism
working well;

• Phenotypic function: the integration of the physiologicalsubsystems, consisting
of various proteins performing their cellular functions, and the interaction of this
integrated system with environmental stimuli.

Clearly, these three categories are not independent. In fact, the molecular function
category is a sub-category of the cellular function category, which is, in its turn, a
sub-category of phenotypic function.
A widely used categorization is the Gene Ontology classification scheme [7], which
categorizes protein functions into:
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• Cellular component: referred to the parts of a cell or its extracellular environment
where the protein is localized;

• Molecular function: the elemental activities of a protein at the molecular level,
such as binding or catalysis;

• Biological process: operations or sets of molecular eventswith a defined begin-
ning and end, pertinent to the functioning of integrated living units: cells, tissues,
organs, and organisms.

Often, the protein function prediction is referred to one ormore of these cate-
gories. In the sense that functional annotation of such categories are transferred from
characterized to uncharacterized proteins.

3.2 Protein Function Prediction

There are plenty of proteins which have a totally unknown function. For some of
these proteins only the amino acid sequences are known, while for others also pro-
tein structures have been provided by the structural genomics centers. Since proteins
participate in virtually every process within cells, understanding the functions they
perform therein is a key bioinformatics task. For this reason, several tools have been
developed to infer protein function.
Among the existing software tools, some main strategies canbe distinguished:

• homology search and transfer of annotations:
– sequence alignment
– structure alignment

• function inference by genomic context
– genomic sequences
– gene expression data

• phylogenomic approaches
• protein interaction networks

In the following paragraphs such strategies will be discussed in more detail.

3.2.1 Homology Search and Transfer of Annotations

The most basic strand of approaches proposed for predictingprotein function is
based on homology search. These methods try to infer the unknown function of a
protein by finding a protein, with a known function, having either a similar sequence
or a similar structure.

Sequence homology is the classical methodology used to infer the function of
a novel protein. Indeed, sequence homology has been proved to be effective and
reliable for inferring protein function, although its applicability is limited to protein
for which substantial sequence similarity to annotated proteins can be found. In fact,
in a study involving over a million sequence alignments [173], it was shown that
alignments with at least 30% sequence identity correspond in the 90% of the cases
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to homologous proteins, while alignments whit the 25% of sequence identity or less
identify homologous proteins only in the 10% of the cases. Hence, the coverage
of methods that utilize sequence alignments may be limited to relevant sequence
identity percentages to maintain reasonably low false positive rate.

Another methodology for protein function prediction is based on the observation
that, in many biological processes, the interacting entities have to come into physi-
cal contact in order to accomplish the desired task. Starting from this observation a
connection between structure and function can be detected,since the structure of a
protein determines several of its functional features (as already pointed out in Chap-
ter 2). Thus, proteins having similar structures have, withhigh probability, also sim-
ilar function. The prediction methods that are based on thisobservation exploit the
structural alignment of protein. Such alignments attempt to establish equivalences
between two or more polymer structures based on their shape and three-dimensional
conformation.

Sequence Alignment

As already pointed out in the previous section, sequence homology is the classical
methodology used to infer the function of a novel protein.

The simplest way to discover sequence homology is to use an alignment soft-
ware such as the Basic Local Alignment Search Tool (BLAST) [5], PSI-BLAST [4]
or FASTA [161] to find possible homologs of a given protein in sequence databases.
However, as already underlined in the previous section, simple transfer of function
annotations from proteins having similar sequences may notproduce very accurate
results, due to the weak correlation between the sequence and the function of pro-
teins.

This section discusses several approaches that have been proposed to improve
sequence homology based techniques by exploiting several additional information.
For instance, numerous approaches use standardized annotation schemes, such as
the Gene Ontology. The use of GO annotations make the processof transferring
functional annotations organism-independent, since it isbased on a hierarchically-
structured functional ontology. Several methods, such as Onto-Blast [235], GOblet
[83] or GOtcha [134], that firstly align protein sequences and then filter the alignment
result exploiting statistical and machine learning techniques have been proposed.

Another direction in which homology-based function transfer can be improved
is by making the process probabilistic. This goal can be achieved, for example, by
assuming that a protein can only belong to a functional classif its BLAST score dis-
tribution with the members of the class is the same as that of its members themselves
[122].

Another family of approaches tackles subsequence analysis. The observation is
that often only specific parts of the whole sequence are crucial for the protein to
perform its function. Starting from this observation, someapproaches try to identify
useful portions of the protein sequence that may determine its function. However,
the meaning of “useful portions” is ambiguous even if two main definitions are the
most common:
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• Motifs: that are subsequences conserved across a set of protein sequences be-
longing to the same family. These subsequences are candidates for functional
sites in proteins, such as sites for ligand binding, DNA binding and interactions
with other proteins. Thus, motifs can be usefully exploitedfor predicting the
function of a protein.

• Domains: that are parts of protein sequences that can evolve, function, and exist
independently of the rest of the protein chains. Each domainforms a compact
three-dimensional structure and often can be independently stable and folded.
Many proteins consist of several structural domains. The function of a protein is
a combination of the functions of each of its domains.

The above definitions indicate that identifying domains andmotifs can be use-
ful for predicting protein function. As mentioned earlier,these subsequences provide
a new way of encoding the protein sequence in terms of features, which encode
whether a certain motif or domain is present in a sequence. Such feature representa-
tion can be modeled by a feature vector that must be calculated for each protein in the
target set. Then, various statistics and data mining techniques, such as classification,
could be used in the prediction process. Many approaches based on this idea have
been proposed in the literature, which exploit both motif [80, 215, 127, 218, 22] or
domains [177, 30, 163].

Unfortunately, the approaches in this category do not obtain notable results. One
reason is the lack of an unambiguous definition of subsequences. Indeed, each of the
above mentioned approaches models the subsequence patterns in a different manner.
In addition, the programs used to extract these sequence patterns are approximated,
and hence, add a source of error to the prediction process.

The third family of approaches for protein function prediction, which exploit se-
quence information are that based on features. The basic idea is to transform protein
sequences into more biologically meaningful features, which make the distinction
between proteins from different functional classes easier. Some examples of types of
features that can be extracted from sequences are:

• Sequence based attributes: such as the number of residues ofthe different types,
the length of the sequence, the molecular weight, normalized Van der Waals vol-
ume, polarity or n-grams.

• Phylogeny based attributes: computed for instance throughthe results of a PSI-
BLAST search.

• Structure based attributes: such as secondary structure attributes.

Feature-based approaches use standard classification algorithms to learn models
of functional classes from the set of features, and then utilize this model to make
predictions for uncharacterized proteins [224, 223, 103, 104, 157, 90, 91, 29, 57, 35].
The most commonly used classifiers in this class of approaches are support vector
machines (SVM) [29], neural networks (NN) [224, 223, 157] and the naive Bayesian
classifier [35].

Overall, it is clear from the above discussion that feature-based approaches are
better able to handle the function prediction task than homology or subsequence-
based approaches: this is because of the inclusion of more biologically meaningful
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features. This enables the construction of a more robust model for the sequence-
function mapping.

Concluding, techniques that predict protein function fromsequence can be cate-
gorized into three classes, namely:

• Homology-based approaches: are those approaches based on the alignment of
protein sequences and the discovery of significant sequencehomology. These
approaches are not always accurate and several efforts have been done to make
the search more accurate by exploiting probabilistic approaches or leveraging
other information (e.g., GO annotations).

• Subsequence-based approaches: often not the whole sequence, but only some
segments of it (corresponding to motifs or domains) are important for determin-
ing the function of a given protein. Hence, the approaches inthis category treat
these segments or subsequences as features of a protein and map these features
to protein function.

• Feature-based approaches: extract from the amino acid sequence some features
related to several physical and functional protein characteristics. These features
are used to construct a predictive model, which can map the feature-value vector
of a query protein into its function.

Analyzing the above categorization, it is quite clear that the subsequence and
feature-based approaches are very similar at the basic level, since they involve the
construction of a model for the feature-to-function mapping. However, there are also
significant differences between them. The most fundamental difference is that while
subsequence-based approaches extract the features (i.e.,meaningful subsequences)
from a set of functionally related sequences, feature-based approaches derive and
evaluate their features on the basis of individual protein sequences.

Structure Alignment

Sequence is only one aspect that has an influence on the function of a protein. In fact,
to be able to perform their biological function, proteins fold into one, or more, spe-
cific spatial conformations, driven by a number of non covalent interactions such as
hydrogen bonding, ionic interactions, Van Der Waals forcesand hydrophobic pack-
ing. The functional behavior of a protein may hence be betterunderstood by also
looking at its structure.

Some approaches that analyze the secondary [217, 66] and tertiary structures
[158, 117, 118] of proteins have been proposed in the literature. Tertiary structures
reflect the physical characters of translated proteins, andoffer clues to the actual
mechanism of protein function. However, tertiary structures are derived using rela-
tively costly and time-consuming experimental techniquessuch as X-ray crystallog-
raphy and Protein nuclear magnetic resonance spectroscopy(NMR). The number of
known tertiary structures is small as compared to the numberof protein sequences
known. Moreover, tertiary structures cannot be always reliably predicted from pro-
tein sequences, especially when appropriate template structures for homology mod-
eling are not available. Secondary structures, on the otherhand, can be effectively



32 3 Protein Function Prediction: the State of the Art

predicted from sequences and used to complement sequence homology for function
prediction.

In several works it has been proved that the structure of a protein is not tightly
correlated directly with its biological function, but it iscorrelated with lower-level
functional features. Thus, functional features might be used for predicting the func-
tion of a protein from its structure [133, 82, 150, 203].

Leveraging these studies, some ideas for inferring functional features from the
structure of a protein have been proposed [141, 188, 68, 143,220], therefor, protein
structure can be used to predict protein function. Indeed, several researchers have
proposed various structural features and approaches for function prediction, which
can be classified into the following four categories:

• Similarity-based approaches: are those approaches [158, 85, 180] that, given the
structure of a protein, identify the protein with the most similar structure by using
structural alignment techniques [110, 113], and transfer its functional annotations
to the query protein.

• Motif-based approaches: attempt to identify three-dimensional motifs, that are
substructures conserved in a set of functionally related proteins (e.g., the helix-
turn-helix (HTH) motif [129]), and estimate a mapping between the function of a
protein and the structural motifs it contains. This mappingis then used to predict
the functions of unannotated proteins. However, note that structural motif finding
programs, (e.g., TESS [213], FFF [69] and SPASM [107]) rely on their own
definitions of a structural motif, since there does not exista universally accepted
definition of this concept.

• Surface-based approaches: these approaches do not consider the structure of a
protein with respect to the distances between consecutive amino acids, but repre-
sent it by a continuous surface. This representation helps in identifying features
such as voids or holes in the surface. The idea here is that interactions between
proteins occur due to the complementarity of their molecular surfaces. The ap-
proaches in this category utilize these features to infer the function of proteins
[105, 21, 65, 63].

• Learning-based approaches: this category employs effective classification meth-
ods, such as SVM and k-nearest neighbor, to identify the mostappropriate func-
tional class for a protein from its most relevant structuralfeatures [102, 49, 214,
13].

3.2.2 Function Inference by Genomic Context

In the context of exploiting genomic information for protein function prediction two
strands of research can be recognized. The first strand concerns the analysis and
alignment of genomic sequences while the second one makes use of gene expres-
sion data. In the two subsequent paragraphs these two strands of research will be
discussed.
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Genomic Sequences

This section discusses some approaches exploiting ideas which stem from the
genome resource for function prediction. In this domain, most of the studies fall
in the field of comparative genomics [131] and, thus, the applications are oriented to
functional associations between genes or proteins rather than annotations for individ-
ual proteins. Also, it must be remarked that the approaches in this category are often
justified by evolutionary mechanisms. The approaches proposed to derive functional
associations from genomic data, and possible function prediction, can be divided in
three categories [131]:

• Genome-wide homology-based annotation transfer: the mostimmediate impact
of large-scale genome sequencing projects has been the wider application of ex-
isting sequence-homology based approaches [4] for functional annotation trans-
fer. The availability of complete genomes of many organismsled to the creation
of databases of gene sequences [19] and the database of Clusters of Orthologous
Genes (COGs) [200]. The approaches in this category use existing databases for
searching for homologous of the query protein, with the aim of transferring func-
tional annotations from the closest results.

• Gene neighborhood-based or gene order-based approaches: these approaches are
based on the hypothesis that proteins, whose correspondinggenes are close to
each other in multiple genomes, are expected to functionally interact [45, 152,
153, 111, 109, 123].

• Gene fusion-based approaches: these approaches attempt todiscover pairs or sets
of genes in one genome that are merged to form a single gene in another genome
[132, 229, 60, 130]. Here, the underlying hypothesis is thatthese sets of genes
are functionally related.

As can be seen, approaches in the latter two categories exploit genomic context,
i.e. the location of a gene on the genome [Huynen et al. 2000].

Gene Expression Data

Gene expression is the process by which information from a gene is used in the
synthesis of a functional gene product (i.e., a protein or a functional RNA). Gene ex-
pression experiments try to quantitatively measure the transcription phase of protein
synthesis and are obtained by microarray1. The primary advantage of gene expres-
sion experiments is that they offer an effective method for observing the simultane-
ous activity of thousands of genes under a given experimental condition. Thus, gene
expression data holds great promise for determining the function and functional as-
sociations of proteins. Several repositories have been setup in order to make gene
expression data publicly accessible [16, 156, 12].

1 A 2D array on a solid substrate (usually a glass slide or silicon thin-film cell) that assays
large amounts of biological material using high-throughput screening methods.
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Usually, the format of gene expression data is very simple. They are represented
by a rectangular matrix, in which the rows correspond to genes, the columns to condi-
tions, and the entries denote the expression measurement ofa gene under a particular
condition. Another important factor in microarray data analysis is that the data used
in research is generally of two kinds: static and temporal. The first category con-
sists of datasets containing snapshots of the expression ofcertain genes in different
samples under the same conditions. The second one, also known as time-series gene
expression data, consists of datasets capturing the expression of certain genes of the
same organism at different instants of time.

Early approaches identified functional associations between genes by measuring
the similarity between their expression profiles using statistical methods [212]. How-
ever, these studies usually required significant human intervention, thus more generic
techniques from data mining were proposed. These techniques can be grouped into
the following three categories:

• Clustering-based approaches: an underlying hypothesis ofgene expression anal-
ysis is that functionally similar genes have similar expression profiles, since they
are expected to be activated and repressed under the same conditions. Approaches
in this category use unsupervised learning techniques, particularly clustering, to
group together genes on the basis of their gene expression profiles, and assign
functions to the unannotated proteins using the most dominant function for the
respective clusters [56, 18, 148, 242, 226, 199, 241, 36, 230, 27, 128, 155].

• Classification-based approaches: the functions of some genes may be known and
may act as class labels. Thus, a more direct solution to the problem of predict-
ing protein function from gene expression profiles is the classification. The ap-
proaches in this category firstly build various types of models for the expression
function mapping by using classifiers and, then, exploit these models to annotate
new proteins [24, 135, 115, 147, 239].

• Temporal analysis-based approaches: temporal gene expression experiments mea-
sure the activity of genes at different instances of time (e.g., during a disease) and
this information can be used to predict protein function. The approaches in this
category derive features from this temporal data and use classification techniques
to predict the functions of unannotated proteins [15, 61, 81, 28, 88, 116, 8, 139,
208].

3.2.3 Phylogenomic Approaches

The biological species existing today have evolved from primitive forms of life over
millions of years, and this process of evolution continues today. The changes in the
physiologies of different organisms have been driven by the changes at the cellu-
lar level, which include the adoption and surrender of functions by proteins due to
changes in the genes encoding them. Thus, it is essential to include the evolutionary
perspective in any complete understanding of protein function.

As a result, several approaches for predicting protein function using evolution-
based data have recently been proposed. The two most common forms of this data



3.2 Protein Function Prediction 35

are known as phylogenetic profiles and phylogenetic trees, and the field of biology
that deals with the evolutionary relationships among living organisms is also known
asphylogenetics.

The phylogenetic profile of a protein is (generally) a binaryvector whose length
is the number of available genomes. The vector contains the value 1 in theith position
if the ith genome contains a homologue of the corresponding gene, and 0otherwise.
Some variations of these vectors use real numbers that reflect the extent of similarity
between the original gene and the best match in the genome being searched. Thus,
these profiles provide a way of capturing the evolution of genes across various or-
ganisms. This information becomes useful for functional genomics when it is seen
in the light of the phenomenon ofspeciation, which is the evolutionary mechanism
by which new species are created from currently existing ones.

It may be hypothesized that proteins which interact functionally correspond to
genes that are inherited across several genomes during speciation events. Phyloge-
netic profiles are a powerful mathematical way of modeling this phenomenon, and
thus offer a very innovative method for inferring functional associations between
proteins, since the latter are expected to have very similarphylogenetic profile. This
is the basic assumption made by all the approaches for function prediction on the
basis of phylogenetic profiles [162, 125, 225, 58, 46, 240].

In several other studies, a more extensive representation of evolutionary knowl-
edge is used. This representation is known as a phylogenetictree. The leaves of
this tree correspond to organisms and the internal nodes denote the hypothetical last
common ancestor (LCA) of all its descendents. The branches represent evolution re-
lationships. Surely, phylogenetic trees embody a much richer source of knowledge
than phylogenetic profiles since the latter are constructedonly on the basis of the
leaf nodes of the former, thus ignoring the hierarchical structure of the evolution-
ary knowledge. The additional knowledge provided by the internal tree nodes can
be used to extract further information about the pattern of evolution of a set of pro-
teins. Thus, phylogenetic trees, if accurately constructed, can provide strictly richer
information than simple profiles. Still, both of these formsof phylogenetic data to-
gether constitute a very rich pool of knowledge about evolution that can be utilized
effectively for the prediction of protein function.

The studies that try to uncover gene/protein functions and functional linkages
using phylogenetic data such as profiles and trees can be classified into three cate-
gories:

• Approaches using Phylogenetic Profiles: these approaches are based on the hy-
pothesis that proteins with similar phylogenetic profiles are functionally related
[162, 125, 225, 58, 46, 240].

• Approaches using Phylogenetic Trees: this category embodies those approaches
that exploit phylogenetic trees to predict function. Most of these approaches use
various data mining and machine learning techniques and produce better results
than those based only on profiles [55, 50, 159, 169, 187, 59].
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• Hybrid Approaches: these approaches use SVM-based techniques to combine the
two forms of evolutionary knowledge stored in phylogeneticprofiles and trees
[210, 145].

3.2.4 Protein Interaction Networks

Proteins do not work alone, but interacts with other biological entities such as DNA,
RNA, as well as other proteins to perform their function. Hence, the function of a
protein may be inferred by looking at its interaction neighborhood.
The approaches that attempt to predict function from a protein interaction networks
can be broadly categorized into the following five categories:

• Neighborhood-based approaches: utilize the neighborhoodof the query protein in
the interaction network to predict its function [178, 84, 106, 176, 26, 126, 137].
For instance, a basic technique belonging to this category assigns to the query
protein the most prevalent function among its interacting proteins.

• Global optimization-based approaches: consider the structure of the entire net-
work and try to optimize an objective function based on the annotations of all the
proteins in the network [119, 121, 209, 197, 95, 142].

• Clustering-based approaches: are based on the hypothesis that dense regions in
the interaction network represent functional modules in which proteins perform
the same function. Thus, the approaches in this category apply graph cluster-
ing algorithms to PPI networks and then transfer the functions of characterized
proteins to unannotated proteins belonging to the same module [190, 52, 172].

• Association-based approaches: use several algorithms forfinding frequently oc-
curring sets of interactions (subgraphs). The identified subgraphs are supposed
to denote functional modules in which the majority of proteins perform the same
function [86, 227, 34]. The basic idea of these approaches issimilar to that of
the previous category. The difference is that in this case, patterns of interactions,
instead of clusters of nodes, are searched for.

• Comparison of protein-protein interaction networks: predict protein function by
comparing the protein-protein interaction networks of twoor more organisms.
This way, an uncharacterized protein of one network is annotated with the known
function of a protein in another network, so that the two proteins have the most
similar interaction patterns [14, 186].

3.3 Protein Quaternary Structure Prediction

Many proteins are composed of two or more subunits, each associated with different
polypeptide chains. The number and the arrangement of subunits forming a protein
are referred to asquaternary structure, as already pointed out in Chapter 2. The
quaternary structure of a protein is important, since it characterizes the biological
function of the protein when it is involved in specific biological processes. Unfor-
tunately, quaternary structures are not trivially deducible from protein amino acid
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sequences and, thus, recently, some techniques have been proposed to provide pro-
tein quaternary structure classification [38, 76, 191, 233,238]. Most of them aim at
classifying homo-oligomeric proteins.

The first software that has been proposed to predict protein quaternary structure,
called Quaternary Structure Explorer (QSE) [76], classifyproteins in two distinct
classes: homodimers and non-homodimers. This software is based on the analysis of
protein amino acid sequences and use theC4.5classification algorithm. The evalu-
ation has been performed exploiting a dataset made of 1639 homo-oligomeric pro-
teins, extracted from SWISS-PROT [11], composed by 914 homodimers and 725
non-homodimers. According to this approach, each protein is represented by 401
amino acid indices obtained by the AAindex database [100]. An amino acid index is
a list of 20 numerical values corresponding to physical, chemical, and biochemical
properties of the 20 common amino acids. The overall precision obtained during the
evaluation was 70%.

Another method proposed by Song and Tang [191] that considers only the two
classes of homodimers and non-homodimers introduced a new measure called func-
tion of degree of disagreement (FDOD). The FDOD is a measure of information
discrepancy computed to measure discrepancies among sequences and the set of
subsequence distributions. The subsequence distributionis useful to take into ac-
count the effect of residue order on protein structure. The approach by Song and
Tang exploited the FDOD in the classification process and theevaluation has been
performed on the same dataset exploited to evaluate QSE [76]. During the evalua-
tion both the resubstitution test and the 10-fold cross-validation test were performed
with different subsequence lengths ranging from 1 to 4. This technique obtained an
overall precision of 82.5%.

The last approach [238], which has been proposed to classifyprotein quaternary
structures into homodimers versus non-homodimers classesexploits protein primary
sequences and uses both Support Vector Machines (SVM) and the covariant discrim-
inant algorithm. Each protein is represented by the amino acid composition and four
autocorrelation functions. According to the classical definition, amino acid compo-
sition consists of 20 components, representing the occurrence frequency of each of
the 20 native amino acids in a given protein. Since the amino acid composition alone
doesn’t take into account any sequence information, the authors exploited also four
autocorrelation functions computed by exploiting the amino acid index profile of the
primary sequence. The autocorrelation functions exploited are:(i) FASGa: the auto-
correlation functions of amino acid residue index of Fasman; (ii) NISKb: the auto-
correlation functions of amino acid residue index of NishikawaOoi;(iii) WOLSc:
the auto-correlation functions of amino acid residue indexof Wold et al;(iv) KYTJd:
the auto-correlation functions of amino acid residue indexof KyteDolittle. This ap-
proach obtained a precision of 87.5% on the same dataset used by the two previously
discussed approaches [76, 191].

The techniques illustrated above [76, 191, 238] are able to distinguish just be-
tween two classes, that are homodimers and non-homodimers.However, some ap-
proaches able to discriminate among a large variety of classes have been proposed in
the literature.
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In this respect, the first proposed approach [38] exploits the pseudo amino acid
composition of proteins for representing each protein as a set of discrete numbers.
The pseudo amino acid composition consists of 20+ λ discrete numbers, in which
the first 20 numbers are the same as the 20 components in the classical amino acid
composition, and the others representλ sequence-order correlation factors. This rep-
resentation is more powerful than the standard amino acid composition, since it is
able to take into account a considerable amount of sequence-order and sequence-
length effects. The dataset used in the evaluation was extracted from SWISS-PROT.
In particular, the training set was made of 3174 homo-oligomeric protein sequences,
among which 382 were annotated with monomer, 817 with dimer,593 with trimer,
884 with tetramer, 54 with pentamer, 287 with hexamer, and 157 with octamer. The
independent dataset consisted in 332 protein sequences, ofwhich 50 were annotated
with monomer, 102 with dimer, 56 with trimer, 80 with tetramer, 6 with pentamer,
28 with hexamer, and 10 with octamer. This approach reached an overall success
rate of 80.1% on the independent set by performing resubstitution, jack-knife, and
independent data set tests.

The four approaches described above [76, 191, 238, 38] exploit only protein
sequence information. Another notable approach [233], instead, exploits the func-
tional domain composition of proteins. According to this representation, each pro-
tein is represented as a binary vector in which thei-th position is equals to 1 if
the protein contains thei-th domain. This representation, as shown in some studies
[222, 101, 39, 30, 232], is able to deliver important information about protein struc-
tures and functions. The approach is based on the nearest neighbor algorithm and
was evaluated performing a two stages evaluation. The first stage was the jackknife
cross-validation test on a non-redundant dataset of 717 proteins represented by 540
PFam domains. The second stage exploit the non-redundant dataset to classify an
independent dataset of 9,951 proteins defined on the same set of 540 domains. This
approach obtained an overall success rate of 75.17% in the first evaluation stage and
84.11% in the second one.

3.4 Protein Function Prediction by PPI networks analysis

In this section an overview of the methods proposed to predict protein function by
comparing protein-protein interaction networks is provided. Three approaches have
recently been proposed to address this issue [14, 184, 185].In the following each of
these approaches will be discussed in detail.

The first approach that relies on the comparison of PPI networks [14] is based
on a strategy to identify functionally related proteins in two protein-protein interac-
tion networks. This approach exploits both sequence-basedprotein comparisons and
conserved protein-protein interactions across the two input networks. This approach
works in two stages. In the first stage the two PPI networks arealigned using only
protein sequence similarities and, in particular, by assigning proteins to sequence
homology clusters using theInparanoidalgorithm [171]. In the second stage, pairs
of proteins, one from each species, that are likely to retainthe same function, are
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identified by performing probabilistic inference. In particular, the orthology relation
between each pair of possibly corresponding proteins was modeled as a probabilistic
function of the orthology relations among their immediate network neighbors. Note
that, orthology relationships were inferred by using Gibbssampling. In the evalua-
tion phase, this approach has been used to resolve ambiguousfunctional orthology
relationships between theS. cerevisiaeandD. melanogasterPPI networks. In par-
ticular, 121 cases, for which functional orthology assignment was ambiguous when
sequence similarity is used alone, were analyzed.

The second approach, called IsoRank [184], is an algorithm for pairwise global
alignment of PPI networks aiming at finding a correspondencebetween nodes and
edges of the input networks that maximizes the overall match. This approach uses
both PPI network data and sequence similarity data to compute the alignment. More-
over, the relative weights of the two data sources are free parameters. The basic idea
is that a nodei in the first PPI network can be mapped to a nodej in the second PPI
network if the neighborhood topologies ofi and j are similar, i.e., the neighbors ofi
can be mapped to the neighbors ofj. In particular, the algorithm works in two stages.
In the first stage, it associates a score with each possible match between the nodes of
the two networks. The scoreRi j is the score associated to the pair of proteinsi, from
the first network, andj, from the second network. The vectorR, representing the set
of Ri j s, is computed by constructing and solving an eigenvalue problem. This prob-
lem encompasses both network and sequence data. In the second stage, the algorithm
builds the mapping by extracting from R high-scoring, pairwise, mutually-consistent
matches. This stage is resolved by interpretingR as encoding a bipartite graph and
finding the maximum-weight bipartite matching for this graph. In particular, each
partition of the bipartite graph contains all the nodes fromone network and the edge
weights are set to the value fromR. At the end of the alignment, any unmatched
node represents a gap node. The system was used to align theS. cerevisiaeand the
D. melanogasterPPI networks and the common identified subgraph had 1420 edges.
After the alignment was performed, the results have been also used to detect func-
tional orthologs using the same dataset exploited by Bandyopadhyay et al. [14].

IsoRank [184] has been extended, in a subsequent work [185],to align multi-
ple PPI networks. In particular the five PPI networks ofSaccharomyces cerevisiae,
Drosophila melanogaster, Caenorhabditis elegans, Mus musculusandHomo sapi-
enswere aligned. In this respect, the computation of the vectorR is made for each
pair of input networks. Since the authors consider more thantwo networks in input,
the node mapping can be computed according two different scenarios:(i) one-to-
one mappings, that require that any node can be mapped to at most one other node
per species;(ii) many-to-many mappings, in which a node can be mapped to more
than one node in another networks. To compute the mapping, the authors exploit an
approximate multipartite graph weighted matching algorithm.
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3.5 Concluding Remarks

In this chapter, the state of the art about protein function prediction has been dis-
cussed. The subsequent two chapters will present two novel approaches proposed
to solve the function prediction problem according to two different methodologies.
In particular, in Chapter 4 an approach based on the prediction of protein quater-
nary structure is presented. In Chapter 5 a novel approach tofunctional annotation
of proteins based on protein-protein interaction networkscomparison is discussed.
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Protein Quaternary Structure Prediction

Summary. This chapter describe a novel method for protein quaternary structureprediction.
In particular, in Section 4.1 some background information on protein quaternary structure is
recalled and in Section 4.2 a brief comparison with existing methods is outlined. Section 4.3
discusses the classification method exploited in the prediction process and inSection 4.4 the
results of the experimental validation on both homo-oligomers and hetero-oligomers datasets
are reported.

4.1 Introduction

As pointed out in Chapter 3, protein quaternary structure isrelated to the biological
function of the protein when it is involved in specific biological processes.

While an increasing number of amino acid sequences is produced and stored
in public databases, the geometric conformation of a protein can be determined by
slow and expensive methods (such as crystallography and NMRspectrometry). Thus,
a plenty of computational methods have been developed in thelast few years to
predict and classify protein secondary, tertiary and quaternary structures [30, 76,
138, 167, 233]. The focus of this chapter is protein quaternary structure prediction.
In particular, we deal with the problem of efficiently exploiting available databases
of amino acid sequences in order to predict the number of subunits of a given protein.

In the rest of this section, we first briefly recall some basic concepts concerning
protein quaternary structure and then point out our contributions.

Background on protein quaternary structure

Several proteins (e.g., Hemoglobin) are a combination of two or more individual
polypeptide chains or subunits. The arrangement into whichsuch subunits assemble
is called theprotein quaternary structure. Quaternary structure refers to the num-
ber of subunits involved in forming a protein, to their interconnections and to their
organization [108, 198]. Biological processes are often influenced by the quaternary
structure of proteins involved therein; e.g., the subunit construction of many enzymes
provides the structural basis for the regulation of their activities. Proteins having a



42 4 Protein Quaternary Structure Prediction

quaternary structure are calledoligomers, and may be further classified ashomo-
oligomers, consisting of identical subunits, andhetero-oligomers, made of subunits
that are different from one another. Furthermore, based on the number of subunits
linked together, an oligomer may be adimer (composed by two subunits), atrimer
(composed by three subunits), atetramer(composed by four subunits), and so on.
Proteins consisting of only one subunit are calledmonomers.

Contributions

In this chapter, a classification method to individuate the number of subunits of each
protein of a given dataset is dicussed.
To this aim, protein functional domain information is exploited, as already success-
fully done in previous literature [233]. In particular, each protein is encoded by a
vector whose elements are associated to PFam domains [164].The number of sub-
units included in a given protein is then obtained by assigning that protein to a class
(e.g., monomers, homodimers, etc.), on the basis of a previously classified dataset
and of a suitable classification method.

As already discussed in Chapter 3, a few approaches have beenrecently intro-
duced to support protein quaternary structure classification [38, 76, 191, 233, 238].
The most successful of them [233, 238] reach at most the 87.5% of overall accu-
racy, and the maximum dataset size they considered is of about 10,000 proteins.
Furthermore, most of the quaternary structure classification methods proposed in the
literature store the overall dataset, comparing each protein to be classified to each
stored protein. This may result hard when large datasets areto be considered.

Our approach gives a contribution in the direction of reducing both the portion
of dataset that is necessary to store and, consequently, thenumber of comparisons
to carry out at classification time, allowing sensible spaceand time savings, while
achieving very good accuracy figures.

In particular, we exploit a nearest neighbor condensation techniques (in particu-
lar, a recently introduced one [6]) to replace the whole protein dataset with a notable
subset that can be then used for the sake of fast protein quaternary structure pre-
diction. To this aim, we use a training set consistent subsetfor the nearest neighbor
decision rule as reference dataset during classification. Let T be a dataset. Having
fixed a meaningful distance metrics, a subsetS of T is a training set consistent sub-
set ofT for the nearest neighbor rule, ifS correctly classifies all the objects ofT by
means of the nearest neighbor rule.

To evaluate our method, we conducted two series of experiments. The first
series involved homo-oligomeric proteins while the secondone classified hetero-
oligomeric proteins. As for homo-oligomeric proteins, we considered two different
kind of tests. First, we performed the 10-fold cross-validation on a very large pro-
tein dataset including 20,068 proteins taken from the SWISSPROT [10] database.
The results confirmed the effectiveness of our approach. In fact, we scored an over-
all accuracy of 97.74%, by using only the 6.51% of the total dataset. This result is
important, since pinpoints that our method can be adopted tocorrectly classify pro-
teins whose quaternary structures are unknown, significantly reducing the portion of
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dataset to analyze. Such a reduction is particularly attractive in the case of protein
quaternary structures classification, where large datasets are often to be considered.
The second kind of tests concerns the exploitation of the jackknife cross-validation
on a non-redundant dataset already used to test another successful technique pro-
posed in the literature [233]. Also in this case, the resultswe obtained show that our
method is more powerful than the previous ones, being able toobtain comparable
accuracy in the classification of quaternary structures, even if using only the 45.39%
of the whole dataset.

As for hetero-oligomeric proteins we performed the 10-foldcross-validation on a
very large protein dataset including 33,273 proteins again extracted from the SWIS-
SPROT database. In this respect, we conducted two types of experiments consid-
ering only PFamA domains and both PFamA and PFamB domains. Also in this
case we obtained high accuracy values. Indeed, we obtained aprecision score in
the range 98,03%-99,03% by using a condensed dataset having a size in the range
2,76%-4,13% of the original dataset.

The rest of this chapter is organized as follows. Section 4.2briefly addresses
differences among our approach and the approaches that have beenproposed in the
literature and discussed in Chapter 3. Section 4.3 describes our protein quaternary
structure classification method and Section 4.4 presents some experimental results.
Finally, Section 4.5 reports some conclusions.

4.2 Related Work

Recently, some techniques have been proposed for protein quaternary structure clas-
sification [38, 76, 191, 233, 238] and a detailed descriptionof such methods can be
found in Chapter 3.

Most of them aim at classifying homo-oligomeric proteins. Differently from all
of them, our approach has been used for classifying both homo-oligomers and hetero-
oligomers. Moreover, all the approaches presented in the literature use a dataset of
protein with known quaternary structure as training set and, during the prediction
stage, compare the query protein to each protein in the training set. Differently from
them our approach extract a consistent subset of the training set to reduce both time
and space requirement at classification time. In the following a more detailed com-
parison is carried of.

The techniques presented in [76, 191, 238] are able to distinguish just between
two classes, that are homodimers and non-homodimers, whereas our approach is
able to discriminate among any number of classes. In this respect, our method is
more similar to other two recently proposed approaches [38,233].

Moreover, four of the five approaches presented in the literature [76, 191, 238,
38] exploit only protein sequence information, without anyregard for protein domain
composition. Our method is different, as we consider the protein domain composi-
tion that, according also to other studies [222, 101, 39, 30,232], is able to deliver
important information about protein structures and functions, which may be related
to protein quaternary structure. In this respect, the most similar approach is the one
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by Yu et al [233] which also exploits the functional domain composition of proteins
and the nearest neighbor algorithm (NNA).

Therefore, in our experiments, we used the same non-redundant dataset exploited
by Yu et al. [233], enriched in the number of considered domains, obtaining some
accuracy improvements (see Section 4.4). But, differently from their method, which
exploits ageneralized distance(which is not a metric) in the classification method,
we used the Jaccard distance as the distance metric. Furthermore, our technique is
more efficient than the one proposed by Yu et al. and, in general, than the other related
techniques, due to its ability of classifying proteins without the necessity of making
comparisons with all the elements of the dataset. Indeed, weare able to extract a
relatively small subset of the training set to carry out sucha classification without
any significant loose in precision.

To summarize, our approach is more general than some of the previous methods
[76, 191, 238], that are specific for the classification of only two classes of protein
quaternary structures. Furthermore, we exploited the protein representation which is
shown to be the most complete in terms of protein functional information (i.e., func-
tional domain composition), and we achieve high accuracy values even if exploiting
small dataset portions. All these features grant to our method highest overall suc-
cess rate than the other ones presented in the literature (97.74%), making it attractive
especially when large protein datasets have to be handled.

4.3 Classification through PQSC-FCNN

In this section, the classification method exploited to individuate the number of sub-
units of each unclassified protein of a given dataset is described. In the following we
will refer to as PQSC-FCNN, for Protein Quaternary Structure Classification through
FCNN rule, to the classification method here presented. In order to design an effec-
tive and efficient classification method, different issues are to be addressed:(i) the
feature space and distance metrics to adopt,(ii) the classification algorithm, and(iii)
the suitability of the overall method.

As already pointed out, most of the quaternary structure classification methods
proposed in the literature store and use the whole availabledataset as training set,
comparing each protein to be classified to each stored protein. This may result hard
when large datasets are considered. Hence, we would like to drastically reduce the
portion of the dataset that is necessary to store and, consequently, the number of
comparisons to carry out, allowing sensible space and time savings.

To this end, we exploit protein functional domain information, and encode each
protein by a binary vector whose elements are associated to PFam domains [17]. We
adopt the Jaccard metric as our distance measure and exploitthek nearest neighbor
rule [42, 196, 48], one of the most extensively used nonparametric classification
algorithms, which is simple to implement and yet powerful. The rationale underlying
this choice is that, for this classification rule, there exist efficient techniques to reduce
both space and time requirements.
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In the following, the adopted protein representation, distance metrics, classifica-
tion rule, and data reduction method are detailed.

Protein representation

To characterize proteins, we adopted the functional domaincomposition, since this
kind of representation has been proved to be successful bothfor the specific problem
we analyzed [233], and for the solution of other related problems, such as the pre-
diction of protein-protein interactions [222, 101], of protein structures [39] and of
protein functions [30, 232]. Protein functional domains are elements of the protein
structure that are self-stabilizing and often fold independently of the rest of the pro-
tein chain. According to the functional domain composition, a protein is represented
by a binary vector with size equals to the number of exploiteddomains. In particular,
let D be an ordered set of protein domains, which have been considered to character-
ize the proteins in a datasetP. Then, each proteinp ∈ P is represented by a vectorvp

of |D| elements. The elementvp[i] is set to be one ifp contains thei-th domain inD,
zero otherwise.

Distance metrics

We used the Jaccard metrics as our distance metrics, which isvery suitable for binary
data. In particular, the Jaccard distance between two protein vectorsvp1 andvp2 is
defined as:

d(vp1, vp2) =
n2 + n3

n1 + n2 + n3

where:

• n1 is the number of domains belonging to bothp1 ansp2;
• n2 is the number of domains belonging top1 and not top2;
• n3 is the number of domains belonging top2 and not top1.

Classification rule

The nearest neighbor rule[42] is widely used as a classification algorithm. It is
simple to implement and yet powerful, due to its theoreticalproperties guaranteeing
that for all distributions its probability of error is bounded above by twice the Bayes
probability of error.

The nearest neighbor decision rule can be generalized to thecase in which the
k nearest neighbors are taken into account. In such a case, a new object is assigned
to the class with the most members present among thek nearest neighbors of the
object in the training set. This rule has the additional property that it provides a good
estimate of the Bayes error and that its probability of errorasymptotically approaches
the Bayes error [73].

The naive implementation of the NN rule has no learning phase, since it requires
to store all the previously classified data, and then to compare each sample point to be
classified to each stored point. In order to reduce both spaceand time requirements,
several techniques to reduce the size of the stored data for the NN rule have been
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proposed (see [221] for a survey). In particular, among those techniques, thetraining
set consistentones, aim at selecting a subset of the training set that correctly classifies
the remaining data through the NN rule.

Data reduction

In order to reduce the reference protein quaternary structure dataset used during clas-
sification, we exploited the Fast Condensed Nearest Neighbor rule [6], FCNN for
short,that is an algorithm computing a training set consistent subset for the NN rule.

Informally, having fixed a meaningful distance metrics and adatasetT, a subset
S of T is a training set consistent subset ofT for the nearest neighbor rule, ifS
correctly classifies all the objects ofT by means of the nearest neighbor rule. Thus,
loosely speaking, the objects of the subsetS can be regarded as representing the
objects ofT which are not inS, and training set consistent subset methods for the
nearest neighbor rule can be regarded as methods to filter outdataset instances which
can be considered unessential to correctly classify new incoming objects.

The method is recalled next. We provide some definitions first. We defineT as
a labeled training set from a metric space with distance metrics d. Letx be an el-
ement ofT. Then we denote bynnk(x,T) the kth nearest neighbor ofx in T, and
by nnsk(x,T) the set{nni(x,T) | 1 ≤ i ≤ k}. l(x) will be the label associated tox.
Given a pointy, thek-NN rule NNk(y,T) assigns toy the label of the class with the
most members present innnsk(y,T). A subsetS of T is said to be ak-training set
consistent subset of Tif, for eachy ∈ (T − S), l(y) = NNk(y,S). Let S be a subset
of T, and lety be an element ofS. By Vor(y,S,T) we denote the set{x ∈ T | ∀y′ ∈
S,d(y, x) ≤ d(y′, x)}, that is the set of the elements ofT that are closer toy than to
any other elementy′ of S, called theVoronoi cellof y in T w.r.t. S. Furthermore, by
Voren(y,S,T) we denote the set{x ∈ (Vor(y,S,T) − {y}) | l(x) , NNk(x,S)}, whose
elements are calledVoronoi enemiesof y in T w.r.t. S. Centroids(T) is the set con-
taining the centroids of each class label inT. The FCNN rule relies on the following
property: a setS is a training set consistent subset ofT for the nearest neighbor rule
if for each elementy of S, Voren(y,S,T) is empty.

The FCNN algorithm initializes the consistent subsetS with a seed element from
each class label of the training setT. In particular, the seeds employed are the cen-
troids of the classes inT. The algorithm is incremental. During each iteration the
setS is augmented until the stop condition, given by the propertyabove, is reached.
For each element ofS, a representativeelement ofVoren(y,S,T) w.r.t. y is selected
and inserted intoS. Such a representative element it is the nearest neighbor ofy in
Voren(y,S,T), that is, the elementnn(y,Voren(y,S,T)) of T.

As for the time complexity of the method, letN denote the size of the training set
T and letn denote the size of the computed consistent subsetS. Then the FCNN rule
requiresNndistance computations to compare the elements ofT with the elements of
S. However, if the distance employed is a metric, a technique exploiting the triangle
inequality further reduces this worst case computational cost [6].
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Large dataset
% Accuracy

Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4
Corr /Tot % Accuracy Corr /Tot % Accuracy Corr /Tot % Accuracy

% Accuracy
Classes 2-FCNN 3-FCNN 4-FCNN
Monomer 6,114/6,184 99.45% 6,130/6,184 99.13% 6,135/6,184 99.21%
Homodimer 8,408/8,690 96.75% 8,427/8,690 96.97% 8,402/8,690 96.68%
Homotrimer 1,154/1,190 96.97% 1,150/1,190 96.64% 1,136/1,190 95.46%
Homotetramer 2,422/2,513 96.38% 2,452/2,513 97.57% 2,380/2,513 94.71%
Homopentamer 232/237 97.89% 232/237 97.89% 232/237 97.89%
Homohexamer 759/784 96.81% 761/784 97.07% 742/784 94.64%
Homoheptamer 4/5 80.00% 4/5 80.00% 4/5 80.00%
Homooctamer 457/465 98.28% 458/465 98.49% 458/465 98.49%
Overall 97.60% 97.74% 97.11%

% Dataset Exploitation 6.43% 6.51% 6.70%

Table 4.1.Precision of 2-FCNN, 3-FCNN, 4-FCNN on a 20,068 protein dataset.

4.4 Experiments

In this section, we illustrate the experimental evaluationof the method proposed in
this chapter.

To build our datasets, we downloaded proteins from the SWISSPROT database1

[10] and domains from the PFam database2 [17]. We conducted two series of ex-
periments. The first series involved homo-oligomers while the second one conserned
hetero-oligomers.

Homo-oligomeric proteins

As for homo-oligomeric proteins, we considered two different experiments. The first
experiment consisted in running the 10-fold cross-validation on a very large protein
dataset consisting of 20,068 proteins. The number of considered domains is 1,816.
The results of this experiment are shown in Table 4.1. The first column of the ta-
ble contains the homo-oligomeric class names, the second, third and fourth ones
report both the number of correctly predicted proteins w.r.t. their total number and
the percentage of accuracy scored byPQSC-FCNNfor k = 2, k = 3 andk = 4,
respectively, for each class. In the last two rows of the table, the overall accuracy and
the percentage of exploited dataset are reported. The obtained results confirmed the
effectiveness of our approach. In fact, the maximum overall success rate obtained on
the entire dataset is of the 97.74%, and the minimum dataset exploitation was drasti-
cally reduced to the 6.43% of the original dataset. In general, as for the classification
accuracy the three values ofk were comparable, being equivalent on the homopen-
tamers and on the homoheptamers, while only fork = 3 and fork = 4 the method
returned the same results for homooctamers.

Table 4.2 shows detailed information about the condensed set generated by the
method on the overall dataset of 20,068 proteins. In particular, for each class, both

1 http:/www.ebi.ac.uk/swissprot/
2 http://www.sanger.ac.uk/Software/Pfam/
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Condensed set
Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4

Number of Percentage Number of Percentage Number of Percentage
elements elements elements

Monomer 98/6,184 1.58% 153/6,184 2.47% 157/6,184 2.54%
Homodimer 643/8,690 7.40% 649/8,690 7.47% 718/8,690 8.26%
Homotrimer 145/1,190 12.18% 101/1,190 8.49% 108/1,190 9.08%
Homotetramer 197/2,513 7.84% 199/2,513 7.92% 157/2,513 6.25%
Homopentamer 17/237 7.17% 17/237 7.17% 17/237 7.17%
Homohexamer 74/784 9.44% 74/784 9.44% 79/784 10.08%
Homoheptamer 3/5 60.00% 3/5 60.00% 3/5 60.00%
Homooctamer 29/465 6.24% 29/465 6.24% 29/465 6.24%
Overall 1,206 6, 01% 1, 225 6.10% 1, 268 6.32%

Table 4.2.Condensed sets related to the dataset of 20,068 proteins.

the number of elements of the condensed set belonging to thatclass, and the reduc-
tion percentage w.r.t. the total number of elements in that class, are reported. The
number of elements and the reduction percentage of the overall condensed set are
shown on the last row of the table. By using all the three values of k (that are 2,
3 and 4) the method extracted condensed sets with the same size per class for ho-
mopentamers, homoheptamers and homooctamers. For the homoheptamer class, the
reduction percentage was notably higher than for the other classes, due to the few
elements belonging to that class (only 5). The reduction percentage on the overall
dataset was 6.01% fork = 2, 6.10% fork = 3 and 6.32% fork = 4. This shows the
power of the method, as it is sufficient to explore only a bit more than the 6% of the
overall dataset to (most probably) classify a new protein.

In order to compare our method with a related one, in the second kind of ex-
periments we considered the non-redundant protein datasetdiscussed by Yu et al. in
[233]. The main goal of this comparison is to show that our method may have ac-
curacy comparable to those of related methods, while sensibly reducing the amount
of labeled data to exploit during the classification. In particular, we point out that
the method presented in [233] utilized a non redundant version of the overall protein
dataset in order to cope with problems associated with management of large data
sets. As we will show in the following, our method is able to halve even this non
redundant dataset, while maintaining the same accuracy as the competitor method.

Yu et al. adopted an approach based on the functional domain composition and
employed the nearest neighbor algorithm (NNA) to classify protein quaternary struc-
tures. They represented the 717 considered proteins by 540 domains. Here, we en-
larged the number of considered domains to 1,253 in order to obtain a more accurate
data representation. Thus, we comparedPQSC-FCNNwith NNAby running the jack-
knife cross-validation on the non-redundant dataset, by considering the same 1,253
domains representation for all methods.

We runPQSC-FCNNexploiting the Jaccard metric, whereasNNAhas been run
with the generalized distance exploited in [233]. The results are illustrated in Table
4.3. The first column of the table contains the homo-oligomeric classes, the second,
third, fourth and fifth ones illustrate both the number of correctly predicted objects
w.r.t. the total number of them and the percentage of accuracy scored byPQSC-
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Non-redundant dataset
Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4 NNA

Corr /Tot % Accuracy Corr /Tot % Accuracy Corr /Tot % Accuracy Corr /Tot % Accuracy
Monomer 177/208 85.10% 174/208 83.65% 178/208 85.58% 168/208 80.77%
Homodimer 250/335 74.63% 250/335 74.63% 263/335 78.51% 268/335 80.00%
Homotrimer 28/40 70.00% 27/40 67.50% 27/40 67.50% 28/40 70.00%
Homotetramer 53/95 55.79% 52/95 54.74% 42/95 44.21% 53/95 55.79%
Homopentamer 11/11 100.00% 11/11 100.00% 11/11 100.00% 11/11 100.00%
Homohexamer 9/23 39.13% 9/23 39.13% 10/23 43.48% 7/23 30.43%
Homooctamer 2/5 40.00% 2/5 40.00% 2/5 40.00% 2/5 40.00%

Overall accuracy 73.92% 73.22% 74.34% 74.90%

% Dataset 46.79% 47.35% 45.39% 100%
Exploitation

Table 4.3.Comparison of precision scores obtained by PQSC-FCNN and NNA.

FCNNfor k = 2, for k = 3 and fork = 4, andNNA, respectively, for each considered
class. In the last two rows of the table, the overall accuracyand the percentage of ex-
ploited dataset for each method are reported. We can observethat all the considered
techniques returned the same results for the two classes of homopentamers and ho-
mooctamers. The only class for whichPQSC-FCNNdoes not obtain higher accuracy
than theNNA is the homodimer class. However, fork = 4 it obtains a success rate
of 78.51% for that class, w.r.t. the 80.00% scored by theNNA, and thus, also in this
case, the two methods achieved comparable results.

For the homotrimer and the homotetramer classes, thePQSC-FCNNfor k = 2
and theNNA had the same accuracy scores, whereas in the remaining cases(i.e.,
monomers and homoexamers),PQSC-FCNNalways scored better accuracy than
NNA, also with some sensible improvements. In particular, fork = 4, PQSC-FCNN
scored the accuracy value of 85.58% for monomers, which is about 4.81% higher
than the success rate obtained by theNNA, whereas it scored the accuracy value of
43.48% for homohexamers, which is about 13.05% higher than the success rate ob-
tained by theNNA for the same class and represents the best accuracy improvement
w.r.t. NNAwe obtained.

These results are significant since, for monomers and homoexamers, our method
has been able to obtain more accurate results thanNNA while exploiting only the
45.39% of the overall dataset, whereas the methods by Yu et al. [233] does not feature
any dataset reduction. Summarizing, thePQSC-FCNNmethod is able to reach an
overall success rate that is greater than theNNA, even if it exploits only the 45.39−
47.35% of the original dataset. This means thatPQSC-FCNNis more efficient than
the method [233], allowing both time and space savings without any significant loss
in accuracy but, rather, often allowing success rate improvements.

Hetero-oligomeric proteins

As for hetero-oligomeric proteins, we performed two type ofexperiments. In the first
type, we considered both PFamA and PFamB domains for proteinrepresentation,
while in the second one we considered only the PFamA domains.We executed the
10-fold cross-validation on a very large protein dataset including 33,273 proteins,
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Hetero-oligomers dataset PFamA+PFamB domains
Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4

Corr /Tot % Accuracy Corr /Tot % Accuracy Corr /Tot % Accuracy
Monomer 14,681/14,801 99.19% 14,640/14,801 98.91% 14,653/14,801 99.00%
Heterodimer 9,331/9,632 96.88% 9,323/9,632 96.79% 9,357/9,632 97.14%
Heterotrimer 1,379/1,438 95.90% 1,376/1,438 95.69% 1,352/1,438 94.02%
Heterotetramer 6,017/6,157 97.73% 6,061/6,157 98.44% 6,077/6,157 98.70%
Heteropentamer 25/29 86.20% 25/29 86.21% 23/29 79.31%
Heterohexamer 778/798 97.49% 783/798 98.12% 782/798 98.00%
Heterooctamer 409/418 97.84% 409/418 97.84% 408/418 97.60%
Overall 98.04% 98.03% 98.13%

% Dataset Exploitation 3.66% 3.84% 4.13%

Table 4.4. Precision of 2-FCNN, 3-FCNN, 4-FCNN on a 33,273 protein dataset.

Hetero-oligomers Condensed sets PFamA+PFamB domains
Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4

Number of Percentage Number of Percentage Number of Percentage
elements elements elements

Monomer 135/14,801 0.91% 220/14,801 1.49% 203/14,801 1.37%
Homodimer 612/9,632 6.35% 600/9,632 6.23% 673/9,632 6.99%
Homotrimer 116/1,438 8.07% 96/1,438 6.68% 102/1,438 7.09%
Homotetramer 199/6,157 3.23% 203/6,157 3.30% 240/6,157 3.90%
Homopentamer 10/29 34.48% 10/29 34.48% 11/29 37.93%
Homohexamer 49/798 6.14% 50/798 6.27% 55/798 6.89%
Homooctamer 23/418 5.50% 23/418 5.50% 25/418 5.98%
Overall 1,114 3.44% 1, 202 3.61% 1, 309 3.93%

Table 4.5.Condensed sets related to the dataset of 33,273 proteins.

extracted from the SWISSPROT database. As for the first experiment, involving both
PFamA and PFamB domains, we exploited 3,389 domains. The obtained results are
shown in Table 4.4. The maximum overall success rate obtained on the entire dataset
was of the 98.13%, and the minimum dataset exploitation was drastically reduced
to the 3.66% of the original dataset. In general, as for the classification accuracy the
three values ofk were comparable.

Table 4.5 shows detailed information about the condensed set generated by the
method on the overall dataset of 33,273 proteins. The training set consistent subset
extracted from the whole dataset has a size equals to the 3.44% fork = 2, 3.61% for
k = 3 and 3.93% fork = 4 of the size of the original dataset. This shows the power
of the method, as it is sufficient to explore less than the 4% of the overall dataset to
(most probably) classify a new protein.

Table 4.6 and Table 4.7 show the results obtained on the same dataset of hetero-
oligomers using only PFamA domains in the protein representation. As it can be
noted, the size of the exploited dataset is of 31,807 proteins, thus it is even smaller
than the previous one. The reason is that some proteins were composed only of
PFamB domains and, in this experiment, they were deleted. The maximum overall
success rate obtained on the entire dataset was of the 99.03%, and the minimum
dataset exploitation was drastically reduced to the 2.76% of the size of original
dataset. Also in this case, as for the classification accuracy the three values ofk
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Hetero-oligomers dataset Only PFamA domains
Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4

Corr /Tot % Accuracy Corr /Tot % Accuracy Corr /Tot % Accuracy
Monomer 14,500/14,533 99.77% 14,479/14,533 99.63% 14,478/14,533 99.62%
Heterodimer 8,994/9,200 97.76% 8,979/9,200 97.60% 8,996/9,200 97.78%
Heterotrimer 1,355/1,378 98.33% 1,334/1,378 96.81% 1,334/1,378 96.81%
Heterotetramer 5,515/5,543 99.49% 5,511/5,543 99.42% 5,503/5,543 99.28%
Heteropentamer 22/23 95.65% 22/23 95.65% 22/23 95.65%
Heterohexamer 765/778 98.33% 765/778 98.33% 759/778 97.55%
Heterooctamer 347/352 98.58% 348/352 98.86% 345/352 98.01%
Overall 99.03% 98.84% 98.84%

% Dataset Exploitation 2.76% 2.98% 3.08%

Table 4.6. Precision of 2-FCNN, 3-FCNN, 4-FCNN on a 31,807 protein dataset.

Hetero-oligomers Condensed sets Only PFamA domains
Classes PQSC-FCNN, k = 2 PQSC-FCNN, k = 3 PQSC-FCNN, k = 4

Number of Percentage Number of Percentage Number of Percentage
elements elements elements

Monomer 97/14,533 0.67% 166/14,533 1.14% 161/14,533 1.11%
Homodimer 434/9,200 4.72% 6451/9,200 4.90% 496/9,200 5.39%
Homotrimer 84/1,378 6.10% 65/1,378 4.72% 69/1,378 5.01%
Homotetramer 133/5,543 2.40% 133/5,543 2.40% 114/5,543 2.06%
Homopentamer 5/23 21.74% 5/23 21.74% 6/23 26.09%
Homohexamer 44/778 5.66% 45/778 5.78% 50/778 6.43%
Homooctamer 17/352 4.83% 17/352 4.83% 18/352 5.11%
Overall 814 2.56% 882 2.77% 914 2.87%

Table 4.7.Condensed sets related to the dataset of 31,807 proteins.

were comparable and the 3-FCNN and 4-FCNN obtained the same results. As for
the condensed sets generated by the method, the training setconsistent subset ex-
tracted from the whole dataset has a size equals to the 2.56% fork = 2, 2.77% for
k = 3 and 2.87% fork = 4 of the size of the original dataset.

Summarizing, thePQSC-FCNNmethod is able to reach a good classification
precision even if it exploits only a very small portion of theoriginal dataset. This
means thatPQSC-FCNNis a powerful tool, allowing both time and space savings.

4.5 Concluding Remarks

In this chapter a classification method for protein quaternary structures has been pro-
posed. This method exploits protein functional domain information and the FCNN
rule. Experimental evaluations showed that this approach is able to reduce the portion
of protein dataset that is necessary to store, by extractiong a training set consistent
subset, and, this, the number of comparisons to carry out during the classification of
a new protein, allowing sensible space and time savings evenguaranteeing high val-
ues of accuracy. Some tests carried out on homo-oligomeric and hetero-holigomeric
proteins have been illustrated, confirming the validity of the approach.

In the next chapter a novel approach for the prediction of protein functions by
comparing PPI networks will be described.





5

Bi-Grappin:Functional Similarity Search by PPI
Network Analysis

Summary. This chapter describes a method for predicting protein function by comparing the
protein-protein interaction networks of two species. Section 5.1 providessome background
information about the comparison of PPI networks. Section 5.2 presents the Bi-Grappin al-
gorithm along with some application cases. In Section 5.4, the results of the experimental
evaluation of Bi-Grappin and the comparison with other algorithms is outlined. Finally, in
Section 5.5 some conclusions are drawn.

5.1 Introduction

The problem of identifying conserved functional components across species is a cen-
tral problem in biology. After the huge efforts that have been made toward complet-
ing the genome coding of several organisms [41], a large dealof attention is now
turning toward the analysis of the ever increasing amount ofannotated proteins. The
observation that biological variations caused by evolution influence the ways pro-
teins interact with one another, recently persuaded biologists that a protein cannot be
analyzed independently of the other proteins participating into common biological
processes [211]. The set of all the protein-protein interactions of a given organism
is its interactome. The interactomeis usually modeled by an indirect graph, i.e., the
protein-protein interaction (PPI) network, where, as already discussed in Chapter 2,
nodes represent proteins and edges encode their interactions. Protein interactions are
usually discovered by high-throughput experimental techniques [89, 114] and com-
putational methods [140, 211]. In both cases, the resultinginteractions to hold are
not completely reliable [193], as also testified by several specific studies [9, 47].
Clear enough, the limited reliability of such data may potentially affect any attempt
to extract useful information from them.

In this chapter, we deal with the problem of searching for functional conservation
across interaction networks of different organisms. This problem has been already
considered in the literature [14, 71, 97, 182, 184]. Moreover, several approaches
related to the work presented in this chapter have already been discussed in detail in
Chapter 3. Our technique, called Bi-Grappin (Bipartite GRAph based Protein-Protein



54 5 Bi-Grappin:Functional Similarity Search by PPI Network Analysis

Interaction Networks analysis), is inspired by an approachfor matching database
schemes [154]. Bi-Grappin is based on the computation of the maximum weighted
matching [74] on bipartite graphs and aims at “measuring” the similarity between
pairs of nodes of two networks. The intuition here is that a protein in one network
should be actually considered similar to a protein in the other network as long as
they are not only characterized by a good sequence similarity, but also by similar
interaction profiles (here referred to asneighborhoods) [14, 62, 184]. In particular,
we consider the sequence similarities between proteins of different networks and
refine them by analyzing the similarities of their neighbor proteins. In more detail,
we adopt a concept of “neighborhood” that is different from that adopted in some
related work (e.g., [14, 184]). This new definition of neighborhood is not simply
related to the number of edges connecting two nodes but, mostly, to the weights of
edges. Surely, when information about weights is not available, our definition can be
reduced to the one that assign to thei-neighborhood of a given protein all the proteins
connected to it by a path of lengthi.

Bi-Grappin is independent of the topology of the analyzed networks and it pro-
vides the possibility to incorporate both quantitative andreliability information dur-
ing the analysis. In particular, information about the strength of the interaction of
two proteins, related to physical-chemical features [120,194], is exploited indepen-
dently of plausibility information about that interactionto reliably hold. On its turn,
reliability depends on the way by which the interaction was discovered – laboratory,
high-throughput or computational methods. Therefore, thetwo kinds of information
are meant to play a different role in the similarity search. At the best of our knowl-
edge, this is the first attempt in this direction.

The proposed approach can be summarized as follows. Given two PPI networks,
Bi-Grappin considers each pair of proteins (p′, p′′) from the first and the second
network, respectively. If the two proteins feature at leasta weak sequence similarity
(e.g., the BLAST E-value≤ 10−2, as also done in [97]), the algorithm starts by
exploring the first neighborhood ofp′ andp′′. Such neighborhoods are used to build
a bipartite graph on which a maximum weight matching w.r.t. sequence similarities
is computed. The value thus obtained is combined with the sequence similarity ofp′

and p′′ to compute a new refined similarity value between the proteins. This value
will be further refined by iteratively analyzing the farthest neighborhood ofp′ and
p′′. The graph exploration stops when a given number of neighborhoods ofp′ and
p′′ has been analyzed.

To validate the effectiveness of Bi-Grappin, we ran it on the three PPI net-
works of Saccharomyces cerevisiae(the yeast),Drosophila melanogaster(the fly)
andCaenorhabditis elegans(the worm) and performed two different kinds of exper-
iments. The first one concerned the discovery offunctional orthologs[14], that is,
proteins performing the same biological function in different species. In this respect,
we compared our results with those of two other approaches [14, 185]. Experimental
evaluations confirmed that our method is successful in individuating functional or-
thologs. In the second kind of experiments, Bi-Grappin has been exploited to align
the S. cerevisiaenetwork with theD. melanogasterand theC. elegansnetworks.
This analysis helped to verify that Bi-Grappin can be profitably exploited to indi-
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viduate common processes in which proteins are involved. These latter experiments
showed that Bi-Grappin is able to correctly single out proteins that are known to be
involved in similar biological processes. That confirmed the correctness and relia-
bility of this approach. Furthermore, those experiments highlighted the merits of the
proposed technique in understanding the role of not yet wellcharacterized proteins.
In this respect, it is worth noting that we chose to align theyeastnetwork with that
of thefly and thewormsince theyeastis a much more characterized organism than
the other two.

The rest of the chapter is organized as follows. In the next section the Bi-Grappin
algorithm is illustrated in detail. In Section 5.3, a comparison with some related
work is provided. The experimental evaluations are reported in Section 5.4. Finally,
in Section 5.5, some conclusions are drawn.

5.2 A Technique for Protein Similarity Refinement

In this section some useful definitions are introduced. Then, in Section 5.2.1, the
algorithm Bi-Grappin is presented, and in Section 5.2.2 three examples showing the
behavior of the algorithm on some artificial, yet significant, application cases are
discussed.

The most common representation for protein-protein interaction networks is that
of undirected graphs, where nodes represent proteins and edges denote their interac-
tions.

Definition 5.1. (Graph Protein-Protein Interaction Network)Let P = {p1, p2, . . . , pn}

be the set of nodes denoting the proteins of a given organism (and identified by pro-
tein ids), and letI be the set of (undirected) labeled edges〈{pi , p j}, l〉, associated
to the interactions between pairs of proteins. Each edge label l is a pair of the form
〈w, c〉, wherew andc are real numbers in the interval [0,1], called weakness and con-
fidence, resp. A graph protein-protein interaction network(or graph PPI network) is
thenGN = 〈P, I〉.

Edge labels are used to encode both quantitative and reliability information about
interactions, whenever available. For example, quantitative information, encoded
in the termw of the label pair, might concern protein-protein interaction strength
[120, 194], so that larger values ofw denote weaker interactions. Beside quantitative
information, we are also interested in representing the reliability associated with in-
teractions [193]. Thus, the termc of the label pair represents a reliability coefficient
that weighs to what extent a stored interaction should be reliably taken into account
in the analysis.

Definition 5.2. (Interaction Pathi , Cumulative Confidence C)Given a graph PPI net-
workGN, we callInteraction Pathof rank i (shortly,I-Pathi) a path such that:

F (i − 1) ≤
∑

u

wu ≤ F (i)(i ≥ 1)
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where eachwu is the weakness value associated with edgeu in the path andF is a
user specified function, taking a nonnegative integer in input and returning a nonneg-
ative integer as output, such thatF (0) = 0. The series{F (i)}i≥0 serves the purpose of
encoding neighborhood border weight values and, as such, tosuitably “shape” the
graph neighborhood level structure.

TheCumulative confidence Cof the I-Pathi is defined asC =
∏

u cu, where the
cu denote the confidences of edgesu ∈I-Pathi .

Definition 5.3. (I-Shortest Path)The I-Shortest Pathbetween two nodesp andq in
GN, denoted bysp(p,q), is the path among those linkingp to q such that

∑
u wu is

minimum, where eachwu is the weakness value associated with edges occurring in
the path. If more than one such a path exists, the one with maximum cumulative
confidence is chosen (anyone of them, in case of a further tie).

Definition 5.4. (i-th Neighborhood)Given a nodep in a graph PPI networkGN =

〈P, I〉, thei-th neighborhood ofp is the set:

N(p, i) = {q|q ∈ P,q , p, sp(p,q) is a I-Pathi in GN, i ≥ 0}.

N(p, i) is the set of nodes that can be reached fromp through an I-Pathi that is also
an I-Shortest path.

Note that while the sum of weaknesses across an I-shortest path determines thei-
neighborhood which a nodep belongs to, the cumulative confidence is representative
of the probability thatp actually belongs to thati-neighborhood.

In the following, we shall assume that the graph representing the PPI network
of a given organism is connected. This is reasonable in general and, whenever this
condition is not satisfied, our technique can be thought as applied to each of the
connected components of the graph PPI network by its own.

5.2.1 TheBi-Grappin Algorithm

Let GN1 andGN2 be two graph PPI networks, and assume that each pair of proteins
(p′, p′′), with p′ ∈ GN1 andp′′ ∈ GN2, have been aligned using one of the available
sequence alignment algorithms. Therefore, letS S Dbe a sequence similarity dictio-
nary storing all the triplets〈p′, p′′, f0〉, where f0 is a coefficient in the real interval
[0,1] obtained from the alignment parameters1 The larger f0 the more similar the
sequences ofp′ and p′′. The output of our technique is a new set of triplets, called
FS D (i.e., Functional Similarity Dictionary). In particular,FS D stores triplets of
the form〈p′, p′′, fp〉, wherep′ ∈ GN1, p′′ ∈ GN2 and fp is aprotein-protein similar-
ity coefficient in the real interval [0,1] measuring therefinedsimilarity betweenp′

andp′′, as computed by the Bi-Grappin algorithm. As before, the largerfp the more
similar p′ andp′′.

1 In our experiments, in order to computef0, we have used the Blast 2 sequences algorithm
[202] and the associated E-value parameter.
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The algorithm starts by setting theFS D equals to theS S D. Then, each triplet
〈p′, p′′, fp〉 in FS Dwith fp larger than a fixed cut-off value (fcut-off) is considered in
order to refine itsfp value. To this end, thei-neighborhoods ofp′ and p′′ (i ≥ 1)
are iteratively generated and compared by computing the objective function of a
maximum weight matching. At the generic iterationi, the output of such an objective
function is exploited to refine the valuefp. The neighborhood analysis stops at a
fixed iterationiMAX whose value is fixed as explained later in this section. The final
refined value offp is that corresponding to theiMAX -th iteration. Figure 5.1 shows
the pseudocode of the algorithm.

The core of the algorithm is the evaluation of the similaritybetween twoi-
neighborhoods, which is based on a maximum weight matching computation. Given
the twoi-neighborhoodsN(p′, i) = {p′1, p

′
2, . . . , p

′
m1
} andN(p′′, i) = {p′′1 , p

′′
2 , . . . , p

′′
m2
},

consider the sets:

• S′(p′, p′′, i) = {p′h ∈ N(p′, i) s.t.∃ p′′k ∈ N(p′′, i) and a triplet〈p′h, p
′′
k , f0〉 ∈

S S D, with f0 ≥ fmatch};
• S′′(p′, p′′, i) = {p′′k ∈ N(p′′, i) s.t.∃ p′h ∈ N(p′, i) and a triplet〈p′h, p

′′
k , f0〉 ∈

S S D, with f0 ≥ fmatch};

Let X be set of edges{〈p′h, p
′′
k ,ghk〉|ghk = Chk · fhk}, where:

• p′h ∈ S
′(p′, p′′, i);

• p′′k ∈ S
′′(p′, p′′, i);

• fhk is the sequence similarity betweenp′h andp′′k as stored in the inputS S D;
• Chk = min{Ch,Ck}, whereCh andCk are the cumulative confidences of the I-

shortest paths connectingp′h to the target proteinp′ andp′′k to the target protein
p′′, respectively.

Moreover, consider the bipartite weighted graphBG = (S′(p′, p′′, i)∪S′′(p′, p′′, i),X).
The fixed threshold valuefmatch considered in the building ofS′(p′, p′′, i) and
S′′(p′, p′′, i) is used to prune the set of nodes to be considered for the sakeof the
matching. Note that such a pruning is safe since it a-priori excludes only insignifi-
cant pairings, corresponding to pairs of proteins with a toolow sequence similarity.
The maximum weight matching forBG is a setX′ ⊆ X of edges such that for each
nodex ∈ S′(p′, p′′, i) ∪ S′′(p′, p′′, i) there is at most one edge ofX′ incident ontox
andφ(X′) =

∑
(p′h,p

′′
k ,ghk)∈X′ ghk is maximum.

Note thatφ(X′) returns a measure of how much the two involved neighborhoods
match, considering not only neighbor sequence similarities but also the associated
cumulative confidences.

LetΠ j(X′), 1 ≤ j ≤ 2 denote the projections ofX′ on the j − th component of its
triplets. Consider the set of nodesΓ ofN(p′, i)∪N(p′′, i) that remained unmatched2

in X′, that is:
Γ = (N(p′, i) \ Π1(X′)) ∪ (N(p′′, i) \ Π2(X′)).

Clear enough, in evaluating the similarity of the two neighborhoods analyzed at the
generic step of the algorithm, unmatched nodes have to be taken into account by

2 The unmatched nodes are calledgap nodesin [184].
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Algorithm Bi-Grappin
Input:
- a sequence similarity dictionaryS S D
- two graph PPI networksGN1 andGN2

- the stop iterationiMAX

- two real valuesfcut-off and fmatch

- a real valueα
Ouput: a functional similarity dictionaryFS D
1: setFS D= S S D
2: for each triplet 〈p′, p′′, fp〉 in FS D
3: if ( fp ≥ fcut-off)
4: set i = 1
5: while i , iMAX

6: generatethe i-th neighborhoodsN(p′, i) andN(p′′, i) of p′ andp′′, resp.
7: generatethe setsS′(p′, p′′, i) andS′′(p′, p′′, i)
8: computethe maximum weighted matchX′ and the set of unmatched nodesΓ
9: computeµ(N(p′, i),N(p′′, i),X′, Γ, α)
10: refine the value offp as:

fp(i) = δ(i) × µ(N(p′, i),N(p′′, i),X′, Γ, α) + [1 − δ(i)] × fp(i − 1)
11: i = i + 1
12: return the functional similarity dictionaryFS D

Fig. 5.1.The Bi-Grappin algorithm.

suitably decreasing the matching value, as their presence witnesses for differences in
the two neighborhoods. Therefore, the following value is computed:

µ(N(p′, i),N(p′′, i),X′, Γ, α) = (1− α · Λ(N(p′, i),N(p′′, i), Γ))
φ(X′)
Θ(X′)

where:

• Λ(N(p′, i),N(p′′, i), Γ) =
∑

pγ∈Γ Cγ∑
pβ∈N(p′ ,i)∪N(p′′ ,i) Cβ

denotes the proportion of the un-

matched nodes weighted by the cumulative confidencesCγ associated with the
I-shortest paths connectingpγ to the target proteinp′ within the first network
(resp. top′′ within the second one) over the sum of all the coefficientsCβ, simi-
larly associated with nodes inN(p′, i) ∪ N(p′′, i).

• The factorΘ(X′) =
∑

(p′h,p
′′
k ,ghk)∈X′ Chk is used to normalizeφ(X′) in the range

[0,1], as
∑

(p′h,p
′′
k ,ghk)∈X′ Chk denotes the sizes ofX′ weighted byChk.

• α is a coefficient used to tune the weight of unmatched nodes w.r.t. that of
matched ones.

At each stepi, the valuefp of the considered triplet〈p′, p′′, fp〉 in FS D is modi-
fied according to the following formula:

fp(i) = δ(i) × µ(N(p′, i),N(p′′, i),X′, Γ, α) + [1 − δ(i)] × fp(i − 1)
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whereδ(i) represents the generic term of a succession{δ(i)}i≥1 of factors used to
weaken the contribution of nodes belonging to farthest neighborhoods. Thus,{δ(i)}
is monotone decreasing (in our experiments we setδ(i) = 1

1+i ).
We recall that the neighborhood analysis stops at a fixed iteration iMAX . Such a

valueiMAX has to be chosen such that:

• the size of the analyzed neighborhoods does not get anyway comparable with the
one of the entire graphs,

• the analyzed neighborhoods are not “too far” from the corresponding proteins,

since, otherwise, the results computed via the maximum weight matching would not
be actually significant. Therefore we have the following result.

Theorem 5.5.Let GN1 and GN2 be two graph PPI networks of n1 and n2 nodes,
respectively, and let n= max{n1,n2}. Let iMAX be the chosen iteration upper
bound and let niMAX be the number of nodes in theS′(p′, p′′, i) (S′′(p′, p′′, i), resp.)
1 ≤ i ≤ iMAX, of maximum size. Then, in the worst case, the algorithmBi-Grappin
runs in O(max((n3

iMAX
· n2),n3)) time.

Proof. The I-Shortest path between each pair of nodes in each graph PPI network can
be pre-computed by the Floyd-Warshall algorithm inO(n3). Thus, for each of the two
networks, a matrixM of sizen2 can be built where each elementM[h, k] contains
both the sum of the weaknesses and the cumulative confidencesfor the I-Shortest
path connecting the nodeh and the nodek. Hence, building thei-th neighborhood of
a node costsO(n).

The time required to compute the maximum weight matching of abipartite graph
including n nodes isO(n3) [74]. Because of the definition ofiMAX , the number of
nodes in each of the analyzed bipartite graphs isO(niMAX ), thus the maximum weight
matching costsO(n3

iMAX
). Both i-th neighborhood extraction and maximum weight

matching have to be computed for each of then2 triplets inS S D. Thus, the overall
cost of theFS Dconstruction isO(max((n3

iMAX
· n2),n3).

In particular, letn be the number of nodes in the largest of the two analyzed
networks; even if other choices are possible, we recommend to fix iMAX (which is
what we done in our experiments) so that:

1. for each pair of nodesp′ in GN1 andp′′ in GN2, |S
′(p′, p′′, iMAX )| ≤ log2(n) and

|S′′(p′, p′′, iMAX )| ≤ log2(n);
2. there is at least one pair of nodesp′ inGN1 andp′′ inGN2 such that|S′(p′, p′′, iMAX+1)| >

log2(n) or |S′′(p′, p′′, iMAX+1)| > log2(n).

5.2.2 Application Cases

In this section, we illustrate some specific cases that we used to validate the algo-
rithm. We built some ad hoc examples discussed below for thispurpose, where the
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Proteins w c
p′ p′1 0.980 0.950
p′ p′2 0.880 0.810
p′ p′3 0.930 0.380
p′ p′4 0.820 0.750
p′ p′5 0.780 0.920
p′1 p′2 0.530 0.980
p′2 p′3 0.750 0.810
p′2 p′7 0.720 0.830
p′2 p′8 0.530 0.980
p′5 p′6 0.380 0.910
p′6 p′9 0.930 0.890
p′6 p′10 0.750 0.510
p′7 p′8 0.680 0.350
p′8 p′12 0.930 0.510
p′9 p′11 0.850 0.790
p′10 p′11 0.910 0.750
p′12 p′13 0.690 0.830

Proteins w c
p′′ p′′1 0.950 0.920
p′′ p′′2 0.910 0.860
p′′ p′′3 0.850 0.880
p′′ p′′5 0.870 0.580
p′′1 p′′7 0.780 0.690
p′′1 p′′8 0.730 0.510
p′′2 p′′8 0.490 0.990
p′′3 p′′6 0.630 0.850
p′′4 p′′8 0.530 0.910
p′′6 p′′9 0.540 0.770
p′′7 p′′12 0.910 0.970
p′′8 p′′10 0.580 0.780
p′′9 p′′11 0.930 0.880
p′′12 p′′13 0.580 0.850
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(b)

p′-p′′ (f0 = 0.600)

i p′h p′′k fhk
φ(X′ )
Θ(X′ )

∑
pγ∈Γ Cγ fp

1 p′2 p′′2 0.850 0.810 0.92 0.692
p′3 p′′3 0.400
p′1 p′′1 0.900
p′5 p′′5 0.880

2 p′7 p′′7 0.880 0.808 0.775 0.721
p′8 p′′8 0.920
p′6 p′′6 0.860
p′10 p′′10 0.400

3 p′9 p′′9 0.880 0.881 0 0.761
p′12 p′′12 0.860
p′11 p′′11 0.910

4 p′13 p′′13 0.850 0.850 0 0.779

(c)

Fig. 5.2.Example 1: increasing of the initial similarity value.
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involved networks have small size only for ease of exposition. The behavior of Bi-
Grappin does not change in analogous situations when larger networks are consid-
ered, but illustrating examples with thousand of nodes would have been, we argue,
less explanatory.

The first situation we analyzed is that illustrated in Figure5.2, where the starting
similarity between the two target proteinsp′ and p′′ is f0 = 0.600. In particular, in
Figure 5.2 (b) the subnetworks includingp′, p′′ and their neighborhoods, up to the
fourth level ones, are shown, highlighting with different gray tones proteins in differ-
ent neighborhoods and showing edge labels using two tables,one for each network,
in Figure 5.2 (a). Note that, for these synthetic examples, edge labels are often dif-
ferent from 1. Pairings between proteins in corresponding neighborhoods of the two
target proteins, as returned by running Bi-Grappin, are shown in the table reported
in Figure 5.2 (c). There, for eachi-neighborhood ofp′ and p′′, the second column
reports the SSD values corresponding to the triplets〈p′h, p

′′
k , fhk〉, wherep′h and p′′k

are the best matchedi-neighbors. The third and fourth columns contain the average
neighborhood similarity and the sum of the cumulative confidences of the unmatched
nodes of thei-neighborhood ofp′ and p′′, respectively. The fourth column gives a
measure of how much the unmatched nodes influence the final value of similarity.
Finally, the fifth column showsp′-p′′ similarity, as refined at each stagei. Analyz-
ing in detail the intermediate outputs of Bi-Grappin, we can observe that the initial
f0 = 0.600 betweenp′ andp′′ is increased after analyzing the 1- neighborhood, due
to the high similarity of proteins in corresponding neighborhoods paired during the
matching process. Then,fp further increases after the analysis of the 2-, 3-, and 4-
neighborhoods, obtaining a finalfp = 0.799, foriMAX = 4, that is, as expected, larger
than f0.

The second situation we consider is that illustrated in Figure 5.3, where thei-
neighborhood ofp′ andp′′ is explored up toiMAX = 3 and their starting similarity is
f0 = 0.850. From the analysis of Figure 5.3, which is analogous to Figure 5.2 in terms
of table structure, we can observe that the similarity betweenp′ andp′′ decreases af-
ter the analysis of the first and the second neighborhoods, where the average neigh-
borhood similarities are relatively small and there are some unmatched nodes. Then,
fp weakly increases after the analysis of the 3-neighborhood,for which the average
neighborhood similarity increases, while remaining lowerthan f0. This is suppos-
edly correct, since even if the sequence similarity betweenp′ and p′′ is high, their
neighborhoods share a low average similarity and present some unmatched nodes,
indicating low functional similarity.

The third example is illustrated in Figure 5.4, whereiMAX = 2 and f0 = 0.710.
In this case, the similarity betweenp′ andp′′ decreases after the analysis of the first
neighborhoods, where the average neighborhood similarityis lower thanf0. Then, fp

increases after analyzing the 2-neighborhood, where the average neighborhood sim-
ilarity is higher than the previousfp. This example highlights that, as also suggested
elsewhere [40], limiting the neighborhood analysis only tothe first level would not
be sufficient for the sake of obtaining coherent results w.r.t. functional conservation.
This is becausep′ andp′′ are supposedly involved in common biological processes
but there is no evidence of that in their first level neighborhoods.
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Proteins w c
p′ p′1 0.980 0.970
p′ p′2 0.940 0.930
p′ p′4 1.000 0.940
p′ p′3 0.930 0.920
p′ p′13 0.920 0.970
p′1 p′17 0.890 0.200
p′1 p′2 0.880 0.950
p′2 p′14 1.000 0.880
p′3 p′12 0.870 0.930
p′3 p′9 0.940 0.300
p′4 p′5 0.860 0.800
p′4 p′6 1.000 0.800
p′4 p′7 0.920 0.800
p′4 p′8 0.870 0.800
p′5 p′6 0.990 0.970
p′5 p′7 0.850 0.580
p′5 p′8 0.970 0.670
p′6 p′7 0.980 0.690
p′6 p′8 0.880 0.460
p′6 p′10 1.000 0.770
p′6 p′15 0.930 0.770
p′7 p′11 0.960 0.890
p′8 p′15 0.950 0.970
p′8 p′10 0.850 0.970
p′9 p′12 0.890 0.970
p′10 p′11 0.870 0.440
p′10 p′15 0.910 0.380
p′12 p′13 0.790 0.920
p′12 p′16 0.760 0.870
p′13 p′16 1.000 0.850
p′14 p′17 0.970 0.780
p′14 p′18 0.890 0.910
p′17 p′18 0.930 0.710

Proteins w c
p′′ p′′1 0.980 0.940
p′′ p′′2 0.960 0.920
p′′ p′′3 0.840 0.780
p′′ p′′4 0.890 0.960
p′′ p′′13 1.000 0.310
p′′ p′′8 0.990 0.310
p′′1 p′′14 0.970 0.710
p′′2 p′′14 0.950 0.430
p′′3 p′′12 0.870 0.550
p′′4 p′′5 1.000 0.270
p′′4 p′′6 0.840 0.790
p′′4 p′′7 1.000 0.580
p′′5 p′′6 0.930 0.710
p′′5 p′′7 0.970 0.830
p′′5 p′′10 0.880 0.530
p′′5 p′′11 0.820 0.770
p′′6 p′′10 0.760 0.430
p′′7 p′′15 0.950 0.250
p′′7 p′′11 0.930 0.250
p′′8 p′′12 1.000 0.730
p′′11 p′′15 0.950 0.730
p′′12 p′′13 0.780 0.730
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p′-p′′ (f0 = 0.850)

i p′h p′′k fhk
φ(X′ )
Θ(X′ )

∑
pγ∈Γ Cγ fp

1 p′2 p′′2 0.050 0.104 0.310 0.476
p′3 p′′3 0.010
p′1 p′′1 0.100
p′13 p′′13 0.070
p′4 p′′4 0.250

2 p′14 p′′14 0.120 0.376 2.047 0.434
p′12 p′′12 0.150
p′6 p′′6 0.600
p′7 p′′7 0.350
p′5 p′′5 0.550

3 p′10 p′′10 0.600 0.533 0.138 0.457
p′11 p′′11 0.550
p′15 p′′15 0.350

(c)

Fig. 5.3.Example 2: decreasing of the initial similarity value.
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Proteins w c
p′ p′1 1.000 1.000
p′ p′2 0.870 0.990
p′ p′3 0.920 0.850
p′1 p′5 0.990 0.450
p′1 p′6 0.930 0.390
p′1 p′7 0.780 0.790
p′1 p′8 0.880 0.650
p′1 p′9 0.890 0.780
p′1 p′10 0.670 0.780
p′3 p′4 1.000 0.430
p′3 p′11 0.730 0.430
p′5 p′6 0.930 0.710
p′5 p′7 0.970 0.580
p′5 p′8 0.690 0.180
p′6 p′7 0.960 0.570
p′6 p′9 1.000 0.830
p′6 p′10 0.860 0.250
p′9 p′10 0.920 0.330

w c
p′′ p′′1 0.990 0.890
p′′ p′′2 0.870 0.630
p′′ p′′3 1.000 0.980
p′′ p′′4 0.950 0.580
p′′1 p′′5 0.920 0.780
p′′1 p′′6 0.880 0.630
p′′1 p′′7 0.970 0.570
p′′1 p′′10 0.890 0.630
p′′1 p′′11 1.000 0.570
p′′3 p′′8 0.780 0.720
p′′4 p′′8 0.910 0.280
p′′5 p′′6 0.900 0.350
p′′5 p′′7 0.940 0.810
p′′6 p′′7 0.980 0.280
p′′7 p′′10 0.860 0.210
p′′10 p′′11 1.000 0.390
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p′-p′′ (f0 = 0.710)

i p′h p′′k fhk
φ(X′ )
Θ(X′ )

∑
pγ∈Γ Cγ fp

1 p′2 p′′2 0.520 0.698 0.580 0.694
p′3 p′′3 0.535
p′1 p′′1 0.980

2 p′5 p′′5 0.990 0.806 1.146 0.720
p′7 p′′7 0.920
p′10 p′′10 0.880
p′11 p′′11 0.940
p′6 p′′6 0.970
p′8 p′′8 0.350

(b)

Fig. 5.4.Example 3: a final comprehensive example.

To summarize, Example 1 shows that if two proteins have a relatively low f0 but
very similar neighborhoods, then the final computedfp is significantly larger than
f0. This confirms that Bi-Grappin is able to detect proteins with high similar interac-
tors, thus possibly involved in common biological processes. Example 2 highlights
that Bi-Grappin is also able to discern proteins that, even if characterizedby high
sequence similarity, have dissimilar interactors, and then they probably play differ-
ent functional roles in the two organisms. This may be due, for example, to large
changes caused by evolutive processes. Finally, Example 3 points out that the analy-
sis of neighborhoods farther than the first one is necessary,in order to obtain a correct
measure of functional similarity.
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5.3 Related Work

The approaches which are most related to Bi-Grappin are reported in [14, 184, 185]
and have been discussed in detail in Chapter 3.

If we consider the approach by Bandyopadhyay et al. [14], we will show in Sec-
tion 5.4 that, differently from this technique, Bi-Grappin can be exploited not only
to decide about functional orthology when sequence similarity may fail, but also to
study proteins that are not yet well characterized in some species.

Moreover, as for the other two approaches proposed in [184, 185], unlike Bi-
Grappin, quantitative information is not taken into account. Furthermore, the pur-
pose of Bi-Grappin is that of refining protein similarities through neighborhoods ex-
ploration and differs from these two approaches that deal with the problem of global
network alignment. Moreover, the exploitation of bipartite graph weighted matching
as reported in [184] is quite different from that of Bi-Grappin. In fact, in [184] the
bipartite graph weighted matching is only used for the final alignment of the two net-
works, whereas Bi-Grappin uses it step-wise on pairs of neighborhoods as the main
computation task.

Other approaches [97, 182, 71] are more loosely related withBi-Grappin. Simi-
larly to these approaches, Bi-Grappin looks at conservation across PPI networks but,
differently from them, it aims at singling out functional similarities between pairs of
proteins, rather than focusing on the extraction of similarprotein subnetworks.

Finally, Bi-Grappin is able to incorporate both quantitative and reliability infor-
mation in its analysis, that is not simultaneously exploited in [14, 184, 185, 97, 182,
71].

5.4 Experimental Validation

To validate our approach, we tested it on theS. cerevisiae(yeast),D. melanogaster
(fly) and C. elegans(worm) PPI networks. This evaluation was meant to study the
ability of Bi-Grappin in individuating functional orthologs and to compare our re-
sults with those presented in [14, 185]. As will be illustrated in Section 5.4.1, the
experimental results proved the effectiveness of our approach. In a second phase, we
aligned the yeast network with those of the fly and the worm, respectively, and ana-
lyzed the most interesting results obtained by the alignments, as discussed in Section
5.4.2. We downloaded the interaction data for the three considered organisms from
the DIP database [175]3. To date, no explicit information about strength or reliability
of interactions is available in DIP. Thus, in our experiments, we setw = 1 andc = 1
for all edge labels. The functionF (introduced in Definition 5.2) was simply chosen
to be the identity function. Following the recommendation in Section 5.2.1,iMAX was
set to 2 and, finally,α was set to 0.6.

In order to evaluate protein-protein sequence similarities needed to construct
the S S D, we exploited theBlast 2 sequencesalgorithm [202]4 to align protein se-

3 http://dip.doe-mbi. ucla.edu
4 ftp://ftp.ncbi.nlm. nih.gov/blast/executables
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quences, and referred to BLASTE-value parameter to measure the sequence simi-
larity of pairs of proteins. In particular, after aligning two proteinsp′ andp′′ of two
different organisms, we computed the sequence similarity function f0 according to
the following transformation:

f0 =


0, if E ≥ 10−2

2
20

logE , if E < 10−2

whereE is the BLAST E-value on inputp′ andp′′.
Note that the E-value may assume, in general, values greaterthan 1, and the

lower it is, the more similar the protein sequences are. The formula reported above
serves the purpose of both normalizing the sequence similarity function, to obtain a
similarity value in the range [0,1], and obtaining a significant variations when the
E-value reaches very small values (corresponding to very similar sequences).

The algorithm was implemented on a Pentium 4, 3.4 GHz with 4 GB of mem-
ory. The resulting running times were about 23 minutes for yeast and fly networks
comparison, about 4 minutes for yeast and worm ones.

5.4.1 Functional Orthologs Detection

In this section, we discuss a set of experiments showing Bi-Grappin to be effective
in detecting functional orthologs, that are, proteins codified by orthologs (i.e. genes
in different species that originate from a single ancestor gene) performing the same
function in two or more species [171, 14]. As pointed out in [14], the analysis of
protein interactions can help in eliminating ambiguity where sequence similarity is
not sufficient. In particular, the approach presented in [14] provesthat it is possible
to resolve ambiguous functional orthology relationships in the yeast and fly PPI net-
works. In [185], functional orthology detection was investigated for PPI networks of
five different organisms.

We tested our method on two pairs of networks, that are, the yeast and the fly,
and the yeast and the worm ones, respectively. We compared our results with those
reported in [14] for the yeast and the fly correspondences, and also with those in
[185] for both alignments. Table 5.1 shows the results obtained for the yeast and
fly networks. We considered the yeast and fly pairs of proteinsfor which sequence
similarity is not decisive to detect functional orthology as reported in the supplemen-
tal material of [14]5. Within the networks, we chose those protein clusters where
the sequence similarity is sufficiently high, because in such cases the discrimination
may be considered more significant. Furthermore, we discarded those clusters where
some of the component proteins have no interactions, since Bi-Grappin works on
connected networks. Therefore, we focused on the Inparanoid clusters [149], con-
taining ambiguous functional orthologs, which are reported in the first column of Ta-
ble 5.1. The second column contains the similarity values returned by our algorithm
for each pair of proteins (reported in values between 0 and 100, to better appreciate

5 http://www.cellcircuits.org/Bandyopadhyay 2006/
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Yeast/Fly proteins Bi-Grappin ( fp · 100) Bandyopadhyay et al.Singh et al.
ssa2 – Hsc70-4 50.00(bs) 53.22%(bs) out of
ssa1 – Hsc70-4 50.00(bs) 48.10% cluster
Cmd1 – Cam 47.73 35.90% out of
Cmd1 – And 48.18(bs) 44.39%(bs) cluster
Act1 – Act5c 58.32 39.56% out of
Act1 – Act42a 58.93(bs) 39.24% cluster
Act1 – Act87e 51.68 43.53%(bs)

Act1 – CG10067 51.89 38.20%
Act1 – Act88f 55.07 40.17%
kap104 – Trn 55.45(bs) 40.64% out of

kap104 – CG8219 42.43 46.78%(bs) cluster
Hsp82 – Hsp83 57.23(bs) 52.43%(bs) out of
Hsc82 – Hsp83 57.10 46.52% cluster
Myo4 – Didum 54.13(bs) 37.06%(bs) out of
Myo2 – Didum 54.12 36.81% cluster
Gsy1 – CG6904 50.00(bs) 48.97%(bs) out of
Gsy2 – CG6904 50.00(bs) 38.13% cluster
Vph1 – CG18617 50.00(bs) 41.87%(bs) out of
Stv1 – CG18617 50.00(bs) 38.44% cluster

Rpt4 – Rpt4 58.97(bs) 38.02% out of
Rpt4 – CG7257 56.45 44.43%(bs) cluster
Glc7 – Pp1-87b 50.00(bs) 38.61%(bs) out of

Glc7 – Pp1α-96a 50.00(bs) 37.31% cluster
Glc7 – Flw 50.00(bs) 37.30%

Rts1 – Pp2a-b’ 50.00 56.83%(bs) out of
Rts1 – Wdb 55.54(bs) 41.00% cluster
Pph22 – Mts 51.54(bs) 49.68%(bs) out of
Pph21 – Mts 51.41 46.53% cluster

Tdh2 – Gapdh2 50.00 46.09%(bs)
Tdh3 – Gapdh2 57.34(bs) 38.08% (bs)

Aac1 – Sesb 40.26 41.39%
Aac3 – Sesb 41.19(bs) 46.52%(bs) (bs)
Aac1 – Ant2 39.64 41.43%
Aac3 – Ant2 40.93 46.52%(bs) (bs)

Utr1 – CG6145 47.80 63.07%(bs) (bs)
YEL041W – CG6145 42.50 57.20%

Utr1 – CG33156 49.30(bs) 50.11% (bs)
YEL041W – CG33156 49.21 48.60%

YBR241C – Glut1 34.27(bs) 55.18% out of
YBR241C – Sut1 29.92 60.18%(bs) cluster
Pre5 – Prosα6t 39.56 39.74% (bs)
Pre5 – Pros35 49.58(bs) 49.68%(bs)
Cam1 – Ef1γ 36.41 44.02%(bs) out of
Tef4 – Ef1γ 42.35(bs) 39.53% cluster
Clb3 – Cycb 35.21 36.90% out of
Clb5 – Cycb 33.46 36.53% cluster
Clb1 – Cycb 34.02 37.06%
Clb2 – Cycb 35.70(bs) 40.23%(bs)
Clb4 – Cycb 35.04 37.00%
Skp1 – Skpa 45.93(bs) 38.68%(bs)

Skp1 – CG12227 31.61 38.40% (bs)
Skp1 – Skpc 29.34 36.35% (bs)

Rps26a – Rps26 35.57(bs) 40.32% out of
Rps26b – Rps26 35.57(bs) 40.48%(bs) cluster
Cdc33 – Eif-4e 35.14(bs) 39.12% (bs)

Cdc33 – CG8023 33.01 39.65%(bs) (bs)
Sso1 – CG31136 30.15 54.94% (bs)
Sso2 – CG31136 31.00(bs) 56.83%(bs) (bs)
Egd2 – CG4415 18.57 43.99% out of

Egd2 – Nacα 26.85(bs) 50.41%(bs) cluster
Rpp1a – Rplp1 37.23(bs) 50.50%(bs) out of
Rpp1b – Rplp1 32.31 46.71% cluster

Cof1 – Tsr 37.23(bs) 43.74%(bs) out of
Cof1 – CG6873 32.31 42.78% cluster

Table 5.1.Functional orthologs detection inyeastandfly networks.
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the differences with [14]), whereas the third column reports the plausibility values
returned by Bandyopadhyay et al. [14]. The symbol (bs) is used to indicate the best
scoring pair. The last column contains the best scoring pairs according to [185]. In
this respect, note that the purpose of the approach discussed in [185] is the global
alignment of two or more input networks. Thus, it is not always the case that pro-
teins recognized as functional orthologs by [185] corresponds to proteins in the same
Inparanoid cluster. In these cases, a direct comparison between our method and that
of [185] is not possible, and we referred as “out of cluster” the results corresponding
to such cases.

Note that, our analysis agrees in most cases with either of [14] or [185] (20 out
of 26 analyzed cases), and Bi-Grappin is able to discriminate functional orthologs in
21 out of 26 analyzed cases.

Table 5.2 shows the comparison between Bi-Grappin and [185] for the functional
orthologs detection in the yeast and worm networks. Again, the first column shows
the Inparanoid clusters, and the second and third columns illustrate the best scoring
pairs according to our approach and that discussed in [185],respectively. Note that,
in this case, Bi-Grappin always agrees with [185], whenever the two approaches are
comparable but, notably and differently from [185], Bi-Grappin is always successful
in discriminating among different protein pairs.

Yeast/c. elegans BI-GRAPPIN Singh
proteins ( fp · 100) et al.

RPL11A – T22F3.4 41.57(bs) (bs)
RPL11A – F07D10.1 41.53
GSY1 – Y46D5A.31 55.23(bs) out of
GSY2 – Y46D5A.31 50.00 cluster
GSP1 – K01G5.4 51.10(bs) out of
GSP2 – K01G5.4 50.68 cluster
NPL4 – F59e12.5 41.94 (bs)
NPL4 – F59e12.4 50.02(bs) (bs)
BMH1 – M117.2 49.26(bs) (bs)

BMH1 – F52D10.3 42.02
BMH2 – M117.2 47.73 (bs)

BMH2 – F52D10.3 42.07
Aac1 – T27E9.1 40.42 out of
Pet9 – T27E9.1 41.49(bs) cluster
Aac3 – T27E9.1 41.21
Cdc33 – B0348.6 33.42(bs) (bs)
Cdc33 – F53A2.6 32.29 (bs)
Cdc33 – R04A9.4 31.50 (bs)

GSY1 – Y46G5A.31 55.23(bs) out of
GSY2 – Y46G5A.31 50.00 cluster

YPL048W – F17C11.9 36.03(bs) out of
YKL081W – F17C11.9 35.86 cluster

Clb3 – T06E6.2 33.91(bs) out of
Clb4 – T06E6.2 33.14 cluster
Clb1 – T06E6.2 28.78
Sso1 – F56A8.7 30.09 (bs)
Sso2 – F56A8.7 30.69(bs) (bs)

Rpp1a – Y37E3.7 20.68(bs) out of
Rpp1b – Y37E3.7 14.54 cluster

Table 5.2.Functional orthologs detection inyeastandwormnetworks.
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5.4.2 Common Processes Detection

As a further set of experiments, we aligned theS. cerevisiaenetwork with theD.
melanogasterand theC. elegansones, in order to individuate proteins involved in
common biological processes. It is worth pointing out that the latter condition is
different from functional orthology discussed in Section 5.4.1. Indeed, two proteins
are recognized to be functional orthologs if, as already explained, they derive from
orthologs and perform the same function in different organisms. On the other hand,
proteins which are not necessarily functional orthologs might be anyway involved in
common biological processes and it is known that commonalities between involved
sets of interactors witness for this to hold.

We first discuss the pairs of proteins illustrated in Table 5.3, that are those scoring
the highest refined similarity as computed by Bi-Grappin. We identify proteins by
name, providing also theSWISSPROT idwhen the name may be ambiguous. The
first two columns of Table 5.3 show the pairs of proteins corresponding to the first
ten best scores for theS. cerevisiaeandD. melanogasternetworks, pointing out that
Bi-Grappin is able to correctly pair proteins with similar functions. In fact:

• proteins PP2A are phosphatases involved in signal transduction;
• Actin, Actin42A and Actin5c are cytoskeleton constituents;
• alpha- and beta- PDHE1 are components of Pyruvate dehydrogenase complex;
• RPT4 are components of the proteasome;
• alpha Importin and CSE1 are involved in nuclear export
• Hsc70 are homologs to heat shock proteins.

In the third and four columns of Table 5.3, proteins corresponding to the top ten
best scores for theS. cerevisiaeandC. elegansare reported. Likewise, proteins with
homologous functions are properly paired:

• tubulins, which constitute microtubules in both species;
• PMS1 and PMS2, required for DNA mismatch repair;
• phosphotases (PP1) and kinases (PKC, P53739, Q18846), involved in signal

transduction;
• proteins RFC, which are subunits of the replication factor required for the dupli-

cation of the DNA strands.

There are also proteins of unknown function (Q08726, O01426, Q9XW68), which
are all able to bind ATP, and proteins involved in glycogen synthesis, named Gsy1.

A further interesting issue that merits discussion concerns the possibility for our
technique to infer connections of not always well characterized proteins to specific
biological processes, even when involved sequence similarities are not particularly
significant. Figure 5.5 (a) illustrates some examples of protein pairs where the refined
similarity is higher than the sequence similarity, since a significant neighborhood
similarity has been retrieved. It is understood that such anincreasing in similarity is
supposedly correct, since the proteins under consideration are actually biologically
related. Indeed:
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S. cerevisiae D. melanogaster S. cerevisiae C. elegans
Hsc70 Hsc70 ATP BP Q08726 ATP BP O01426

alfa-PDHE1 PDHE1 (Q9W4H6) ATP BP Q08726ATP BP Q9XW68
PP2A (P31383) PP2A beta-Tubulin beta-Tubulin

RPT4 RPT4 PMS1 P14242 PMS2 Q9TVL8
Actin Actin42A alfa-Tubulin beta-Tubulin
CSE1 CSE1 PP1 (P20604) PP1 (Q9XW79)

beta-PDHE1 PDH (Q7K5K3) RFC4 RFC2
Actin Actin5c Kinase P53739 Kinase Q18846

PP2A (P20604) PP2A (P23696) PKC PKC
alfa-Importin alfa-Importin Gsy1 Gsy1

Table 5.3.Best score pairs of proteins in:yeastandfly; yeastandworm.

• Cyclin B1, Cyclin B4, MSA2 and Cyclin D are key switches of cell cycle pro-
gression in yeast and fly, respectively;

• Cnb1 is the calcineurin B, a regulatory calcium binding protein such as the pro-
tein P48593;

• Cofilin,twinfilin and Abp1 are all involved in the regulationof the actin cy-
toskeleton;

• PTP2 and PTP-ER are both tyrosine phosphatases;
• YPT11 and Rab-RP4 are both Rab like proteins regulated by GTPhydrolysis.

Comparing yeast to worm (Figure 5.5 (b)):

• Prr1 and Mak-2 are kinases downstream of the MAPK activation;
• Tap42 is involved in Tor signaling pathway and Q9N4E9 protein is similar to it;
• Cdc37 and its worm homolog are kinase regulators;
• Fcy1 and Cdd2 are both pyrimidine deaminases.

It is important to note that the worm proteosome is less characterized than the yeast
one, and that for many of its gene products, functions (and sometimes names) have
been assigned automatically on the basis of sequence homology.

We believe that our method can be much helpful for either confirming or not
this predictions by neighborhood analysis. This is, for instance, the case for the pro-
tein Q9N4E9 which is similar to Tap42 but no other information are available; for
Q21021, similar to the yeast Ran BP2; and for Q21746, which contains TPR repeats
like the co-chaperone yeast CNS1. The O44175 protein is alsoprobably involved in
cell duplication as the yeast CTF18. Finally, note that the pairs reported in the last
three rows of the table in Figure 5.5 (a) and the last row in Figure 5.5 (b) score a
sequence similarity close to zero.

Overall, this confirms that Bi-Grappin is able to correctly reconstruct useful in-
formation from neighborhoods analysis (whenever available), that is not predictable
from the sole sequence similarity.

However, it is worth pointing out that Bi-Grappin results strictly depend on the
correctness and completeness of interaction data stored indatabases, where false
positive/negative may occur. Unfortunately, as already pointed out,available data
are sometimes characterized by low reliability [9, 47, 193]. The example illustrated
below shows how Bi-Grappin results improve when interaction information become
more accurate. We considered proteins Rnp11 of yeast and of fly, having a sequence
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S. cerevisiae D. melanogaster Sequence similarity Refined similarity
Cyclin B4 Cyclin D 0.424 0.444

YPT11 Rab-Rp4 0.409 0.442
Cyclin B1 Cyclin D 0.350 0.431

Cofilin Cofilin 0.389 0.420
Cnb1 P48593 0.327 0.419
PTP2 PTP-ER (Q9W2F3) 0.293 0.405

Twinfilin Cofilin 0.006 0.314
MSA2 Cyclin D 0.004 0.326
Abp1 Cofilin 0.002 0.251

(a)

S. cerevisiae D. melanogaster Sequence similarity Refined similarity
Tap42 Q9N4E9 0.371 0.439
Prr1 Mak-2 (Q9TZ16) 0.322 0.394

RanBP2 Q21021 0.268 0.359
Cdc37 Cdc37 0.306 0.356
Ctf18 O44175 0.336 0.346
CNS1 Q21746 0.291 0.343
Fcy1 Cdd2 (Q20628) 0.015 0.352

(b)

Fig. 5.5.Some interesting pairings in (a)yeastandfly; (b) yeastandworm.

(a) (b)

Fig. 5.6.Yeastandfly Rnp111-neighborhood: (a) available and (b) enriched.

similarity equal to 1, that is, the maximum possible value, which is decreased by
neighborhood analysis as low as 0.685. Such a decrease is due to the fact that the
yeast Rnp11 has 24 neighbors, whereas the fly one has only 2 neighbors (according
to the data stored in the DIP database). Figure 5.6(a) illustrates such a situation.
The figure has been drawn by using PIVOT [151], andSWISSPROT idshave been
adopted as node labels to distinguish proteins. In particular, the yeast Rnp11 has
SWISSPROT idequal to P43588, whereas that of the fly is Q9V3H2. We tried to
complete the neighborhood of the fly Rnp11 with some missing data, referring to
[77]. The neighborhood shown in Figure 5.6(b) was obtained,where the proteins that
are not present in the DIP database as Rnp11 interactors havebeen added. By running
Bi-Grappin on the so obtained new data network, we obtained a refined similarity
of 0.777, that may be considered more correct than the rather smaller value 0.685
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previously obtained, since both the yeast and fly Rnp11 proteins are indeed part of
the well known proteasome complex performing ubiquitinated proteins degradation
in both organisms.

5.5 Concluding Remarks

In this chapter, we dealt with the problem of searching similarities in PPI networks.
In particular the aim of the proposed approach, called Bi-Grappin, is that of identi-
fying functional similarities and detecting proteins involved in common biological
processes.

The basic idea of Bi-Grappin is that proteins with similar neighborhoods are
probably involved in similar biological processes, inducing a concept of similarity
which is based on both sequence and network information. Indeed, the key step of Bi-
Grappin is the refinement of protein sequence similarity by exploiting neighborhood
similarities (i.e., similarity between interaction profiles). One of the peculiarities of
Bi-Grappin is its capability of taking into account both quantitative (e.g., interaction
strengths) and reliability information. The first is used todistinguish nodes belonging
to different neighborhoods and the second one to weight the contributions of different
interacting proteins in the refinement phase.

Experimental evaluations showed that our technique may be profitably exploited
to detect functional orthologs when ambiguities may derivefrom the sole sequence
similarity analysis, and also to correctly associate proteins involved in the same bi-
ological processes. Thus, we argue that Bi-Grappin can be regarded as a powerful
tool to analyze PPI networks, whose already satisfactory accuracy will be further
improved by the future availability of more complete and precise data about protein
interactions.

In the next part of the thesis, involving Chapter 6 and Chapter 7, the problem of
protein-protein interaction networks alignment will be faced. In particular, in Chapter
6 the state of the art about protein-protein interaction networks alignment will be
outlined.





Part III

Network Alignment





6

Network Alignment Techniques: an Overview

Summary. In this chapter, the state of the art about protein-protein interaction network align-
ment will be outlined. Firstly, in Section 6.1 the definition of the problem is provided. Then,
in Section 6.2, an overview of the techniques proposed to align PPI Networks is reported. In
particular, Section 6.2.1 discusses about local network alignment techniques while 6.2.2 intro-
duces global network alignment techniques. Section 6.3 reports an overall comparison of the
discussed methods and, finally, in Section 6.4 some conclusions are drawn.

6.1 PPI Network Alignment

Network alignmentis the process of globally comparing two or more networks of
the same type belonging to different species in order to identify similarity and dis-
similarity regions. Network alignment is commonly appliedto detect conserved sub-
networks, which are likely to represent common functional modules. As already dis-
cussed in Chapter 2, the input of a network alignment algorithm are two (or, possibly
more) biological networks of different organisms and the output are pairs (or, possi-
ble sets) of subgraphs (or, possibly simpler structures, such as paths), one for each
input network, that have been recognized to be similar. For instance, the identifica-
tion of conserved linear paths may lead to the discovery of signaling pathways, while
conserved clusters of interactions (subgraphs) may correspond to protein complexes.

The word “conserved” means that the two (or more) identified subgraphs contain
proteins performing similar functions and having similar interaction profiles. It is im-
portant to underline that the key word here is “similar” and not “identical”. In fact,
the identified subgraphs often correspond to approximated rather than exact align-
ments. Approximation handling is needed for dealing with possible occurrences of
evolution events modifying a network structure and also allows to suitably take into
account the significant number of both false negative and false positive interactions
found when looking up existing databases. Hence, different types of approximations
should be taken into account:(i) node insertions, corresponding to the addition of
nodes in one of the input networks (see, Figure 6.1(a));(ii) node mismatches, cor-
responding to pairs of nodes characterized by a low similarity, but sharing similar
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(a) (b) (c)
Fig. 6.1.(a) Node insertion; (b) node mismatch; (c) edge insertion.

biological characteristics (e.g., proteins performing the same function) (see, Figure
6.1(b)); and(iii) edge insertions, corresponding to the addition of interactions in one
of the input networks (see, Figure 6.1(c)). Examples of evolution events that may
affect protein interaction networks are gene duplication, that causes the addition of
new nodes (proteins), and link dynamics, corresponding to gain or loss of interac-
tions through mutations in proteins [20].

6.2 An Overview on PPI Network Alignment Techniques

As already pointed out in the previous section, the goal of network alignment ap-
proaches is to identify one or multiple possible mappings between the nodes of the
input networks. Moreover, for each mapping, the set of conserved edges, correspond-
ing to conserved interactions, have to be revealed. Mappings may be partial or com-
plete and this distinction led to the definition of two classes of alignment algorithm:

• Local Network Alignment (LNA): comprises those algorithmsthat do not require
that the identified mapping covers all the nodes in the input networks.

• Global Network Alignment (GNA): involves those algorithmsthat require that
all the nodes of the input networks have to be involved.

LNA algorithms are intended for discovering similar motifsbetween two (or,
possibly, more) networks, which may also lead, sometimes, to some inconsistencies
to characterize discovered motifs. Indeed, a protein of oneinput network may corre-
spond to different proteins of another input network if considering different matched
subgraphs.

In GNA, instead, the goal is to find a single consistent mapping covering all nodes
of the input networks. Thus, by solving the GNA problem some partial suboptimal
mapping can be discarded in the light of a global alignment and all nodes have to be
paired or explicitly marked as unpaired nodes.

In the two subsequent sections, the techniques belonging toLNA and GNA will
be described. In particular, Section 6.2.1 focuses on LNA methods while Section
6.2.2 on GNA approaches.

6.2.1 Local Network Alignment Methods

The goal of LNA techniques is to find multiple, correspondingsimilar regions among
the input networks. In this type of alignment, each partial mapping is independent
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from the others. Several local network alignment approaches have been proposed in
the literature [97, 182, 112, 71, 70, 14]. The aim of this section is to survey on them.

PathBlast and NetworkBlast

PathBlast[97] is a procedure to align two PPI networks by combining interaction
topology and protein sequence similarity, in order to identify conserved interaction
pathways. The method searches for high scoring pathway alignments involving two
paths, one for each network, in which the proteins of the firstpath are paired with
putative homologs occurring in the same order in the second path. To this aim, this
approach builds a network alignment graph where each node represents a pair of ho-
mologous protein (one for each input network) and each link between a pair of nodes
represents a conserved protein interaction. To take into account possible errors in the
available data and the role played by the evolution in network differences,PathBlast
also allows for gaps and mismatches. A gap occurs when two corresponding pairs
of proteins interact directly in one networks, and via a common protein in the other
network (i.e., a node insertion). A mismatch occurs when twocorresponding pairs
of proteins interact via a protein in both networks and theseproteins do not share
relevant sequence similarity.

PathBlasthas been extended intoNetworkBlastin a subsequent work [182].Net-
workBlastis a tool for discovering conserved pathways and complexes across more
than two PPI networks. Such an extension is based on the idea that each node of the
alignment graph identifies a group of homologous proteins, instead of a mere pair
of them. Moreover, this approach is able to search for both linear paths, correspond-
ing to signal transduction pathways, and clusters of interactions, corresponding to
protein complexes.

NetworkBlast, in its turn, has been subsequent extended toNetworkBLAST-M
[92], which allows to identify protein complexes in protein-protein interaction net-
works based on a particular representation of the input networks that is linear in
their size.NetworkBLAST-Mis based on progressive alignments and avoids the ex-
plicit representation of every set of potentially orthologous proteins, thus gaining in
efficiency.

Graemlin

Graemlin [71] is an algorithm for multiple network alignment and is meant to in-
dividuate conserved functional modules across species. This approach introduces a
probabilistic formulation of the topology-matching problem. The method represents
the input networks as weighted graphs in which the weights represent the interaction
probabilities. The alignment produced byGraemlin is made of a set of subgraphs
and a mapping between corresponding proteins.

It is important to note that, according to the algorithm formulation, the groups
of aligned proteins are disjoint and must represent homologous groups that gener-
ally are proteins belonging to the same protein family. Thisobservation leads to the
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definition of the alignment as a collection of protein families having conserved inter-
actions. This way, it is possible to use evolutionary information to score the potential
alignments.

To search for alignment between two input networks,Graemlingenerates a set
of seeds from each input network, where each seed is a set of close proteins, in order
to cut the search space. Then, by enumerating the seeds between the two networks, it
tries to transform each of them, in turn, into an high-scoring alignment. When applied
to multiple networks,Graemlinuses a phylogenetic tree and successively aligns the
closest pairs of networks. After each alignment, it obtainsseveral new networks, each
of which is placed as a parent of the two aligned networks. Themethod iterates this
process until all the networks are at the root of the tree.

Graemlin has been extended with a novel scoring function, an algorithm that
automatically learns the scoring function’s parameters and an algorithm that uses the
scoring function to globally align multiple networks giving birth to a GNA algorithm
calledGraemlin 2.0[70].

Bandyopadhyay

Bandyopadhyay et al. [14] proposed a strategy to identify functionally related pro-
teins supplementing sequence-based comparisons with information on conserved
protein-protein interactions. The idea is that the probability of functional orthology
of a pair of proteins is influenced by the probability of functional orthology of their
neighbor proteins.

This method first aligns two PPI networks using only sequencesimilarities, and
in particular by Inparanoid clusters [149], for pairing theproteins of the two input
networks. The result of the alignment is a graph where each node represents a pair of
proteins and each edge is a conserved interaction. A state, indicating if the pairs of
proteins are likely to identify a true functional orthology, is associated to each node.
In particular, the protein pairs in each Inparanoid clusterhaving the lowest BLAST
E-Value are marked as a true orthology and are saidstrongly conserved. Moreover,
for each node of the alignment graph, a conservation index isdefined. This index is
a measure of the portion of strongly conserved interactionsw.r.t the total number of
interactions involving it.

Starting from the alignment graph, the approach performs probabilistic inference
(based on Gibbs sampling) to identify pairs of proteins, onefrom each species, that
are likely to feature the same function with the aim of resolving ambiguous func-
tional orthologs in the Inparanoid clusters.

The approach has been specifically applied to resolve ambiguous functional or-
thology relationships in theS. cerevisiaeandD. melanogasterPPI networks.

MaWISh

MaWISh [112] is a tool that implements a duplication divergence model to carry out
pair-wise network alignment. In particular, this system merges pairwise interaction
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networks into a single alignment graph, formulates networkalignment as a maximum
weight induced subgraph problem and proposes several heuristics to solve it.

The duplication/divergence model is used to accurately identify and interpret
conservation of interactions, complexes, and modules across species. Indeed, this
model enables the introduction of the concept of match (conservation), mismatch
(emergence or elimination) and duplication, which allow todiscover alignments that
take into account conjectures about the structure of the network in the common an-
cestor. These observations led to the possibility of also discovering indirect interac-
tions.

A similarity score between two protein pairs is defined to take into account
matches, mismatches and duplications. This allows to translate the problem of distin-
guishing orthologs1 and in-paralogs2 from out-paralogs3 into an optimization prob-
lem that accounts for the trade-off between conservation of sequences and interac-
tions.

QSim

QSim[64] is a tool proposed to align two protein-protein interaction networks ob-
tained by an adaptation of an existing algorithm for networksimulation. The pecu-
liarity of this tool is that of performing an asymmetric search in the sense that it
searches for local matches of one network into another. The approach is based on the
same idea exploited by Bi-Grappin (see Chapter 5) according to which two proteins
are similar if both they share a significant sequence similarity and their neighbor-
hoods are similar.

QSimstarts by computing an initial similarity value for each pair of proteins (the
first protein belonging to the first network and the second oneto the second network)
based on the Inparanoid clusters and the BLAST E-values. In particular, a similarity
value of 1 is assigned to protein pairs belonging to the same cluster, a value computed
exploiting the BLAST E-value otherwise. As a second step,QSimrefines the initial
similarities by estimating the similarity of protein neighborhoods.

In more detail,QSimproceeds iteratively, computing a series of refinements, un-
til the estimates converge to a unique global optimum. As compared to existing ap-
proaches, the peculiarity ofQSimis that the alignment is asymmetrical in the sense
that it internally exploits an asymmetric graph matching procedure.

Ali & Deane

Ali and Deane proposed a method [2] to align protein-proteininteraction networks,
which also exploits a protein functional similarity measure with the aim of detecting
functional modules. The authors observed that the limitations of existing approaches

1 homologous proteins of different species
2 proteins that derive from an ancestral duplication and do not form orthologous relationships
3 proteins that derive from a lineage-specific duplication, giving rise to co-orthologous rela-

tionships
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for PPI networks alignment may derive from the mere use of sequence information
to identify protein orhtologous. Thus, their tool is based on a different measure of
protein similarity that exploits also functional information and, in particular, protein
GO annotations related to the biological process sub-ontology (for more detail about
the GO see Chapter 3).

Four scores are assigned to each edge (representing an interaction) to take into
account different contributions. The first two contributions are obtained by two align-
ments of the input networks according to sequence and functional similarity, respec-
tively. The two alignments provide, for each edge, two different alignment scores,
one from the sequence based alignment and the other from the function based align-
ment. The third score is a graph based score computed by mixing a cluster coefficient,
that is a local network measure of how close a node and its neighbors are to being
a clique, and a normalized edge betweenness value, which takes into account, for
each edge, the number of shortest paths between its ends. Finally, the fourth score
encompasses the information obtained from co-expression data. These four scores
are combined to obtain a single edge weight.

Starting from the so built graphs, the algorithm extracts a set of modules that
potentially correspond to functional modules.

Dutkowski & Tiuryn

Dutkowski and Tiuryn proposed an approach [54] for protein-protein network align-
ment, based on the reconstruction of an ancestral PPI network. The alignment algo-
rithm is based on the phylogenetic history of proteins and a stochastic evolutionary
model of interaction emergence, loss and conservation.

The first stage of the approach is the reconstruction of the conserved ancestral PPI
(CAPPI) network. In more detail, it concerns the reconstruction of the hypothetical
sequence of evolutionary events (duplications, deletionsand speciations), by which
the proteins of the input PPI networks evolved from their counterparts in the common
ancestral network.

In the second step, the posterior probabilities of interaction between proteins
at each stage of evolution is determined. The probability ofprotein interaction is
calculated under a proposed stochastic model of network evolution. The topology of
the ancestral network (and each network at every stage of evolution) is determined
by the most probable interactions. Finally, conserved ancestral interactions in the
CAPPI network are identified and they are projected back ontothe input networks to
determine the alignment.

Domain

Domain [78] is a tool for domain-oriented alignment of protein-protein interaction
networks. It follows an alternative direct-edge-alignment paradigm. According to
this paradigm, the peculiarity ofDomainis that it does not explicitly identify homolo-
gous proteins, but directly aligns protein-protein interactions (PPIs) across species by
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decomposing them in terms of their constituent domain-domain interactions (DDIs)
and by looking for conservation of these DDIs.

In more detail,Domainconsists of three stages. The first stage is the construction
of a complete set of alignable pairs of edges (APEs). A pair ofedges is said to be
alignable if there exists a DDI that can plausibly mediate the two associated PPIs. A
DDI is said to plausibly mediate a PPI if the corresponding interaction probability
between the two domains is above some fixed threshold.

The second stage is the building of an APE graph. The APE graphis an undi-
rected weighted graph, where nodes correspond to the identified APEs, and edges
correspond to one of the following four evolutionary relationships: alignment exten-
sion, node duplication, edge indel and edge jump.

Finally, the last step is the exploitation of a heuristic search to identify high-
scoring non-redundant subgraphs from the resultant APE graph.

HopeMap

HopeMap[204] is an iterative connected-components-based algorithm with linear
cost for pairwise network alignment. This tool is focused onthe fast identification of
maximal conserved patterns across species.

HopeMapis based on the observation that the number of true homologous across
species is relatively small compared to the total number of proteins in all species.
Thus,HopeMapstarts by picking up highly homologous groups and, then, it searches
for maximal conserved interaction patterns according to a generic scoring schema.
Finally, it validates the results across multiple known functional annotations. In par-
ticular, the results are evaluated in terms of statistical enrichment of Gene Ontology
(GO) terms and KEGG ortholog groups (KO) within conserved interaction patters.

In more detail,HopeMapconsists in five steps. The first step is a initial stage in
which the data obtained from PPI network databases are preprocessed. In the sec-
ond step,HopeMapuses homologous clustering to identify homologous groups and,
thus, to find highly similar protein sequences across the species under consideration.
In the third step, the tool uses the clustering results to build a network alignment
graph, where nodes represent sets of proteins and edges represent conserved protein-
protein interactions. In the fourth step, the network alignment graph is searched for
the strongly connected-components (clusters) which are ranked by combining ge-
nomic similarity scores, interaction conservation, and functional coherence. At the
end, in the fifth step, the functional coherence of the discovered homologous groups
is evaluated in each species using the Gene Ontology (GO). After the fourth step, the
local alignment procedure can be iteratively applied to improve the cluster scores, if
necessary.

6.2.2 Global Alignment Methods

The aim of global network alignment is to find the best overallalignment between
the input networks. This implies that all the nodes of the input networks must be
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covered by the mapping. Therefore, each node has either to bematched to some
node or explicitly marked as a node insertion.

The GNA problem has received less attention than the LNA one in the last years.
However, some global network alignment approaches have been proposed in the lit-
erature [185, 92, 124]. The aim of this section is to survey onthem.

IsoRank

IsoRank[184] is an algorithm for pairwise global alignment of PPI networks aiming
at finding a correspondence between nodes and edges of the input networks that
maximizes the overall match between the two networks.

IsoRankworks in two stages. In the first stage it associates a score with each pos-
sible match between nodes of the two networks. In the second one, it constructs the
mapping for the global network alignment by extracting mutually-consistent matches
according to a bipartite graph weighted matching performedon the two entire net-
works.

IsoRankhas been extended to an approach for multiple network alignment, called
IsoRank-M[185]. IsoRank-Mis based on the exploitation of an approximate multi-
partite graph weighted matching.IsoRank-Mhas been subsequently extended toIso-
RankN(IsoRank-Nibble) [124].IsoRankNis a global multiple-network alignment
tool, which relies on spectral clustering on the induced graph of pairwise alignment
scores. Being based on spectral methods, IsoRankN is both error tolerant and com-
putationally efficient.

Zaslavskiy et al.

Zaslavskiy et al. proposed an approach [234] to globally align protein-protein inter-
action networks by reformulating the PPI alignment problemas a graph matching
problem.

Two types of problems have been considered in this work. The first problem
considers strict constraints on the sequence similarity ofmatching proteins while
the second one aims at finding an optimal compromise between sequence similarity
and interaction conservation in the alignment. In particular, the authors investigate
the use of modern state-of-the-art exact and approximate methods to solve the graph
matching problem representing the GNA problem.

In more detail, the authors consider two possible formulations: theConstrained
GNA where some constraints (e.g., edge weights) are provided, and theBalanced
GNAwhere the aim is to automatically balance the matching of similar vertices with
the conservation of interactions. Several algorithms to solve the above mentioned
problems are considered and, in particular two algorithms for the first problem and
three algorithms for the second one are discussed.
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6.3 Discussion

In this section, an overall comparison of the techniques that have been presented in
this chapter is provided. In general, network alignment algorithms may be classified
along the two directions:

1. local versus global alignment;
2. pairwise versus multiple networks alignment.

In Table 6.3, the methods discussed in this chapter are compared with respect to
the above mentioned directions, suggesting some observations.

The first observation is that the LNA problem has received more attention in the
literature than the GNA one, indeed 11 of the 16 discussed methods concern LNA
and only 5 have been proposed to solve the GNA. Moreover, the GNA techniques
are more recent than the LNA ones, suggesting that the GNA problem has became
relevant only in the last few years.

As for parwise vs. multiple network alignment techniques, both problem have
received great attention in the literature. However, the pairwise alignment, that is the
most simple one, was the first to be investigated. Then, in thelast few years, with
techniques becoming more efficient, the multiple network alignment problem has
been receiving an increasing attention.

Tool local global pairwise multiple

PathBlast [97] x x
NetworkBlast [182] x x

NetworkBlast-M [92] x x
Graemlin [71] x x

Graemlin 2.0 [70] x x
Bandyopadhyay[14] x x

MaWISh [112] x x
QSim [64] x x

Ali & Deane [2] x x
Dutkowski & Tiuryn [54] x x

Domain [78] x x
HopeMap [204] x x
IsoRank [184] x x

IsoRank-M [185] x x
IsoRankN [124] x x

Zaslavskiy et al.[234] x x

Table 6.1.Overall comparison of the PPI network alignment methods.

Summarizing, alignment of protein-protein interaction networks went through
three major generations. In the first generation, the pairwise alignment, conserved
pathways/complexes between two species were indentified (e.g.,PathBlast [97]).
The second generation concerns the multiple alignment, in which tools such asNet-
workBlast [182], aiming at aligning multiple networks, have been proposed. The
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tools belonging to the two first generations concern LNA, since their algorithms,
searching for conserved regions, start from small local regions and then greedily ex-
pand. The third and last generation of alignment tools regards the GNA problem and
has produced several methods, such as IsoRank [184].

6.4 Concluding Remarks

In this chapter an overview on the techniques proposed to align protein-protein in-
teraction networks has been provided. This investigation has been useful to identify
missing requirements in current PPI network alignment solutions and open paths of
research in this context. This analysis has been also helpful to understand the collo-
cation of the technique proposed in the next chapter in the PPI network alignment
techniques landscape.



7

Sub-Grappin: Extracting Similar Subgraphs across PPI
Networks

Summary. This chapter describes a novel method for discovering similar subgraphs, possibly
representing similar functional modules, across the PPI networks of twodifferent species. In
particular, in Section 7.1, some background on protein-protein interaction network alignment
is provided; in Section 7.2, some basic concepts useful to understand the proposed approach
are defined. In Section 7.3, Bi-Grappin is briefly recalled. Moreover, here Sub-Grappin is de-
scribed in detail along with an example showing how the method works. Section 7.4 provides
a comparison with the main techniques proposed to align biological networksand discussed
in Chapter 6. In Section 7.5, the experimental evaluations carried out to test Sub-Grappin are
described and discussed in detail. Finally, in Section 7.6, some conclusions are drawn.

7.1 Introduction

One of the big challenges in computational biology is to understand how evolution
influences the variation of functional components across species. In this context,
studying how proteins interact inside the cell is necessaryto understand several bi-
ological processes [211], and the analysis and comparison of protein-protein inter-
action networks associated to different organisms is becoming a key issue thereof.
Discovering similar sub-networks in PPI networks of different organisms is useful
both to uncover complex mechanisms at the basis of evolutionary conservations and
to infer the biological meaning of groups of interacting proteins belonging to not yet
well characterized organisms. As a result, a number of approaches have been recently
presented in the literature for local [144, 112, 71, 182, 92]and global [184, 124]
alignment of PPI networks. Since PPI networks are large, computationally demand-
ing methods, such as those based on exact subgraph isomorphism checking [75],
cannot be applied on real interaction networks. Moreover, due to the nature of high-
throughput experimental techniques [89, 114] and computational methods [140, 211]
often exploited to discover new protein interactions, stored information about inter-
actions is not always completely reliable [193], as also testified by several studies
[9, 47]. This may potentially affect any attempt to extract useful information from
them.
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In this chapter a technique, called Sub-Grappin, designed to extract conserved
subgraphs across PPI networks, is presented. Bi-Grappin, presented in Chapter 5,
based on computing the maximum weighted matching of certainbipartite graphs,
is exploited to assess protein similarities according to both protein sequence and
network structure similarities. Conserved subgraph extraction is then carried out by
performing a node collapsing based technique (referred to as Collapse) which is the
main topic of this chapter.

The basic intuition underlying the development accounted for in this chapter is
as follows. Since Bi-Grappin is effective in discovering significant functional sim-
ilarities among single proteins, then it is sensible to devise a technique based on
collapsing subgraphs into nodes, by which the basic Bi-Grappin can be exploited to
discover highly matching subgraphs in PPI networks as well.To summarize, while
Bi-Grappin is used to characterize the functional orthology between pairs of proteins
according to sequence and neighborhoods analysis (see also[184]), Sub-Grappin is
a local search and collapse based technique which, by exploiting Bi-Grappin and
Collapse, extracts similar protein modules in two input PPI networks.

Sub-Grappin works as follows: it takes in input two PPI-networks and additional
information about similarities between their proteins, then it interleaves(i) a call
to Bi-Grappin, by which node similarities are refined, and(ii) a call to Collapse,
for collapsing subsets of nodes according to maximum similarities. This process is
iterated until a fixed threshold on the similarity between pairs of collapsed nodes is
reached, whereby highly matching subgraphs are recognized.

We point out that while exploiting Bi-Grappin as a submodule, Sub-Grappin
has a rather different purpose. In fact, while the former algorithm only highlights
functional similarities between pairs of proteins belonging to different networks, the
technique presented here serves the purpose of extracting similar subgraphs across
PPI-networks.

Differently from other known techniques (e.g., [97]) our methodis able to recog-
nize similar sub-networks of arbitrary structure, and to take into account both protein
sequence similarity and network topology similarity by agreeing, in this respect, with
most of the recent approaches presented in the literature (e.g., [184, 70, 92]). Differ-
ently from previous techniques, however, our method also uses both quantitative and
reliability information about interactions. This is significant since quantitative infor-
mation can be used, for instance, to characterize groups of proteins interacting with
high strength [120, 194]. On the other hand, reliability information is useful to avoid
mistaking mismatches caused by false positive. In fact, interactions data obtained by
different methods (e.g., experimental or high-throughput methods) may be weighted
differently, thus automatically handling problems related to the possible dirtiness of
PPI networks.

We tested Sub-Grappin on the PPI networks ofHomo sapiens(human) andSac-
charomyces cerevisiae(yeast). Experimental results showed its ability in discover-
ing biologically relevant associations. Interaction datahas been collected from the
MINT database [33], that also supplies reliability information about stored data. In
order to assess the quality of computed results, we introduced a new accuracy pa-
rameter based on both Gene Ontology (GO) [7] annotations andprotein sequence
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similarities. Eventually, we compared Sub-Grappin with NetworkBlast-M [92], a re-
cently proposed technique for extracting similar subgraphs from PPI networks. This
comparison showed that Sub-Grappin is actually able to find more biologically mean-
ingful conservations.

The remainder of this chapter is organized as follows. In Section 7.2, we de-
fine some basic concepts useful for understanding Sub-Grappin. In Section 7.3, Bi-
Grappin is briefly recalled. Moreover, Collapse and Sub-Grappin are described in
detail and an example is provided to show how the method works. Section 7.4 pro-
vides a comparison with the main techniques proposed to align biological networks,
which have been discussed in detail in Chapter 6. In Section 7.5, the experimental
evaluations we carried out to test Sub-Grappin are described and discussed in detail.
Finally, in Section 7.6, some conclusions are drawn.

7.2 Preliminaries

As already introduced in Chapter 5, the most common representation for the protein-
protein interaction network of an organism is that of an undirected graph, where
nodes represent proteins and edges denote interactions between proteins. We slightly
generalize this definition, letting a node to represent alsoa set of proteins instead of
a single protein.

Definition 7.1. (Graph PPI Network) A graph (PPI) network is a labeled (undi-
rected) graphGN = 〈P, I〉 where:

• P = {p1, p2, . . . , pn} are the nodes (called alsoobjectsin the following), where
each node denotes a (initially singleton) set of proteins, as better explained be-
low.

• I = {〈{pi , p j}, 〈w, c〉〉} is the set of edges, each denoting that an interaction oc-
curs between (a protein in) pi and (a protein in) pj (i , j, i , j = 1, . . . ,n); the
label 〈w, c〉 is a pair of real numbers in the interval[0,1], called weakness and
confidence, resp.

For completeness, some basic definitions, already introduced in Chapter 5, are
recalled. Edge labels are used to encode both “quantitative” and “reliability” infor-
mation about protein-protein interactions under analysis. Quantitative information,
encoded in the coefficientw, may concern, e.g., protein-protein interaction strength
[120, 194], where larger values ofw denote weaker interactions. The termc of the
label pair weighs to what extent a stored interaction can be reliably taken into ac-
count in the overall analysis [193]: interactions between proteins can be discovered
using several not equally reliable techniques, which is mirrored in thec value. In the
following, for an edgee= 〈{pi , p j}, 〈w, c〉〉, we denotesw andce denotesc.

Now, letπ be a path connecting a nodepi to a nodep j in a graph networkGN. De-
fine thelengthof π aslen(π) =

∑
e∈π we. Given two nodespi andp j , defineshort(i, j)

asshort(i, j) = argmin
{π path connectingpi andp j }

len(π), that is,short(i, j) denotes a shortest path

connectingpi andp j . Given a pathπ, we define its overall confidence as follows.
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Definition 7.2. (Cumulative Confidence C)Given a graph networkGN, theCumula-
tive confidence C(π) of a pathπ in GN is defined asC(π) =

∏
{e|e∈π} ce, for each edge

e in π.

In order to gain the capability to finely distinguish nodes onthe basis of their
distance from a given nodep (e.g., the case where allwe’s in the graph are very
close to zero), we introduce a normalization function parameterF that, given an
integeri ≥ 0, allows to single out nodes “at distancei” from p and to define the
i-neighborhood of a node.

Definition 7.3. Given a graph networkGN, a functionF : N→ N and a node p; we
say that a nodep is at distancei from p ifF (i − 1) < len(short(p, p)) ≤ F (i).

Definition 7.4. (i-th Neighborhood) Given a node p inGN = 〈P, I〉, the i-th neighborhood
of p (i > 0) is the setN(p, i) = {q|q ∈ P,q is at distance i from p, i > 0}.

Note that, while the length of a path determines thei-neighborhood which a node
q belongs to, the associated cumulative confidence may be considered representative
of the probability thatq actually belongs to thati-neighborhood.

Example 7.5.Consider the two networksG′N andG′′N represented in Figure 7.3(b).
Assume thatF (see Definition 7.3) is chosen to be the identity function. The
1-neighborhood of the nodep′1 in G′N is the set{p′2, p

′
5, p
′
6, p
′
8, p
′
9, p
′
14}, while its

2-neighborhood is{p′3, p
′
7, p
′
10, p

′
11, p

′
12}. For instance, the nodep′14 belongs to the

1-neighborhood of the nodep′1 becauselen(short(p′1, p
′
14)) = 0.99< 1.

Given two labels〈w, c〉 and〈w′, c′〉, we say that〈w, c〉 ≺ 〈w′, c′〉 if w < w′ or,
otherwise,w = w′ andc > c′. The notion of≺–minimality in a set of labels is then
obviously defined. Next, we define an operator thatcollapsestwo or more nodes of
a graph network.

Definition 7.6. (Collapsing Operator) LetGN = 〈P, I〉 be a graph network. The col-
lapsing operator col(GN, P̂, p̂), whereP̂ ⊆ P, returns a graph network̂GN obtained
fromGN by:

• substituting the subgraph induced bŷP inGN with the nodêp;
• deleting all edges of the form〈{pi , p j}, 〈w, c〉〉 with pi ∈ P \ P̂ and pj ∈ P̂;
• adding one edge〈{pi , p̂}, 〈ŵ, ĉ〉〉 for each node pi ∈ P \ P̂ such that the set Pi =
{〈{pi , p j}, 〈w, c〉〉, p j ∈ P̂} of deleted edges is not empty, where〈ŵ, ĉ〉 is the≺–
minimum label occurring in Pi .

Givenp̂, dec(p̂) returns the set of nodes{p1, · · · , pn} which were (possibly itera-
tively) collapsed intôp (with dec(p̂) = {p̂} for “singleton” nodesp̂).

Example 7.7.Consider the network̂G′N represented in Figure 7.4(b); this is obtained

asĜ′N = col(G′N, {p
′
1, p
′
5}, p̂

′
1), whereG′N is illustrated in Figure 7.3(b). In particular,

the subgraph induced by{p′1, p
′
5} has been substituted bŷp′1. The following edges

have been deleted:
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〈{p′1, p
′
2}, 〈0.78,0.45〉〉, 〈{p′1, p

′
6}, 〈0.45,0.97〉〉, 〈{p′1, p

′
9}, 〈0.78,1〉〉, 〈{p′1, p

′
8},

〈0.90,0.80〉〉, 〈{p′5, p
′
3}, 〈0.86,0.96〉〉, 〈{p′5, p

′
7}, 〈0.78,0.99〉〉.

The following edges have been added inĜ′N:

〈{p̂′1, p
′
2}, 〈0.78,0.45〉〉, 〈{p̂′1, p

′
6}, 〈0.45,0.97〉〉, 〈{p̂′1, p

′
9}, 〈0.78,1〉〉, 〈{p̂′1, p

′
8},

〈0.90,0.80〉〉, 〈{p̂′1, p
′
3}, 〈0.86,0.96〉〉, 〈{p̂′1, p

′
7}, 〈0.78,0.99〉〉.

Clear enough, the collapsing operator can be applied iteratively several times.
Thus, letGk = 〈P̃,̃I〉 be equal to an iterated application of the collapse operator, start-
ing with a graphGN = 〈P, I〉, that isG0 = GN andGk = col(· · · col(GN, P̂1, p̂1) · · · ), P̂k, p̂k)
for somek. Then, for eachk ≥ 0, nodes inGk are calledobjectsof GN, that are nodes
of GN itself, or subgraphs ofGN reduced to single nodes through (iterated) collaps-
ing.

In the following, we assume that the graph representing the interaction network
of a given organism is connected. This is in general reasonable. Moreover, if this
condition is not met, the technique discussed below can be applied to connected
components of the graph network by their own. Furthermore, suitable dictionaries
will be exploited to store similarities values between pairs of proteins in different
organisms. These dictionaries store triplets of the form〈p′, p′′, f 〉, wherep′ andp′′

are nodes of the two input networksG′N andG′′N, and f is a similarity coefficient,
usually in the real interval [0,1]: the largerf the more similarp′ andp′′. For each of
the considered dictionary, a cut-off value of similarity is always provided such that
only triplets with f greater than the cut-off value will be considered in the analysis.
Such triplets will be referred to assignificantin the following.

7.3 Methods

7.3.1 Bi-Grappin

In this section, we briefly recall the Bi-Grappin algorithm, described in detail in
Chapter 5. Assume aBasic Knowledge Dictionary (BKD)is given in input, which
stores similarity values associated to protein structuralproperties (e.g., sequence sim-
ilarity). The Bi-Grappin algorithm constructs a newRefined Similarities Dictionary
(RSD)where similarities also encode network topology information, since they are
refined via neighborhood analysis.

The Bi-Grappin algorithm starts by initializing theRSD, setting it equal toBKD.
Then, each significant triplet〈p′, p′′, f 〉 in BKD is considered in order to refine the
f value. To this end, thei-neighborhoodsN ′i = N(p′, i) andN ′′i = N(p′′, i) of p′

andp′′, resp., (i > 0) are iteratively generated. At the generic iterationi,N ′i andN ′′i
are compared in order to refine thef value. In particular,f will embed the following
contributions:

• the objective function of a maximum weight matching [74] forthe bipartite
weighted graph consisting of the twoi-neighborhoodsN ′i andN ′′i with weights
ghk = Chk· fhk, wherefhk is the similarity betweenp′h ∈ N

′
i andp′′k ∈ N

′′
i as stored

in the input dictionaryBKD andChk = min{C(short(p′h, p
′)),C(short(p′′k , p

′′))};
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• the proportion of the unmatched nodes in the twoi-neighborhoods w.r.t. matched
ones, suitably weighted by the corresponding cumulative confidences;

• the value off at iterationi − 1.

Note that, while Bi-Grappin proceeds toward farthest neighborhoods, their influ-
ence on changing thef value becomes weaker.

Once thatRSD is filled in and, thus, combined information about protein and
network topology similarity is stored, a subgraph collapsing phase starts, which is
accounted for in the next section.

7.3.2 Collapse

Our collapsing technique takes in input the dictionaryRSD, and a threshold value
f msc, denoting the minimum similarity value to be scored by a pairsuch that it is
considered matchable (see below). The output of Collapse is the dictionaryOS D
storing triplets of the form〈p̂′, p̂′′, f̂out〉, wherep̂′ and p̂′′ are objects ofG′N andG′′N,

respectively (so, they might be derived from collapsing), and f̂out (also denoted in
full as f̂out(p̂′, p̂′′)) is a coefficient in the real interval [0,1] expressing the value of
the similarity between̂p′ and p̂′′. As usual, the larger̂fout the more similar̂p′ and
p̂′′.

The algorithm starts by copying intoOS D all the significant triplets ofRSD,
and ordering the entries of theOS Don the basis of the similarity values. Thus, the
algorithm works according to the steps illustrated below.

1. Each triplet〈p̂′, p̂′′, f̂out〉 in OS Dfor which f̂out is maximum is considered, and
the two setsN(p̂′,1), N(p̂′′,1) from the graph networksG′N andG′′N are ana-
lyzed.

2. If N(p̂′,1) (resp.,N(p̂′′,1)) is equal to the empty-set, or̂fout ≤ f msc, then p̂′

(resp.,p̂′′) will not be further involved in collapsing. Note thatOS Ddoes not
containall the entries ofRSD. Otherwise, two nodeŝph ∈ N(p̂′,1) and p̂k ∈

N(p̂′′,1) are chosen such that̂fout(p̂h, p̂k) · (C′h +C′′k ) is maximum.

3. G′N andG′′N are collapsed by computinĝG′N = col(G′N, {p̂
′, p̂h}, p̂′) and Ĝ′′N =

col(G′′N, {p̂
′′, p̂k}, p̂′′).

4. TheOS Dis updated as follows.
a) The triplet〈p̂′, p̂′′, f̂out〉 is changed by computing a new value forf̂out ac-

cording to the following formula:

f̂out(p̂
′, p̂′′) = [(1 − â · f̂out(p̂

′, p̂′′) + â · f̂out(p̂h, p̂k)]

whereâ is a tuning parameter that we set in two different ways in our ex-
perimental campaign, in order to compare two different answers of the sys-
tem. In particular, as we will explain in detail in Section 7.5, we exploited a
first configuration in which both the cumulative confidences of short(p̂h, p̂′),
short(p̂k, p̂′′) and the cardinality of the subgraphs (in the original graphsG′N
andG′′N) associated to the four involved nodes have been taken into account.
Then, we used a second configuration for the Collapse module, where the
arithmetic means of̂fout(p̂′, p̂′′) and f̂out(p̂h, p̂k) has been considered.
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b) For those entries〈p̂′, p̂s, f̂out〉 where p̂s , p̂′′, p̂k f̂out(p̂′, p̂s) is updated ac-
cording to the following formula:̂fout = b · f̂out(p̂′, p̂s)+ (1− b) · f̂out(p̂h, p̂s)
whereb is a tuning parameter used to weigh the two similarities.

c) The triplets〈p̂t, p̂′′, f̂out〉 where p̂t , p̂′, p̂h are updated, analogously to the
case (b), as:

f̂out = b · f̂out(p̂t, p̂
′′) + (1− b) · f̂out(p̂t, p̂k).

d) All entries where one of̂ph and p̂k occurs are deleted from the dictionary.
5. TheOS Dis ordered according to the (new) values off̂out.
6. If there are any triplets〈p̂′, p̂′′, f̂out〉 such thatf̂out is maximum and̂p′ and p̂′′

may be further collapsed, go to step (i), with inputĜ′N andĜ′′N. Otherwise, stop
and return theOS D.

Thus, the algorithm stops when no further collapsing is possible, that is, one of
the nodes under consideration has empty neighborhood or thef̂out is less or equal to
the threshold valuef msc. Figure 7.1 shows the pseudocode of the algorithm.

Algorithm Collapse
Input:
- an input protein similarity dictionaryRSD
- a fixed threshold valuef msc
- a real valueb
Ouput: an object similarity dictionaryOSD

fill OSDwith significant triplets inRSD
orderOSDaccording tof̂out

for each triplet 〈p̂′, p̂′′, f̂out〉 in OSDfor which f̂out is maximum
and p̂′′ may be further collapsed

generateN(p̂′,1) andN(p̂′′,1)
if (N(p̂′,1),N(p̂′′, 1) , ∅ and f̂out > f msc)

choose two nodeŝph ∈ N(p̂′, 1) andp̂k ∈ N(p̂′′,1)
s.t. f̂out(p̂h, p̂k) · (C′h +C′′k ) is maximum
Ĝ′N = col(G′N , {p̂

′, p̂h}, p̂′)
Ĝ′′N = col(G′N , {p̂

′′, p̂k}, p̂′′)
updateOSDas follows:

f̂out(p̂′, p̂′′) = [(1 − â · f̂out(p̂′, p̂′′) + â · f̂out(p̂h, p̂k)]
eachtriplet 〈p̂′, p̂s, f̂out〉 s.t. p̂s , p̂′′, p̂k is updated according to:

f̂out = b · f̂out(p̂′, p̂s) + (1− b) · f̂out(p̂h, p̂s)
eachtriplet 〈p̂t , p̂′′, f̂out〉 s.t. p̂t , p̂′, p̂h is updated according to:

f̂out = b · f̂out(p̂t , p̂′′) + (1− b) · f̂out(p̂t , p̂k)
delete fromOSDthose entries wherêph and p̂k are involved

sortOSDw.r.t. f̂out
elsep̂′ and p̂′′ cannot be further collapsed

return the dictionaryOSD

Fig. 7.1.The Collapse algorithm.

As for the worst case complexity of the collapsing technique, letm= max{m′,m′′},
wherem′ andm′′ are the number of nodes ofG′N andG′′N, resp., involved in signif-
icant triplets ofRSD, andn is the maximum number of nodes ofG′N andG′′N; then,
in the worst case, the collapse algorithm runs inO(max(m3log(m2),n2) time. In fact,
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the two predominant terms correspond to the filling ofOSDwith triplets inRSD, that
costsO(n2), and ordering of theOSDfor each of the triplets candidate for collapsing
(at mostO(m)), for an overall cost ofO(m3 · log(m2)).

7.3.3 Sub-Grappin

The final procedure Sub-Grappin (SUB-GRAph extraction through PPI Networks)
implementing the proposed approach consists in interleaving calls to the Bi-Grappin
and Collapse procedures, so that the output dictionary produced by one call is taken
in input by the following one. Figure 7.2 illustrates the pseudocode of the final algo-
rithm Sub-Grappin.

Algorithm Sub-Grappin
Input:
- an input protein similarity dictionaryBKD
- a threshold valuef msc
Ouput: an object similarity dictionaryDout

Dout = BKD
iterate

call Bi-Grappin on Dout to obtainDtemp

call Collapse on Dtemp with the thresholdf msc to obtainDout
until no nodes are collapsed by the last Collapse call
return the dictionaryDout

Fig. 7.2.The Sub-Grappin algorithm.

Before proceeding, we note that, in our algorithms, paths other than the shortest
ones linking two nodes are disregarded and, in addition, we chose the cumulative
confidence value to approximate reliability of interactionpaths. In these respects,
we argue that since proteins that interact are linked by an edge in the corresponding
PPI network, the significance of the shortest path subsumes that of other paths po-
tentially linking two nodes. Furthermore, the choice we performed to approximate
path reliability by the Cumulative Confidence seems to work properly, as confirmed
by our experimental results. We leave as future work a more detailed analysis of
other approaches to combining interaction quality factors. The list of acronyms and
abbreviations exploited in the chapter is reported in Table7.1.

A Comprehensive Example

Consider the two networksG′N andG′′N shown in Figure 7.3(b) (the reason why such
networks are significant is explained below). Bi-Grappin is called first. Assume that
theRSDdictionary returned by Bi-Grappin for G′N andG′′N is as reported in Figure
7.3(a). The identity function has been used asF , the threshold values 0.450 and
0.700 have been exploited to single out significant triplets inRS DandOS D, respec-
tively, while f msc has been set equal to 0.450. Thus, at the beginning, the dictionary
OSD is filled in using the first 10 entries ofRSD. During the first call to the col-
lapse algorithm, the triplet ofOSDhaving maximumf̂out is 〈p′1, p

′′
1 ,0.900〉, thus the



7.3 Methods 93

GN A Graph PPI Network
P The set of proteinsp of a Graph PPI Network
I The set of interactionseof a Graph PPI Network
we The weakness of the edgee
ce The confidence of the edgee
π A path connecting a nodepi to a nodepj

len(π) The length of the pathπ computed as
the sum of the weaknesses of the involved edges

short(i, j) A shortest path connecting the nodepi to a nodepj

C(π) The Cumulative Confidence of the pathπ computed as
the product of the confidences of the involved edges

N(p, i) The i-th neighborhood of the nodep
col(GN, P̂, p̂) The collapsing operator building the collapsed node

p̂ from the set of proteinŝP ⊆ P
dec(p̂) The decollapsing operator that returns the set of nodes

{p1, . . . , pn} previously collapsed into ˆp
BKD The Basic Knowledge Dictionary
RSD The Refined Similarities Dictionary
OSD The Object Similarities Dictionary
f̂out A similarity value computed after a Collapse step
f msc The minimum similarity collapsing threshold
sasX The Sub-graph Alignment Score w.r.t. the ontologyx
fx The functional similarity w.r.t. the ontologyx
f0 The basic similarity of nodes
sbs the basic similarity of subgraphs

Table 7.1.List of acronyms and abbreviations

1-neighborhoods ofp′1 and p′′1 are analyzed. Nodesp′5 and p′′5 are considered since

they present the maximum value off̂out(p̂h, p̂k) · (C′h+C′′k ) = 1.568, and the networks

Ĝ′N andĜ′′N represented in Figure 7.4(b) are obtained asĜ′N = col(G′N, {p
′
1, p
′
5}, p̂1

′)

andĜ′′N = col(G′′N, {p
′′
1 , p

′′
5 }, p̂1

′′), respectively. Figure 7.4(a) shows the newOSDob-
tained after the collapsing process. In particular, the similarity betweenp̂1

′ and p̂1
′′

is computed aŝfout(p̂1
′
, p̂1
′′) = [(1 − 0.490)· 0.900+ 0.490· 0.800]= 0.851.

Following the same line of reasoning, during the second and third iterations, also
nodesp′7 and p′6 (p′′7 and p′′6 , resp.) have been englobed in̂p1

′ (p̂1
′′, resp.). During

the fourth iteration, the pair of nodes with maximum̂fout are p′11 and p′′11, and they
havep′13 and p′′13 as neighbors satisfying the condition for collapsing; thus, at this

iterationĜ′N = col(Ĝ′N, {p
′
11, p

′
13}, p̂11

′) andĜ′′N = col(Ĝ′′
N
, {p′′11, p

′′
13}, p̂11

′′).
During the next three iterations, the following subsets of nodes are collapsed:

{p̂′1, p
′
4} and {p̂′′1 , p

′′
4 }, {p̂

′
1, p
′
3} and {p̂′′1 , p

′′
3 }, {p̂

′
1, p
′
2} and {p̂′′1 , p

′′
2 }. In the last iter-

ation our algorithm collapses{p̂′11, p
′
12} and {p̂′′11, p

′′
12}, obtaining a similarity value

f̂out(p̂′11, p̂
′′
11) = 0.710. The networks obtained from this last iteration of Collapse are

shown in Figure 7.5(b). Then, the collapse algorithm stops at this iteration. At the
next iteration of Sub-Grappin, Bi-Grappin is called again and, since the following
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RSD Dictionary
p̂′h p̂′′k f̂out(̂p′h, p̂

′′
k )

p′1 p′′1 0.900
p′2 p′′2 0.650
p′3 p′′3 0.680
p′4 p′′4 0.720
p′5 p′′5 0.800
p′6 p′′6 0.720
p′7 p′′7 0.750
p′11 p′′11 0.800
p′12 p′′12 0.630
p′13 p′′13 0.680
p′14 p′′14 0.350
p′8 p′′17 0.300
p′8 p′′10 0.310

(a)
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Fig. 7.3.(a)RSDfor G′N andG′′N; (b) the two networksG′N andG′′N.

OSD Dictionary
p̂′h p̂′′k f̂out(p̂′h, p̂

′′
k )

p̂′1 p̂′′1 0.851
p′2 p′′2 0.650
p′3 p′′3 0.680
p′4 p′′4 0.720
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Fig. 7.4.Ĝ′N andĜ′′N (a)OSDand (b) after the first iteration of Collapse.

OSD Dictionary
p̂′h p̂′′k f̂out(p̂′h, p̂
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Fig. 7.6.The two pairs of subgraphs extracted by Sub-Grappin.

call to Collapse does not cause any further collapsing of nodes, the result obtained
at this iteration is not modified and is as displayed in Figure7.6.

The example illustrated above shows that our approach is able to grasp evolution-
ary mechanisms shaping the PPI networks. As pinpointed in [20], during evolution,
two main processes may affect protein interaction networks, that are,link attach-
ment/detachmentandgene duplication. Link attachment/detachment corresponds to
adding/deleting an edge involving a particular protein for which a nucleotide substi-
tution occurred in the gene encoding for it, while gene duplication causes the addi-
tion of new nodes in the network. For instance, Figure 7.6(b)shows that the method
is able to suitably cope with link detachments (look at nodesp′′11, p

′′
12 and the edge

missing in between).

7.4 Related Work

In this section a comparison with the methods proposed to align PPI networks and
siscussed in Chapter 6 is provided.

The approaches that are less similar to Sub-Grappin are PATHBLAST [97] and
the method proposed by Bandyopadhyay et al. [14].
The main difference between PATHBLAST [97] and our approach is that our tech-
nique does not limit itself to consider linear paths across the networks, but more
generally considers subgraphs of arbitrary structure.
The approach presented in [14] is similar to Bi-Grappin, although the two methods
are based on different strategies, but differently from Sub-Grappin, it does not extract
connected subgraphs from the input networks.

The approaches that are more similar to Sub-Grappin are those also searching for
subgraphs of general structure repeated in different networks [71, 184, 185, 92, 124].

Besides technical differences characterizing our algorithms with respect to the
methods cited above, differently from our approach, all the techniques recalled above
do not exploit neither reliability nor quantitative information. This two kind of infor-
mation together can make conversely the analysis more accurate, as also confirmed
by our experimental analysis.
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7.5 Results

This section describes the evaluation of Sub-Grappin on PPI networks of well char-
acterized organisms. Datasets have been collected from theMINT database [33] and,
in particular, two PPI networks have been considered. The first one is theSaccha-
romyces cerevisiae(yeast) network, which contains 5,194 nodes and 29,570 interac-
tions. The second one is theHomo sapiens(human) network, which contains 5,868
nodes and 13,237 interactions.

Roughly speaking, our system returned the alignment results in some hours, that
is the time required also by other techniques performing thesame task.

7.5.1 Validation Measures

Recently, some authors [216, 228] have proposed to assess the functional similarity
between two proteins by exploiting Gene Ontology (GO) annotations [7].

At the same time, protein sequence similarity is often used in order to infer pro-
tein homology [207], showing to be a valuable indicator of how much proteins share
similar features and behaviors.

We validated our results by exploiting a combination of boththe GO annotations
and the sequence similarities of pairs of proteins.

Basic similarity of nodes

We consider asbasicsimilarity between two proteins their sequence similarities. We
exploited the Blast 2 sequences algorithm [202], availableat the Blast website1, and
referred to the BLASTE-valueparameter to measure protein sequence similarity. In
particular, after aligning two proteinsp′ andp′′ of two different organisms, we com-
puted the sequence similarity functionf0 according to the following transformation:

f0(p′, p′′) =


0, if E ≥ 10−2

2
20

logE , if E < 10−2

whereE is the BLAST E-value returned forp′ andp′′.
Note that theE-valuecan assume, in general, values greater than 1, and the lower

it is, the more similar the protein sequences are. The formula for f0 reported above
serves the purpose of both normalizing the sequence similarity function (thus that it
varies between 0 and 1) and obtaining significant variationswhen the E-value reaches
very small values (corresponding to very similar sequences).

Given two nodeŝp′ and p̂′′ in two collapsed networks, letp′m and p′′m be two
proteins belonging to the collapsed subgraphs identified byp̂′ and p̂′′, resp., such
that f0(p′m, p

′′
m) is maximum. Then,p′m andp′′m are fixed as representative elements of

p̂′ and p̂′′, and the basic similarity of two nodes is defined as:

f0(p̂′, p̂′′) = f0(p′m, p
′′
m).

1 ftp://ftp.ncbi.nlm.nih.gov/blast/executables
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Basic similarity of subgraphs

Let S̄′ and S̄′′ be two subgraphs, identified by the corresponding collapsednodes
p̂′h and p̂′′k resp., that have been associated during the alignment process. Note that
|dec(p̂h)| = |dec(p̂k)|. TheSub-graph Basic Scoreis defined as:

sbs =

∑
(p̂′,p̂′′) f0(p̂′, p̂′′)

(|S̄′|)
,

where (̂p′, p̂′′) are pairs of nodes in̄S′ and S̄′, resp., that have been associated in
the alignment process. Thus, thesbs denotes a cumulative measure of the sequence
similarities between nodes in two aligned subgraphs.

Functional Similarity of Nodes

The Gene Ontology is a structured and controlled vocabularythat describes proteins
based on their functions in the cell. We encoded the biological meanings of GO terms
into a numeric value by using the notion of Intrinsic Information Content [179] and
computed the similarity between two GO terms by exploiting the P&S similarity
measure [166]. The GO annotations ofyeastandhumanproteins used in our evalu-
ation have been obtained from the GO website2. In particular, 9,646 of the 11,062
proteins belonging to thehumanandyeastnetworks were annotated at least to one
GO term.

The Gene Ontology contains three kinds of terms (belonging to three indepen-
dent ontologies): biological process (bp), molecular function (mf), and cellular com-
ponent (cc). The GO terms of each of these ontologies are related to eachother by
inheritance oris-a relationships and form three directed acyclic graphs (DAGs).

Let x, with x ∈ {bp, mf or cc}, be a sub-ontology of the Gene Ontology and let
Ax(p′) (Ax(p′′), resp.) be the set of annotations of the proteinp′ (p′′, resp.) w.r.t.x.
Let simx(ai

x
,a j
x
) be the similarity between the two GO terms corresponding tothe

annotationai
x
∈ Ax(p′) anda j

x
∈ Ax(p′′) computed by exploiting theP&S similarity

measure.
The functional similarityfx(p′, p′′) between two proteinsp′ and p′′ w.r.t. x is

computed according to the following formula:

fx(p
′, p′′) = max

ai
x
∈Ax(p′),a j

x
∈Ax(p′′)

sim(ai
x
,a j
x
).

Given two nodeŝp′ and p̂′′ in two collapsed networks, letp′m and p′′m be two
proteins belonging to the collapsed subgraphs identified byp̂′ and p̂′′, resp., such
that fX(p′m, p

′′
m) is maximum. Then,p′m andp′′m are set as representative elements of

p̂′ and p̂′′, and the functional similarity of two nodes is defined as:

fX(p̂′, p̂′′) = fX(p′m, p
′′
m).

2 http://www.geneontology.org
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Furthermore, we build three different dictionaries, one for each ontologies, called
DBP, DMF andDCC, respectively, such that eachDX stores triplets〈p̂′, p̂′′, fx〉, where
triplets are considered significant if the correspondingfx is greater than a fixed cut-
off value f X (one cut-off value for each ontology out ofbp, mf andcc).

Functional Similarity of Subgraphs

Let S̄′ and S̄′′ be two subgraphs. ThreeSub-graph Alignment Scores (sas) can be
defined, each of which refers to one of the three GO ontologies(sas-bp for the Bio-
logical Process ontology,sas-mf for the Molecular Function ontology andsas-cc for
the Cellular Component one).

Let DX be one of the three dictionaries described above and letf X the associated
cut-off. The subgraph alignment scoresas-x for S̄′ andS̄′′ is defined as:

sas-x =

∑
(p̂′,p̂′′)∈NX

fx(p̂′, p̂′′) + |N̄X| × f X

(|NX| + |N̄X|) × f X

,

whereNX is the set of significant triplets inDX andN̄ = DX \ NX.

Normalized Sub-graph Alignment Score

In order to obtain our combined alignment score, we normalize thesass w.r.t.sbs as
follows:

nsas-bp = sas-mp × sbs

nsas-mf = sas-mf × sbs

nsas-cc = sas-cc × sbs.

7.5.2 Settings and Configurations

In this section, we describe the different parameter settings and system configurations
adopted in our validation campaign.

Bi-Grappin: Parameter Setting

Let fmax be the maximum similarity value in the dictionaryDout fed as input to Bi-
Grappin during a generic iteration of Sub-Grappin (see Figure 7.2). We exploited the
reliability information on interaction data provided by the MINT database. In partic-
ular, we carried out two sets of experiments by setting the cut-off value associated to
Dout in two different ways.

In the first set of experiments we set theDout cut-off equal to fmax/2 × 0.1, and
referred such cut-off to g = C · f rather than tof (see Section 7.3.1). In particu-
lar, 0.1 was assumed as the default reliability value for those interactions for which
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the MINT database does not provide any reliability information. Hence, a triplet
〈p′, p′′, f 〉 is considered significant, and then involved in the maximum bipartite
graph weighted matching, ifg = C · f is greater than the cut-off.

In the second set of experiments, theDout cut-off has been set equal tofmax/2 and
forced onf , as usual.

Finally, during the execution of Bi-Grappin, we stopped neighborhood analysis
after looking at the 2-neighborhoods.

Collapse: Parameter Setting

Let fmax be the maximum similarity value in the input dictionaryOS D. We fixed
the minimum similarity collapsing threshold valuef msc= 0.8× fmax. Moreover, the
tuning parameterb has been set equal to the value 0.5.

For collapsing of{p̂′, p̂h} and {p̂
′′

, p̂k}, the tuning parameter̂a in the resulting
similarity f̂out(p̂′, p̂′′) (see Section 7.3) has been computed in two different ways,
in order to understand how the system responded to different ways of weighting
collapsed node cardinalities.

Let:

• s′ = |dec(p̂′)|,
• s′′ = |dec(p̂′′)|,
• sh = |dec(p̂h)|,
• sk = |dec(p̂k)|.

In the first Collapse configuration, we set̂a as:

â = a ·
(C′h +C′′k )

2
,

whereCh andCk are the cumulative confidences ofshort(p̂h, p̂′) andshort(p̂k, p̂′′),
resp., before the collapsing, whilea = sh+sk

s′+s′′+sh+sk
is proportional to the cardinality

of the subgraphs (in the original graphsG′N andG′′N) associated to the four involved
nodes.

In the second Collapse configuration, we set̂a = 0.5, thus that the resulting
f̂out(p̂′, p̂′′) has been obtained as the arithmetic means off̂out(p̂′, p̂′′) and f̂out(p̂h, p̂k).

In the following, we refer to thêfout computed according to the first configuration
as f̂ ′out, and to thêfout computed according to the second configuration asf̂ ′′out.

Sub-Grappin: Configurations

Table 7.2 shows the different configurations of Sub-Grappin exploited in the exper-
imental evaluation and obtained by using different parameter values For instance,
Sub-Grappin(1-1) uses the cut-off on g for Bi-Grappin and thef̂ ′out function for Col-
lapse. For each test we performed, Sub-Grappin was stopped after two consecutive
iterations.

Table 7.3 summarizes the number of subgraph pairs discovered by running Sub-
Grappin for each configuration.
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Bi-Grappin
cut-off ong cut-off on f

Collapse f̂ ′out Sub-Grappin(1-1) Sub-Grappin(1-2)
f̂ ′′out Sub-Grappin(2-1) Sub-Grappin(2-2)

Table 7.2.The Sub-Grappin system configurations.

Bi-Grappin
cut-off ong cut-off on f

Collapse f̂ ′out 22 37
f̂ ′′out 17 76

Table 7.3.The total number of discovered subgraph pairs.

Table 7.4 shows the maximum sizes of the conserved subgraphspaired by run-
ning Sub-Grappin for each configuration. We note that Sub-Grappin(2-1) is the con-
figuration returning the lowest number of common subgraphs with smallest sizes.

Bi-Grappin
cut-off ong cut-off on f

Collapse f̂ ′out 42 304
f̂ ′′out 7 27

Table 7.4.The maximum sizes of the conserved subgraphs pairs discovered.

To validate the results obtained by Sub-Grappin we adopted our accuracy mea-
sure encompassing both protein functional information andsequence similarity, as
described above in Section 7.5.1 These measures are exploited to compare Sub-
Grappin to NetworkBlast-M [92]. Also, a biology-oriented discussion of the bio-
logically most significant alignments identified by Sub-Grappin is provided.

7.5.3 Comparison with Existing Methods

Table 7.5 summarizes the comparison between the results obtained by running the
four different configurations of Sub-Grappin and the results ofNetworkBlast-Mon
the same interaction data. The validation measures taken into account for the com-
parison are the means, the maximum and the minimum value ofsag-bp, nsas-mf and
nsas-cc, which are computed on the set of subgraph alignments discovered by the
tools under consideration. The firsts four columns of Table 7.5 correspond to the re-
sults obtained by running Sub-Grappin according to the four configurations defined
above. The last column contains the values of the validationscores computed on the
results returned by NetworkBlast-M. Table 7.5 highlights that Sub-Grappin outper-
forms NetworkBlast-M w.r.t all the considered parameters.The best configuration
of Sub-Grappin is Sub-Grappin(2-1). It is also worth noting that the main differ-
ences obtained on the returned results are related to the mean values on all the three
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measures. In particular, Sub-Grappin(2-1) obtained 1.131, 1.240 and 1.185 as the
means forsag-bp, sag-mf andsag-cc while NetworkBlast-M obtained 0.630, 0.648
and 0.667.

parameter Sub-Grappin Sub-Grappin Sub-Grappin Sub-Grappin NetworkBlast-M
(1-1) (1-2) (2-1) (2-2)

mean of
sag-bp 0.998 0.981 1.131 1.079 0.630
maximum
sag-bp 1.446 1.548 1.446 1.548 1.079
minimum
sag-bp 0.371 0.371 0.371 0.371 0.206

mean of
sag-bp 0.371 0.371 0.371 0.371 0.206
maximum
sag-mf 1.667 1.667 1.667 1.667 1.061
minimum
sag-mf 0.371 0.371 0.371 0.371 0.225

mean of
sag-cc 1.048 0.983 1.185 1.091 0.667
maximum
sag-cc 1.637 1.667 1.637 1.667 1.122
minimum
sag-cc 0.371 0.350 0.371 0.350 0.216

Table 7.5.Comparison between Sub-Grappin and NetworkBlast-M

7.5.4 Discussion

This section presents a discussion about the most relevant alignments found by run-
ning the four different configurations of Sub-Grappin. For each of the discussed sub-
graph alignments, a table reporting the sequence and functional similarities between
corresponding proteins or subgraphs is shown. In particular, proteins are identified
by their SWISS-PROT ids, the sequence similarity is reported in terms of the Blast
E-value, while the functional similarity is expressed in terms offbp, fmf and fcc. The
functional similarity value isna for those pairs such that at least one of the proteins is
not annotated. Moreover, a graphical representations of the alignments (for the sake
of space the last one is not reported though), showing the interaction structures of the
corresponding subgraphs, is provided. In the figures, the nodes filled with the same
color represent aligned proteins. Note that, as resulting from our analysis, our sys-
tem also allows for multiple pairings, that is, nodes in one network to be paired with
different nodes in the other one (see e.g., proteinQ14566 in Table 7.7). Table 7.6 re-
ports the scores computed for the discussed alignments w.r.t the validation measures
sas-bp, nsas-bp, sas-mf, nsas-mf, sas-cc andnsas-cc.
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sas-bp nsas-bp sas-mf nsas-mf sas-cc sasg-cc
First alignment 1.573 1.333 1.667 1.413 1.628 1.380
Second alignment 1.438 1.304 1.510 1.369 1.465 1.329
Third alignment 1.421 0.826 1.482 0.928 1.457 0.911

Table 7.6.Validation scores for the three discussed subgraph alignments

The Proteasome Complex

Table 7.7 illustrates the sequence and functional similarities of the pairs of corre-
sponding nodes (proteins or smaller subgraphs) of the first alignment under consid-
eration, that has been obtained using the configuration Sub-Grappin(1-1). Figure 7.7
reports a graphical representation of the two corresponding subgraphs discovered by
Sub-Grappin. In particular, Figure 7.7(a) represents the subgraph identified on the
PPI network of theyeastand Figure 7.7(b) represents the subgraph identified on the
PPI network of thehuman.

The proteins aligned in the two subgraphs are components of awell preserved
complex known asproteasome, which is a multicatalytic proteinase complex consist-
ing of many different proteins, organized in a catalytic core and two regulative sub-
units. It is involved in the ubiquitin-mediated degradation of proteins, where the co-
valent, regulated attachment of ubiquitin to proteins target them for degradation, thus
controlling the half-life of cell components. Two of the node pairs (P53091/Q14566
andP29496/Q14566) are instead proteins involved in dna replication, that functions
as dna elicase. They are connected to the subgraph since theyare probably regulated
through the cell cycle by proteasome mediated degradation.

yeast
protein

human pro-
tein

E-value fbp fmf fcc

P29496 Q14566 2.0E − 81 1.000 1.000 1.000
P53091 Q14566 0.0 1.000 1.000 1.000
P40302 P25786 1.0E − 68 1.000 1.000 1.000
P23638 P25789 5.0E − 74 1.000 1.000 1.000
P23639 P25787 1.0E − 71 1.000 1.000 1.000
P40303 O14818 6.0E − 79 1.000 1.000 1.000
P21243 P60900 5.0E − 69 1.000 1.000 1.000
P21242 P25788 5.0E − 70 1.000 1.000 1.000

Table 7.7.Protein similarity scores for the proteasome complex

The PP2A Complex

Table 7.8 reports the sequence and functional similaritiesof the pairs of correspond-
ing nodes in the second alignment. Figure 7.8 reports a graphical representation of
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(a) (b)

Fig. 7.7.The alignedproteasomesubgraphs of (a)yeastand (b)human.

the two corresponding subgraphs discovered by Sub-Grappin in the configuration
(2-1). In particular, Figure 7.8(a) represents the subgraph identified on the PPI net-
work ofyeastand Figure 7.8(b) represents the subgraph identified on the PPI network
of human.

Most of the paired proteins are subunits of the serine phosphatasePP2A com-
plex, composed of catalytic, structural and regulatory proteins. This crucial enzyme
is conserved from yeast to human, acting on a broad range of substrates and being
involved in diverse cellular processes. Akt (P31749) is instead a known substrate of
PP2A.

yeast
protein

human pro-
tein

E-value fbp fmf fcc

Q00362 P63151 0.000 0.964 1.000 1.000
P23594 P62714 0.000 0.964 1.000 1.000
P38903 Q7L7W2 0.000 na na na
P31383 P30153 0.000 0.964 0.744 1.000
P23595 P67775 0.000 0.9640 1.000 1.000
P08458 P31749 7.0E − 26 0.791 1.000 0.955
Q12469 Q13043 1.0E − 53 0.791 1.000 0.368

Table 7.8.Protein similarity scores for thePP2A complex

The Cytoskeleton Complex

Table 7.9 reports the sequence and functional similaritiesof the pairs of correspond-
ing nodes in the third alignment, obtained via the configuration Sub-Grappin(1-1).

The two networks are composed by proteins that are componentof the cytoskele-
ton structure (actins, myosins, cofilin etc), or implicatedin cytoskeletal reorganiza-
tion (Rvs167,las17, and their human counterpartsneblandwasp). Many regulative
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(a) (b)

Fig. 7.8.The alignedPP2A subgraphs of (a)yeastand (b)human.

enzymes or enzymatic complexes are also included: phosphatases, kinases and GT-
Pases are all known to regulate cytoskeleton assembly as well as cell morphology
and polarization acting on cytoskeleton subrates.

7.6 Concluding Remarks

In this chapter, we dealt with the problem of discovering common modules in PPI
networks. We presented a technique based on the exploitation of dictionaries storing
similarities between pairs of nodes belonging to different networks. We presented
an algorithm, called Sub-Grappin, based on the iterative exploitation of two different
stages, that are, protein similarities computation and refining, and connected sub-
graphs extraction. The first stage is based on Sub-Grappin (see Chapter 5), while
the second one consists in a node collapsing technique. Experimental evaluation on
the yeast and human PPI networks showed the effectiveness of our approach, also
validated by some suitable accuracy parameters we defined.

In the next part of the thesis, involving Chapter 8 and Chapter 9, the problem of
protein-protein interaction networks querying will be faced. In particular, in Chapter
8 a new PPI network querying algorithm will be described.
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yeast
protein

human pro-
tein

E-value fbp fmf fcc

P39940 Q9HAU4 0.000 0.844 0.964 1.000
P25039 Q96RP9 0.000 0.948 1.000 1.000
P32381 P68133 9.0E − 95 0.806 1.000 0.955
P47029 Q6ZNA4 0.0020 0.452 0.556 0.955
P39743 O76041 1.0E − 5 0.302 0.955 0.000
Q12344 Q15797 0.0030 0.458 0.325 1.000
P52490 P61088 2.0E − 64 0.964 1.000 0.955
P53152 Q13404 7.0E − 34 1.000 0.925 0.964
P10862 Q9Y3C5 0.0050 0.839 1.000 0.908
P60010 P63261 0.000 0.525 1.000 0.955
Q03048 P23528 3.0E − 27 0.955 1.0 1.000
Q04439 Q9UM54 0.000 0.914 1.000 0.955
Q01389 Q99759 1.0E − 56 0.888 1.000 0.000
P36006 O94832 0.000 0.000 1.000 0.897
P06787 P62158 9.0E − 54 0.412 1.000 0.560
P38903 Q7L7W2 0.000 na na na
P31383 P30153 0.000 0.964 0.744 1.000
P23594 P62714 0.000 0.964 1.000 1.000
Q00362 P63151 0.000 0.964 1.000 1.000
P53049 P13569 3.0E − 61 1.000 1.000 0.974
P23595 P67775 0.000 0.964 1.000 1.000
P08458 P31749 7.0E − 26 0.791 1.000 0.955
Q12469 Q13043 1.0E − 53 0.791 1.000 0.368
Q12163 Q96EX0 1.0E − 7 na na na
Q03497 Q13153 0.000 0.739 1.000 0.955
P19073 P63000 3.0E − 82 0.922 1.000 1.000
P39083 Q53QZ3 1.0E − 19 0.816 0.925 1.000
P06780 P60953 3.0E − 55 0.922 1.000 1.000
Q12434 P52565 5.0E − 37 0.867 1.000 0.955
P48562 P42685 2.0E − 19 0.870 1.000 0.610
P08018 O15530 8.0E − 18 0.840 1.000 0.955
P08018 P23443 1.0E − 20 0.870 1.000 0.955
P19524 P46940 4.0E − 5 0.458 1.000 0.696
Q12446 P42768 2.0E − 14 0.910 0.505 0.955
P38822 O60592 2.0E − 8 na na na
P32793 O60593 1.0E − 11 na na na
P32790 P06241 6.0E − 9 0.504 0.542 0.978
Q08581 Q99816 4.0E − 9 0.917 0.634 0.908
P13186 Q13464 6.0E − 25 0.870 1.000 0.712
P53281 Q99962 2.0E − 11 0.554 0.547 0.955

Table 7.9.Protein similarity scores for thecytoskeletoncomplex
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PInG-Q: a Tool for Protein Interaction Graph
Querying

Summary. This chapter describes a novel method for querying protein-protein interaction
networks. In particular, in Section 8.1 some background information onprotein-protein inter-
action network querying is recalled. Section 8.2 illustrates in detail the proposed approach. In
Section 8.3, a brief comparison with existing methods is provided. Note that,a detailed com-
parison among PPI network querying techniques is discussed in the following chapter. Section
8.4 discusses some preliminary experimental results obtained and, finally, in Section 8.5 some
conclusions are drawn.

8.1 Introduction

As already discussed in Chapter 2, one of the main modes to compare biological
networks isnetwork queryingthat has the aim of transferring biological knowledge
within and across species, as also stated by Sharan and Ideker [181]. In fact, PPI
subnetworks may correspond to functional modules made of proteins involved in
the same biological processes. Unfortunately, as subgraphisomorphism checking
is involved, the applicability of exact approaches to solvenetwork querying is rather
limited due to the NP-completeness of the problem [75]. Thus, approaches have been
proposed where the search is constrained to simple structures, such as paths and
trees [97, 165, 183], some heuristic methods have been presented to deal with true
subgraph queries [205], whereas only a few techniques have been proposed based
on exact algorithms, so that their practical applicabilityis limited to queries that are
sparse graphs or containing a small number of nodes [231].

This chapter provides a contribution in this setting, by proposing a new tech-
nique to network querying, called PInG-Q. The main characteristics of PInG-Q are
as follows:(i) it allows to manage arbitrary topology networks,(ii) it allows to take
into account reliability values associated with interactions and(iii) it is capable of
singling out also approximated answers to the query graph, as corresponding to evo-
lution determined variations in the sets of nodes and edges.To the best of our knowl-
edge, this is the first technique that comprises all those three characteristics, as also
pointed out in the following Section 8.3.
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To illustrate, given a target protein-protein interactionnetworkGT and a (typically
much smaller) query networkGQ, we are interested in finding a (possibly approxi-
mated) occurrence ofGQ in GT. To this end, PInG-Q firstfocusesa portion of the
target network being relevant to the query as resulting by aligning the two networks.
To do that, a minimum bipartite graph weighted matching [74]is used, which work
by relying on protein sequence similarities. This initial “global” alignment produces
a preliminary solution, whose topology may, however, significantly disagree with
that of the query network. Therefore, our algorithm “zooms”toward a suitable solu-
tion, that matches with a sufficiently large extent the query topology. This is obtained
by refiningsimilarity values associated with pairs of proteins inGQ andGT taking into
account topology constraints, and then looking for a new alignment of the networks.
The process is iterated, going through a number of alignments, until one is obtained
that satisfies both protein similarities and topological constraints.

Note that repeatedly computing such global alignments provides some guaran-
tees that the resulting solution remains close to the globally optimum match. Fur-
thermore, differently from other network querying techniques, which are typically
based on a oil-stain visiting strategy, our global alignment strategy permits to nat-
urally deal with missing edges (possibly corresponding to information missing in
the database): this case corresponds to producing an alignment of the query network
with a generally unconnected subgraph of the target one.

The rest of the chapter is organized as follows. The next section discusses in
detail the proposed approach. In Section 8.3, PInG-Q is compared with some related
work. Section 8.4 discusses some preliminary experimentalresults and, finally, in
Section 8.5 some conclusions are drawn.

8.2 The Proposed Approach

Before explaining the technique in detail, we give two preliminary definitions useful
to formulate the problem under consideration.

Definition 8.1. (Protein Interaction Graph) AProtein Interaction Graphis a weighted
(undirected) graphG = 〈P, I〉, such that:

• P = {p1, p2, . . . , pn} is the set of nodes, each of which represents a protein;
• I = {〈{pi , p j}, ci, j〉} is the set of weighted edges, each denoting an interaction

between proteins, and the labelci, j is thereliability factor associated to that in-
teraction.

Definition 8.2. (Distance Dictionary) Given a query protein interaction graphGQ and
a target protein interaction graphGT, theDistance Dictionary DDis a set of triplets
〈pQ

i , p
T
j ,di, j〉, wherepQ

i belongs toGQ, pT
j belongs toGT anddi, j is the distance value

associated to the pairpQ

i andpT
j .

Thus, letGQ = 〈PQ, I Q〉 andGT = 〈PT, I T〉 be two protein interaction graphs.
In particular,GQ denotes the query network to search for in the target networkGT.
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Assume that a distance dictionaryDD(0) is available, which stores information about
protein sequence similarities ofGQ andGT (details about the computation ofDD(0)

will be given in Section 8.2.1).
At step 0, the algorithm first alignsGQ andGT by exploiting a minimum bipar-

tite graph weighted matching procedure [74] applied to the bipartite weighted graph
GQT = 〈PQT, I QT〉 such that:

• PQT = PQ ∪ PT,
• I QT = {〈{pQ

i , p
T
j},d

(0)

i, j〉} is the set of weighted edges, where the labeld(0)

i, j is the
distance score betweenpQ

i andpT
j as stored in the distance dictionaryDD(0).

The result of running the weighted matching algorithm onGQT is returned in a
dictionaryDDS(0) ⊂ DD(0) storing the triplets〈pQ

i , p
T
j ,d

(0)

i, j〉 corresponding to computed
node pairings.

Algorithm for protein interaction graph querying

Input:
a basic distance dictionaryDD(0);
a query protein interaction graphGQ = 〈PQ, IQ〉;
a target protein interaction graphGT = 〈PT, I T〉;
real valuesπins, πdel, πegd, πcm, IMAX , α, β, γ;
an integer value MaxIteration
a threshold valueDth;

Ouput:
an approximate occurrenceσ∗ of GQ onGT s.t.Dσ

∗
≤ Dth;

1: h = 0;
2: for k = 1 to MaxIteration do
3: computeσ(h) = 〈GS,DDS(h)+〉 solving minimum bipartite weighted

matching problem onGQT = 〈PQT, IQT〉 s.t.
PQT = PQ ∪ PT,
I = {〈pQ

i , p
T
j ,d

(h)
i, j 〉} if 〈p

Q
i , p

T
j ,d

(h)
i, j 〉 ∈ DD(h);

4: computeDσ(h);
5: if (Dσ(h) > Dth)
6: h = h+ 1;
7: for each 〈pQ

i , p
T
j ,d

(h-1)
i, j 〉 ∈ DDS(h-1)

8: refine DD(h-1) to obtainDD(h) using:
9: d(h)

i, j = d(h-1)
i, j + α· µ

′
ins·dins + β· µ

′
del·ddel + γ· µ

′
egd·degd+

−µ′cm·dcm;
10: else stopandreturn σ∗ = σ(h);
11: return “No solution found.”

Fig. 8.1.The PInG-Q algorithm.
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Before going on with illustrating our algorithm, we need to introduce some fur-
ther concepts. Thus, defineunmatchedT(DDS(0)) the set of nodespT

j ∈ PT such that(i)
pT

j is on the shortest path connecting two nodespT
j1 and pT

j2 in PT, (ii) the triplets
〈pQ

i1, p
T
j1,d

(0)

i1, j1〉 and 〈pQ

i2, p
T
j2,d

(0)

i2, j2〉 belong toDDS(0), and (iii) p Q

i1 and pQ

i2 are di-
rectly linked by an edge inGQ. Moreover, defineunmatchedQ(DDS(0)) the set of nodes
pQ

i ∈ PQ that have not been paired with any node ofGT in DDS(0).
Define theextended dictionary DDS(0)+ = DDS(0)∪DDS(0)

in ∪DDS(0)
del , whereDDS(0)

in =

{〈•, pT
j ,−〉} for pT

j a node inunmatchedT(DDS(0)), andDDS(0)
del = {〈p

Q

i , •,−〉} for pQ

i a
node inunmatchedQ(DDS(0)). LetGS = 〈PS, I S〉 be the subgraph ofGT such thatPS is
the set of nodes ofGT occurring inDDS(0)+, and the set of edgesI S is as follows. An
edge is added inGS between proteinspT

h and pT
k if (i) there is an edge〈pT

h, p
T
k, ch,k〉

in GT, (ii) there is an edge〈pQ

i , p
Q

j , ci, j〉 in GQ, and(iii) the triplets〈pQ

i , p
T
h,d

(0)

i,h〉 and
〈pQ

j , p
T
k,d

(0)

j,k〉 belong toDDS(0). Moreover, for those pairs of proteinspT
h and pT

k for
which conditions(ii) and(iii) above hold, but condition(i) does not, all the edges in
the shortest path connectingpT

h andpT
k in GT are added toGS. The edge labels ofGS

are those ofGT. We refer toσ(0) = 〈GS,DDS(0)+〉 as anapproximate occurrenceof GQ

in GT.
Note thatσ(0) may well encode a suitable matching forGQ in GT or, otherwise,

some relevant topological differences might be there significantly distinguishingGQ

andGS. In order to evaluate the “quality” ofσ(0), we introduce a measure of “distance”
between subgraphs, which is encoded in adistance score Dσ(0) that, for the sake of
the readability, will be detailed in Section 8.2.1. For the moment being, let us just
state that the largerDσ(0) the moreGS differs fromGQ. Thus, we are going to consider
σ(0) an acceptable solution if the correspondingDσ(0) is less than a given fixed quality
thresholdDth.

Hence, we can summarize PInG-Q algorithm. Its next step is toevaluateDσ(0)

for σ(0) and compare it toDth. If Dσ(0) ≤ Dth, thenσ(0) is returned as the output.
Otherwise, a further minimum bipartite graph weighted matching step is performed
as explained below. Letσ(h) = 〈GS,DDS(h)+〉 be the approximate occurrence computed
at the generic steph of the algorithm using the dictionaryDD(h) such thatDσ(h) > Dth.
The next run of the bipartite weighted matching algorithm uses an updated dictionary
DD(h+1) obtained fromDD(h) and DDS(h)+ as explained next. Initially,DD(h+1) is set
equal toDD(h), then some of its entries arerefined, usingDDS(h)+ as follows. Let:

d(h+1)

i, j = d(h)

i, j + α· µins· (
1− d(h)

i, j

Ci · IMAX

) + β· µdel· (1− d(h)

i, j) + γ· µegd· (
1− d(h)

i, j

Ci
)+ (8.1)

−µcm· (
d(h)

i, j

Ci
)

where:

• the triplet〈pQ

i , p
T
j ,d

(h)

i, j〉 belongs toDDS(h),
• the termCi is defined as the sum of the reliability factors of the edges incident

on pQ

i ,
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• IMAX serves the purpose of bounding from above the number of insertions per
single edge that we use in the computation,

• µins is the penalty score for node insertions,µdel that for node deletions,µegd that
for edge deletions,

• µcm is a bonus score that rewards correct matches of edges,
• α, β, γ are real values used to weigh the penalty factorsµins, µdel andµegd so that
α + β + γ = 1.

The rationale of the formula, whose terms will be detailed inthe following Sec-
tion 8.2.1, is that of modifying the original values of protein similarity in such a way
as to take into account information about the topology mismatches of the current
solution. By the virtue of this update, the following run of the bipartite weighted
matching produces a new solutionσ(h+1).

Iterations proceed until to either a good approximate solution σ∗ is found (that
is, Dσ∗ ≤ Dth) or, otherwise, a maximum number of iterations (MaxIteration) is
reached, in which case no solution is returned.

The pseudocode of PInG-Q is shown in Figure 8.1.
The following result holds.

Proposition 8.3.Let n and m be the number of nodes in the target and query net-
works, respectively. In the worst case the algorithm runs inO(MaxIteration · n3)
time.

Proof. The shortest path between each pair of nodes in the target network can be
pre-computed by the Floyd-Warshall algorithm inO(n3). During each iteration, two
steps are performed. The first one is the computation of a potential solution, obtained
by solving a bipartite graph maximum weight matching. The second step is the re-
finement of the similarity values associated with matching nodes. The time required
to compute the maximum weight matching of a bipartite graph made ofn nodes
is O(n3) [74]. Sincen is always larger thanm, the maximum number of nodes in
the bipartite graph isO(n), thus the first step costsO(n3). The refinement step costs
O(m2) because the number of the edges in the query graph is at mostm2 and all the
edges (interactions) have to be explored once to refine the similarities of correspond-
ing nodes. The maximum number of iterations is MaxIteration, thus, overall, the
algorithm runs inO(MaxIteration · n3) time.

8.2.1 Technical details

This section is devoted to illustrate some technical details regarding the parameters
and other concepts we have used above.

Basic distance dictionary

As already pointed out, a preprocessing of the protein interaction graphsGQ andGT

in input is necessary in order to evaluate the sequence similarity of pairs of proteins
(pQ, pT) such thatpQ belongs toGQ and pT belongs toGT. All information obtained
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during the preprocessing stage are stored in the basic distance dictionaryDD(0), that
is computed as follows. TheBlast 2 sequencesalgorithm [202] is executed to align
the amino acid sequences of pairs of proteins fromGQ andGT, respectively. The
resulting BLAST E-values are used to compute a distance score d(0)

i, j for each pair of
nodespQ

i of GQ andpT
j of GT, according to the following formula:

d(0)

i, j =


1, if E ≥ 10−2

1− 2
20

logE , if E < 10−2

whereE is the BLAST E-value as returned by Blast 2 on inputpQ

i andpT
j .

Note that the E-value can assume, in general, values greaterthan 1, and the lower
it is, the more similar the protein sequences are. The formula reported above serves
the purpose of both normalizing the distance score thus thatit varies between 0 and 1
and obtaining more significant variations when the E-value reaches very small values
(corresponding to very similar sequences).

Node insertion/deletion

As pointed out in Section 8.1, given a query graph in input, our approach aims at
searching for itsapproximateoccurrences in the target network. In fact, as discussed
in [20], during the evolution of an organism, some events mayoccur that modify
the associated network structure. Those events aregene duplication, that causes the
addition of new nodes, andlink dynamics, corresponding to gain and loss of interac-
tions through mutations in existing proteins. In its turn, agene duplication may be
associate to bothnode insertionsandnode deletions[51, 183].

Thus, a node insertion event may be associated to the presence of one or more
surplus nodes in the path connecting two nodespT

i andpT
j in the target network, when

they are recognized to correspond to two nodespQ

i and pQ

j in the query network,
connected by just one edge. Figure 8.2(a) clarifies this issue, where the case of a
single node insertion is represented.

To take into account node insertions, we define thenumber of node insertions
between each pair of nodespT

i andpT
j belonging to a connected subgraph ofGT w.r.t.

the query networkGQ as the number of nodes in the shortest path linkingpT
i andpT

j
in GT.

Q
i

pQ
j

pT
i

pT
j

pT
k

p

(a)

Q
i

pQ
k

pQ
j

pT
j

pT
i

p

(b)

Fig. 8.2.(a) Node insertion; (b) node deletion.
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A node deletion event occurs when there is a node in the query graph that does
not correspond to any node in the target network (see Figure 8.2(b)). This is taken
into account using scores, as will be detailed below.

Distance Score

The distance scoreDσ for an approximate occurrenceσ is obtained by evaluating:
(i) protein sequence similarity,(ii) network topology,(iii) number of node insertions,
(iv) number of node deletions and(v) number of edge deletions, where edge deletions
are intended in terms of edges that occur in the query but not in the target graph, and
that are interpreted as lack or incorrectness of information.

Thus, letGQ be the query protein interaction graph,GT be the target protein in-
teraction graph andσ(h) = 〈GS,DDS(h)+〉 (DDS(h)+ = DDS(h) ∪ DDS(h)

in ∪ DDS(h)
del ) be an

approximate occurrence ofGQ on GT. The distance scoreDσ
(h)

associated toσ(h) is
computed according to the following formula:

Dσ
(h)
=

∑

〈pQ
i ,p

T
j ,d

(h)
i, j 〉∈DDS(h)

d(h)

i, j + µ
S

ins + µ
S

del + µ
S

egd− µ
S
cm (8.2)

whered(h)

i, j is the distance score of nodespQ

i and pT
j as stored inDDS(h) (if such a

triplet exists),µS

ins is the penalty score for node insertions,µS

del is the penalty score
associated to node deletions,µS

egd is the penalty score associated to edge deletions
andµS

cm is a bonus score to reward presumably correct matches. In particular, the
three penalty scores are computed as follows:

• Let E = {〈{pQ

i , p
Q

l }, ci,l〉} be the set of edges inGQ, each of which corresponding
to a pair of triplets〈pQ

i , p
T
j ,d

(h)

i, j〉 and〈pQ

l , p
T
k,d

(h)

l,k〉 in DDS(h).
Then:

µS

ins =
∑

〈{pQ
i ,p

Q
l },ci,l 〉∈E

πins · nins · ci,l

whereπins is a fixed given penalty associated to a single node insertionandnins

is the number of nodes on the shortest path betweenpT
j andpT

k (if any).
• µS

del = |DDS(h)
del | · πdel whereπdel is the penalty associated to a single node deletion.

• Let F = {〈{pQ

i , p
Q

l }, ci,l〉} be the set of edges inGQ, each of which corresponding
to a pair of triplets〈pQ

i , p
T
j ,d

(h)

i, j〉 and〈pQ

l , p
T
k,d

(h)

l,k〉 in DDS(h) such thatpT
j andpT

k are
non connected inGT. Then:

µS

egd=
∑

〈{pQ
i ,p

Q
l },ci,l 〉∈F

πegd · ci,l

whereπegd is a fixed given penalty associated to a single edge deletion w.r.t.GQ.

The bonus scoreµS
cm, is computed as follows:
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• Let G = {〈{pQ

i , p
Q

l }, ci,h〉} be the set of edges inGQ, each of which corresponds
to a pair of triplets〈pQ

i , p
T
j ,d

(h)

i, j〉 and 〈pQ

l , p
T
k,d

(h)

l,k〉 in DDS(h), such that the edge
〈{pT

j , p
T
k}, c j,k〉 is inGT. Then:

µS
cm =

∑

〈{pQ
i ,p

Q
l },ci,l 〉∈G

πcm ·
ci,l + c j,k

2

whereπcm is a fixed given score associated to the correct match betweenthe two
edges inGQ andGT.

Note that, in the formulae above, reliability factorscil are exploited in order to
weigh penalty and bonus scores between proteins by the probabilities that the corre-
sponding interactions actually hold.

Refined similarity scores

Let GQ be the query protein interaction graph,GT be the target protein interaction
graph,DD(h) be a distance dictionary involving all the pairs of proteinsof GQ and
GT. Furthermore, letσ(h) = 〈GS,DDS(h)+〉, s.t. DDS(h)+ = DDS(h) ∪ DDS(h)

in ∪ DDS(h)
del

andDDS(h) ⊂ DD(h), be an approximate occurrence ofGQ in GT. The penalty scores
µins, µdel andµegd, necessary to compute the refined similarities according toformula
(8.1), are evaluated as follows:

• Let Ei = {〈{p
Q

i , p
Q

l }, ci,l〉} be the set of edges incident ontopQ

i in GQ, each of which
corresponding to a pair of triplets〈pQ

i , p
T
j ,d

(h)

i, j〉 and〈pQ

l , p
T
k,d

(h)

l,k〉 in DDS(h). Then:

µins =
∑

〈{pQ
i ,p

Q
l },ci,l 〉∈Ei

min{nins, IMAX } · ci,l .

whereIMAX , nins andIMAX are as explained in the previous section.
• Let DDdel,i be a subset ofDDS(h)+ that contains the triplets〈pQ

l , •,−〉 such that the
nodespQ

l are connected by an edge topQ

i in GQ, andnadj,i be the number of nodes
directly linked by an edge topQ

i in GQ. Then:

µdel =
|DDdel,i |

nadj,i

• Let Fi = {〈{p
Q

i , p
Q

l }, ci,l〉} be the set of edges incident onpQ

i in GQ, each corre-
sponding to the triplets〈pQ

i , p
T
j ,d

(h)

i, j〉 and 〈pQ

l , p
T
k,d

(h)

l,k〉 in DDS(h) such that there
does not exist any path inGT connectingpT

j andpT
k. Then:

µegd=
∑

〈{pQ
i ,p

Q
l },ci,l 〉∈Fi

ci,l

The bonus scoreµcm of formula (8.1) is computed as follows:
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• letGi = {〈{p
Q

i , p
Q

l }, ci,l〉} be the set of edges incident onpQ

i inGQ, each correspond-
ing to the triplets〈pQ

i , p
T
j ,d

(h)

i, j〉 and〈pQ

l , p
T
k,d

(h)

l,k〉 in DDS(h) such that there exists the
edge〈{pT

j , p
T
k}, c j,k〉 in GT. Then:

µcm =
∑

〈{pQ
i ,p

Q
l },ci,l 〉∈G

ci,l + c j,k

2

8.3 Related Work

Network querying techniques, briefly surveyed below, as applied to biological net-
works, can be divided in two main categories: those searching for efficient solutions
under particular topological constraints imposed on the query graph, e.g., the query
is required to be a path, and those more general that, like PInG-Q, manage arbitrary
query topologies.

Specific query topologies

Kelley et al. developedPathBLAST[97], a procedure to align two PPI networks in
order to identify conserved interaction pathways and complexes. It searches for high
scoring alignments involving two paths, one for each network, in which proteins of
the first path are paired with putative homologs occurring inthe same order in the
second path.

The algorithmMetaPathwayHunter, presented in [165] solves the problem of
querying metabolic networks, where the queries are multi-source trees. MetaPath-
wayHunter searches the networks for approximated matching, allowing node inser-
tions (limited to one node), whereas deletions are not allowed.

The references [183] and [51] illustrate two techniques fornetwork querying,
calledQPathandQNet. In particular, QPath queries a PPI network by a query path-
way consisting of a linear chain of interacting proteins. The algorithm works sim-
ilarly to sequence alignment, so that proteins in analogouspositions have similar
sequences. Interactions reliability scores of PPI networks are considered, and inser-
tions and deletions are allowed. QNet is an extension of QPath in which queries can
take the form of trees or graphs with limited tree-width.

As already stated, differently from the approaches surveyed above, our technique
deals with arbitrary topologies in both the query and the target networks. In that, it is
more closely related to the approaches described below.

General query topologies

The systemGenoLinkpresented in [53] is able to integrate data from different
sources (e.g., databases of proteins, genes, organisms, chromosomes) and query the
resulting data graph by graph patterns with constraints attached to both vertices and
edges. A query result is the set of all subgraphs of the targetgraph that are similar to
the query pattern and satisfy the imposed constraints. The goals of [53] are clearly



118 8 PInG-Q: a Tool for Protein Interaction Graph Querying

different from our own, since the aim here is that of comparing heterogeneous graphs
via constrained network querying.

Ferro et al. in [67] presented a tecnique calledNetMatch, a Cytoscape plug-in
for network querying allowing for approximated querying. Aquery in NetMatch is a
graph in which some nodes are specified and others are wildcards (which can match
an unspecified number of elements). Although dealing, as we do, with approximate
network querying, the technique in [67] mainly focuses on topological similarity,
whereas our results are deeply influenced by information about node similaritiesas
well. We argue that this information is essential for the analysis of PPI networks.

In [205], a tool for querying large graph datasets, calledSAGA, is described. The
tool allows for searching for all the subgraphs contained ina graph data-set that are
similar to a query graph. The authors define a score of similarity between subgraphs
based on the structural distances of the match, the number ofmismatches and the
number of gaps. An index-based heuristic is exploited for the purposes of query
processing. SAGA has been successfully exploited to query biological pathways and
literature data-sets, although it shows some limitations in dealing with dense and
large query graphs.

In [231] the problems of path matching and graph matching areconsidered. An
exact algorithm is presented to search for subgraphs of arbitrary structure in a large
graph, grouping related vertices in the target network for each vertex in the query.
Being an exact matcher, it is only practical for queries having a number of nodes as
large as 20 in the query network, though its performances improve if the query is
a sparse graph. However, for the same reason of being an exactmatcher, this is the
reference technique we chose in our comparative experiments (see, below, Section
8.4.1).

The techniques presented in [53, 67, 205, 231], are closely related to PInG-Q,
but with the following differences: (i) none of them exploits edge labels to manage
interaction reliability factors which, considered the diverse trustability of methods
used to establish the various protein interactions to hold,are practically very relevant
to correctly single out, in the target network, highly-probable matchers of the query
network; (ii ) our technique does not imply any constraint on the number ofinvolved
nodes or the density of the query subgraph; (iii ) as far as we know, our technique is
the first one naturally dealing withedge deletions. This way possible incompleteness
in the available information about interactions is dealt with.

8.4 Experimental Results

In this section, we illustrate some preliminary results we obtained by running our
algorithm on the four PPI networks ofS. cerevisiae, D. melanogaster, C. elegans
andH. sapiens. In particular, as described in detail in Sections 8.4.1, weexploited
S. cerevisiae, D. melanogasterandC. elegansnetworks to compare our results with
those presented in [231] for the same organisms. Section 8.4.2 illustrates how theS.
cerevisiaeandH. sapiensnetworks have been queried to further assess the ability of
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our technique in recognizing conservations across species. To this end, we consid-
ered some well characterized groups of bothyeastandhumanproteins for which the
biological processes they are involved in are well known.

In the experiments, we fix the parameter values as follows: Factorsπins, πdel, πegd

andπcm have been all set to 1,α has been set to 0.3, β to 0.1, γ to 0.6 andIMAX to 5.
Note that, within the preliminary test experiments discussed below, we did not

perform a fine tuning on such parameters, which is deferred tofurther experimental
work. The algorithm was implemented on a 3.4 GHz PentiumIV with 4 GB RAM.
The resulting running times of the experiments vary from a minimum of 53 seconds
to a maximum of about 17 minutes.

8.4.1 QueryingD. melanogaster and C. elegans by S. cerevisiae

We compared our method with the one presented in [231]. In particular, we focused
first on a path of theS. cerevisiaenetwork to query theC. elegansnetwork. This path,
denoted by “Query” in Figure 8.3(b), corresponds to the longer mating-pheromone
response pathway from the protein interaction network ofS. cerevisiae[79]. The
same figure also shows the output returned by the approach of Yang and Sze [231],
and the outputs returned by our algorithm when run on “whole”the C. elegans
network and on a “connected” part of it, resp. In the figures, graph nodes are labeled
by protein names, dashed edges correspond to node insertions, whereas cross edges
represent edge deletions. In particular, we obtained at most two node insertions per
edge on this example, whereas Yang and Sze fixed a priori the maximum number
of node insertions per edge to be equal to one. Note that PInG-Q does not require
any such a limitation about the maximum number of node insertions to be fixed. The
table in Figure 8.3(a) reports the E-values corresponding to the solutions returned by
the considered approaches.

Looking at the results shown in Figure 8.3(b), the first important observation
is that our algorithm is able to associate the MAP kinasesFus3pof S. cerevisiae
with mpk-1of C. elegans. In this case, the associated E-value is equals zero, which
agrees with the results reported in [231]. The results of both our executions agree
with Yang and Sze also for theS. cerevisiaeand C. elegansproteinsSte7p/Mig-
15 andMat1ap/K09B11.9. Furthermore, the result on the connected subnetwork of
C. elegansis the same of Yang and Sze also forSte4p/F08G12.2, Ste5p/ttx-1 and
Dig1p/Y42H9AR.1. On the contrary, both executions of our algorithm returneda dif-
ferent result for the proteinSte11pof S. cerevisiaethat, in [231], is paired again with
Mig-15 (which was paired withSte7pas well). This incongruence might be caused
for Yang and Sze admit multiple pairings of proteins; on the contrary, our approach
search for one-to-one pairings. In any case, the result our approach returns is signifi-
cant from the biological standpoint, since proteinsSte11pandF31E3.2both belong
to putative serine/threonine-protein kinase family (as well asSte7pandMig-15). Re-
sults returned in both executions of our algorithm are slightly better, in terms of
E-values, than those reported in [231] for the two proteinsSte12pandGpa1p. Fur-
thermore, we are able to pair also proteinSte18p, that Yang and Sze do not associate
to any protein ofC. elegans.
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pQ
i E-value E-value E-value

Yang and SzeWhole net subnet
Mat1ap 3 · 10−3 3 · 10−3 3 · 10−3

Ste12p 1 · 10−3 2 · 10−4 2 · 10−4

Dig1p 2 · 10−5 3 · 10−4 2 · 10−5

Fus3p 0 0 0
Ste7p 7 · 10−34 7 · 10−34 7 · 10−34

Ste5p 5 · 10−3/ 2 · 10−3 5 · 10−3

6 · 10−3

Ste11p 2 · 10−35 2 · 10−17 3 · 10−14

Gpa1p 1 · 10−2/− 4 · 10−3 2 · 10−3

Ste4p 2 · 10−14/ 7 · 10−10 4 · 10−15

4 · 10−15

Ste18p − 1 · 10−3 2 · 10−3

(a)

Query

mpk−1

Mig−15

ttx−1

F31E3.2

Whole Connected Yang and Sze

K04D7.1

hsp−1

Mat1ap K09B11.9

Dig1p

C16B8.3

ER−60

Ste7p

F14F3.1

F46H5.7

ZYG−8

Ste12p

Y42H9AR.1

K09B11.9

Y42H9AR.1

gei−4

F08G12.2

K09H11.1

pbs−5

C06A5.9

Mig−15

Gpa1p

Ste11p

Ste5p

Fus3p

F08G12.2

Mig−15

ttx−1 dpy−14

Mig−15

mpk−1

Ste18p

Ste4p

mpk−1

C16B8.3

K09B11.9

F13H8.2

(b)

Fig. 8.3.Comparison on the longermating-pheromone responsepathway.

In the second example, the query is a yeast graph with generaltopology rep-
resenting a related functional module from Spirin and Mirny[192]. Figure 8.4(a)
illustrates the yeast query, Figure 8.4(b) shows a table containing the E-values cor-
responding to the results returned by our algorithm (applied on connected sub-
networks) and by Yang and Sze, resp., when applied on bothC. elegansand D.
melanogaster. Figure 8.4(c) and Figure 8.4(d) illustrate the corresponding result sub-
graphs. In this experiment, the bait used to queryC. elegansandD. melanogasternet-
works is a well characterized yeast signalling cascade. This yeast pathway controls
peculiar yeast processes that are pheromone response (viaFus3p) and pseudohyphal
invasive groth pathway (viaKss1p) through a so-calledMAPK pathway (Mitoge ac-
tivated protein kinase). TheMAPK signalling cascades are likely to be found in all
eukaryotic organism although the substrates phosphorylated by these kinases and
the final response can be different in different organisms. Thus, in response to the
query network, our technique retrives twoC. elegansandD. melanogaster MAPK
cascades (Figure 8.4(c)-left an Figure 8.4(d)-left), as suggested by the presence of
severalMAPK (i.e. proteinsmkk−4, pmk−1,mpk−1, jnk−1 in C. elegans, and pro-
teinsERKA, CG7717 inD. melanogaster, resp.) and other S/T kinases (i.e. proteins
mig− 15,gsk− 3 in C. elegansandCG7001,cdc2c, CG17161 inD. melanogaster,
resp.). This example illustrates well a peculiarity of our approach, that is, trying to
find a good compromise between node similarity and network topology. In fact, the
solution of [231] presents, in some cases, lower E-values than the correspondent ones
in our solution, but our algorithm is able to pair all the proteins of the query network,
which the technique in [231] does not, where three node deletions inC. elegansand
four ones inD. melanogaster, respectively, can be observed.
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Hsc82p

Bud6p

Dig1p Dig2p

Mpt5p

Kss1pFus3p

Mkk2p

Sph1p

Mkk1p

Ste7p

Ste5p

Ste11p

Spa2p

(a) Yeast query

C. Elegans D. Melanogaster
pQ

i E-val E-val E-val E-val
Our Alg. Yang and SzeOur Alg. Yang and Sze

Hsc82p 1 · 10−3 0 2 · 10−3 0
Ste11p 4 · 10−20 2 · 10−35 2 · 10−18 -
Bud6p 1 · 10−3 - 3 · 10−3 5 · 10−4

Ste5p 8 · 10−4 − 6 · 10−3 6 · 10−3

Spa2p 1 · 10−4 3 · 10−5 7 · 10−4 6 · 10−3

Ste7p 7 · 10−34 7 · 10−34 6 · 10−21 6 · 10−21

Sph1p 4 · 10−3 - 1 · 10−3 -
Mkk1 8 · 10−19 2 · 10−44 7 · 10−25 5 · 10−49

Mkk2 8 · 10−24 1 · 10−43 3 · 10−31 4 · 10−48

Fus3p 6 · 10−61 0 0 0
Kss1p 4 · 10−97 4 · 10−97 3 · 10−19 7 · 10−94

Dig1p 2 · 10−5 2 · 10−5 8 · 10−4 −

Dig2p 1 · 10−3 2 · 10−5 4 · 10−4 1 · 10−3

Mpt5p 8 · 10−3 8 · 10−3 3 · 10−3 −

(b)

Our Algorithm Yang and Sze Algorithm

tag−303

pmk−1

gsk−3

F36A2.10

T12G3.1F54A3.6

B0414.8
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(c) C. Elegans

Our Algorithm Yang and Sze Algorithm
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Fig. 8.4.Comparison on the functional module from Spirin and Mirny [192].



122 8 PInG-Q: a Tool for Protein Interaction Graph Querying

8.4.2 QueryingH. sapiens by S. cerevisiae

In Figure 5 and Figure 6 two yeast queries are shown that are matched to the target
human network. In particular, the query network in Figure 5 concerns proteins that
control cell-cycle transitions. The progression through the cell-division cycle in eu-
karyotes is driven by particular protein kinases (CDK), which trigger the transition
to the following phase of the cycle. These enzymes are serine/threonine kinases that
require for their activation to be associated with regulative subunits known as cyclins.
The query is composed of the budding yeastS. cerevisiaecyclin dependent kinase
(CDC28) which associates with all different cyclins (CLN1, CLB2, CLB5, CLN2,
CLN3). In yeast, different cyclins work in different phases of the cell cycle binding
the sameCDK. Mammalian cells, instead, have evolved multipleCDKs, each one
working only with some cyclins. Consequently, in the humanCDK network retrieved
by applying our algorithm, some yeast interactions correspond to multiple-edge in-
teractions in the human. For example, human cyclinD (CCND1) does not interact
directly with CDK2 (CDK2) because it binds the homologsCDK4 andCDK6, but
they have as a common partner the inhibitory proteinp21 (CDKN1A) that is found
as a node insertion in our approach (not explicitly shown in Figure 5). Instead cyclin
A2 (CCNA2) and cyclinE (CCNE1) are directly connected toCDK2.

pQ
i pT

j E-value
CDC28 CDK2 0
CLN1 CCNA2 2 · 10−10

CKS1 CKS1B 1 · 10−29

CLB2 CCNA1 3 · 10−39

CLB5 CCNB2 7 · 10−43

CLN2 CCND1 7 · 10−6

CLN3 CCNE1 2 · 10−4

(a)
Result (human)

1

1
11

1

4

4

4

4

1

1

11

Query (yeast)

2
4

CDC28

CCND1

CCNB2

CNNA1

CKS1BCCNA2

CDK2

CLN3
CLN2

CLB5

CLB2

CKS1CLN1

CCNE1

(b)

Fig. 8.5.QueryingH. sapiensby S. cerevisiae: example 1

In the second experiment, we queried the human network with the yeast actin-
related-proteins graph. Results are illustrated in Figure6. Actin is well conserved
among eukaryotes being a main component of the cytoskeleton. In yeast, it binds sev-
eral proteins which regulate its polymerization/depolymerization and which are pre-
sented in the graph. Human homologs of the yeast proteins have been correctly paired
(i.e., ACT1/ACTG1, COF1/CFL2, VRP1/WIPF1, PFY1/PFN2, LAS17/WAS in
yeast and human, respectively). Furthermore, as in the previous example, the net-
work has increased its complexity moving from yeast to human. Thus, whilePFN2
andCFL2 are still directly linked to actin, an insertion node, not shown in Figure 6,
divides the regulatorsWIPF1 andWASfrom it.

This latter set of experiments has preliminarily confirmed that our technique is
indeed able of retrieving biologically meaningful subgraphs matching the query net-
work in the target one.
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pQ
i pT

j E-value
ACT1 ACTG1 0
COF1 CFL2 6 · 10−27

RVS167 NCK1 9 · 10−10

VRP1 WIPF1 4 · 10−9

PFY1 PFN2 2 · 10−7

LAS17 WAS 2 · 10−14

SRV2 TRAF7 4 · 10−3

ABP1 GRB2 4 · 10−5

(a)
Result (human)

3

3

1

1

4 1

1

1

4

4

4

1

1

2

2

Query (yeast)

3

3

3

ACT1

TRAF7

WAS

PFN2

WIPF1

NCK1CFL2

ACTG1

ABP1

SRV2

LAS17

PFY1

VRP1

RVS167COF1

GRB2

(b)

Fig. 8.6.QueryingH. sapiensby S. cerevisiae: example 2

8.5 Concluding Remarks

In this chapter a novel approach to search for approximate occurrences of a query
module in protein-protein interaction networks, based on bipartite graph weighted
matching, has been presented. To summarize, the technique presents the following
characteristics:(i) it manages graphs of arbitrary topology, both as query and as
target networks,(ii) edge labels are used to represent and manage the reliabilityof
involved interactions and(iii) node insertions, node deletions and edge deletions are
dealt with. The preliminary experimental results are encouraging, since the approach
is able to find significant results from a biological point of view while having a
polynomial running time.

In next chapter an analysis and comparison of protein-protein interaction network
querying techniques is provided.
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Biological Network Querying Systems: Analysis and
Comparison

Summary. This chapter analyzes and compares some recently proposed techniques to query
biological networks, including the PInG-Q approach described in Chapter 8. In particular, the
analysis performed in this chapter is meant to provide a comparative overview, which will
be useful to understand problems and research issues, state of the art and opportunities for
researchers working in this area.
Section 9.1 recalls the problem under consideration. Section 9.2 provides a basic comparison
of the network querying techniques, based on:(i) the adopted network model,(ii) biological
information exploited,(iii) exact versus approximate results and(iv) types of approximation
supported. Section 9.3 describes the methods and systems by focusingon the types of networks
they can handle. In Section 9.4, a further comparison is carried out byconsidering(i) the
structures of the queries,(ii) exact versus heuristic algorithms,(iii) computational complexity
and(iv) data used for the evaluation. Section 9.5 discusses the strengths and weaknesses of
the considered approaches and, finally, Section 9.6 draws some conclusions.

9.1 Introduction

Network queryingtechniques search a whole biological network to identify con-
served occurrences of a given query module, which can be usedfor transferring bio-
logical knowledge from one species to another (or possibly within the same species).
Indeed, since the query generally encodes a well-characterized functional module
(e.g., the MAPK cascade in yeast), its occurrences in the queried network (e.g., the
MAPK cascade in human) suggest that the latter (and then the corresponding organ-
ism) features the function encoded by the former.
This chapter focuses on some techniques devised to query biological networks. In
this respect, two important issues must be taken into account. The first one is that
sub-graph isomorphism checking, which is a sub-problem of network querying, is a
well-known NP-complete problem [75], thus limiting the applicability of exact tech-
niques. The second one is that any effective approach should look for approximated,
rather than exact, occurrences of the query sub-network. This way, the possible modi-
fications of functional modules, determined by evolutive processes, can be taken into
the right account [20].
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In the last few years, the problem of querying biological networks has been studied
by several researchers [51, 53, 67, 97, 165, 183, 205, 219, 231, 25, 170]. However,
computational techniques for network querying are still atan early stage, thus mak-
ing this research area still open and worth to investigate.
In this context, the goal of this chapter is to analyze and compare various facets of
network querying algorithms, including the PInG-Q approach described in Chap-
ter 8. In particular, the following specific aspects will be considered:(a) adopted
network model;(b) biological information exploited (e.g., sequence similarity, inter-
action reliabilities, etc.);(c) delivery of exact versus approximate results;(d) types of
approximation supported (e.g., node insertions and deletions);(e) handling of gen-
eral versus specific types of network;(f) supported query structures;(g) adoption of
exact versus heuristic algorithms;(h) computational complexity and(i) data used for
the evaluation. Some relevant data pertaining the comparison carried out in this paper
are listed in Table 9.2 (concerning points(b) - (h)) and Table 9.3 (concerning point
(i)).

The analysis performed in this chapter is meant to provide a comparative overview
on the network querying techniques developed in the last fewyears. This will help
to understand problems and research issues, state of the artand opportunities for re-
searchers working in this area.
The remainder of this chapter is organized as follows. The next section starts by pro-
viding some background information. Moreover, a basic comparison of the network
querying techniques, focusing on points (a)-(d), is performed. Section 9.3 briefly
describes the methods and systems and compares them w.r.t. point (e). In Section
9.4, a coarse-grain comparison is carried out w.r.t. points(f)-(i). Finally, Section 9.5
discusses the strengths and weaknesses of the considered approaches and 9.6 draws
some conclusions.

9.2 Preliminaries

This section starts by recalling some background information about the network
querying problem. Hence, network querying algorithms willbe compared along the
following directions:

(a) adopted network model;
(b) biological information exploited (e.g., sequence similarity, interaction reliabili-

ties, etc.);
(c) delivery of exact versus approximate results;
(d) types of approximation supported (e.g., node insertions and deletions);

Some relevant data pertaining the comparison carried out inthis section are listed in
Table 9.2.

9.2.1 Biological Network Modeling

Biological networks, which store information about molecular relationships and in-
teractions, as already discussed in Chapter 2, can be conveniently represented as
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graphs. A graph is built from of a set of nodes or vertices, representing cellular
building blocks (e.g, proteins or genes), and a set of edges (directed or undirected),
representing interactions (see Figure 9.1). A graph is a pair G = (V,E), whereV is
the set of nodes andE is the set of edges, so that the elements fromE are pairs of
elements ofV. In an undirected graph, an edge linking nodesA andB represents a
mutual interaction. Conversely, in a directed graph, each edge represents the flow of
material or information from a source node to a target node.

Fig. 9.1. An example of (a) undirected and (b) directed graph

As discussed in detail in Chapter 2. different types of graphs are used to represent
different types of biological networks, each of which stores information about inter-
actions related to specific entities or molecules [1]. Relevant kinds of networks for
the scope of this chapter include metabolic networks and protein-protein interaction
networks.

Some techniques[165, 205] proposed to query metabolic networks, represent the
networks as directed graphs in which nodes represent enzymes and directed edges
connect pairs of enzymes for which the product of the source enzyme is a substrate
of the sink enzyme. Another reviewed technique[219] uses a directed graph in which
nodes represent metabolites and directed edges represent enzymes that catalyze a
reaction having the source metabolite as the reactant and the sink metabolite as the
product. A slightly more complicated model is used in the last reviewed technique
that handle metabolic networks [231], which considers two types of nodes, chemical
compounds and enzymes. For each enzyme node, an incoming edge occurs with each
of its substrate nodes and an outgoing edge occurs with each of its product nodes.

All the techniques proposed to query protein-protein interaction networks [97,
183, 231, 51, 170, 25], and analyzed in this chapter (encompassed PING-Q), model
PPI networks as undirected graph in which the nodes represent proteins and the
edges, that are possibly weighted, connect two proteins if they bind. However, only
some of the analyzed techniques [183, 51, 170, 25] incorporate reliability informa-
tion encoded as edge weights.

As already discussed in chapter 2, a biological networkN is commonly repre-
sented by a graphGN = 〈VN,EN〉, directed or undirected (see Figure 9.2), in which
the set of nodes (or vertices)VN denotes a set of cell building blocks (proteins, en-
zymes, metabolites, genes, etc.) and the set of edgesEN encodes the interactions
between pairs of nodes.
In the most general definition, each edgeei j ∈ EN takes the form of a triplet
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eN
i j = 〈vi , v j , l i, j〉 wherevi , v j ∈ VN are the interacting cell components andl i, j is

the label associated to that edge (in PINs, for example, the edge label may encode
the reliability of that interaction to actually occur).

Fig. 9.2.An example of biological network graphGN.

Biological networks can be queried in order to extract useful biological information.
Let GQ = 〈VQ,EQ〉 andGT〈VT ,ET〉 be a pair of biological networks, corresponding
to the sub-network used as query and the network to be queried, respectively. The
goal of a network querying algorithm is to retrieve the sub-networks ofGT similar to
GQ.

9.2.2 Node Similarity Computation

Usually, the similarity between the nodes of the query network and the nodes of the
target network is computed and exploited by querying algorithms. In our analysis we
noted that only two techniques [53, 67] do not consider similarity between nodes.
Similarity values, if exploited, are computed in different ways depending on the kind
of the biological networks under inspection.

For example, in protein-protein interaction networks, similarity between proteins
is often computed by exploiting the score obtained by aligning their amino acid se-
quences by exploiting existing tools such as BLAST (Basic Local Alignment Search
Tool) [202] and the PRSS routine of the FASTA package [161]. The output of a
BLAST and PRSS alignment is accompanied by an expectation value (the so called
E − value). The lower theE − value, the more significant the alignment.
Among the analyzed techniques only one [170] exploits the PRSS routine, whereas
all the others [97, 183, 51, 231, 25] (including PInG-Q) use BLAST. Another inter-
esting remark is that the analyzed techniques differ from one another in the threshold
value used to assess if two proteins are similar. As an example, PATHBLAST [97]
considers two proteins similar if they are characterized bya BLAST E− valuesmall
than or equal to 10−2, whereas Torque [25] considers two proteins similar if their
E− valueis less than 10−7. Finally, differently from the other approaches, the PInG-
Q software, discussed in the previous chapter, exploits theE − value to compute a
distance value rather than a similarity value (in particular, the lower the BLAST E-
value, the lower the node distance).
Another way to assess protein similarity is by exploiting some databases like COG
(Clusters of Orthologous Groups) [200] or KEGG (Kyoto Encyclopedia of Genes
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and Genomes) [94]. These databases organize proteins into orthologous groups, so
that two proteins are similar if they belong to the same group.

On the other hand, in dealing with metabolic networks, the similarity between
pairs of enzymes is measured according to the EC (Enzyme Commission) classifica-
tion, that is, a numbering system, consisting of four sets ofnumbers, that categorize
the type of the catalyzed chemical reaction [206]. Note thatthe EC numbers give
a functional classification that does not necessarily reflect sequence similarity. All
the techniques for metabolic networks analyzed in this paper [165, 219, 231, 205]
exploit EC-numbers to compute enzyme similarity.

9.2.3 Approximation Handling

Given a query networkGQ = 〈VQ,EQ〉 and a target networkGT = 〈VT ,ET〉, a po-
tential solution of the querying problem is a sub-graph ofGT , hereafter denoted by
σ, which represents a (possibly approximated) occurrence ofGQ in GT (see Figure
9.1 for a summary on the notation used in this paper). Approximation handling is
needed for dealing with possible occurrences of evolution events modifying a net-
work structure. This also allows to suitably take into account the significant number
of both false negative and false positive interactions found when looking up existing
databases. Overall, different types of approximation should be taken into account:
(i) node insertions, corresponding to the addition of nodes in the target network; (ii)
node deletions, corresponding to the additions of nodes in the query network; and
(iii) node mismatches, corresponding to pairs of nodes characterized by a low sim-
ilarity, but sharing similar biological characteristics (e.g., proteins performing the
same function). Examples of evolution events that may affect protein-protein interac-
tion networks are gene duplication, that causes the addition of new nodes (proteins),
and link dynamics, corresponding to gain or loss of interactions through mutations
in proteins [20].

Using approximate matching allows to obtain a solutionσ in which: (i) some
nodes belonging toGQ may not correspond to any node ofσ (node deletions);(ii)
some nodes belonging toσmay not correspond to any node ofGQ (node insertions),
and(iii) some corresponding pairs of nodes〈vQ, vT〉 may have low similarity (mis-
matches), but the retrieved (approximated) occurrenceσ of GQ within GT is still bi-
ologically meaningful. Figure 9.3 shows an example of a query networkGQ (Figure
9.3(a)) and a target networkGT (Figure 9.3(b)). A potential solution of the querying
problemσ is shown in Figure 9.3(c). Note thatσ is an approximate solution since it
contains node insertions, node mismatches and node deletions.

It is important to point out that approximation occurrencesshould penalize the
ranking of a given potential solution within the overall setof solutions. However, not
all the approaches developed for network querying take intoaccount the same types
of approximations (Table 9.2). Rather, some of them [53, 67]search for sub-graphs
that satisfy all the structural constraints imposed by the query. However, the analyzed
network querying techniques use a scoring schema to rank thepotential solutions.
For instance, as for PIN querying techniques, PATHBLAST detects the best solutions
by computing a score that takes into account the probabilityof an actual homology
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(a) (b)

(c)

Fig. 9.3.(a) The query sub-network; (b) the target network; (c) a solution.

to occur within corresponding pairs of proteins (given their similarity value) and
the probability that the interactions are true (and not false-positive). In other systems
[183, 51, 231, 205, 170, 25] solutions are ranked according to the sequence similarity
of matching nodes and penalties for introduced approximations (only node insertions
and deletions [183, 231, 51, 25] or also mismatches [97, 231,205, 170]). Besides,
when applicable [183, 51, 170, 25], the ranking scores include also edge reliabilities.
In this respect, PInG-Q is able to handle node insertions, node deletions and edge
reliabilities.

On the other hand, all the techniques developed to query metabolic networks
[165, 219, 205, 231] rank the potential solutions on the basis of matched enzyme
similarities and penalties for approximations (only node insertions [165] or both node
insertions and deletions [219, 231, 205]). Finally, one of the proposed technique
[205] also takes into account graph structural differences, that is differences in node
connectivity relationships.

9.2.4 Problem Statement

Thebiological network querying problemcan be stated as follows:
Given a query sub-network GQ and a target network GT , the biological network

querying problem consist in finding the solutionsσ corresponding to matching GT

onto GQ attaining the maximum scores, according to a given scoring schema.
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Symbol Meaning

GQ The query sub-network
VQ The set of nodes of the query sub-network
EQ The set of edges of the query sub-network
GT The target queried network
VT The set of nodes of the target network
ET The set of edges of the target network
σ A (possibly approximated) occurrence ofGQ within GT

Table 9.1.Notation used in the chapter.

9.3 Methods

In the last few years, the problem of querying biological networks has been studied
by several researchers. Hence, several tools [51, 53, 67, 97, 165, 183, 205, 219, 231,
25, 170] have been made available. Some of these tools were developed with partic-
ular focus on specific types of networks (e.g., protein-protein interaction networks
[51, 97, 183, 231, 25, 170], or metabolic networks [165, 205,231, 219]), while oth-
ers were designed to be generally applicable, being these able to query any type of
biological graph [53, 67].

In order to evaluate the above mentioned tools and PInG-Q in this chapter, a
synthetic example shown in Figure 9.4 will be used throughout. Note that, all edge
weights are assumed to be equal to one. Moreover, we do not usenumerical similar-
ity values, but we use ”high” or ”low” to denote high or low node similarity, respec-
tively. If no similarity value is indicated, no relevant similarity is assumed to hold
between the corresponding nodes. For techniques dealing with undirected graphs,
undirected graphs underlining those shown in Figure 9.4 areconsidered. Note that in
the following figures similar filling tones denote similar nodes.

Query nodeTarget nodeSimilarity value

vQ
1 vT

1 High
vQ

1 vT
7 Low

vQ
2 vT

2 High
vQ

3 vT
3 High

vQ
3 vT

5 Low
vQ

3 vT
11 Low

vQ
4 vT

4 High

(e)

Fig. 9.4.(a)-(c) Query examples; (d) target network and (e) similarity ratings.
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9.3.1 Methods Developed to Query PPI Networks

Some of the approaches developed in the last few years to dealwith the network
query problem, as well as PInG-Q, are oriented to protein-protein interaction net-
work analysis.

The first approach proposed in this context isPATHBLAST[97]. PATHBLAST
in its original formulation identifies the conserved pathways across a pair of input
networks. However, it has been subsequently extended to identify protein interaction
complexes and pathways by aligning more than two networks [182, 93]. Neverthe-
less PATHBLAST was conceived to align the whole networks of two organisms, it
can also be exploited to query a whole network against a specific pathway by merely
using that pathway as one of the two input networks. The method starts by building
a global alignment graph, where each nodev represents a pair of similar proteins
〈vQ, vT〉, one from each of the input networks. Moreover, each edge represents either
a conserved interaction, a gap (corresponding to both node insertions and deletions)
or a mismatch. Each pathway in the global alignment graph corresponds to a se-
quence of conserved interactions across the two input PINs.The problem of finding
the highest scoring path of lengthm in acyclic graphs can be solved in linear time
in the number of edges. Nevertheless, the global alignment graph may contain some
cycles. To overcome this difficulty, PATHBLAST generates 5· m! random acyclic
sub-graphs by randomly deleting some of the edges, wherem is the length of the
query pathway. Then, it collects and combines the results discovered from each of
those acyclic graphs. Note that the same protein pair cannotoccur more than once in
a resulting pathway and neither gaps nor mismatches can occur consecutively.

Example1. As an example, assume that the query pathway and the target network
shown in Figure 9.5 (a) and 9.5 (b) are given to PATHBLAST as input. The result-
ing global alignment graph is shown in Figure 9.5 (c). Each path of such a graph
is a potential solution of the querying problem, thus the solution paths found by
PATHBLAST are〈vT

1 , v
T
2 , v

T
5 〉 and〈vT

7 , v
T
2 , v

T
5 〉.

Fig. 9.5.(a) Query; (b) target network; and (c)PATHBLASTalignment graph.

QPath[183] andQNet[51] are other two techniques to query PINs, both based on
the color coding technique. QPath limits itself to path-structured queries, while QNet
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is able to deal with queries shaped as trees or graphs having bounded treewidth. In
both methods, the number of node insertions and deletions inthe potential solutions
are bounded by two threshold values, calledNins andNdel, respectively. In a prepro-
cessing phase, according to the color coding technique, QPath and QNet assign to
each node a randomly chosen color from{1, . . . , k+Nins} (k+Nins distinct colors are
used to take into account theNins allowed node insertions). Several random coloring
trials of the graph are to be executed since any particular query structure may be
assigned non-distinct colors and, hence, may fail to be discovered. Both approaches
exploit dynamic programming techniques to search for the best alignment. In particu-
lar, for each coloring, QPath searches for a path of lengthk that spans distinct colors.
Similarly, QNet starts by rootingGQ at a generic noder and proceeds by searching
for the optimal colorful alignment. The algorithm used to handle tree queries can be
easily extended to handle graph queries with bounded tree-width as well. In this case,
a tree-decomposition〈X,T〉 of GQ is computed and the coloring method is extended
to be applied toT, taking into account that:(i) a set of query nodes, representing a
super-node of the tree-decomposition, may have an arbitrary topology (e.g., forming
a clique) and(ii) a query node may appear in more than one super-node. However,
in the current system release, only tree-shaped queries arehandled. It should be fi-
nally noted that the two algorithms search for solutions involving at mostNdel node
deletions and both of them guarantee that each resulting solution includes distinct
proteins.

Example2. As an example, supposeNins = Ndel = 1 and consider for QPath
the query pathway and the target network represented in Figure 9.4(a) and Fig-
ure 9.4(d) and for Qnet the query tree and the target network represented Figure
9.6(a) and Figure 9.6(b). For this example, QPath finds the same result pathways
discovered by PATHBLAST (see Figure 9.5 (c)) whereas QNet isable to retrieve
the solution trees reported in Figure 9.6(c).

Fig. 9.6.(a) Query; (b) target network; and (c)QNetsolutions.
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Torque(TOpology-free netwoRk QUErying) [25] is another approachfocused on
querying PINs, where a bound on both the maximum number of node insertions and
node deletions is imposed. Torque is a topology-free querying algorithm, that is, the
query ”network” solely specifies the set of involved proteins, and does not carry out
any information about the interactions among them. The observation underlying this
choice is that most of the protein complexes reported in the literature are not corre-
lated with any information about their interaction pattern. Thus, the goal of Torque is
to find a connected set of proteins in the target network matching the query proteins.
Torque has been implemented using several fixed-parameter algorithms based on dy-
namic programming. Each vertex in the target network is associated to a subset of
colors, on the basis of the similarity scored to the query proteins. In a preprocessing
phase, Torque assigns a different color to each query node. To handle node inser-
tions, the algorithm is not applied toGT , but it uses a new graphG′ = 〈V′,E′〉, such
that for each nodevT

i ∈ VT , a non-colored copyv′i of vT
i is added toV′. Moreover,

an edge (v′i , v
T
j ) and an edge (v′i , v

′
j), such that the edge (vT

i , v
T
j ) ∈ ET , are added to

E′. Torque tries to find a solution to the querying problem by searching for a colorful
tree. Note that each sub-graph has a spanning tree, so it is fair to search for colorful
trees in lieu of colorful sub-graphs. The authors also provide an integer programming
formulation of the querying problem to allow commercial solvers to be exploited.

Example3. By applying Torque to the query proteins reported in Figure 9.7(a) and
the target network in Figure 9.7(b), the solutions returnedby Torque are shown in
Figure 9.7(c). Note that only one node insertion and one nodedeletion are allowed
in the solution sub-graphs and recall that Torque considersno query structural
information.
Along the same line, another approach [170] has been developed. This approach,

similarly to PInG-Q, imposes no simultaneous bound on the number of node inser-
tions and deletions. However, while in PInG-Q neither the number of node inser-
tions nor node deletions is ”ex-ante” bounded, the algorithm by Qian et al. [170],
hereafter denotedQian, imposes a bound only on the maximum number of node
insertions. Qian is based on computing hidden Markov models(HMMs) and, as in
PATHBLAST, the query stucture is constrained to pathways. In this framework, PPI
are modelled using the HMM formalism that embeds into its probabilistic framework
both protein similarities and interaction reliabilities.In particular, an hidden statevT

i
in the HMM corresponds to each proteinvT

i ∈ VT and the HMM has the same edge
structure asGT . On the one hand, in order to take into account node deletions, for
each statevT

j , a new stateuT
j is added to the HMM, and an outgoing edge fromuT

j to
each statevT

i in the neighborhood ofvT
j is added. Varying the transition probability

t(uT
j |v

T
j ), the probability to have deletions occurring can be controlled. Moreover, a

self-transition atuT
j is added and, suitably settingt(uT

j |u
T
j ), the probability to have

consecutive deletions is set up. On the other hand, to model node insertions, each
statevT

i in the HMM may emit a gap symbolφ. Setting the gap emission probability
e(φ|vT

j ), the probability (and penalty) to have node insertions canbe also tuned. Using
the above construction, the problem is reduced to the one of finding the most prob-
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Fig. 9.7.(a) Query proteins; (b) target network; and (c)Torquesolutions.

able path within the so constructed HMM. To retrieve the topk similar pathways,
instead of just one, thek most probable paths are searched for.

Example4. By considering PInG-Q as applied to the query graph reportedin
Figure 9.8(a) and the target network reported in Figure 9.8(b), the algorithm is
able to find the solutions shown in Figure 9.8(c).

Example5. As an example, by assuming that the maximum number of allowed
node insertions is equal to 1, Qian applied to the query pathway represented in Fig-
ure 9.4(a) and the target network reported in Figure 9.4(b),is able to discover the
same result pathways as those identified by PATHBLAST and QPath, and reported
in Figure 9.5(c).

9.3.2 Methods Developed to Query Metabolic Networks

In this section, an overview on the techniques developed to query graphs encoding
metabolic networks is given.
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Fig. 9.8.(a) Query; (b) target network; and (c)PInG-Qsolutions.

MetaPathwayHunter[165] is probably the first tool designed to work on metabolic
networks. The system takes advantage of the particular topology of most metabolic
pathways, usually shaped as multi-source trees (i.e., directed acyclic graphs whose
underlying undirected graphs are trees). In fact, this toolonly deals with queries
and target networks shaped as multi-source trees. Moreover, it does not handle node
deletions from the query module, but only node insertions inthe retrieved target sub-
modules (that can be also viewed as deletions from the targettrees). The method ex-
haustively computes both all optimal solutions and severalsuboptimal solutions (up
to a predefined threshold score), which are ranked by their statistical significance.
All of the query and target nodes are labeled by theEC-numbersof the enzymes they
encode. Moreover, a label scoring table, reporting the similarity scores between the
target labels and the query labels, is built. The tradeoff between an insertion and a
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mismatch, in the retrieved solution, is established by tuning the node insertion score.
This system exploits a bottom-up dynamic programming approach based on a sub-
tree homeomorphism computation, which is based on the closerelationship holding
for subtree homeomorphism and weighted assignments in bipartite graphs. In par-
ticular, MetaPathwayHunter is based on the computation of the subtree ofGT for
which, given a scoring table ad a node insertion penalty, thesimilarity score with
GQ is maximal. This problem is recursively translated into a collection of smaller
problems, which are solved using weighted assignment algorithms.

Example6. To apply MetaPathwayHunter to the example of Figure 9.9(a) it is
necessary to modify the target network illustrated in Figure 9.4(d) as shown in
Figure 9.9(b), since the tool requires a forest of multi-source trees. The solutions
discovered by MetaPathwayHunter are shown in Figure 9.9(c)(note that at most
one consecutive node insertion is allowed by the algorithm).

Fig. 9.9.(a) Query; (b) target network; and (c)MetaPathwayHuntersolutions.

MetaPAT [219] deals with metabolic network querying as well. The underly-
ing technique partitions the query vertices into two set: (a) path vertices, that are
those vertices having exactly one incoming edge and one outgoing edge, and (b)
branch vertices, that are all the other vertices. The authors of the system observed
that branch vertices must be conserved, whereas paths can beelongated or shortened.
The approach exhaustively examines all the sub-graphs of the target network that are
homeomorphic to the query sub-graph. Two graphs are homeomorphic if their edges
can be split (i.e., edges can be replaced by paths of arbitrary length in the same di-
rection) in a way that the resulting graphs are isomorphic. The algorithm starts out
by aligning a branch vertex of the query pattern with a branchvertex of the target
graph, and then it uses a recursive sub-procedure to deal with all possible extensions
of the attained partial solution. To reduce the search space, MetaPAT exploits the
principle of local diversity. Given a real number 0≤ f ≤ 1, a gap scoreg, a path
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p1 with x vertices and a pathp2 with y vertices,p1 andp2 fit if a maximum-score
alignment between them aligns at most min{⌈(1− f ) · x⌉ , ⌈(1− f ) · y⌉} vertices to a
gap. An extension of a partial solution fits if every simple path between two branch
query vertices fits the corresponding simple path in the target network.

Example7. If MetaPAT is applied to the query graph and target network reported
in Figure 9.10(a) and Figure 9.10(b), it returns the solutions shown in Figure
9.10(c).

Fig. 9.10.(a) Query; (b) target network; and (c)MetaPATsolutions.

9.3.3 Methods Developed to Query Varied Biological Networks

This section illustrates techniques developed to query more than one kind of biolog-
ical network (e.g., both protein interaction and metabolicnetworks).

SAGA(Substructure Index-based Approximate Graph Alignment) [205] is a gen-
eral system to search for a query sub-graph in a database of graphs. A label is as-
sociated with each node of the query and each node of the graphs in the database
with the aim to identify node mismatches. Indeed, if a node from the query and a
node from a target graph have different labels, they correspond to a mismatch. The
search is based on the construction of an index, calledFragment Index, containing
substructures of sizek extracted from the graphs in the database. In particular, for
a subset ofk nodesv1, . . . , vk extracted from a target graph, a pseudo edge between
each pair of nodes (vi , v j), i, j ∈ 1, . . . , k is added if their distanced(vi , v j) is less
then a predefined thresholddmax (in order for node insertions to be allowed). This
fragment is then added to theFragment Indexif the resulting subgraph is connected.
During the search process, the query sub-graph is divided into fragments (i.e., sets of
k nodes) in the same way as done for the database graphs. The fragments extracted
from the query are then used to probe theFragment Index. The matching fragments,
retrieved from the index, are then combined into larger matches.
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Example8. Consider SAGA as applied to the query graph shown in Figure 9.4(c)
and the target network reported in Figure 9.4(d) and recall that only one consecu-
tive node insertion and only one node deletion is allowed. The resulting subgraphs
retrieved by this approach are the same as those discovered by Torque (see Figure
9.7(c)).
PathMatchandGraphMatch[231] are two other examples of tools suitable for

querying different biological networks. PathMatch has been proposed to search for
paths, whereas GraphMatch to look for general graphs. A peculiarity of these two
approaches is that each node of the target network may correspond to more that one
node of the query sub-network. In a first phase, for each nodevQ

i ∈ VQ, both algo-
rithms build a set of correspondencesVi = {vi,1, . . . , vi,t}, wherevi,1, . . . , vi,t ∈ VT .
In particular,vi,1, . . . , vi,t correspond to those nodes ofGT sharing a significant simi-
larity with vQ

i . Moreover, both algorithms fix the maximum number of allowednode
insertions and mismatches for each direct edge inGQ by a threshold valueNins.
While PathMatch takes advantage of the linearity of the querymodule, thus reducing
the query problem to that of finding the longest weighted pathin a directed acyclic
graph, GraphMatch exploits an exact algorithm. In particular, PathMatch builds a
directed graphG′ = 〈V′,E′〉, whereV′ =

⋃n
i=1 Vi ∪ {s, t} ands andt are two addi-

tional nodes representing the source and the sink of paths inG′. Each vertexvi, j has
associated a weightsi, j , that encodes the similarity score betweenvQ

i and the node
of GT associated tovi, j . The weights fors and t are set to 0. An edge between the
nodesvi, j , vi+d,l ∈ G′ is added toE′ if (a) 0 < d ≤ m (m bounds the number of node
deletions) and (b) the number of nodes in the shortest path connecting the nodes
corresponding tovi, j andvi+d,l in GT is smaller thanNins. Moreover, each nodevi, j is
connected by an edge to the source and sink node. Finally, each edgeehas associated
a negative weight proportional to the number of mismatches and gaps in the path it
denoted. Clearly, the above construction reduces the path querying problem to that
of finding a pathP′ in G′ with the maximum sum of vertex and edge weights.

Example9. By applying PathMatch to the query path shown in Figure 9.11(a) and
the target network reported in 9.11(b) and allowing only oneconsecutive node
insertion and one consecutive node deletion, the graphG′, built by PathMatch, is
shown in Figure 9.11 (c). Note that theids used to identified the nodes ofG′ are
the sameidsof the nodes ofGT .

On the other hand, GraphMatch enumerates all the potential solutions so that the
query process turns out to be effective only if the query network and the correspon-
dence lists are small enough. To handle node deletions, the algorithm partitionsVQ

into two setsV− andV+; the first set represents the set of nodes deleted in the result
subgraph and the second one the set of nodes for which a corresponding node inσ
exists. To solve the graph matching problem, all the connected induced subgraphs
of GQ are enumerated, to obtain all the possible partitioning wayof VQ into V− and
V+. To enumerate all solutions, GraphMatch builds a graphG′ = 〈V′,E′〉, where
V′ =

⋃n
i=1 Vi and an edge between the pair of nodesvi, j andvk,l is added toE′ if:

(a) there is an edge inGQ connectingvQ
i andvQ

k and(b) the number of nodes in the
shortest path connecting the nodes corresponding tovi, j andvk,l in GT is less than or
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Fig. 9.11.(a) Query; (b) target network; and (c)PathMatchgraphG′.

equal toNins. Given the setV+ ⊆ VQ, a valid solution is represented as a set of nodes
{vi, j , . . . , vk,l}, such that for each edge〈vQ

i , v
Q
k 〉 ∈ EQ, the nodesvi, j andvk,l must be

connected by an edge inG′.
Example10. As an example, letNins be equal to 1, and suppose to apply Graph-
Match to the query and target graphs shown in Figure 9.12(a) and 9.12(b), re-
spectively. The subgraphs found out by GraphMatch are shownin Figure 9.12(c).

Fig. 9.12.(a) Query; (b) target network; and (c)GraphMatchsolutions.

9.3.4 Methods Developed to Query General Biological Graphs

This section surveys on techniques developed for querying general graphs, the nodes
of which may possibly denote biological entities.

GenoLink [53] is a software platform developed for graph querying and explo-
ration. A query consists in a graph pattern in which nodes andedges are constrained.



9.4 Coarse-Grain Comparison 141

The nodes of the graphs may represent biological objects (e.g., Organism, Gene,
Chromosome, Protein) with the edges modeling the relationships holding among
the nodes (e.g., ChromosomeBelongsToOrganism, GeneIstranslatedToProtein). In
more detail, a GenoLink query is a graph pattern where nodes and edges are marked
with data types. Moreover, nodes and edges may carry some algebraic expression
constraints defined on the node or edge attributes. Finally,a query may define global
algebraic expression constraints involving attributes ofdifferent vertices or edges.
An occurrence of the query graph in the target graph is a subgraph of the target
graph that must feature:(a) the same topology as the query graph,(b) all its nodes
and edges must have the same data types (or subtypes) of corresponding query nodes
and edges,(c) all the query constraints on attributes must be satisfied. Inbuilding the
result set, the algorithm performs a depth-first search, which guarantees to find all
matching sub-graphs.

Example11. GenoLink as applied to the example queries shown in figures 9.4(a),
9.4(b) and 9.4(c) and the target network reported in Figure 9.4(d), is not able to
return any solution, since there does not exist any subgraphof the target network
that satisfy all the structural constraint imposed by the queries.
NetMatch [67] is another tool devised along the same ideas, which was built as a

Cytoscape plugin1. NetMatch queries may bestructurallyapproximated in the sense
that some of their parts may be left unspecified. Each node andedge may have as-
sociated a list of attributes specifying query constraints. Thus, some elements of the
query sub-graph are marked as constants, whereas others areunspecified. In partic-
ular, a node or an edge labeled with a wild card symbol ’?’ may correspond to any
single value of a node or edge attribute, whereas an unspecified path (identified by
a dashed edge in the query graph) may correspond to a path of length bounded by
n, wheren is a positive integer. The resulting sub-graphs are connected according
to the same structure as the query graph. The query process starts by independently
handling all maximal specified subparts and then combining the results of the sub-
queries in all the possible ways. The combination process tries to connect the partial
sub-graphs through all paths satisfying the approximate query paths. NetMatch is
able to handle query and target graphs with more than one edgebetween a pair of
nodes, loops (that are, edges starting and ending at the samenode) and lists of at-
tributes for each node and edge.
Example12. Similarly to GenoLink, NetMatch as applied to the example queries
shown in figures 9.4(a), 9.4(b) and 9.4(c) and the target network reported in Fig-
ure 9.4(d) does not return any solution. However, suppose toapply the algorithm to
the query and target graphs shown in figures 9.13(a) and 9.13(b), respectively. The
subgraphs found out by NetMatch are, in this case, shown in Figure 9.13(c).

9.4 Coarse-Grain Comparison

In the previous sections of this chapter, network querying tools have been analyzed
with respect to:(a) adopted network model;(b) biological information exploited

1 http://www.cytoscape.org
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Fig. 9.13.(a) Query; (b) target network; and (c)NetMatchsolutions.

(e.g., sequence similarity, interaction reliabilities, etc.); (c) delivery of exact versus
approximate results;(d) types of approximation supported (e.g., node insertions and
deletions);(e) handling of general versus specific types of network. In thissection a
comparison will be carried out for the given tools along the following directions:

(f) supported query structures;
(g) adoption of exact versus heuristic algorithms;
(h) computational complexity;
(i) data used for the evaluation.

Some relevant data pertaining the comparison carried out inthis section are listed in
Table 9.2 (concerning points(f) - (h)) and Table 9.3 (concerning point(i)).

9.4.1 Supported Query Structure

Network querying techniques can be classified with reference to the structural con-
straints imposed on the query networks. Some of the techniques here discussed (i.e.,
PATHBLAST, QPath, PathMatch and Qian) only handle path-shaped queries. Other
techniques, such as MetaPathwayHunter and QNet, were developed to manage tree
queries. Actually, QNet might also be used to search for graph queries (of bounded
treewidth), but in the current system release this latter feature is not available. The
most general techniques (i.e., GenoLink, NetMatch, SAGA, GraphMatch, Meta-
PAT and PInG-Q) can handle queries shaped as general graphs.Finally, Torque is
a topology-free querying technique, where no information about the interaction pat-
tern as encoded in the query graph is taken into account.

Moreover, the constraints in some cases imposed in the algorithms allow for
the use of heuristic techniques to efficiently perform the search (for example, the
color coding technique [3]). In some cases (e.g., for MetaPathwayHunter) the re-
strictions imposed on the query structure are dictated by the particular topology of
the most interesting biological substructures in the biological networks of interest
(e.g., metabolic networks).
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9.4.2 Adoption of Exact versus Heuristic Algorithms

Because of the typical size of the graph structures encodingbiological networks,
the adoption of exact vs. heuristic search techniques can produce significant differ-
ences in performances. In fact, only five of the eleven approaches under analysis
(i.e., GenoLink, NetMatch, MetaPathwayHunter, GraphMatch and Torque) imple-
ment exact algorithms. Thus, on the one hand, due to the complexity of the sub-
graph matching problem (recall that sub-graph isomorphismis NP-complete [75]),
exact algorithms can be applied only to small problem instances. On the other hand,
since other methods (i.e., QPath, QNet, PATHBLAST, SAGA, MetaPAT, PathMatch,
PInG-Q and Qian) exploit heuristic algorithms, they do not guarantee optimal solu-
tions to be necessarily returned.

9.4.3 Computational Complexity

A further analysis dimension regards the computational complexity of the considered
approaches. In this respect the following parameters are introduced:

• n is the number of nodes of the target network;
• m is the number of edges of the target network;
• q is the number of nodes of the query sub-network;
• Nins is the maximum number of allowed node insertions;
• Ndel is the maximum number of allowed node deletions.

Note that, for three of the analyzed techniques (i.e., GenoLink, SAGA and MetaPAT)
complexity figures are not reported since complexity results are not available.

Polynomial Time Techniques

Some the analyzed techniques, that is, MetaPathwayHunter,PathMatch, PInG-Q
and Qian, run in polynomial time. In particular, MetaPathwayHunter [165] has a
time complexity ofO( q2n

logq + qnlogn). Therefore, its running time is polynomial

both in n and in q. PInG-Q’s running time isO(MAXIT ERAT ION· n3), where
MAXIT ERAT IONis a constant denoting the maximum number of iterations the
algorithm is allowed to perform, and the factorn3 is implied by the computation of
the minimum bipartite weighted matching problem. The time complexity of Path-
Match [231] isO(m+ n + k), wherek is the number of best scoring hits returned
by the algorithm. Finally, the time complexity of Qian [170]is O(k · q · Nins · m)
where, also in this case,k is the number of highest scoring pathways retrieved by the
algorithm.

Exponential Time Techniques

Five of the discussed systems, that are, PATHBLAST, NetMatch, QPath, QNet,
GraphMatch and Torque, run in exponential time in the numberof nodes of the
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query sub-network. Therefore, these techniques are applicable only to relatively
small problems. In detail, PATHBLAST [97] runs in timeO(q!l), where l is the
number of edges of the global alignment graph. NetMatch’s time complexity [67]
is O(q!q), while QPath [183] runs inln n

ǫ
· 2O(q+Nins) · mNdel, whereǫ is the proba-

bility that the algorithm does not find an optimal solution. The time complexity of
QNet [51] isln 1

ǫ
· 2O(q+Nins) ·m for tree queries and 2O(q) · nt+1 for bounded treewidth

graph queries, whereǫ has the same meaning as above, andt is the maximum al-
lowed treewidth of the query graph. The initial phase of GraphMatch [231], where
all the connected subgraphs ofGQ are enumerated for the construction of all the po-
tential solutions, runs inO(2qq2). Finally, the computational complexity for Torque
is O(q!3qmN2

ins).
Note that the exponential trend inq might not be as much problematic as an

exponential trend inn, since in real applicationsq is expected to be relatively small
as compared ton.

9.4.4 Data Used for the Evaluation

The approaches developed for querying biological graphs were tested by their devel-
opers on different organism networks. The data used for the evaluation have been ex-
tracted from several databases, as reported in Table 9.3. All the techniques proposed
to querying PINs [51, 97, 183, 231, 25, 170] (including PInG-Q) were evaluated
on networks downloaded fromDIP (Database of Interacting Proteins) [175], though
some of them also used other databases to obtain additional information (e.g., func-
tional classification) or to perform evaluations on different data. For example, QPath
[183] and QNet [51] usedFlyGrid (the section ofBioGRIDcontaining the interac-
tion data pertaining the fly) [195]; PInG-Q also exploits data downloaded fromMINT
(Molecular INTeraction database) [33]; and Torque [25] downloaded the interaction
data also fromFlybase(a database of Drosophila genes and genomes) [72],SGD
(Saccharomyces Genome Database) [37],AmiGo (Gene Ontology database) [31],
CORUM(the Comprehensive Resource of Mammalian protein complexes) [174] and
HPRD(Human Protein Reference Database) [168].

Similarly to the approaches working on PINs, the approachesproposed to query-
ing metabolic networks [165, 231, 205, 219] were evaluated on datasets downloaded
from several databases. In detail, PathMatch, Graphmatch andSAGAwere evaluated
on the data downloaded fromKEGG (Kyoto Encyclopedia of Genes and Genomes)
[94]. The information stored inEcoCyc[99] was used in PathMatch, Graphmatch
and MetaPathwayHunter. Furthermore, this latter system also exploited theSGD[37]
data, SAGA usedReactome[136] data and MetaPAT downloaded information from
BioCyc [96]. Finally, GenoLink was evaluated on the data downloaded from COG
[201], InterPro [87] andBRENDA[32]. The systems were evaluated on networks of
different organisms (see Table 9.3). In detail, PATHBLAST was tested on the PIN of
S. cerevisiae(yeast); QPath and QNet were evaluated using the networks ofS. cere-
visiae, D. melanogaster(fly) andH. sapiens(human); PathMatch was run on the net-
works ofS. cerevisiae, D. melanogaster, C. elegans(worm),H. pylori (bacteria) and
E. coli (bacteria); for GraphMatch, the networks ofS. cerevisiae, D. melanogaster
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Table 9.2.Comparison summary

Types of networks(e) Query structure (f) biological information
exploited (b)

PATHBLAST
[97]

Tested on PPI networks Pathways BLAST E-values

MetaPathwayHunter
[165]

Tested on metabolic pathways Trees in a forest Functional classification

QPath
[183]

Tested on PPI networks Pathways Interaction reliability, BLAST
E-values

GenoLink
[53]

General General graphs None

QNet
[51]

Tested on PPI networks Trees or graphs with
bounded treewidth

Interaction reliability, BLAST
E-values

NetMatch
[67]

General General graphs None

SAGA
[205]

Tested on metabolic pathways General graphs Functional classification

PathMatch
[231]

Tested both on PPI networks and
metabolic pathways

Pathways BLAST E-values, Functional
classification

GraphMatch
[231]

Tested both on PPI networks and
metabolic pathways

General graphs BLAST E-values, Functional
classification

MetaPAT
[219]

Tested on metabolic networks General graphs Functional classification

PInG-Q Tested on PPI networks General graphs Interaction reliability, BLAST
E-values

Torque
[25]

Tested on PPI networks topology-free Interaction reliability, BLAST
E-values

Qian
[170]

Tested on PPI networks Pathways Interaction reliability, FASTA
E-values

Exact vs approximate
results (c)

Types of
approximation (d)

Exact vs heuristic
algorithm (g)

Time complexity (h)

PATHBLAST
[97]

Approximate Node insertions,
node deletions,

mismatches

Heuristic O(q!l)

MetaPathwayHunter
[165]

Approximate Node insertions Exact
O( q2n

logq + qnlogn)

QPath
[183]

Approximate Node insertions,
node deletions

Heuristic ln n
ǫ · 2

O(q+Nins) ·mNdel

GenoLink
[53]

Exact None Exact Not evaluated

QNet
[51]

Approximate Node insertions,
node deletions

Heuristic ln 1
ǫ · 2

O(q+Nins) ·m · Ndel (trees)

2O(q) · nt+1 (bounded treewidth graphs)
NetMatch

[67]
Exact (but wildcards
allowed in the query)

None Exact O(q!q)

SAGA
[205]

Approximate Node insertions,
node deletions,

mismatches

Heuristic Not evaluated

PathMatch
[231]

Approximate Node insertions,
node deletions,

mismatches

Heuristic O(m+ n+ k)

GraphMatch
[231]

Approximate Node insertions,
node deletions

Exact O(2qq2)

MetaPAT
[219]

Approximate Node insertions,
node deletions

Heuristic Not evaluated

PInG-Q Approximate Node insertions,
node deletions

Heuristic O(MAXIT ERAION· n3)

Torque
[25]

Approximate Node insertions,
node deletions

Heuristic O(q!3qmN2
ins)

Qian
[170]

Approximate Node insertions,
node deletions,

mismatches

Heuristic O(kqNinsm)

andC. eleganswere used; PInG-Q was tested on the networks ofS. cerevisiae, D.
melanogaster, C. elegansand H. sapiens; Torque was evaluated on the networks
of S. cerevisiae, D. melanogaster, H. sapiens, M. musculus(mouse),R. norvegicus
(rat) andB. taurus(bovine); Qian was tested on the networks ofS. cerevisiae, D.
melanogaster, H. sapiens, C.elegansandE. Coli.

With regard to the systems tested on metabolic networks, MetaPathwayHunter
was evaluated using the networks ofE. Coli andS. Cerevisiae; SAGA on the net-
works ofH. Sapiensand MetaPAT on the networks ofB. Subtilis(bacteria),E.coli,
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H. Sapiens, S. CerevisiaeandT. Thermophilus(bacteria). Finally, Genolink was eval-
uated on the networks ofE. Coli andH. Pylori.

The quality of the results obtained by the different systems were evaluated from
a biological point of view, manually or using some well knowninformation stored in
biological databases, such as Swiss-Prot [11]. In particular, some well-known query
modules characterizing some model organisms (e.g., the MAPkinase cascade of
yeast) were used as benchmark. Also the capabilities of the techniques were stressed
by using less characterized modules and organisms (e.g., the fly).

Table 9.3.Exploited organisms and data sets

Analyzed organisms Databases used to build PPI networks

PATHBLAST
[97] S. cerevisiae (Yeast) DIP

MetaPathwayHunter
[165] E. Coli (Bacteria) and S. cerevisiae (Yeast) EcoCyc, SGD

QPath
[183] S. cerevisiae, D. melanogaster (Fly), H.

sapiens (Human)
DIP, FlyGRID

GenoLink
[53] E. Coli and H. Pylori (Bacteria) COG, InterPro, BRENDA

QNet
[51] S. cerevisiae, D. melanogaster, H. sapiens DIP, FlyGRID

NetMatch
[67] − −

SAGA
[205] H. sapiens KEGG, Reactome

PathMatch
[231] S. cerevisiae, D. melanogaster, C. elegans

(Worm), H. pilori, E. coli
DIP, KEGG, EcoCyc

GraphMatch
[231] S. cerevisiae, D. melanogaster, C. elegans,

E. coli
DIP, KEGG, EcoCyc

MetaPAT
[219] B. Subtilis (Bacteria), E.coli, H. Sapiens,

S. Cerevisiae, T. Thermophilus (Bacteria)
BioCyc

PInG-Q
S. cerevisiae, D. melanogaster, C. elegans,

H. sapiens
DIP, MINT

Torque
[25] S. cerevisiae, D. melanogaster, H. sapiens,

M. musculus (Mouse), R. norvegicus
(Rat), B. taurus (Bovine)

DIP, Fly-base, SGD, AmiGo, CORUM,
HPRD (Human Protein Reference

Database )

Qian
[170] S. cerevisiae, D. melanogaster, C. elegans,

E. Coli, H. sapiens
DIP
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9.5 Discussion

In this paper, a comparative survey of the methods developedto query biological net-
works has been carried out. As implied by the previous descriptions, those techniques
are rather different from one another. There are methods that, due to the adoption of
exact algorithms (e.g., GraphMatch [231]), or becacause they handle generic graph
queries (such as NetMatch [67]), result in rather high time complexity. Improvements
in execution times are obtained by exploiting heuristic algorithms, like in PInG-Q,
by restricting query structure (e.g., as done in PathMatch [231]), or by only allowing
few types of approximations in the result sub-graphs (e.g.,in MetaPathwayHunter
[165]).

However, all the tools seem able to find biologically significant results. Since all
methods are accurate with respect to the ”biological” quality of the returned results,
it is sensible to look at both the application domains and thecomplexity in order to
find the best method to use.

In this respect, for pathway queries, the best choices seem to be PathMatch [231]
and Qian [170], which are able to deal with node mismatches, insertions and dele-
tions and have the lowest time complexity among the considered systems (linear time
complexity in target and query network size).

For queries shaped as general graphs the most promising tools seem to be PInG-Q
and GraphMatch [231]. PInG-Q has the advantage of exploiting a heuristic technique
that keeps the time complexity low, while at the same time considering both node
insertions and deletions in the result sub-graph. GraphMatch, on the other hand, since
exploiting an exact search algorithm, guarantees to find thebest solution according to
the adopted scoring schema. Finally, Torque [25] proves itself to be quite appropriate
for it opening an appealing view on the topology-free querying issue.

As a general trend, most of the tools do not yet exploit all kinds of biological ad-
ditional information (e.g. GO terms or interaction reliability coefficients) that might
improve the quality of the returned result. Besides, the most part do not take into
account all the possible biological diversities (e.g., approximations in resulting sub-
graphs) that might permit to obtain more accurate results.

Despite these limitations, the efforts within this research area have been steadily
increasing in the last few years. As such, this area seems to be a promising re-
search domain in the quest toward improving the knowledge about biological data
and mechanisms at the basis of life processes.

9.6 Concluding Remarks

In this chapter the analysis and comparison of some techniques proposed to query
biological networks has been carried out. This analysis considered the biological
network querying problem from different perspectives, ranging from structural prop-
erties of the networks (e.g., query subnetwork shape constraints) to computational
complexity of network querying algorithms. Despite the performed comparison, it
has not been possible to identify the “best” method in the absolute sense, since the
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most performant algorithms, in terms of running time, produce approximated results,
whereas exact algorithms are very time consuming. This analysis has been useful for
better understanding research issues and future directions to improve the quality of
solutions to the biological network query problem.
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Conclusions and Future Trends

Summary. The content of this thesis concerned three main strands of research. The first in-
vestigated the problem of predicting protein functions. The second one studied the problem
of aligning protein-protein interaction (PPI) networks. Finally, the last onedealt with the bi-
ological network querying problem, with particular emphasis on queryingPPI networks. In
this chapter, the content of this work will be summarized by remarking its main contributions.
Besides, here a brief overview on future trends in the fields of research related to this thesis
will be provided.

10.1 Content Summary

This section recaps the content of this thesis, briefly discussing the various research
issues that have been investigated.

A road map of this work has been given in Chapter 1. The motivations of this the-
sis have been laid out in Chapter 2 by analyzing simple (i.e.,proteins) and complex
(i.e., biological networks) biological structures. This allowed to identify and investi-
gate some relevant problems concerning these structures. Both the fundamental role
played by proteins in living organisms and the complex set ofmolecular interactions
regulating cell life cycle have been described. Besides, anoverview on the most im-
portant bioinformatics tasks related to these simple and complex biological structures
has been provided. This has been useful to understand the open perspectives in this
research field, which have been tackled in the subsequent parts of the thesis.

In Part II, the problem of predicting protein functions has been analyzed. In par-
ticular, Chapter 3 charted the state of the art in this research area, which helped to mo-
tivate the two novel approaches proposed in Chapter 4 and Chapter 5. In particular,
in Chapter 4, an approach for predicting protein quaternarystructures, called PQSC-
FCNN, has been illustrated. PQSC-FCNN exploits protein functional domain infor-
mation and the Fast Condensed Nearest Neighbor (FCNN) rule [6]. PQSC-FCNN is
able to reduce both the portion of the dataset to be used and the number of compar-
isons to carry out at classification time. This allows sensible space and time savings,
while achieving very good accuracy. In Chapter 5, an approach called Bi-Grappin,
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for annotating proteins with functional information by comparing PPI networks, has
been presented. The algorithm is based on the exploration and comparison of pro-
teins neighborhoods (interaction profiles). The basic ideais that proteins with similar
neighborhoods are probably involved in similar biologicalprocesses. One peculiarity
of this approach is its capability of incorporating both quantitative (i.e., interaction
strengths) and reliability information about interactions. The quantitative informa-
tion is used to distinguish nodes belonging to different neighborhoods. The reliabil-
ity, that is determined by the experimental method used to detect the interaction, is
taken into account in the computation of neighborhood similarity.

Part III has covered issues regarding the alignment of protein-protein interaction
networks. In particular, in Chapter 6 the state of the art on PPI networks alignment
has been analyzed to unearth the open research paths in this context. This analysis
was essential to motivate the Sub-Grappin tool that has been introduced in Chapter 7.
In particular, the goal of this approach is that of discovering common modules in PPI
networks by exploiting the similarities between pairs of nodes belonging to different
networks. The algorithm is based on the iterative alternation of two sub-stages: pro-
tein similarity refining, and connected sub-graphs extraction. The first stage is based
on Bi-Grappin, while the second one consists in a node collapsing technique, called
Collapse.

Finally, Part IV has dealt with the problem of querying biological networks. In
particular, in Chapter 8, a novel approach, called PInG-Q, has been proposed. PInG-
Q searches for approximated occurrences of a query module inprotein-protein inter-
action networks by iteratively computing a minimum weighted bipartite matching.
This technique has the following peculiarities:(i) query and target networks of arbi-
trary topology can be handled(ii) interaction reliability information is taken into ac-
count by incorporating it in edge labels(iii) node insertions, node deletions and edge
deletions are allowed. Finally, in Chapter 9, an analysis and comparison of biological
network querying algorithms, including PInG-Q, has been carried out. This analysis
considered the biological network querying problem from different perspectives to
provide the reader with a rich overview on the existing techniques. The compari-
son ranges from structural properties of the input networks(e.g., query subnetwork
shape constraints) to computational complexity. This analysis has been useful for
highlighting open problems and research opportunities in this field.

10.2 Contributions

The research developed in thesis has been motivated by identifying a set of issues and
requirements in the bioinformatics research area (see Chapter 1). In the following,
we summarize the contributions of this thesis, which tackled relevant bioinformatics
tasks. Focus is given to both simple and complex biological structures.

10.2.1 Simple Biological Structures

By looking at proteins as independent macromolecules, a relevant task is that of
predicting protein functions, with the aim of properly understanding the role of un-
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characterized proteins within living cells. To this purpose, two approaches have been
devised: PQSC-FCNN and Bi-Grappin.

PQSC-FCNN

PQSC-FCNN is a novel method for protein quaternary structure classification, which
is able to exploit protein functional domain information and the Fast Condensed
Nearest Neighbor (FCNN) rule. Most of the approaches for protein quaternary struc-
ture prediction, previously proposed in the literature, were only tested on homo-
oligomeric proteins. Besides, all of them need an entire dataset (training set) of pro-
teins with known quaternary structure to be exploited for classifying an unclassified
protein. In particular, each unclassified protein has to be compared to each protein
belonging to the dataset. Differently from all previous methods, PQSC-FCNN has
been tested on both homo-oligomers and hetero-oligomers and has been proved to
be more efficient than other techniques. Indeed, PQSC-FCNN extracts a representa-
tive subset of the training set and uses this subset (insteadof the whole training set)
during the classification. This enables to reduce the total number of comparisons to
be carried out without any significant loss in precision.

Bi-Grappin

Bi-Grappin is a novel method for transferring biological knowledge about protein
functions, from characterized to uncharacterized proteins, by comparing PPI net-
works. In particular, this tool is useful for discovering the biological process in which
the uncharacterized proteins of a given organism are involved. Given two PPI net-
works of two different organisms, Bi-Grappin identifies the most similar character-
ized proteins in the second network starting from the set of uncharacterized proteins
of the first network. In particular, the most similar proteinpair is determined by
considering both sequence and interaction profile similarities. The advantage of Bi-
Grappin, as compared to other techniques, is its ability of incorporating both quanti-
tative (interaction strengths) and qualitative (interaction reliabilities) information in
the analysis of the input networks.

10.2.2 Complex Biological Structures

The observation that proteins, and macromolecules in general, can be better char-
acterized by analyzing their interaction patterns suggests the development of graph-
based techniques to analyze and compare biological networks. This allows to infer
new information about cellular activity and evolutive processes of the species. In this
context, two techniques have been devised, that are Sub-Grappin and PInG-Q.

Sub-Grappin

Sub-Grappin is a novel method for discovering similar sub-graphs, possibly repre-
senting similar functional modules, across the PPI networks of two different species.
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Sub-Grappin exploits Bi-Grappin as a submodule during the sub-graph extraction
phase together with the Collapse technique. The iterative alternation of these two
submodules led to the final achievement of two collapsed networks (corresponding
to the two different organisms under consideration) in which corresponding macro-
nodes identify similar subgraphs. Also in this case, the main benefit of Sub-Grappin
is the possibility of exploiting both reliability and quantitative information, which
can make the sub-graph search more accurate, as also confirmed by experimental
analysis.

PInG-Q

PInG-Q is a novel method for querying PPI networks based on a two phases:(i)
global alignment and(ii) similarity refinement. PInG-Q, starts by globally aligning
the query and the target networks by considering node pairs similarities. Then, it
refines the similarities of the corresponding nodes on the basis of how much the
alignment satisfies the structural constraints imposed by the query (i.e., how much
the query interactions are conserved). The main advantagesof PInG-Q, w.r.t. previ-
ously existing tools, are:(i) its ability to handle query and target networks shaped as
general graphs and(ii) to take into account reliability information. While having such
good properties, PInG-Q runs in polynomial time in the size of the target network.

10.3 Future Trends

This section outlines possible future research directionsrelated to the main topics
discussed in this thesis.

As for the protein quaternary structure classification, some work is required on
protein representation. Indeed, by enriching the set of features used to represent a
protein (currently only the protein functional domain composition is exploited), the
classification accuracy might be improved. For instance, the representation may take
into account also protein sequence information (e.g., amino acid composition) or
some knowledge about the protein secondary structure.

Concerning Bi-Grappin, an immediate extension is the adaptation of this tech-
nique to other types of biological networks (e.g., metabolic pathways or gene net-
works). In this respect, efforts should mostly involve the initial phase of node simi-
larity computation. Furthermore, Bi-Grappin can be extended to search for similari-
ties in multi-aligned networks instead of just one pair of networks. Supposedly, such
an extension would be easily achieved since it only requiresto exploit a multipartite
graphs maximum weight matching algorithm instead of a bipartite one.

Also for the similar sub-graphs extraction problem, a future research direction is
the extension of Sub-Grappin to align multiple networks and deal with other types of
biological networks instead of only PPI networks.

Finally, as for the network querying problem, possible extensions of PInG-Q can
concern the “fixing” of some pairs of corresponding nodes, for which the homolo-
gous of the query proteins in the target network are known. This can help the biol-
ogists to guide the algorithm toward better solutions whereknown correspondences
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between proteins are imposed. Also in this case, a desirableextension would be the
adaptation of PInG-Q to query other types of biological networks.

10.4 Concluding Remarks

The work presented in this thesis has discussed some main strands of research in
bioinformatics. In particular, a few hints and some real solutions to interesting bioin-
formatics tasks have been given. Finally, some tips regarding possible improvements
of the proposed techniques have also been sketched.

Bioinformatics is a very active field of research and widely investigated. Indeed,
many are the contributions still to be provided, the topics to be analyzed and the
discoveries to be attained.

Life conceals the deepest knowledge about the universe. At the same time, the
biggest and challenging mysteries are about life. To fill this gap, bioinformatics tries
to shed light on the mechanisms that regulate life processes. Therefore, this research
field becomes attractive for all the researchers yearning for this mysterious knowl-
edge. However, one may wonder if there are some mysteries that have not to be
revealed; perhaps, tasting the absolute knowledge will remain only a dream.
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