
Università della Calabria
Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica e Informatica

XXIX ciclo

Tesi di Dottorato

Ontology-driven
Information Extraction

Settore Disciplinare INF/01 – INFORMATICA

Coordinatore: Ch.mo Prof. Nicola Leone

Supervisori: Ch.mo Prof. Nicola Leone

Prof. Marco Manna

Dottoranda: Dott. Weronika T. Adrian

Acknowledgements

It has been a beautiful journey and I owe my deep gratitude to a number of people who
accompanied me on the way. First and foremost, I would like to thank my supervisor,
Prof. Nicola Leone, who invited me to work and study in Calabria and provided the
best environment for development I could dreamed of. He is an inspiring leader and a
real problem-solver. Thank you, Professor, for all the particular solutions you offered
along the way, and the overall experience of working and studying in the Department of
Mathematics and Computer Science at University of Calabria.

I thank my co-supervisor Prof. Marco Manna for countless advice, corrections, lessons
learned and hours spent doing the research. I have learned a lot from you. And I would
like to thank you not only for the solid scientific formation I received, but also for your
kindness and patience. Giving good advice is great, but being able to reach another per-
son, taking into account their personality and character, is an impressive skill.

I thank Mina and Alessandra, who I worked with within the KnowRex research
project, for showing me how effectiveness, solid programming work and a friendly at-
mosphere can be combined. Thank you Salvatore, Maria Elena, Gianni, Francesco and
all the DLVSystem crew for receiving me as a “family” member. Your support in various
situations was beyond what I could expect.

Thanks go to all my colleagues of the department, especially to fellow PhD students
with whom I shared the room: Guillermo, Barbara and Bernardo, and to Alessia Cosentino
who makes impossible possible on a daily basis. I have nowhere experienced such gen-
erosity of people in their willingness to help, offer their knowledge and advice as here.
Working in this environment literally translates to a professional and personal growth.

Moreover, I would not be here, if I had not started my scientific career at AGH Uni-
versity of Science and Technology in Kraków. I would like to thank Prof. Antoni Ligęza,
who first sparked my interest in logic programming and AI; Prof. Grzegorz J. Nalepa,
who introduced me to the academia and was my first supervisor and a boss in the follow-
ing years; and my dearest friends from GEIST research group. I learned a lot from you
during the years spent at AGH and it remains an important time in my life.

The years of pursuing the PhD has also been a time of life changes. I would like to
thank my parents and parents in law, my siblings Kacper and Ola and the best Szwagier
Maciek, who supported us over these years, and my friends, especially Mirka, Olga, Kat,
Krzyś and Krystian, for our invaluable friendship. Finally, I thank my dear family: Marek,
Jaś and Maja, for being my greatest happiness and the best party for any adventure.

i

To my Grandpa

Abstract

Information Extraction consists in obtaining structured information from unstruc-
tured and semi-structured sources. Existing solutions use advanced methods from
the field of Natural Language Processing and Artificial Intelligence, but they usu-
ally aim at solving sub-problems of IE, such as entity recognition, relation extrac-
tion or co-reference resolution. However, in practice, it is often necessary to build
on the results of several tasks and arrange them in an intelligent way. Moreover,
nowadays, Information Extraction faces new challenges related to the large-scale
collections of documents in complex formats beyond plain text.

An apparent limitation of existing works is the lack of uniform representation
of the document analysis from multiple perspectives, such as semantic annotation
of text, structural analysis of the document layout and processing of the integrated
knowledge. The recent proposals of ontology-based Information Extraction do
not fully exploit the possibilities of ontologies, using them only as a reference
model for a single extraction method, such as semantic annotation, or for defining
the target schema for the extraction process.

In this thesis, we address the problem of Information Extraction from homo-
geneous collections of documents i.e., sets of files that share some common prop-
erties with respect to the content or layout. We observe that interleaving semantic
and structural analysis can benefit the results of the IE process and propose an
ontology-driven approach that integrates and extends existing solutions.

The contributions of this thesis are of theoretical and practical nature. With
respect to the first, we propose a model and a process of Semantic Information
Extraction that integrates techniques from semantic annotation of text, document
layout analysis, object-oriented modeling and rule-based reasoning. We adapt
existing solutions to enable their integration under a common ontological view
and advance the state-of-the-art in the field of semantic annotation and document
layout analysis. In particular, we propose a novel method for automatic lexicon
generation for semantic annotators, and an original approach to layout analysis,
based on common labels identification and structure recognition. We design and
implement a framework named KnowRex that realize the proposed methodology
and integrates the elaborated solutions.

iii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivation . 3
1.3 Contributions . 5
1.4 Organization of the thesis . 8

2 Semantic Annotation 9
2.1 Different perspectives on text annotation 9
2.2 Free and commercial tools . 14
2.3 A critical overview . 20

3 Automatic Lexicon Generation 23
3.1 Motivation . 23
3.2 Related work . 24
3.3 Semantic resources and entity networks 25

3.3.1 Semantic resources . 26
3.3.2 Entity networks . 28
3.3.3 ASP-based network construction 29

3.4 Word sense disambiguation . 32
3.4.1 Optimal common ancestors 33
3.4.2 ASP-based sense detector 35

3.5 Lexicon generation via entity set expansion 37

4 Document Layout Analysis 39
4.1 Problem specification . 39
4.2 Existing solutions . 41

4.2.1 PDF file management systems 41
4.2.2 Table recognition challenge 45

4.3 The label-content approach . 47
4.3.1 Recognizing the document structure 48
4.3.2 Improving the recognition with domain labels 50

iv

CONTENTS v

5 Ontological Document Representation 53
5.1 Review of knowledge representation formalisms 53

5.1.1 Ontological languages 54
5.1.2 Desired characteristics of the formalism 59
5.1.3 The language of choice 59

5.2 Principles of the proposed model 64
5.2.1 Layout representation . 65
5.2.2 Content representation 67

5.3 Use case example . 68

6 Semantic Descriptors 71
6.1 Existing rule-based solutions for IE 71
6.2 The semantic descriptors approach 73
6.3 Syntax and semantics . 77
6.4 Logic-based evaluation . 80

6.4.1 Translation to logic rules 80
6.4.2 Exemplary translations 84

7 Ontology-driven IE: The Knowrex Framework 87
7.1 System overview and architecture 87
7.2 Using the framework . 90

7.2.1 Design phase . 91
7.2.2 Runtime phase . 96

7.3 Implementation principles . 99
7.3.1 Ontology-driven extraction 99
7.3.2 Annotation engine . 106

8 Experimental Evaluation 110
8.1 Automatic lexicon generation . 110
8.2 Document layout analysis . 112

9 Discussion and Conclusion 117
9.1 Summary of the results . 117
9.2 Future work . 119

List of Figures

1.1 Architecture of the framework 5

3.1 An entity network example . 29
3.2 Creating an entity network from seeds and selecting the word senses 38

4.1 General architecture of Quablo tool 45
4.2 Recognizing tabular structures in a PDF file 47
4.3 Matrix representation of a table in a PDF document 49
4.4 Transformation of a PDF document with table and label recognition 51
4.5 Constructing a two-dimensional representation of a document . . 52

5.1 Fragment of the ontology for a collection of CVs documents. . . . 70

6.1 General structure of a semantic descriptor’s body 77
6.2 Automata-based representation of a semantic descriptor’s body . . 79
6.3 Automata-based representation of a block with anonymous terms . 79
6.4 Creating an automaton for a single block 82

7.1 Semantic Information Extraction with KnowRex 89
7.2 Architecture of the KnowRex system 90
7.3 Design Phase concepts: object model, mapping, and target schema 91
7.4 Layout objects of the ontology in a KnowRex project 93
7.5 Refinement of a general “category marker” concept 94
7.6 Fully editable domain-specific concepts in an ontology designed

by a user for a particular KnowRex project 95
7.7 Runtime Phase of KnowRex system 97
7.8 Table output of the input documents 99
7.9 Minimization process for reducing the not needed extraction . . . 100
7.10 Selecting appropriate classes from the ontology 101
7.11 Dependencies between the target schema relations, object model

objects, and tools’ configuration 102
7.12 Exemplary relation and its dependency path 106

vi

LIST OF FIGURES vii

7.13 Dependencies of an object recognized with different methods . . . 108

8.1 Curricula in different variants of Europass standard 114

Chapter 1

Introduction

Using machines to automatically extract relevant information from unstructured
and semi-structured sources has practical significance in today’s life and business.
Structured data can be interpreted, analyzed and reasoned over easily and to some
extend automatically. This in turn allows people to take reasonable decisions, such
as recruiting a right person for a job (based on analysis of a pile of curricula) or
buying a good house (by monitoring the real estate market postings).

The main shortcoming of the existing approaches to Information Extraction [25,
66, 11] is that they rely on the syntactic level of the information within the input
files and lack understanding of extracted information by means of proper formal
representation. Consequently, even small changes in the representation of con-
tent, organization of text etc. influence their performance. This motivates using
higher level of abstraction to formally represent knowledge about the considered
collection that would guide the process of IE.

Recently, some works have shown the promise of encoding formal knowledge
in the form of ontologies [69, 68, 6, 45]. These approaches use ontologies either
as a way to present the results of the extraction, or to allow matching different
representations across sources. Still, the representation usually is limited to the
content of the input files, while also the structure and layout of the documents
could provide valuable information for the extraction process.

Combining different techniques to obtain comprehensive results is natural step
forward within the IE domain [84, 26]. In this doctoral dissertation, we pursue this
direction by decomposing the Information Extraction into sub-tasks, and address-
ing specific challenges within them. As a result, the topics we consider range
from the meaning of single words and phrases to the layout and structure of a
document, and from a unified representation of various relevant aspects to logic-
based processing of the integrated knowledge. We analyze and solve separately
specific problems identified within these areas. and then orchestrate the existing
and novel solutions into a comprehensive Information Extraction framework.

1

CHAPTER 1. INTRODUCTION 2

1.1 Context
Information Extraction has been attracting research attention for a few decades.
The problem originated in the Natural Language Processing (NLP) community
in 1970s. With time, different sub-problems and areas of Information Extrac-
tion emerged, including entity, relation, and events extraction or co-reference
resolution (see [81] for an overview of the sub-problems and respective meth-
ods). With respect to approaches, the initial efforts to build rule-based Informa-
tion Extraction systems relied mostly on manually created regular expressions,
cascaded finite-state transducers and lexicon-syntactic pattern [61]. Later on, a
lot of attention was directed towards automatic learning of rules and patterns,
training classifiers that would perform the extraction tasks etc. Supervised, semi-
supervised and unsupervised methods have been studied, and different models,
such as Hidden Markov Models (HMM) [104, 102, 107] or Conditional Random
Fields (CRF) [75, 72, 100, 92] have been proposed. With the advent of the World
Wide Web, a paradigm of Open Information Extraction, where no specific “target
schema” is defined, has been attracting great attention as well [12, 38, 117, 37].

Currently, the landscape of solutions and tools is diversified, and depending
on the characteristics of a task at hand different approaches give best results. For
instance, if something is known about the structure or content of the considered in-
put, one can apply the domain-specific knowledge. For building a general-purpose
tool, one may want to take advantage of some typical properties of documents or
statistical features of considered language. The “corporate research” is diversified
too. On the one hand, there is a reborn of interest in rule-based techniques that
follows the intuitive nature of rules [27]. On the other, there exist commercial
tools that praise themselves for using modern AI solutions, such as deep learning
and word embeddings [113]. Information Extraction is nowadays a mature field,
in which two main directions of research and development are pursued: the first
it to further enhance the specialized tools and techniques, and the second is to
combine the existing solutions in a synergistic way.

As noted in [93], in the context of “emerging novel kinds of large-scale cor-
pora,” the established field of Information Extraction “assumes new dimensions
and reinvents itself”. In fact, dealing with the new types of document collec-
tions [17, 62] and the ever-increasing volumes of data poses new challenges for
the IE systems, requires novel solutions and more intelligent techniques.

To address these new challenges, it is often necessary to abstract from the
physical content of a file and analyze the input data by taking into consideration
different aspects. When a human extract information from a set of somehow “sim-
ilar” documents — be it with respect to their layout, structure or content — they
intuitively use the common properties to locate and extract relevant information.
For example, we can understand that some portions of text, serve only as spe-

CHAPTER 1. INTRODUCTION 3

cial “markers” that point to relevant information, and their implicit meaning can
help extract more meaningful facts (think for example of specific section names
in a collection of scientific papers that indicate the kind of content located within
them). Another situation is when the structure of a document itself conveys some
meaning and gives useful hints for locating desired information. For instance,
a two-column layout may in fact “semantically” represent a table, if in the one
column there are names of “attributes” and in the other – the values of them.

Such considerations require operating on a higher level of representing and
processing knowledge. Unfortunately, most of the existing approaches to Infor-
mation Extraction rely on the syntactic level of the document, even if they employ
some semantic technologies. In this thesis, we address the problem of extracting
structured information from homogeneous collections of documents i.e., sets of
files that share some common properties. To automatically extract and generate
instances for a target knowledge base, we propose a knowledge-based, ontology-
driven approach to the problem that integrates and extends existing techniques.

1.2 Motivation
Motivation for research reported in this thesis stems from a practical need for a
comprehensive IE system for collections of documents beyond the plain text for-
mat. While there exist numerous solutions for text, as well as for semi-structured
documents tagged with some kind of markup language (such as HTML, XML
etc.), extracting information from complex files such as PDF — where various
textual and graphical elements can be placed and organized in different layouts —
poses additional challenges [40, 42, 76]. PDF format in general does not guar-
antee a machine-readable representation of layout and structure. Instead, it must
often be “recovered”. Nevertheless, these complex files are widely used in many
domains. This is why they should not only be considered, but also their analysis
gives rise to interesting research challenges.

To focus our attention, we assume that the collections we analyze share some
common properties, regarding layout or structure, or describing the same domain.
To understand the intuition, one can imagine, for example, a collection of Curricu-
lum Vitae documents: the documents share a topic (curricula of humans, typically
even within a single profession), some structural information (sections about per-
sonal information, education etc.), and the layout which is often standardized.

For such characterized input, the general objective is to propose a knowledge-
based approach to Information Extraction that would be domain-independent yet
adaptable for different types of document collections. To this end, in this thesis
we propose a framework of Ontology-driven Information Extraction from homo-
geneous collections of documents. To practically realize the approach, we in-

CHAPTER 1. INTRODUCTION 4

tegrate and extend solutions from the fields of semantic annotation [114], table
recognition [119], ontologies [51] and logic programming [46, 18, 13].

In existing approaches, different sub-problems of Information Extraction are
treated separately. Furthermore, some perspectives of document analysis are not
even incorporated into the process. In our approach, we aim to integrate and
extended where needed existing approaches and use an ontology as a reference
model for all the techniques involved in the IE process. For instance, the output of
annotating tools must be mapped to appropriate ontology concepts, the extraction
rules must produce instances for the ontology etc.

The first sub-problem we consider is the semantic annotation of text. The
objective of this process is to recognize pieces of text as instances of some ab-
stract concepts. The methods from the field of Natural Language Processing
(NLP) offer text analysis on a syntactic, morphological, grammatical and seman-
tic levels. The annotation tools adopt different techniques for understanding the
words and phrases, such as fixed lists of reference terms, patterns and templates or
learning mechanisms. An interesting proposal in this respect are semi-supervised
(or “distantly-supervised”) methods for lexicon generation for semantic annota-
tors [110, 23, 55]. These methods, given a set of example words, are able to
dynamically extend the list to cover more words “of the same kind” so that the
annotator can extract more domain-specific terms starting from a set of examples.
This technique is worth studying and using in our framework, as it can serve in
cases when for particular document collection existing annotators are insufficient.

If the documents share some common layout, it may be desirable to capture
their common labels, typical keywords or structure elements. Although the text
annotation allows to assign some semantics to text, this may be not enough when
working with complex input data such as documents in PDF format. Understand-
ing the “context” in which certain information appear in a document can signifi-
cantly improve the results of the extraction. This is why we also consider methods
of document layout analysis [116, 86]. In particular, the existing methods for two-
dimensional structure analysis, including table recognition [119], would benefit
from using some domain-specific knowledge in their otherwise “blind” process-
ing. It is then important to study if and how these notions could be interleaved.

Basic objects recognized by appropriate semantic and structural tools, rep-
resented uniformly with use of an ontology, are suitable for further processing
to extract more complex objects and relations. To this end, we study methods for
formulating extraction rules that would allow for combining different levels of ab-
straction (e.g., semantics of a portion of text combined with a information about
the placement of the text in a document). In particular, we draw inspirations from
the HıLεX [79] system and its semantic descriptors that we extend such that they
can operate on the two-dimensional document representation.

CHAPTER 1. INTRODUCTION 5

1.3 Contributions
In this thesis, we address the problems introduced in the previous sections and pro-
pose an ontology-driven approach to IE which allows for extracting semantically
rich information from complex documents that share some common features. To
this end, we integrate and extend recent technologies and results from the fields
of classical information extraction, table recognition, ontologies, text annotation,
and logic programming. In particular, we address the problems of semantic analy-
sis of the document content, recognition of its structure, unified representation that
covers both aspects, and methods of processing this knowledge for the IE purpose.
We propose a framework for Information Extraction, and design and implement a
system that allows to adapt the framework for different domains.

The proposed framework We provide a model and a process for what we call
Semantic Information Extraction, and a software framework that realizes it. The
conceptual architecture of the framework is illustrated in Figure 1.1. In the frame-

ontology

target
database

input
files

Ontology EditorDocument Calibrator Text Editor

2D processor
calibration

Annotation settings Initialization file
Semantic

Descriptors
Mapping

rules
Target

Schema

2D
tokenizer

Table
recognizer

Annotator n

Grid

Parser

Translator

Rules

Logic
reasoner

Presentation
Layer

Business
Logic Layer

Data Access
Layer

1D
tokenizer

Layout
and Structure

Analyzer

(1)

Annotation
Integrator

(2)

Rule-based
Extractor

(3)

Mapper

(4)

Annotator 2

Annotator 1

...

(a)

(b)

(c)

(C)

(5) (6) (7)

(E3)

(E1)

(E2)

(R1) (R2)

Figure 1.1: Architecture of the framework

work, we integrate several perspectives of document analysis: (1) layout and struc-
ture analysis, (2) semantic annotation of content and (3) rule-based information
extraction. The framework allows to transform a collection of homogeneous data

CHAPTER 1. INTRODUCTION 6

i.e., files similar in some ways (5), by means of the ontological knowledge rep-
resentation of the collection (6) into an instantiation of a target knowledge base
(7). To this end, apart from the techniques of Semantic Information Extraction,
the framework also supports (4) mapping to arbitrary target schema. Such an
approach makes the framework flexible and modular.

Particular tasks are realized by individual components of the framework. Each
of them (i) is guided by an appropriate configuration file (C); (ii) uses internal
modules, such as tokenizers for text annotation, or parser and translator for rule-
based extraction; and (iii) interacts with external tools: a pool of integrated an-
notators (E1), a two-dimensional document processor (E2) and a logic reasoner
(E3). The input and output of the components is constituted by: the input PDF
documents, the ontological representation (both the terminology and extracted in-
stances), the intermediate knowledge representations (document “grid” (R1) and
logic rules (R2)) and the set of instances for the target knowledge base.

The idea that guided our work was to make the system as intuitive as possible
for a user. Thus, the interplay between different components is contained in the
logic layer of the system (Fig. 1.1(b)), and the user interacts only with a graphical
ontology editor with some additional text editor fields and a simple document
calibrator for setting characteristics of the files such as margins etc. (Fig. 1.1(a)).
The ontology designed by the user (or to be precise, extended from a generic
one), guides the particular tasks, offering the input information and absorbing the
extracted data that become the ontology instance.

In the proposed framework, the workflow of the operation is divided into
phases of design and runtime. In particular, in the former, the user “explains” the
specificity of the considered collection to the system (this is marked in Fig. 1.1
with dashed lines). Basically, this comes down to conceptualizing the collection,
by extending the provided generic framework ontology with domain-specific con-
cepts expected to be encountered. Then, the user must precise how to extract the
ontological concepts. For “common” objects, they can select to use existing tools
(annotators) available in the system. For the objects not recognizable by existing
tools (e.g., collection-specific concepts or more advanced objects that have mul-
tiple attributes), they write extraction patterns (semantic descriptors) themselves.
The user also specifies the target schema that should be populated as the result of
the extraction and a mapping between the schema and the ontology.

All these activities serve to configure the system which then automatically per-
forms the extraction over given input collection. The runtime phase workflow is
depicted in Fig. 1.1 with dotted lines. In the runtime phase, the documents are first
analyzed structurally, but with help of the semantic annotation of the collection-
specific labels, and a two-dimensional “grid” representation of the documents is
obtained. Then the content is analyzed semantically and recognized categories are
assigned to words and phrases. Finally, using collection-specific extraction rules

CHAPTER 1. INTRODUCTION 7

designed by the user, more complex objects are extracted from the documents,
completing the instantiation of the ontology. At the end, using logic rules, the
ontology is transformed into the target knowledge base, for example a relational
database.

Thesis outcomes and results The contribution of this thesis may be summa-
rized as follows:

Semantic Annotation In the field of semantic annotation, we propose a unifica-
tion framework that allows to combine the results of independent text anno-
tation tools. Moreover, we propose a novel technique for automatic lexicon
generation, if available tools are insufficient for particular domain.

Document Layout Analysis We propose a new approach for the analysis of doc-
ument layout that combines table recognition technique with domain-specific
knowledge about particular documents. The result of the proposed method
is a two-dimensional “grid” representation of the input document.

Ontological Document Representation We propose a conceptualization of com-
plex documents that takes into account both structure and content of the
files. The proposed model can “guide” the Information Extraction by pro-
viding a reference ontology for all the steps in the process.

Rule-based Information Extraction We extend the formalism of semantic de-
scriptors that are semantic rules for IE. In particular, we allow them to inte-
grate various aspects of the input documents, such as the meaning of single
words and phrases, information about the document structure etc.

Framework design and implementation We design and implement a framework,
named KnowRex, which realizes our ontology-driven approach to IE. The
system integrates the existing and novel solutions and remains intuitive,
even for non-expert users.

Disclaimer The research for the thesis has been partialy carried out in collabora-
tion with DLVSystem Srl., within the research project “KnowRex: Un sistema per
il riconoscimento e l’estrazione di conoscenza”, POR Calabria FESR 2007-2013.
Part of the implementation was carried out by the corporate partners, DLVSystem
Srl. and Exeura Srl.

CHAPTER 1. INTRODUCTION 8

1.4 Organization of the thesis
The structure of this thesis is as follows: In Chapter 2, we introduce the problem
of semantic annotation of text and review existing relevant approaches and tools.
Then in Chapter 3, we discuss the problem of lexicon generation for semantic
annotators. We propose a novel method for automatic lexicon generation for se-
mantic annotators by utilizing existing knowledge stored in semantic resources on
the Web to build a set of instances for a desired semantic category starting from
a set of “seed words”. In Chapter 4, we consider the problem of document layout
analysis and propose a method for building a two-dimensional grid representation
of the structure of a document in PDF format. We combine the table recogni-
tion technique with semantic analysis of the document that focus on “common
labels” i.e., phrases typical for a collection that mark certain sections etc. Then
we propose a unified ontological representation of various aspects of document –
both related to its content and structure – in Chapter 5. In Chapter 6, we describe
an extended rule-based formalism of semantic descriptors, explain its capabilities
and benefits for Information Extraction. In Chapter 7, we present the KnowRex
framework that integrates the presented solutions and allows to practically realize
the ontology-driven approach to IE. Finally, we evaluate the work in Chapter 8,
and in Chapter 9 we conclude the thesis.

Chapter 2

Semantic Annotation

In this chapter, we introduce the problem of the semantic analysis of document
content. We present the task of text annotation, and show how it is formulated,
so that it can be solved automatically. We discuss existing approaches, methods
and tools, and make a critical overview of them. The semantic annotation of
documents is at the heart of any approach to recognize and extract information.
In particular, any annotation process has the purpose of associating to input data
some higher-level concepts (for example, classes of an ontology), so that the data
gains relevant and shared meaning.

In order to propose a comprehensive method for representing, recognizing
and extracting knowledge, it is essential to exploit as much as possible the exist-
ing semantic annotation techniques of documents which, suitably integrated and
specialized, may allow to associate data to classes of an ontology and define on-
tological relationships between the various objects.

2.1 Different perspectives on text annotation
Text annotation problem can be approached from different perspectives, using
a variety of methods and may be considered at different levels of abstraction.
One can think of a strictly syntactical metadata, or one that describes a piece of
text from the grammatical and morphological point of view; finally, portions of
text can be associated to formal ontological concepts, defined elsewhere. In this
section, we introduce selected tasks of semantic annotation. We discuss the goals
they formulate and the representation and processing methods they use.

A number of criteria may be thought of when classifying text annotation. One
can consider the level of formality of the used language, the placement of the an-
notation, the recipient of the annotation, the type of annotated resource etc. In
particular, the level of formality may vary from strictly formal to informal. In

9

CHAPTER 2. SEMANTIC ANNOTATION 10

the case where a formal language is used, the annotation is expressed in a formal
representation language such as RDF, RDFS or OWL, which are used for the def-
inition of ontologies and metadata on the Web. The informal level refers, instead,
to annotations expressed in natural language or in a controlled language, which
allows to add information about documents or resources that can be used by a
human user. With respect to placement, an annotation can be considered “embed-
ded”, inserted in the annotated document or “attached” i.e., stored separately and
linked to the document by a link. The recipient of an annotation can be a human
user or a machine. In the first case, the annotation is intended to provide addi-
tional information about a resource (in which case the annotation will typically be
informal and probably expressed in natural language), in the latter case the anno-
tation is intended to expose the meaning of a resource (in this case the annotation
must be of a formal type for processing by a machine). Various types of resource
can be annotated: documents, text fragments, HTML pages, images, etc., or even
Web Services (for example, to express what a service does or to describe input
and output parameters), annotations for data structures, or processes involved in
the exchange of information between software applications that cooperate. Let us
now review some of the annotation tasks and techniques.

Tokenization is the basic tool used for automatic text analysis. The task is
to identify and report, within a text, the syntactically atomic linguistic units (or
tokens) that compose it. The purpose is to subdivide the text into “pieces”. It
is therefore a preliminary step indispensable for any computational processing of
the text, since it allows to divide character sequences into minimum units (words,
punctuation marks, dates, numbers, abbreviations, and so on). Expected output is
captured by a token concept. Such a token contains a string attribute that defines
its value. For example, for an input a phrase like “aaa bbb cc ddd.”, the tokenizer
would return values such as “aaa”, “bbb”, “cc” and “ddd”. A token could also be
a structurally complex entity (e.g. a date). In that case it is assumed as a basic unit
for subsequent processing levels (morphological, syntactic, etc.). In languages
where word boundaries are not explicitly written in writing, the tokenization is
called “word segmentation”. There are, however, tokens that do not correspond
to lexical units in the strict sense (for which a corresponding definition cannot be
found in a lexicon). These include dates, acronyms, quantity and measurement
expressions, proper names and punctuation marks.

The task of tokenization is not particularly complex with respect to the others,
but there are some areas for ambiguity. For instance, if one considers the “dot”
sign as the delimiter of the end of a sentence, one may be mistaken when the
dot refers to an abbreviation or a date etc. Also, the task seems to be relatively
simple for languages like Italian or English, that are based on spaces to delimit the

CHAPTER 2. SEMANTIC ANNOTATION 11

words; but for continuous spelling languages it is definitely more complex. In the
first case, in fact, the token can be defined as any character sequence delimited by
spaces. Even so, however, that definition leaves room for numerous exceptions.

Lemmatization is the process of reducing a word to its canonical form, called
lemma. It is an operation that translates every word of a text into the basic form
or dictionary entry. In particular, in the context of natural language processing,
lemmatization is the algorithmic process that automatically determines the lemma
of a certain word (and eventually annotate the word with the lemma).

The process may involve other language processing activities, such as mor-
phological and grammatical analysis. It is undoubtedly complex, since it has to
take into account the variety of language expressions that can be stated in a lan-
guage. In many languages, the words can have different forms. For example,
verbs may appear in different forms depending on a grammar tense, while the
canonical form – the infinite mode – is what defines the word lemma and is the
reference form for searching the word within a dictionary.

Grammar Analysis, Part Of Speech (POS) tagging is commonly referred to
as a level of linguistic analysis of the text that assigns to each syntactically au-
tonomous linguistic unit (or token), within a text, the set of relevant traits. These
include typically the indication of the lemma, the grammatical category (or part of
the speech), and the morphological traits associated with it. While the set of mor-
phological traits may vary significantly from one annotation scheme to another
(and from one language to another), all the morph-syntactic annotation schemes
provide the indication of the grammatical category.

The feature provided by a POS tagger allows to assign to each token an anno-
tation such as: Determiner (typically abbreviated as DT), Noun, singular or plural
(NN), Preposition or subordinating conjunction (IN), Verb (VB)Proper Noun, sin-
gular (NNP) etc. In general, a typical POS task involves, first and foremost, the
need to divide the text into sentences and tokens. At this point, it is possible
for each token to locate in the dictionary the possible parts of the speech (nouns,
verbs, adjectives, adverbs, pronouns, prepositions ...) to which it can be classified.
After passing this step, the POS tagging phase allows to assign all possible POS
tags to a word, using a dictionary and applying appropriate disambiguation rules.

Morphological and vocabulary analysis involves the consultation of specific
lists of lemmas and their derivations (lists that can be optionally integrated with
specific terms related to the domain being studied), the resolution of inflected
forms (such as conjugation for verbs and declination for nouns) and the classifi-
cation of words to certain categories (such as noun, pronoun, verb, adjective). A
morphological analyzer attempts to locate the root and affixes (prefixes and suf-

CHAPTER 2. SEMANTIC ANNOTATION 12

fixes) of each word by obtaining morphomas, that is, the smaller linguistic units
with semantic meaning, and generating decompositions. Vocabulary and morpho-
logical analyzer can be implemented separately, but they often work together on
a single task. Even at this stage emerge the first ambiguity-related difficulties, in
this case vocabulary-wise: for certain words the right morphology category to be
attributed may not be well defined.

Syntactic analysis and generation of parse tree Syntactic analysis tries to
identify the parts of a phrase and their function such as subject, predicate, ob-
ject etc. Generally, the syntactic structure is represented as parse tree. Given a
sentence on which lexical ambiguities have already been resolved with the right
POS tagging, the syntactic analyzer re-elaborates it by creating the tree structure
on the basis of appropriate rules.

Parsing has the goal of identifying the syntactic relationships between the el-
ements of the text. It can be implemented at various levels of complexity. At
this stage, the ambiguity of a syntactic type can appear. Consider, for example,
the following phrase: “He saw a woman wearing glasses.” It is not clear whether
the man is wearing glasses and seeing a woman, or is the woman seen by the man
wearing a pair of glasses. The context can certainly help resolve such ambiguities,
but in the presence of articulated sentences one can encounter a proliferation of
syntactic trees that gives rise to increased processing complexity.

Matching regular expressions Among the text manipulation mechanisms, it is
interesting what is made available by regular expressions, typically used in text
search techniques that are based on “pattern matching”, that is, on the search for
correspondence. Regular expressions are, in fact, used to perform a pattern match-
ing operation on strings. A regular expression is a character pattern that follows a
text-matching syntax that satisfies the conditions defined by the pattern. Formally,
they are algebraic notations that describe strings patterns. They can be used to
find individual characters, words, or even a more complex character scheme. In
addition to their use for textual analysis, they are also used as mechanisms for
validating forms, replacing text, user input processing, and so on. Regular ex-
pressions can easily formalize the rules for tokenize the text correctly with rules
readable by tokenizers.

Semantic annotation based on ontologies Semantic annotation expresses se-
mantic information associated with a resource (the meaning of a resource or por-
tions of it). For such an annotation to be understood by a machine, it must be
formal. In addition, in order to ensure the uniqueness of the interpretation of the

CHAPTER 2. SEMANTIC ANNOTATION 13

annotation, the terms that appear in the annotation should be selected from con-
cepts and relations of a so-called reference ontology. An annotation with such
features is an ontology-based annotation.

Noteworthy, an ontology, besides providing a common basis of knowledge on
an established domain, by defining its main concepts and relationships and ex-
pressing meaning, allows to deduce new knowledge through the application of
inference rules. This has interesting implications for using ontology-based anno-
tations, as some implicit connections can be made explicit, by means of stating
the relation of different text fragments to specific concepts of ontology.

It is possible to distinguish between simple annotations consisting of an ex-
isting concept in ontology and structured annotations, created by composition of
concepts in the knowledge representation language of choice. Structured annota-
tions allow the user to build an annotation best suited to express the meaning of
the annotated resource.

Named Entity tagging includes the entity recognition methodologies that are
typically used in the Information Extraction phases in which the elements of a
text are categorized into predefined categories, such as names of people or orga-
nizations, quantities, monetary values, percentages, etc. The different approaches
involve identifying, by means of machine learning rules or statistical methods,
words or groups of words that specify entities belonging to appropriate categories
of interest. Typically, a Named Entity Recognition task is divided into two steps:
segmentation and classification. Segmentation identifies the “boundaries” of the
entities within text, with the classification assigning them a semantic value (an-
notation). Entities can belong to some generally recognized categories, such as
places or organizations, to common categories such as dates, measures, addresses
or specific domains (pharmacological names, banks, and so on). Three approaches
are generally used to recognize entities:

• Lookup List or Gazetteers: lists of objects grouped by categories;

• Rule-based (pattern-matching): entities are identified using regular expres-
sions that analyze the context and / or some features of the same entities as
spelling, POS category, or other related characteristics;

• Machine-trainable: in this mode, the technology that has gained most recog-
nition for the achieved results is the one of the Hidden Markov Model
(HMM), probabilistic models that handle word sequences.

Semantic analysis of phrases This kind of the semantic analysis aims to extract
the meaning of an entire phrase, starting from the meaning of all the term that

CHAPTER 2. SEMANTIC ANNOTATION 14

compose it and from the relationships between them. In fact, the meaning of a
sentence is not only given by words, but also by the knowledge of the rules that
decide their meaning on the basis of the combination, the order in which they
appear, the ties that bind them to other terms, within or outside the sentence. An
example of a semantic rule may be a one that presupposes the presence of the
complement object when the verb is used in the sentence or attributes a semantic
annotation that inserts the term in a precise context. This operation resolves some
cases of global ambiguity (that refers to the whole sentence) that can appear even
when POS tagging returns the correct morphological category of a word and the
parser constructs the correct structure of the sentence.

2.2 Free and commercial tools
Currently, there is a multitude of tools that support semantic annotation. Part
of them is available, others belong to organizations or companies and are kept
private. In this section, we present and describe the selected tools, characterizing
them from different perspectives.

In the literature, several ontology-based annotation systems as well as informal
annotators have been presented (see [95, 114, 89] for more detailed surveys). A
widely debated issue concerns the accuracy and reliability of the analysis offered
by the annotation systems that can be subdivided into three different annotation
mechanisms used: manual, semi-automatic and automatic. With the automatic
annotation, a computer interprets the linguistic data without the manual interven-
tion of the analyst, who at the programming stage of the system has established
the rules and algorithms necessary to interpret them. Semi-automatic annotation
systems provide a communication interface between the processor and the analyst
that allows the latter to intervene to solve dubious cases by improving the ac-
curacy and reliability of the results compared to the analyzes conducted through
fully automated procedures. Manual annotation is a costly process. There are also
several pattern-based annotation models or machine learning approaches. Anno-
tation systems based on the patterns can use automatic patter discovery methods
or manually defined patterns. Typically, one starts from an initial set of concepts
from a document corpus to identify patterns in which these concepts are found.
When new entities are detected, they are inserted into the initial set and the pat-
tern detection continues until it can be extended further. Annotation systems based
on machine learning algorithms use probabilistic or induction methods (statistical
models for predicting entity location within documents, or inductive rules that
lead to the identification of certain entities within the documents).

A further distinction between annotation systems can be made with respect
to whether or not they are using ontological external knowledge. This feature

CHAPTER 2. SEMANTIC ANNOTATION 15

of supporting ontological models is particularly important in the context of this
thesis. In fact, it becomes crucial to be able to manage ontological knowledge
bases capable of providing a common meaning to the relevant entities for a given
domain. Interest in these aspects is demonstrated by the so-called ontology-based
annotators, annotation systems that exploit ontologies.

Every automatic annotation generated by these tools represents an instance of
an ontology concept. A semantic annotation system based on ontologies can in
fact operate through instances or concepts. In annotation through instances, the
annotation consists of associating an instance with the annotated element in order
to enhance the properties that describe the instance. In annotation through con-
cepts, the annotation consists of an association of an ontology to the annotated
element is an association of a composite of ontology concepts (through appropri-
ate operators) to the annotated element. Below is a selection of annotation systems
with a brief description of each.

OntoMat-Annotizer [59] is a tool that allows to annotate web pages based
on ontologies expressed in RDF, DAML, DAML+OIL and OWL, using a user-
friendly interface. It is a stand-alone application developed in Java that comes
with a plug-in interface. The graphical interface is divided into two areas: in the
first, one can view and explore an ontology (the taxonomic structure is represented
by a tagged tree, with different icons for concepts, relationships and instances);
in the other, there is an HTML browser. To construct an annotation, one selects a
portion of text within the HTML page and associate it (through “drag’n’drop”) to
an existing or specially created ontology instance by enhancing the attributes and
properties of a concept of an ontology. An annotation produced with OntoMat
contains the definition of the instance expressed in a formal ontology language
(RDF, DAML, DAML + OIL, OWL), and the URL of the file to which it refers.
The annotation can be saved in the header of the annotated document, “embed-
ded”, or stored in an external file, and then “attached” to the original document.
OntoMat annotations may be associated with any occurrence of a certain string
within the file, but they do not relate to a specific position in the document, so
when the user reopens an annotated document, they cannot locate the previously
annotated text pieces. The system was developed by the University of Karlsruhe.

MnM [115] system provides both automatic and semi-automatic support for
HTML page annotation, using the Amilcare Extract Tool. This stand-alone ap-
plication developed in Java, integrates a web browser with an ontology editor,
providing access to a local ontology or one available from a server. Knowl-
edge representation (KR) languages supported by the system are RDF, DAML
and DAML+OIL. The system allows to record both instances and concepts. Af-

CHAPTER 2. SEMANTIC ANNOTATION 16

ter selecting the reference ontology (RO) and uploading the HTML page to be
annotated, the user must do the following: (1) select a concept from the ontol-
ogy; (2) associate a portion of text highlighted with a property of the previously
chosen concept; (3) create an instance or choose an existing one. For each se-
lected concept, one must save the annotations, since the system does not allow to
store annotations referring to different concepts in a single file. The annotation is
stored using two files: the first, in the proprietary format, contains the ontology
name and URL, the notation chosen for the annotation, and the properties used to
mark HTML portions of the HTML page; the second, in XML format, includes a
copy of the HTML page with the changes made by the markup operation. In case
of annotation through instances, the set of instances created to annotate is saved
in a file with reference to the concepts they derive from. This creates a knowledge
base, making it possible to reuse the same instances for future annotations. The
system is implemented by the Knowledge Media Institute, the Open University
and the Department of Computer Science at the University of Sheffield.

Smore [67] is a stand-alone Java application that allows to combine document
creation and annotation, including both an HTML page editor and an ontology
editor. The reference ontology can be loaded from a local file, searched on the
Web or built by the user. When creating the ontology, the user can choose whether
to retrieve a concept from an existing ontology, or define it manually based on the
RDF subject-predicate-object model. In order to build an RDFS triple, the user
has to have a good understanding of the syntax and the language terms. Smore
annotates HTML pages, images, and emails using RDF, DAML and DAML+OIL
format ontologies. The RO along with the instances used to annotate can be saved
by the user, such as a dataset file. The generated annotation can be stored either
embedded in the header or as a separate file. The system was developed by the
University of Maryland.

Cohse [14] annotation tool is a plug-in for both Internet Explorer and Mozilla,
and presents itself as an additional taskbar within the browser. The taskbar offers
several features: annotate highlighted text with the selected concept, explore the
different ontology concepts, save annotations about an HTML page, and retrieve
previously saved annotations. The RO exploration uses the OilEd [15] interface,
the DAML + OIL ontology editor, developed in Java, which has been appropri-
ately integrated with the annotation system. To annotate a portion of highlighted
text, it builds an annotation expression and associates through appropriate con-
nectors. Cohse allows to annotate both with a simple expression (single concept
of RO) and a structured one (composition of multiple RO concepts). The annota-
tion is in the same format as the ontology (DAML+OIL) and is “attached”. The

CHAPTER 2. SEMANTIC ANNOTATION 17

reference to the file and, in particular, the position of the text that is annotated in
the document is maintained using an XPointer expression. The annotation system
interacts with the browser and a set of ontologies, providing the ability to store
annotations made in an “Annotation Service” or in an “RDF Repository”. Cohse
can build annotation expressions and check their consistency using the features
provided by the ontology editor and an inference engine (reasoner). The system
was developed in the Department of Computer Science, University of Manchester,
UK.

Melita [29, 28] is an ontology-based annotation viewer of textual documents.
Its goal is not to provide an additional annotation interface, but to show how it is
possible to interact actively with an Information Extractionsystem. Melita aims
to reduce the time between the manual insertion of annotations and the learning
phase in which annotations are processed by the IE system; such time frame is
termed “timeliness”, and usually the two phases are sequential. Melita imple-
ments a smart scheduling to try to reduce timeliness to the minimum. In fact,
the IE system (Melita uses Amilcare) can begin computing the annotations auto-
matically without the user having to annotate the initial document corpus, Melita
can highlight different user annotations (with different colors), common automatic
annotations (deduced by rules that have an average accuracy rate), and “certain”
annotations (generated by rules that have a high accuracy rate) allowing the user
to choose which of the various annotation proposals are to be maintained. The
RO can be expressed in the format processed by Amilcare (file extension: .sce),
or in a logical format file (file extension: .ont). Melita annotates text documents
in embedded way by inserting into documents XML tags. Additionally, each user
can store their annotations in an external XML file (called “Gazetteer”) by listing
for each concept all instances that have been annotated. Melita is a Client-Server
application developed by the Department of Computer Science at the University
of Sheffield.

Gate [32] processes a set of documents (XML, HTML, SGML, RTF, txt etc.)
to automatically generate a set of annotated texts in XML format. Starting from
a set of web page URLs and domain ontologies, expressed in RDF or DAML +
OIL, it generates a set of instances of concepts belonging to the reference on-
tologies. Gate is a rule-based IE system, which means that extraction rules are
defined a priori. The rules are expressed in the JAPE (Java Annotation Pattern
Language) language and, in addition to recognizing the correspondence between
a string in the document and an instance of an ontology concept, also identify
possible new instances, utilizing techniques such as context analysis, recognition
of part of speech, tags, and other indicators. The graphical interface displays in-

CHAPTER 2. SEMANTIC ANNOTATION 18

stances automatically generated by highlighting the text portions with the colors
associated with the selected concepts in the ontology. The user can confirm or
modify the instances proposed by the system. Annotations are represented in a di-
rect acyclic graph where nodes are particular locations of the document and arches
are annotations. The annotation format is based on the TIPSTER format [49].
Each annotation has an identifier, a type, a pair of nodes to indicate the start and
end positions of the text within the document and an attribute value pair to ex-
press linguistic information and part of speech. The first version of Gate was built
in 1996 in C ++ and provides context analysis for different languages: English,
Greek, Spanish, Swedish, German, Italian and French. The latest version is im-
plemented in Java and makes automatic annotations using RO. All were produced
by the Department of Computer Science at the University of Sheffield.

KIM [94] is a platform that manages automatic semantic annotation for index-
ing and retrieving documents. The automatic learning capabilities of the system
are based on Gate; KIM allows to annotate textual documents using the terms cho-
sen for a default ontology called KIMO (KIM Ontology). KIMO is a “Lightweight
Upper Level Ontology” consisting of generic concepts appropriate for any appli-
cation domain. Ontology is expressed by applying the RDF (S) syntax with an
expressive power limited to OWL Lite [16] (the RO cannot contain, for example,
the definition of meta-classes). KIM is a plug-in for Internet Explorer and presents
itself as an additional taskbar within the browser. The taskbar offers several fea-
tures. The ‘Classes’ tab displays the class hierarchy, each element in the hierarchy
is associated with a different color. To search for the associated instances, one has
to select the corresponding check boxes and invoke the annotation of the current
document. Calculated instances are stored in a knowledge base and sent to a dedi-
cated attachment server. The ‘Entity’ tab contains a list of all recognized instances
in the current document that is sorted by the number of occurrences on the page.
Also, by selecting an instance within a page, one can retrieve all information about
that instance, type, properties, and attributes. One can search for all documents
with a particular instance, see if the query they want to make is already present
among the most frequently asked requests stored by the system, and make com-
plex queries by doing search by concept and imposing restrictions on the values
assumed by certain properties. KIM was developed by Ontotext Lab, Sirma AI,
Bulgaria.

SemTag [34] is an annotation system developed within the WebFountain re-
search project. The IBM Almaden (San Francisco) researchers have used SemTag
to annotate about 264 million web pages and generate 434 million disambiguated
semantic annotations, which are made available as metadata. To define the annota-

CHAPTER 2. SEMANTIC ANNOTATION 19

tion classes, SemTag uses the TAP ontology [54], which is similar to the ontology
used by KIM. To overcome the problem of disambiguation, SemTag uses a vector
space model to associate a concept with the correct class or to say that a concept
does not match a certain class of TAP. To do this, the context of the word (10
words to the left and 10 to the right) is compared with the contexts of individuals
in TAP having aliases that are compatible with that word. TAP is built so that
there are not too many entities that share the same alias, and this makes disam-
biguation simpler. SemTag has been developed as a parallel architecture, each
node annotates about 200 documents per second. From the results of its execu-
tion, the authors found that 80% of the annotations were semantically correct, that
is, the context of the annotated word was correctly identified by the system.

AlchemyAPI (http://alchemyapi.com) is a cloud-based text mining plat-
form that provides tools for performing semantic type tagging. AlchemyAPI
offers a set of natural language processing capabilities and can be used on text
mining platforms. The framework uses linguistic analysis techniques, statistical
language processing and auto-learning tools to analyze content and allow seman-
tic metadata extraction. In particular, named entity extraction procedures help
identify people, businesses, organizations, cities, geographic features, product de-
scriptions, prices, and other types within documents (portions of text or HTML
pages). AlchemyAPI allows to extract text labels and their placement based on
visual and structural features. The demo interface provided by the Alchemy API
tool allows to submit an URL or a text file. The results obtained are shown on the
same page. Annotated terms are highlighted within the text and listed for different
properties such as: relevance, sentiment (positive, negative, neutral, mixed), type
(typology of the annotation), sub-types, and the linked data.

Stanford Named Entity Tagger [41] is a Java implementation of a Named En-
tity Recognizer. It is able to tag word sequences within a text that matches the
names of people, companies, proteins, and so on. Stanford NER is also known as
CRF Classifier. The CRF-based approach utilizes the statistical modeling methods
offered by Conditional Random Fields for the implementation of pattern recogni-
tion and machine learning mechanisms. The software provides an implementation
of a linear chain CRF (arbitrary) model. Therefore, after the model training phase
one can use the code to construct sequence patterns for any extraction task. An-
notation can be made by choosing a three, four, and seven reference classes. The
interface is represented by an editor where one enters the text to annotate. Run-
ning the application shows the results that are highlighted with different colors to
distinguish the identified entities.

http://alchemyapi.com

CHAPTER 2. SEMANTIC ANNOTATION 20

Lupedia - Ontotext (http://lupedia.ontotext.com/) developed under
the NoTube Lupedia project, is configured as a “text enrichment” service that use
the Ontotext dictionary, called LKB Gazetteer, to locate the words and terms in
DBpedia and LinkedMDB databases. It supports multiple languages, including
English, Italian and French, provides several ways to filter output, and allows to
set weights and heuristic criteria to get more accurate matching. The interface
appears on a single page where one can enter the text to annotate, choose the
lookup options, the language, and the datasets.

DBpedia Spotlight (http://dbpedia-spotlight.github.io/demo/) is
an automated annotation tool that uses the knowledge base provided by DBpedia
resources, providing a solution for linking unstructured information sources to the
Linked Open Data Cloud through DBpedia. It uses named entity extraction mech-
anisms, including entity detection and name resolution (or disambiguation). It
can be used to build an ad hoc solution for Named Entity Recognition processes.
DBpedia Spotlight is able to recognize the names of concepts or entities (e.g.
‘Michael Jordan’) and establish a match between these names with unique identi-
fiers (such as dbpedia:Michael_I._Jordan or dbpedia:Michael_Jordan).
By linking text documents with resources from DBpedia, the system allows a
number of interesting use cases. For example, ontology can be used as a knowl-
edge base to display complementary information on web pages or to improve
information retrieval activities. The Web application is a user interface that allows
you to enter text and generates an annotated HTML version of the text. Web ser-
vice endpoints provide demo access, which can also retrieve data in either XML
or JSON format.

OpenCalais Annotator (http://opencalais.com/opencalais-demo/) is
a component of Unstructured Information Management (UIM) applications for
managing and manipulating unstructured information. They are systems that an-
alyze large volumes of unstructured information, in order to find new knowledge
that is relevant to the user. Open Calais is able to receive plain text, and identify
and recognize a large number of entities such as people, places, organizations or
relationships of the kind ‘working for’ or ‘is at’.

2.3 A critical overview
The problem of text annotation has been considered for years, but the area remains
open for further improvements. Although a number of methods and tools have
been proposed, each has their strengths and limitations. The analysis of the state

http://lupedia.ontotext.com/
http://dbpedia-spotlight.github.io/demo/
http://opencalais.com/opencalais-demo/

CHAPTER 2. SEMANTIC ANNOTATION 21

of the art of annotation systems has highlighted the wealth and variety of technolo-
gies and tools currently available on the market as well as non-commercial tools.
This, on the one hand, emphasizes the fact that the research sector addresses these
issues and the ever-increasing interest from software houses, on the other hand, it
poses the problem of how to use these technologies in the most profitable manner,
namely, how to choose the most suitable and appropriate for the purposes of the
application and the usage scenario.

Integrating existing solutions Guided by the selection criteria (related to the
general goal: to integrate the tools into a comprehensive multi-perspective frame-
work), we have carried out a qualitative analysis of the features and functionality
of annotation tools currently available on the Web. The research has led to dis-
covering dozens of annotation systems, each with features and goals that can be
assimilated, but at the same time targeted at specific applications. In the end,
many of those “discarded’ are in a form of browsers, equipped with an editor for
manual annotation of existing web pages (using techniques for pattern learning)
and often configured as wrappers for HTML pages, while others focus mainly on
multimedia content (images, videos). Some of the tools are used for creating and
sharing ontologies on the Web, enabling the addition of metadata to documents,
or as simple HTML editors for adding semantic annotations.

In the end, we have identified four annotation systems that were most suit-
able for our integration purpose. In particular, apart from the features that dis-
tinguish each of them, they are automatic annotation tools, capable of annotating
a generic text, with respect to different configurable semantic categories, capable
of returning the results of the complete annotation of information relating to the
recognized semantic categories and their placement within the text. Moreover, for
the identified annotators, it has been possible to have relevant resources (APIs,
documentation, web services, online demos, etc.), an important element for mak-
ing subsequent steps (integrating them into a common framework). These systems
are, in particular, StanfordNER, Lupedia-Ontotext, OpenCalais and AlchemyAPI.

Advancing the state of the art As for the methods of annotation, each has
their strengths and limitations. The use of gazetteers is certainly the simplest but
not always applicable because it may require too long lists. Rule-based entity
recognition has the benefit of simplicity in development, but it takes a long time
to test the results on the corpora and refine the rules more than once. It is fast at
run time and applied to standard texts ensures good performance. The machine-
learning approach has the advantage of being more general and applicable without
varying to different domains, but requires a lot of data for training.

An interesting solution is demonstrated by semantic annotators based on dic-

CHAPTER 2. SEMANTIC ANNOTATION 22

tionaries with automatically generated lexicons. Automatic lexicon generation
overcomes the problem of manual creation of dictionaries (gazetteers, thesauri
etc.) which is laborious and error-prone. The dictionary-based annotators are fast
and flexible, especially if they provide additional mechanisms for tolerating mi-
nor deviations in wording. This is why, except for reusing existing solutions for
ontology-based annotation, we decided to advance the state of the art in the di-
rection of semantic lexicon generation. The problem and the proposed solution is
further discussed in Chapter 3.

Chapter 3

Automatic Lexicon Generation

In this chapter, we continue our considerations about the semantics of the doc-
ument. Out of numerous types of semantic annotators, introduced in Chapter 2,
we focus on those that are based on dictionaries (or lexicons). In fact, these an-
notators are effective, accurate and fast. However, their “bottleneck” remains the
construction of the lexicon. Manual creation of the dictionaries is laborious, so
there is a need for automatic methods. In this chapter, we present the problem of
automatic lexicon generation. We focus on methods that start from a few examples
given by a human, and expand the dictionary with more words “like them” [101].
This task is often referred to as entity set expansion problem, and the methods
that iteratively extend the initial seed set with new candidate instances are called
bootstrapping algorithms. We propose a new approach to the entity set expansion
problem, by using and integrating knowledge stored in the so-called semantic re-
sources available online. We introduce a notion of entity networks, and propose
a logic-based design and implementation of them. We also discuss the problem
of word sense disambiguation, propose a method that solves it and implement it
with use of answer set programming. This chapter is based the work described in
the paper [5], accepted to the International Conference on Logic Programming.

3.1 Motivation
In this section, we introduce the problem and explain its intrinsic challenges. We
define sub-problems that we treat separately, in order to combine their solutions
later. The problem we study goes under the name of entity set expansion. Infor-
mally, given a set of words called seeds, the goal is to extend the original set with
new words of the same “sort”. For example, starting from Rome and Budapest,
one could expand these seeds with Amsterdam, Athens, Berlin, ..., Warsaw, and
Zagreb, which are also capital cities of European Union member states. But is

23

CHAPTER 3. AUTOMATIC LEXICON GENERATION 24

this the most appropriate way? In fact, an alternative expansion could be made by
Amsterdam, Berlin, Dublin, ..., Paris, and Prague, which are also Europe’s capi-
tals situated on rivers. Moreover, Rome is not only a ‘capital’, but also a ‘drama
television series’, a ‘female deity’, and many other things, while Budapest is also
a ‘film series’ and a ‘rock band’, apart from being a ‘capital’. Which is then the
“best” common category of the original words? Are they ‘capitals’ or ‘films’?

Our target application of the entity set expansion is to create lexicons for
dictionary-based semantic annotators [97]. When manual creation of a dictio-
nary is too costly, it is a practice to start with only a few examples and a text
corpus, and then use various techniques to learn the target category and extend
the list with more words. Sometimes the category is not even explicit, but given
implicitly by the context in which the words appear, that serves as an indicator for
what should be looked for.

However, the problem has also other applications such as knowledge man-
agement and search. Probably, the most famous application in this context is the
Knowledge Graph by Google, based on which the search engine may suggest a
list of somehow similar objects. First, one of the results of the Knowledge Graph
is that for a desired category (one can try for instance ‘museums in NYC’ or ‘top
movies of 2016’), the search engine provides a “carousel” at the top of the results
page that displays the possible instances of that category. Second, a functional-
ity similar to set expansion is present in the ‘People also searched for’ section on
the Knowledge Graph panel. Here, the goal is to suggest to the user something
that will be of interest too and will enrich their research process. However, as
this method is based on statistics, and more than on semantic analysis, it relies
on other people’s previous search sessions, and the results are sensitive to what
other users perceive as related. For instance, starting from Leonardo da Vinci, the
expanded set includes Leonardo di Caprio, Pablo Picasso and Albert Einstein,
whose common sort remains unclear.

3.2 Related work
The task of automatic lexicon generation has been widely studied in the NLP com-
munity. Several approaches to tackle the problem of entity set expansion have
been proposed. In particular, the idea of bootstrapping algorithms [98, 111, 64]
consists in starting from a set of seeds, discovering patterns in which they appear
in a given corpus, then using those patterns find more examples and repeating the
process until an end condition is met. The patterns are usually lexico-syntactic,
however, more complex ways of characterizing the words in a category to be ex-
panded have also been proposed. In particular, in recent years the word embed-
dings are the most studied approach [21]. As far as the corpus is concerned,

CHAPTER 3. AUTOMATIC LEXICON GENERATION 25

the great potential of the Web has been recognized and used to extend the set of
seeds [36, 101, 91]. As for the process itself, improvements have been proposed
for each step: representing words [57], discovering patterns [22, 71], evaluating
them [56] and minimizing so-called semantic drift [33].

Nevertheless, there are several problems with existing approaches. First, in-
herent limitation of statistical methods when analyzing the words, is that they do
not take into consideration possible different senses of the same word, domain-
specific exceptions etc. As pointed out in [64], methods that work well for gen-
erating “general” lexicons may fail for domains-specific dictionaries, when the
meaning of words do not always agree with statistics. This problem has been
addressed in [65] where athours propose a word representation that takes into ac-
count different word meanings. Instead, we propose to first select the meaning of
words in the seed set that best fits the task context.

Moreover, the categories in existing approaches are usually as simple as a ‘per-
son’, an ‘animal’, or a ‘city’. We would like to go a step further and be able to
discover more “descriptive” categories, by including the properties of the objects
represented with the seed words (e.g., a “person born in Italy” or a “city locate
by a river”). To this end, we propose to use knowledge available on the Web,
specifically, stored in selected semantic resources that represent semantics of ob-
jects, their categorization and relations with other objects. We want to use these
resources to disambiguate word meanings and discover commonalities among ob-
jects represented with them. Once the common category is singled out, we want to
utilize the Web-harvested knowledge, specifically stored in the hypernym database
built automatically using Hearst-like patterns [61]. This way, our approach com-
bines structural knowledge from the semantic resources for analyzing and under-
standing objects, and Web-harvested knowledge to extend the set.

3.3 Semantic resources and entity networks
In order to understand a common category of objects, we will use the online se-
mantic resources. We aim to integrate information from in them to combine the
strengths and minimize weaknesses of the resources. To reason over the integrated
knowledge, we will represent it with a novel model of an entity network.

Knowledge dispersed over the Web is nowadays in great part stored in var-
ious semantic resources — databases, created manually, semi-automatically or
fully automatically — that store information about the world with some degree
of formalization, organizing knowledge into ontologies, thesauri etc. People can
use and combine information from different sources, because they understand its
meaning and can make connections. It is thus desirable to design and implement
automatic systems that acquire, process and use knowledge available on the Web

CHAPTER 3. AUTOMATIC LEXICON GENERATION 26

to solve particular problems given to it.
In this section, we propose a new method of integrating knowledge from exist-

ing semantic resources — from lexical databases, to general-purpose encyclope-
dias, that store information related to different aspects of human knowledge. We
describe selected resources and introduce a notion of an entity network which is
a unified model for representing classes, objects and relations among them. The
integrated knowledge will serve to understand better the relations between objects
represented by seed words given by a user in a process of automatic lexicon gener-
ation. We present an ASP-based tool that, given a set of words, can automatically
create a representative entity network for them.

3.3.1 Semantic resources
Currently, more and more machine-readable knowledge is available on the Web
in a form of semantic resources. These knowledge bases formalize and orga-
nize human knowledge about the world in different scope and manners, focus on
various dimensions and areas of knowledge. There exist general-purpose knowl-
edge bases, such as Wikipedia or OpenCyc, domain specific ontologies, com-
putational lexicons such as WordNet and related projects, hybrid solutions that
integrate knowledge from several sources and more. For the problem we address,
we decided to use a combination of selected resources. Although main assump-
tions and the model remain the same regardless of the source selection, for reasons
that we will become apparent in the next sections, we have selected the following:
WordNet, Wikidata, BabelNet and WebIsADatabase. Let us now introduce each
of them in more details.

WordNet [83] is a computational lexicon of English1 that organizes concepts
into sets of synonyms, called synsets. The synsets are interlinked via lexical
and semantic relations (a different set of relations is defined for different parts
of speech). As WordNet is manually curated, the resulting network is reliable and
so this knowledge base became a widely acknowledged reference source in NLP
community and beyond. An important feature of WordNet (from the viewpoint of
our approach) is that if we select all synsets that represent nouns and the hyper-
nym relations among these synsets, we can build a Directed Acyclic Graph (DAG)
out of them. Moreover, the most general concept called ‘entity’ is reachable from
all the synsets.2 These two facts ensure that if we start from any noun synset and
follow the hypernym relations, we will always reach the most general concept and
never get into a cycle.

1There exist also satelite projects for other languages, not integrated with the core system.
2See https://wordnet.princeton.edu/#relations.

https://wordnet.princeton.edu/#relations

CHAPTER 3. AUTOMATIC LEXICON GENERATION 27

Wikidata (http://wikidata.org) is a free, open and collaboratively edited
knowledge base, operated by the Wikimedia Foundation, that can be read and
edited by humans and machines. It acts as central storage for the structured data
of its Wikimedia sister projects including Wikipedia, Wikivoyage, Wikisource,
and others. Wikidata is a document-oriented database, focused on items. Each
item represents a topic and is identified by a unique number. The items are de-
scribed with a set of statements (or claims). Statements take the form of key-value
pairs, each consisting of a property (the key) and an object (the value linked to the
property), both equipped with identifiers. Noteworthy, the semantic relations also
have their pages with their properties etc.

BabelNet [88] is a multilingual terminological resource that integrates infor-
mation from Wikipedia, Wordnet and other Web resources. It provides both en-
cyclopedic knowledge about multiple instances (thanks to the integration with
Wikipedia) and a dense network of relations among the entries (by integrating re-
lations from Wordnet, Wikidata, DBPedia, Freebase and others). BabelNet orga-
nizes information into Babel synsets – multilingually lexicalized concepts. Within
the description of a synset, there are synonyms, definitions, examples, sometimes
also pictures, and semantic relations with other synsets, including taxonomic rela-
tions. Each relation is encoded as an “edge” that is a complex object with different
properties, such as language, name, relation group etc. What is important, Babel-
Net provides links to other resources, by means of which it indicates which en-
tries in other knowledge bases correspond to the given entry (synset) in BabelNet.
Therefore, BabelNet can serve as a “knowledge hub” i.e., it lets one explore dif-
ferent resources and integrate information from them. The taxonomy in BabelNet
is not guaranteed to be acyclic.

WebIsADatabase [103] is a publicly available database containing more than
400 million hypernymy relations extracted from the CommonCrawl web corpus
(http://commoncrawl.org/). The tuples of the database are created by har-
vesting the corpus and applying lexico-syntactic patterns, such as: NPt is a NPh,
NPh including NPt , NPh such as NPt etc., where NPt indicates the hyponym and
NPh the hypernym. The dataset can be queried both for classes of a given instance,
and for instances of a given class. 3 A distinguishing feature of the WebIsADb is
that it tackled the problem of the so-called “long tail” i.e., it harvested the Web cor-
pus to identify not only the most popular named entities, but also the less known
ones. Thus, using the WebIsADb can enrich the existing knowledge bases with
new facts. In our approach, we resort to this semantic resource in the phase of
discovering new instances of the target category.

3See WebIsADb demo at: http://webisadb.webdatacommons.org/webisadb/.

http://wikidata.org
http://commoncrawl.org/
http://webisadb.webdatacommons.org/webisadb/

CHAPTER 3. AUTOMATIC LEXICON GENERATION 28

3.3.2 Entity networks
To integrate knowledge from several semantic resources, we propose a model
that can uniformly represent information acquired from them. The basic notions
we will use are (semantic) entities and an (entity) network. An entity is a pair
ε = 〈id(ε),names(ε)〉, where id(ε) is the identifier of ε , and names(ε) is a set of
(human readable) terms describing ε .

From a syntactic viewpoint, id(ε) is a set of strings of the form src : code
where src identifies the semantic resource where ε is classified, and code is the
local identifier within source src. In turn, names(ε) is nothing else but a set of
strings. For example,

ε = 〈{wn:08864547, wd:Q40, bn:00007266n},{Austria, Oesterreich}〉

is an entity representing the object, the Republic of Austria, referred to in WordNet
(abbreviation wn with identifier 08864547), Wikidata (abbreviated wd with item
identifier Q40), and in BabelNet (with synset identifier bn:00007266n).

From a semantic point of view, entities may refer to three different kinds of ob-
jects. Namely, they can either point to (i) individuals, called hereafter instances,
such as in the previous example, where the entity denotes a particular country,
or (ii) concepts that generalize a class of objects e.g., ε = 〈{ wn:08562388,
wd:Q6256, bn:00023235n }, {country} 〉 or (iii) (semantic) relations that hold
between two objects e.g., ε = 〈{wd:P31},{instance of, is a, ...} 〉 or
ε = 〈{ wd:P131},{located in, ...}〉 etc. For convenience, we will group
the entities representing instances and classes into one group, so-called (knowl-
edge) units and the relations will be a separate group.

An (entity) network is a four-tuple N = 〈Uni,Rel,Con, type〉 where:

• (i) Uni is a set of knowledge units, both classes and instances;

• (ii) Rel is a set of semantic relations;

• (iii) Con ⊆ Uni×Uni is a set of ordered pairs denoting that two units are
connected via some (one or more) semantic relations;

• (iv) type : Con→ (2Rel \ /0) is a function that assigns to each connection a
set of semantic relations; and

• (v) the pair graph(N) = (Uni,Con) is the directed graph underlying N .

An entity networkN is consistent if for each pair ε1,ε2 of different entities ofN ,
id(ε1)∩ id(ε2) = /0.

CHAPTER 3. AUTOMATIC LEXICON GENERATION 29

Example 3.3.1
Consider the network N = 〈Uni,Rel,Con, type〉 shown in Figure 3.1. For clar-
ity, identifiers are left implicit, and each entity is described by one represen-
tative name. In particular, Uni = {ε1, . . . ,ε5}, where only ε5 is a class, Rel =
{ε6, . . . ,ε10}, Con are the arcs connecting units and, for each pair (u,v) of con-
nected units, type(u,v) contains the relations graphically associated to arc (u,v).
�

ε1 = 〈id(ε1),{Prater}〉

ε7 = 〈id(ε7),{has part}〉
ε2 = 〈id(ε2),{Wurstelprater}〉

ε6 = 〈id(ε6),{is a}〉
ε5 = 〈id(ε5),{amusement park}〉

ε8
=
〈id(

ε8)
,{p

ar
t o

f}〉
ε9 = 〈id(ε9),{located in}〉

ε3 = 〈id(ε3),{Vienna}〉

ε10 = 〈id(ε10),{capital of}〉
ε9 = 〈id(ε9),{located in}〉

ε4 = 〈id(ε4),{Austria}〉

Figure 3.1: An entity network example

From a knowledge representation viewpoint, two semantic relations are com-
monly referred to as ‘is-a’: the membership relation ‘instance-of’ and the subtype
relation ‘subclass-of’. In particular, BabelNet follows this standard by display-
ing only ‘is-a’ when referring both to membership and to subtype relations. On
the contrary, Wikidata keeps separate pages (and identifiers) for them. Finally,
WordNet does not give any explicit identifier to these relations, but it considers
the ‘instance’ relation as a specific form of hyponym.4 In our approach, both
relations will be treated uniformly as in BabelNet. To this end, we define the
following useful set of relations:

Isa = {〈{wd : P279},{subclass, is a, ...}〉,〈{wd : P31},{instance, is a, ...}〉}

grouping together the above two entities. Given a network N , it is convenient to
refer to the set Con|Isa = {(u,v) ∈ Con | Isa ∩ type(u,v) 6= /0} to select the ‘is-a’
connections only.

3.3.3 ASP-based network construction
To construct an entity network, we propose an encoding in Answer Set Program-
ming [46, 18, 13], enriched with external predicates [20], by means of which

4See http://wordnet.princeton.edu/wordnet/man/wngloss.7WN.html

http://wordnet.princeton.edu/wordnet/man/wngloss.7WN.html

CHAPTER 3. AUTOMATIC LEXICON GENERATION 30

semantic resources can be queried. The external predicates refer to functions,
implemented separately, that encapsulate requests to semantic resources and in-
terpret their responses. This makes the solution modular and easily extensible:
addition of a new resource requires only an addition of a new rule and a new
(typically very simple) function, compatible with the resource’s API.

The “network builder” program consists of logical rules of the form

h← l1, . . . , ln

where h is an atom in the head of rule, and l1, . . . , ln are positive literals in the
body of rule. The literals may be either atoms of the form:

• p(t0, ..., tn) where p is a predicate name and t0, ..., tn are terms, or

• external predicates encoded as &p(t0, ..., tn ; u0, ...,um) where:

– &p is an external predicate (the name must start with a & symbol),

– t0, ..., tn are input terms,

– u0, ...,um are output terms,

– and a semicolon symbol (";") separates input from output terms.

In fact, all the rules that call external predicates establish new connections and are
of the general form:

newConnection(unit1,unit2[,optional arguments])← unitID(unit1),
&externalPredicate(unit1;unit2)[,(optional restrictions)].

The program is divided into sub-modules that are sets of rules responsible for
distinct tasks. The overall strategy and workflow of “calling” appropriate modules
is described in Section 3.5.

The first task is to understand the meaning of input words and create entities
for them. To this end, as a primary resource for word senses, we have selected Ba-
belNet due to its wide coverage of instances and integration of knowledge from
multiple sources. Let us consider a set W of seed words. The construction of
a network starts with a mapping µ which associates a fact to each word w ∈W
as follows: µ(W) = {seed(w) | w ∈W}. The following rule, starting form a
seed word, queries BabelNet for possible meanings (with the predicate &babel-
netSense) and infer a set of relations senseOf that connect the words with unit
identifiers:

senseOf(SeedWord, SenseID) :- seed(SeedWord),
&babelnetSense(SeedWord; SenseID).

CHAPTER 3. AUTOMATIC LEXICON GENERATION 31

There may be more meanings for a single word. This problem is addressed sepa-
rately as described in Section 3.4.

Note that we do not want to include all the knowledge that is somehow reach-
able from the seeds in the semantic resources, but only a small representative
subset of it. Thus, we introduce a mechanism of “levels” that we assign to units in
the network. In particular, when acquiring the meanings of words, we assert the
following fact in our knowledge base:

babelnetID(SenseID,1) :- senseOf(Word, SenseID).

The second argument of the predicate babelnetID denotes the level. This parame-
ter lets us control the application of some rules, as we will show later.

The second task for the entity network builder is to “better understand” the
objects of concern. In particular, we address this problem with the following two
sub-tasks: the first is to understand the taxonomy (hierarchy of types to which an
entity belongs), and the second is to expand the network for the semantic relations
beyond the taxonomy. To realize these tasks, we utilize the BabelNet functionality
of providing links from its synsets to other resources, especially WordNet and
Wikidata. With the following rules, we can establish “bridges” that let us jump
between resources and integrate information from them:

eqBnWn(BID, WNID) :- babelnetID(BID,Lv), &bnWnEq(BID; WNID).
wordnetID(WNID) :- eqBnWn(_, WNID).

eqBnWd(BID, WDID) :- babelnetID(BID,Lv), &bnWdEq(BID; WDID).
wikidataID(WDID) :- eqBnWd(_, WDID).

The external predicates &bnEnEq and &bnWdEq simply ask BabelNet for links to
other resources for the particular BabelNet entry identified with BabelNet ID BID.
The results of establishing these “bridges” are two-fold. On the one hand, we will
query selected resources best suitable for particular tasks, and on the other, we
will keep the network consistent by knowing which entries in different resources
refer to the same object.

Let us now explain the expansion of a network in the direction of the hyper-
nyms. We approach the problem by combining information from BabelNet and
WordNet. On one hand, BabelNet is the best source for membership relations
for individual objects, with better coverage than any other considered resource.
On the other, if we want to analyze the hierarchy of classes, the WordNet hier-
archy is more reliable, and – what is important – it is guaranteed to be acyclic.
Thus, we query both BabelNet and WordNet for hypernyms of concepts, but we
restrict BabelNet queries only to some level, using a babelnetDepth predicate, e.g.

CHAPTER 3. AUTOMATIC LEXICON GENERATION 32

babelnetDepth(3). Conversely, we query WordNet for all the hypernyms,
up to the most general concept.

The following rule, starting from a unit identified with a BabelNet ID, queries
BabelNet for hypernyms and establish a new connection, bnISA between the unit
and its hypernym:

bnISA(ID, PID, PLv) :- babelnetID(ID,Lv), &bnetISA(ID; PID),
babelnetDepth(BabelNetMax), Lv<BabelNetMax, PLv = Lv +1.

Here, the level of the starting unit is checked (parameter Lv is compared to the
value BabelNetMax), and the level of its hypernym is set to the level one step
higher. This limits the number of applications of the rule. Conversely, the rule
that queries WordNet contains no restrictions:

wnISA(ID, PID) :- wordnetID(ID), &wnetISA(ID;PID).

As for the other semantic relations, we select Wikidata as a primary source,
because it assigns to relations unique identifiers. As we stated before, we know
which objec (and representing it item in Wikidata) we are interested in, so we
can start with a Wikidata ID and ask for the item’s properties. For each property,
we get information about the name and identifier of the relation (ID and Name
attributes in the rule below) and the target item Y. We establish new connections
representing the statements with the following rule:

wdRel(X, Y, ID, Name) :- wdataID(X), &widRel(X; Y, ID, Name).

The size of the graphs underlying the entity networks depends mostly on two
factors: the number of possible meanings of the input words and the depth in a
WordNet hierarchy of the initial units (as most of the edges represent hypernym
relations from WordNet). For instance, for two seed words, the network may have
as few as 20 connections, or as many as a few hundreds.

The network building module consists of a single file with the ASP program
and a set of files with implementations of the functions that query external re-
sources. Each resource provides an API, in case of BabelNet and Wikidata, an
individual key is also required. For executing the program, we use the idlv [20]
grounder that supports external predicates. The functions querying the resources
have been written in Python.

3.4 Word sense disambiguation
In this section, we discuss the second sub-problem signaled before, namely, the
word sense disambiguation (WSD) which allows to recognize the “correct” mean-
ing of a word, if more senses are possible. Polysemy of words is a challenge, that

CHAPTER 3. AUTOMATIC LEXICON GENERATION 33

in the context of thesaurus construction, is faced, when the seed words have more
than one meaning. Analysis of commonalities among the seeds, taking into ac-
count all possible senses of all the seed words, gives rise to costly and useless
computation. Thus, to make our method more effective, we address this problem,
when we face polysemous words. In this section, we introduce the theoretical
foundations of our approach, as well as a tool, implemented in logic, that for a set
of words, designates their “best” senses.

Due to the words’ polysemy, an entity network constructed for a set of words
W may contain multiple units for each single word w∈W that represent the word’s
different meanings. As we are interested in determining a common category of
objects represented by W , but want to avoid useless network expansion for all
possible word senses, we first address the problem of word sense disambiguation.

Following the definition stated in [87], given a text T that can be viewed as
a sequence of words (w1,w2, . . . ,wn), WSD is a task of assigning the appropriate
sense(s) to all or some of the words in T , that is to identify a mapping A from
words to senses, such that A(i) ⊆ SensesD(wi), where SensesD(wi) is the set of
senses encoded in a dictionary D for word wi and A(i) is that subset of the senses
of wi which are appropriate in the context T .

Note that in our setting, which is a little bit different from the classical one, we
do not consider words in a sequence, but rather in a set (of seed words), and instead
of one dictionary, we assume a combination of semantic resources. Nevertheless,
the goal remains the same: out of possible meanings, we want to select the one
that is “the best” in the given context.

In the following section, we introduce a notion of an optimal common ancestor
(OCA) in a directed acyclic graph. This notion captures an intuition that if we
analyze the taxonomy of the objects that represent different word senses, then
finding the “closest” common supertype of all the words will point the correct
senses of words. We describe a declarative encoding in answer set programming
that uses guess-check-optimize paradigm to determine the set of optimal common
ancestors given a set of words and their entity network.

3.4.1 Optimal common ancestors
Our approach follows the intuition that the “correct” word meaning can be se-
lected out of its possible senses with the help of other seed words. More precisely,
if we pick a sense per word, find a common supertype for all the picked senses,
assign a score to this ancestor, that will reflect its “closeness” to the words, then
we will be able to determine the best combination of senses, and thus the best
sense for each word in W .

Let us consider the word: Python that has 16 senses in BabelNet. It may de-
note a ‘reptile’, a ‘mythological dragon’, a ‘missile’, a ‘programming language’,

CHAPTER 3. AUTOMATIC LEXICON GENERATION 34

a ‘rollercoaster’ in Efteling amusement park or even the ‘Monty Python group’.
Similarily, Java (18 senses in BabelNet) is a name of an island, a coffee, a pro-
gramming language, a spirit, a town, a breed of chicken etc. If we put Java and
Python as seeds for entity set expansion, we assume that these words represent the
same category. As it appears, out of possible meanings of both Java and Python,
there are three senses that are shared by these words, namely: a ‘programming
language’, a ‘name’, and a ‘band’. Thus, intuitively, we should select one of the
compatible pair of senses from this set, and not for example, an ‘island’ for Java
and a ‘reptile’ for Python (for which some common supertype may be a ‘physical
entity’). Note that, if we put more seeds into the set e.g., add C++, the context
would change, and the supertype closest to all three would be only the ‘program-
ming language’. Let us now formalize the notions.

Definition 3.4.1 (Common ancestor)
Consider a directed acyclic graph G = (N,A), and a nonempty set S⊆N of nodes
called seeds. A node a ∈ N is a common ancestor of S with respect to G if, for
each seed s ∈ S, either s = a, or there is a path in G from s to a. If so, a is often
called a common ancestor of (S,G), for short.

Example 3.4.1
Consider the directed graph G = ({1,2,3,4},{(1,2),(1,3),(2,4),(3,4)}), which
is clearly acyclic. One can verify that node 4 is a common ancestor of ({1,2},G)
since there is a path from node 1 to node 4, and a path from node 2 to node
4. Conversely, 3 is not a common ancestor of ({1,2},G) since node 3 is not
reachable from node 2. But 3 is a common ancestor of ({1,3},G) since 3 is also
a seed and there is an edge from node 1 to node 3. �

Consider now a common ancestor a of some pair (S,G), with G = (N,A). The
distance of a from S in G, denoted by dist(a,S,G), is the nonnegative integer k
such that the following conditions are both satisfied:

1. there is V ⊆ A such that both |V | = k and a is a common ancestor of
(S,(N,V)); and

2. there is no V ′ ⊆ A such that both |V ′|< |V | and a is a common ancestor of
(S,(N,V ′)).

Note that dist(a,{a},G) = 0 trivially holds. Basically, the distance counts the the
minimum number of arcs sufficient for connecting each seed to the given ances-
tor. According to the previous example, we have that dist(4,{1,2},G) = 2 since
V = {(1,2),(2,4)} is the smallest set of arcs sufficient to connect both seeds to
node 4.

CHAPTER 3. AUTOMATIC LEXICON GENERATION 35

Definition 3.4.2 (Optimal common ancestor)
A common ancestor a of some pair (S,G) is optimal if, for each common ancestor
a′ of (S,G), it holds that dist(a,S,G) 6 dist(a′,S,G). Hereinafter, optca(S,G)
denotes the set of all optimal common ancestors of (S,G). �

Given an optimal common ancestor a, we call a witness(a) the set {V ⊆ A |
dist(a,S,G) = |V |}. Since G is acyclic, each V ∈ witness(a) represents a tree
connecting each node of S to a. By referring again to the previous example,
optca({1,2},G) = {2} since dist(2,{1,2},G) = 1 due to the unique witness V =
{(1,2)}.

3.4.2 ASP-based sense detector
To detect appropriate senses for a set W of words we proceed as follows. First, we
build from W its associated entity networkN =(Uni,Rel,Con, type), as described
in Section 3.3.3. Second, we build from W and N the directed acyclic graph
G(W,N) = (N,A) where N =W ∪Uni and A =Con|Isa ∪ {(w,u) | w ∈W ∧ u ∈
Uni ∧ w ∈ names(u)}. Third, according to Definition 3.4.2, we compute all
optimal common ancestors of the pair (W,G) as well as their associated witnesses.
Fourth, from each optimal common ancestor a and each V ∈witness(a), we extract
the set {(w,u) ∈ V | w ∈W} where each (w,u) says that unit u is an appropriate
sense for w with respect to a (since V is a tree, each w cannot have more senses).
The last two steps are carried out via Answer Set Programming. More precisely,
we define a mapping µ that encodes the input pair (W,G) as set of facts, and
design a program P and a weak constraint ω such that, aopt is an optimal common
ancestor of (W,G) if, and only if, aopt is encoded as appropriate atom in some
answer set of µ(W,G)∪P∪ω .

As for the input, we have µ(W,G)= {edge(u,v) | (u,v)∈A}∪{seed(w) |
w ∈W}. Regarding P, we gradually introduce and explain its rules. To reduce the
search space, we identify a suitable set C ⊆ Uni of “candidate” optimal common
ancestors as follow:

unit(U) :- edge(_,U).
hasAncestor(W,U) :- seed(W), edge(W,U).
hasAncestor(W,V) :- hasAncestor(W,U), edge(U,V).
partialAncestor(U) :- seed(W), unit(U), not hasAncestor(W,U).
ancestor(U) :- unit(U), not partialAncestor(U).
superAncestor(V) :- ancestor(U), edge(U,V).
candidateOptAncestor(U) :- ancestor(U), not superAncestor(U).

The first rule determines the set {unit(u) | u ∈ Uni}. The subsequent two rules
determine, for each w ∈W , which are the ancestors of w. The forth rule defines

CHAPTER 3. AUTOMATIC LEXICON GENERATION 36

units that are not common ancestors. Rule five identifies the common ancestors.
Rule six detects parents of common ancestors, which of course cannot be optimal.
Rule seven defines the candidate optimal common ancestors.

All the atoms derived so far are obtained deterministically, and they are part
of every answer set of µ(W,G)∪P∪ω . Conversely, to identify the optimal com-
mon ancestors of (W,G), we need to consider separately each candidate optimal
common ancestor:

keepAncestor(X) | discdAncestor(X) :- candidateOptAncestor(X).
:- not #count{X:keepAncestor(X)} = 1.

The first disjunctive rule guesses some candidate ancestors. The second rule (a
strong constraint) imposes that each answer set may contain only one candidate
ancestor.

Once a candidate ancestor is kept, we need to guess a suitable witness. To this
end, to reduce again the search space, we consider only arcs forming paths to the
guessed ancestor:

activeEdge(U,V) :- edge(U,V), keepAncestor(V).
activeEdge(U,V) :- edge(U,V), activeEdge(V,T).
keep(U,V) | discard(U,V) :- activeEdge(U,V).
senseOf(W,U) :- seed(W), keep(W,U).
reach(W,U) :- senseOf(W,U).
reach(W,V) :- reach(W,U), keep(U,V).
:- seed(W), keepAncestor(U), not reach(W,U).

The first two rules mark as active the arcs reaching the kept ancestor. Disjunctive
rule three guesses a witness. Rule four determines the sense associated to each
word. Rules five and six determine which units are reachable from the seeds,
according to the guessed witness. Rule seven (a strong constraint) guarantees that
the guessed ancestor is reachable from each seed.

For each guessed ancestor a, we now compute the distance dist(a,W,G). For
safety reasons, we add to P the auxiliary set of atoms distanceRange(1..κ),
where κ = |A|:
distance(N) :- distanceRange(N), N = #count{X,Y:keep(X,Y)}.

Finally, the last rule defines the weak constraint ω , which guarantees that the
witness (and thus the ancestor a) is not ignored, only if it has minimal size:

:∼ distance(N). [1:N]

As previously stated, the answer sets of the program µ(G)∪P enhanced with
ω are representative of all the optimal common ancestors for (W,G). Moreover,
the correct word senses are also encoded in the answer set of the program and can
be easily retrieved.

CHAPTER 3. AUTOMATIC LEXICON GENERATION 37

3.5 Lexicon generation via entity set expansion
The solutions presented in the previous sections, that address the sub-problems of
knowledge compilation and word sense disambiguation, are used in the process of
automatic lexicon generation for a semantic annotator. In this section, we explain,
how we use these notions to realize the entity set expansion task.

Note that, within the task, there are several sub-problems to solve, namely,
to disambiguate word senses, to determine and formulate the target category, to
expand the set by discovering new candidate instances, and to evaluate the candi-
dates according to some measures. The first two are in fact variants of the prob-
lems described in previous section. As for the expansion, we resort to a new re-
source (in the sense that it was not used for category definition), WebIsADatabase
which is a hypernymy database covering more and less “popular” instances.

Let us now explain the process in more details. First, let us assume a set
of seed words W that we want to expand. We create an entity network for W
that contain possible senses of the words (cf. Sect. 3.3.3, the first and second
modules). If there are more possibilities of assigning senses to the words, we call
the sense detector (cf. Sect. 3.4.2). If, as a result, we obtain a single set of word
meaning appropriate in the context, we proceed to the next step. Otherwise, we
communicate the ambiguity. The user can now select the intended meaning or add
more seeds to clarify the intentions. In the latter case, for the enlarged set of seeds,
we repeat the steps described so far (see a simplified example in Figure 3.2).

Once we know the single optimal combination of word senses, we proceed
to the phase of category recognition. As we already said, we determine the tar-
get category by expanding a network in two directions: to determine the (set of)
common ancestor(s) and the set of common relations.

For the first task, we expand the entity network for hypernyms (see Sect. 3.3.3,
second module). Interestingly, while for sense disambiguation, we tend to go
to WordNet hierarchy as soon as possible, due to the reliability and structure
of WordNet taxonomy, when we look for actual common ancestors for already
known senses, we explore BabelNet deeper — the reason for it is that the classes
of BabelNet are more descriptive and human-readable.

Once we get the common ancestors, we expand the other relations (Sect. 3.3.3,
third module). We collect the relations that are shared by all the seed units. For
each shared relation, say r, we obtain a set Ur of units that are the image of the
relation w.r.t. the seed units. If the set Ur is a singleton, say Ur = {u∗}, it means
that the seed units are connected via the relation r to the same unit u∗ and we
can stop exploring the relation here. However, if it is not the case, then we may
want either to discard this relation, or continue the analysis and determine the
common category of units in Ur. In the latter case, we treat the Ur set of units as
the new seed set, for which we repeat the process of finding a common ancestor

CHAPTER 3. AUTOMATIC LEXICON GENERATION 38

...
s

1
s

2
s

n

Optimal
Common
Ancestor

1

Optimal
Common
Ancestor

2

BabelSense for the word

“is-a” relation (hypernymy)

Equivalence link between

BabelNet and WordNet

Edges:

(a) input: seed words

(b) BabelSenses (instances)

(c) BabelSenses (classes)

(d) WordNet synsets (classes)

Nodes:

(a)

(b)

(c)

(d)

Figure 3.2: Creating an entity network from seeds and selecting the word senses

and analyzing common relations. To ensure termination, we fix the “depth” of
the analysis by setting appropriate parameter. The result of the analysis is a set of
properties describing the desired units.

To discover new object of the target category, we query WebIsADatabase for
instances of the common ancestors of the seeds. We set a threshold to filter out
noisely results (those that have too few witness pages). The obtained set of new
candidate instances is then evaluated against the properties discovered earlier. In
particular, we check if they are hyponyms of one of the desired common ancestors,
and if they share the relations discovered for the seed set.

The results of the evaluation may be three-fold: (i) the instance can be found
in reference semantic resources, in particular BabelNet, and in the entity network
constructed for it all the properties agree (so it belongs to the target category), (ii)
the network can be created, but not all the properties agree (it does not belong
to the category), (iii) the network cannot be created for the candidate instance
(an entry for it cannot be found in BabelNet). Recall that WebIsADb contains
more of less popular instances than major semantic resources, so even if they are
correct, they may not be evaluated positively by the reference resources. Thus,
these candidates are presented to the user as not validated, but proposed.

Chapter 4

Document Layout Analysis

Although understanding the meaning of words and phrases is important, the ad-
ditional information about the “context” in which they appear in a document may
significantly improve the quality of extraction. If we know that for two pieces of
text, one refers to the education and the other to employment history, then for the
same semantic classes, say ‘people’ and ‘institutions’ recognized within them, the
instances may have different functions and meanings, for example they can denote
teachers and schools in one section, and employers and companies in the other. In
this chapter, we present the problem of document layout analysis. We discuss the
assumptions and objectives of the problem, review existing methods for recogniz-
ing document structure, and introduce our approach to the layout analysis, based
on a notion of labels and content.

4.1 Problem specification
Document Structure and Layout Analysis [116, 86] is a problem of decomposing
a document image into its component regions and understanding their functional
roles and relationships. In other words, the field is concerned with geometrical
and logical labeling of document content. Existing solutions usually focus on
specific domains, such as academic papers [106] medical reports [112] and other
collections of complex documents sharing some predetermined layout [105, 7, 8].

The analysis of layout and structure of a document depends of several factors:
format of the document, assumptions and goals. To focus our attention, we se-
lect the Portable Document File (PDF) format, for its universality and popularity.
Portable Document Format file format was developed by Adobe Systems in 1993
to represent documents independently of the hardware and software used to gen-
erate or view them. This format has now become an open standard included in
the ISO (International Organization for Standardization) category and is widely

39

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 40

used by companies and individuals around the world to present and exchange
electronic documents containing text, graphics, audio, 3D maps and many other
content, reliably and securely regardless of the platform or device used. The abil-
ity to preserve and protect the content and layout of a document irrespective of
the platform or software with which it is displayed, makes PDFs difficult to mod-
ify and often attempting to extract information from them can constitute a real
challenge. This section presents the main features and problems of the task of
recognizing two-dimensional or tabular structures from a PDF document.

The first aspect to consider is the encoding of the PDF format elements. In
fact, each basic element (token, path, image) of a PDF document is contained in
a rectangle whose size and position do not necessarily coincide with those of the
object. This is an element of difficulty and a source of error in the process of
object recognition within PDF documents.

Our objective of the document layout analysis is to obtain information about
two-dimensional structure of “regions” designated within a document. The re-
gions can be set to the whole page or to its parts, by selecting the regions manually
or inferring themin a pre-processing phase. What we mean by a two-dimensional
structure is in fact a table, that is a way to organize portions of text into cells,
grouped into rows and columns. For the purpose of our task, we assume that any
arbitrary combinations of document regions, even if they are not explicitly tables,
can be represented as ones, and this representation can unify various structures
and prepare them for further processing (note that tables may be irregular, or there
may be multiple tables on a single page).

Moreover, as we consider collections of homogeneous documents, we are in-
terested in fragments, related both to the content and structure, that appear repeat-
edly from one document to another. This includes typical “labels” i.e., phrases
that — identically or in variants — appear in all or most of the documents in a
collection, and have particular shared meaning. Our approach to document layout
analysis consists in interleaving the strictly structural, two-dimensional analysis
with the recognition of these specific labels. The combined information about the
labels and (implicit) tabular structures will help us organize the documents along
an abstract “grid” and, eventually, represent everything uniformly (with a model
described in Chapter 5).

Finding a table structure in a PDF document may be relatively straightforward
or very complex, depending on whether one considers regular and bordered tables
or tables defined by paths in the documents, irregular or not bordered. In the
case of regular or bordered tables, the difficulties are related, for example, to the
clarification of cells that expand over multiple rows or columns or a combination
of them. More complex is the task of recognizing unbounded or irregular tables
that requires the definition of techniques for identifying areas of the document, in
which the table is present, and the grid design that delimits it.

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 41

The process of recognizing tabular structures within PDF documents may be
non-deterministic, especially in the case of irregular or non-bordered tables. It
is easy to guess how important it is to validate the results obtained by applying
algorithms for automatically recognizing tables. Such algorithms, in fact, make
strong use of heuristic techniques, sometimes producing results that do not fully
conform to the user’s expectations.

4.2 Existing solutions
Even for the narrowed domain of recognizing tabular structures from PDF docu-
ments, there exist multiple solution proposals [118, 60]. In this section, we present
selected tools that address different tasks of PDF file management. We critically
evaluate them and point out which can be profitably used in our approach.

Nowadays, there is an increasing need for searching within PDF documents,
extracting information, or converting entire documents into editable formats. Thus,
it is desirable to have technologies and tools to search for, extract and reuse the in-
formation contained in PDF files. For these reasons, the market landscape of PDF
file management products is particularly wide and varied. In fact, it is character-
ized by the proliferation of software, some available as online services, others in
desktop versions, some specializing in more specific tasks such as creating, dis-
playing, editing, or converting PDF files, and others that are configured as suites
that integrate all the features needed for advanced PDF file management. Among
the features for PDF files management, those related to extracting information
from the files, is of particular scientific and practical relevance. An important part
in this respect is played by a tool’s ability to recognize two-dimensional struc-
tures (or tabular formats) and extract the information contained therein, to be able
to handle it by another specialized software, such as Microsoft Word or Excel.
This functionality is available on the market only within a small group of soft-
ware systems. In this section, we illustrate distinctive features of market leading
systems in converting PDF files to other formats, by comparing them with respect
to the ways each of them can recognize and extract more or less complex tables.

4.2.1 PDF file management systems
The research revealed the following systems as the most comprehensive and com-
petitive when it comes to PDF file management: ABBYY PDF Transformer+,
Nitro Pro, Able2Extract Professional 10, PDF2XL and Quablo OCR. Let us in-
troduce and shortly discuss all of them.

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 42

ABBYY PDF Transformer+ (http://www.abbyy.com/pdf-transformer/)
is a PDF software that offers everything you need to work with PDF files: create,
edit or comment on a PDF document, protect a PDF file with a password, discuss
and collaborate with colleagues, convert or just read a PDF. It is a versatile and
efficient program that offers an intuitive interface and various collaborative fea-
tures. ABBYY PDF Transformer+ combines intelligent technologies with an easy
to use interface to open any PDF document. One of the practical tools made avail-
able to simplify navigation in documents is bookmarks. Bookmarks can then be
easily edited, linked and removed. Intuitive navigational navigation tools are the
ones that allow you to navigate from one page to another, to zoom in or out, view
the page, etc. With ABBYY PDF Transformer+ one can process and edit PDFs
i.e., make small text changes like inserting or deleting words directly into a PDF
file. Custom pages management (adding, deleting, and replacing pages, changing
orientation, or creating an empty page to add background information) is also pro-
vided. ABBYY PDF Transformer+ makes it easy to create ISO-compliant PDF
documents from Microsoft Word, Excel, PowerPoint, Visio, Apache OpenOffice,
or any other printing application. In addition, one can reduce PDF file size by
using MRC compression technology. The tool allows to quickly extract text and
information from PDF files, including scanned ones. To reuse a document’s con-
tent, one can copy the extracted text, tables and images, or convert the entire
document to an editable electronic format such as Microsoft Office and Apache
OpenOffice Writer, retaining the original layout and formatting.

Nitro Pro (https://www.gonitro.com/en/pro) offers individual users and
large companies the tools to do their business intelligently and quickly. Nitro Pro
offers a full range of easy-to-use comment and review tools that ensure accurate
version control. One can add “sticky notes” to a document to express comments,
instructions, annotations, markings, word excerpts, and text sections, using a set
of tools compatible with Acrobat and other common programs. Nitro Pro al-
lows to manipulate text, change fonts, customize layouts, and more, thanks to a
complete and advanced set of PDF document editing capabilities. One can add,
remove, replace and correct text and images, or edit the entire structure of a PDF
file by adding and extracting and rotating individual pages. Lastly, thanks to opti-
cal character recognition (OCR), Nitro Pro allows to convert digitized documents
and images into editable PDF files and to which searches can be made. Nitro Pro
allows to create PDF and PDF/A files from 300 different file types. Created PDF
files are compatible with industry standards and with Adobe Acrobat. PDF doc-
uments can also be created from scanned documents. Nitro Pro allows to easily
convert PDF files to editable MS Office files, such as Word, Excel, and Power-
Point, while retaining original fonts, images, and formatting. One can also copy

http://www.abbyy.com/pdf-transformer/
https://www.gonitro.com/en/pro

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 43

and paste from a PDF file to Word and other MS Office files. Nitro Pro can also
convert documents or a series of pages into separate pictures or PDF files. Finally,
the tool allows to export entire PDF document collections into MS Office formats
or image files in one operation.

Able2Extract Professional 10 (http://www.investintech.com/prod_a2e_
pro.htm) is a PDF document conversion solution that effectively improves the
productivity of those who work daily with PDF files on Windows, Mac, and
Linux. The tool enables the conversion of PDF files to Word, Excel, PowerPoint,
Publisher, AutoCAD and CSV formats by providing a rich set of content conver-
sion and control options within an elegant and intuitive graphical interface that
simplifies the entire process of converting PDF documents. With the inclusion of
Optical Character Recognition (OCR) technology, Able2Extract Professional 10
can also convert scanned PDFs and images to Excel, Word, PowerPoint, Auto-
CAD, Publisher and more. Thanks to its powerful PDF manipulation capabilities,
Able2Extract Professional 10, it makes it easy to edit PDF documents. Advanced
editing capabilities allow to customize the font, color, and size of the text, make
general changes to the PDF document pages, or act directly on metadata of the
file or view preferences to better meet the needs of the users Of PDF documents.
Able2Extract Professional 10 is a solution that also allows to create quality PDF
documents from any application. Creating a PDF can be done in more than one
way: one can open files directly in Able2Extract Professional 10 or use the vir-
tual printer driver without opening the application. Able2Extract Professional 10
is widely known for its proprietary conversion algorithm, which is able to con-
vert more complex PDFs to Excel, Word, PowerPoint, AutoCAD, HTML, CSV
and more. The strength of Able2Extract Professional 10 consists in the ability to
selectively select only the content of interest. Whether the goal is to get a for-
matted Excel sheet or an editable Word document, Able2Extract Professional 10
can deliver accurate conversion results thanks to a rich set of advanced and cus-
tomizable conversion options. All PDF conversions can, in fact, be granularly
customized by selecting a page, paragraph, or even a single line of conversions,
in order to get Excel, Word or other perfectly formatted outputs that fit the user’s
needs. Able2Extract Professional 10 converts both native and scanned PDFs using
proprietary OCR technology. The OCR engine can correct any microscopic error
in the text and produce a fairly accurate digital version to be used for subsequent
Business Intelligence analysis. Formatting, fonts, and colors are preserved more
accurately than any other PDF file solution.

PDF2XL (https://www.cogniview.com/pdf2xl-international) allows
to convert PDF files of any size and type, reliably, intuitively and economically.

http://www.investintech.com/prod_a2e_pro.htm
http://www.investintech.com/prod_a2e_pro.htm
https://www.cogniview.com/pdf2xl-international

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 44

To allow conversion of PDF files into multiple languages without any extra effort,
PDF2XL integrates one of the best OCR technologies on the market, namely IRIS,
a world leader in OCR solutions. As Microsoft’s Silver Certified Partner and De-
velopment Partner of Adobe and thanks to the decade of experience in providing
data conversion solutions, CogniView has managed to capture the trust of leading
global companies and PDF2XL is used to convert an innumerable amount of doc-
uments each day. PDF2XL Enterprise allows to convert data to Excel format from
any source of information quickly and accurately. The tool can convert scanned
and image-based scanners to PDF documents as well, providing error-correction
capabilities. PDF2XL Enterprise can process scanned documents in more than
30 languages. (it includes more than 30 OCR dictionaries to ensure that scanned
text is accurately converted into the desired language). Conversion can also in-
clude image files such as JPG, BMP and PNG formats. Again, the conversion
is supported by error correction tools. The ability to capture any file format in
PDF2XL Enterprise is provided by the Virtual Printer of CogniView. The appli-
cation of the “Single Page Structure” feature allows to convert PDF files of any
size. The complexity of the file to be converted is also negligible for PDF2XL
Enterprise: the tool is able to extract data from any type of file: documents with
different tables on different pages, multiple tables on a single page, rotated page
documents, documents with unreadable characters, with combinations of text and
tables, etc. In particular, PDF2XL Enterprise allows to create “layouts” and use
them for converting other similar PDF documents instantly. In addition to export-
ing data to Excel, PDF2XL Enterprise also supports other output file types such
as CSV and Microsoft Word files. One can also copy data directly to clipboard.
It also allows conversion of any kind of format and eliminates human errors with
OCR support. It supports over 130 different languages. An additional advantage
is the conversion speed (more than 500 pages per minute).

Quablo OCR (http://www.quablo.eu/) is a software developed by Exeura
S.r.l. that supports automatic recognition and extraction of tables from PDF docu-
ments (originally produced or scanned) and images, with the ability to export the
content in different formats. It provides several tools (also graphical) to deal with
issues of extraction from PDF documents. Quablo OCR can automatically locate
tables and export the data contained therein in different output formats. The tool’s
ability to automatically extract tables from PDF documents, even scanned, dra-
matically reduces transcription time, making the result reliable and instantaneous.
Data extraction is accurate and accurate and limits the possibility of making mis-
takes. In addition, the graphical interface is practical and functional, allowing the
use of software at the reach of everyone. Quablo has been designed to implement
the flow of operations needed to locate and extract tables from data contained in

http://www.quablo.eu/

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 45

PDF documents. This stream can be divided into two phases: pre-processing,
during which the information on tokens and paths contained in documents is ex-
tracted, and the actual processing that consists in exploiting that information to
construct the tables. In order to ensure extensibility and ease of maintenance,
Quablo is organized into modules, each of which is assigned a well-defined task.
Each module receives the document to be processed and enriches it with the result
of its processing (see Figure 4.1). The PDF document is captured by the system

Extractor

PDF libraries

extract

Pre-processor

tokens,
paths

Processor

Table builder

parameters

….
….
….

Figure 4.1: General architecture of Quablo tool

that deploys it to the extraction module, which uses the functionality of PDF li-
braries to extract the objects of interest – texts, paths and images – and collects
them in appropriate data structures. The data structures constitute input into the
table detection and creation module, which uses a set of parameters provided by
the user. The output provided by Quablo is ready for any conversions or exports
to other formats.

4.2.2 Table recognition challenge
As already mentioned, one of the features that are of particular importance in
data extraction from PDF documents is the ability to recognize two-dimensional
structures (or tabular formats) and convert them to other, editable formats, such as
spreadsheets, for subsequent processing. In fact, this functionality can be applied
and ensure a concrete increase in productivity in many operating environments.
We now briefly discuss how this functionality is supported within the systems
described in the previous section.

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 46

ABBYY PDF Transformer+ allows to copy and paste the tables from a PDF
document while keeping formatting and structure intact. If necessary, one can
change the separators manually before extracting the information.

Able2Extract Professional 10 allows to transfer tables of various formats
directly to Microsoft Excel spreadsheets, MS Word, PowerPoint, and XPS. Note-
worthy, the tool allows to save an export configuration from PDF to Excel and
apply it whenever necessary, without having to redefine it from scratch. With
Able2Extract Professional 10, therefore, information contained in even complex
tabular structures can be converted without much effort in more usable data. OCR
technology contained in the tool enables high quality conversions even for scanned
documents with low resolution or image files.

Quablo OCR is a software solution specializing in extracting tables from PDF
documents. The automatic recognition of the Quablo OCR tables algorithm pro-
vides accurate detection of tables with high complexity and even not bordered,
but with regular structure. Tables without borders and too irregular to be auto-
matically detected by Quablo OCR can be recognized interactively with a set of
advanced, yet intuitive tools. Specifically, these tools allow to outline tables in a
semi-automatic manner, or to draw, move and remove individual lines that iden-
tify rows and columns. In order to provide additional content selection tools,
additional filters are available that only allow the recognition and export of tables
that feature a specific structure or are positioned on specific pages of the doc-
ument. Recognized tables can be easily navigated by the going between tables
(next / previous recognized table) and, for each of them, a preview is provided
in real-time which allows the user to verify the correct recognition of the data
to be exported. One of the most important features of Quablo OCR is the abil-
ity to create and save templates for storing extraction schemes. Using templates
is particularly useful when a user needs to extract data from structurally similar
documents. In that case, by applying a pre-existing template to one or more PDF
files, a user can avoid repetition of the steps needed to define an identical export
configuration that was created in the past.

Nitro Pro and PDF2XL do not have the functionality for the recognition and
export of individual tables from within PDF documents.

In the light of the analysis made so far, it is clear that although software solu-
tions on the market, such as ABBYY PDF Transformer+ enable complete man-
agement of PDF documents, the strong specialization of Quablo OCR in recogni-
tion and the extraction of tables from PDF documents, and its advanced graphical
and computational capabilities, make this software system the indisputable point
of reference for anyone who needs to extract data, optionally starting from tabular
structures, including very complex tables appearing inside PDF documents.

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 47

4.3 The label-content approach
Structural analysis of a document can significantly improve the subsequent phases
of information extraction. In particular, taking into account two-dimensional ele-
ments (tables, columns, cells, etc.), allows to add some context to the document
content. In the end, it is desirable to obtain a grid representation of the document.
In order to achieve this objective, one can use a dedicated tool capable of detecting
two-dimensional structural elements.

In this section, we present a method for document layout and structure analysis
that we call a label-content approach. We explain what are labels and content in
a collection of homogeneous documents, and we present a systematic method of
analyzing and processing the documents, to obtain information about the layout
and structure useful in further phases of Information Extraction.

We propose a two-step analysis mechanism. The first step involves using a
two-dimensional processor that “blindly” analyzes the structure of a document in
order to capture its two-dimensional aspects (see Figure 4.2). This output can

(a) CV in Europass format (b) Table drawn by Quablo

Figure 4.2: Recognizing tabular structures in a PDF file

then be rearranged in accordance with domain knowledge defined by labels. In
other words, starting from a grid structure that divides the document into cells,
it is useful to proceed to a second phase of structural analysis, which takes into
account semantic information in order to obtain a qualitatively better grid and
more useful to subsequent extraction phases.

If we assume that we work with a set of documents to some extent related to a
given template, i.e., they share some layout features, typical sections, keywords,
and recurring patterns, we can exploit them to improve the process of building an
abstract two-dimensional grid. For example, by analyzing a CV in Europass for-
mat, one can assume a two-column structure, where labels belonging to a suitable
list of labels appear on the left, and on the right had side, there are values for each
of the property denoted by the labels on the left. Moreover, we know that these

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 48

documents have specific sections such as ‘Personal Information’, ‘Work Experi-
ence’, ‘Education’, ‘Skills’, etc. These are the domain-dependent concepts that
can be used for a more accurate extraction of two-dimensional elements from the
input document.

From the available solutions, we have selected the Quablo tool, suitably ex-
tended for the optimization of the abstract grid construction process. In this way,
the two-dimensional processing module outputs a grid structure where cells could
be unified (for example, if a label logically encloses more than one cell, these
cells should be merged). From the end user point of view, the grid construction
mechanism is completely transparent. One could even use another tool instead of
Quablo, given that the tool provides the required functionality.

4.3.1 Recognizing the document structure
Finding a table in a PDF document can be more or less complex, depending on the
table’s characteristics. In particular, the recognition of bordered tables, which are
defined by the grids formed by the graphical paths contained in the documents,
is quite straightforward, while the one of irregular or non-bordered tables is very
complex. The implementation of table recognition in Quablo and its extension
to adopt the label-content technique was carried out by Exeura S.r.l who was a
partner in the KnowRex research project.

Recognition of regular and bordered tables In the heart of the table recogni-
tion and extraction process, there is a grid reconstruction algorithm. The introduc-
tion of this algorithm not only dramatically improves precision in the recognition
and segmentation of tables (to almost 98%, as reported by Quablo developers),
but it is also best suited to resolve some difficult issues such as the identification
of cells spanned over multiple rows or columns. The algorithm works on the seg-
ments that make up the table, identified during the extraction phase; this phase, in
fact, provides the graphical objects that are first converted into straight lines (and
described by the relative equation) and then subdivided by orientation (the hori-
zontal lines are distinguished from the vertical ones). The lines are then compared
to each other in order to identify all the intersection points that are collected in a
suitable data structure and passed to the indexing phase. The purpose of this phase
is to construct a matrix of boolean values (‘true’ / ‘false’), as shown in Figure 4.3.
An element of the matrix is set to ‘true’, if at the coordinate point (row,column)
in a document there is an intersection, and ‘false’ otherwise. Note that the r and c
coordinates are used respectively to access the array dimensions y and x.

Starting from the element in position (0,0), the algorithm looks for the cells as
follows: first, if there is a ‘true’ value in the considered point, the next ‘true’ value

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 49

Figure 4.3: Matrix representation of a table in a PDF document

is searched for “in the right direction” (navigating the matrix appropriately). Once
the value is found, the search proceeds “downwards” to identify a pair of ‘true’
values that, together with the previous two, denote the coordinates of a single cell
of a table. The procedure is then repeated for subsequent positions.

Recognition of irregular or non-bordered tables For the recognition of irreg-
ular tables, a heuristic-based algorithm has been developed, that consists of the
following:

1. Localization of document areas that contain non-bordered tables.

2. Table construction (which is the most delicate step of the algorithm).

3. Building a grid that delimits the table.

In order to localize the areas of the document that contain non-bordered tables,
the PDF document is divided into zones of two types: the zones containing text
and those containing tables. The detection of these zones is done by incrementally
grouping text lines recognized in the document. Subsequently, the properties of
the lines are evaluated, using heuristics, to establish the zones. A text line is con-
sidered as belonging to a table, if it contains a white space between one word and
another that exceeds a predetermined threshold. A zone is labeled as a candidate
to contain a table or not, depending on the number of lines that meet the previous
condition.

Building a table is the most delicate step of the algorithm. The initial cells are
constructed from recognized tokens. Then, the cells are organized into columns.
At this stage, they may be merged. Finally, columns are subdivided into rows to
form the final table. The tables recognized in this way are then filtered, to discard
the degenerated ones and the ones that do not satisfy the constraints that express
the minimum number of rows and columns in a table.

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 50

For the grid construction, the tables constructed in the previous step are stored
with use of a matrix of objects representing the cells of the tables. These objects
can be stored in multiple adjacent rows and/or columns of the array, so that they
can represent cells that occupy multiple rows or columns of the table. Based on
this representation, it is then possible to build a grid that encloses the table, from
the matrix that represents it. This is achieved by surrounding the table cells with
segments and adding the lines representing the outer edges of the table.

4.3.2 Improving the recognition with domain labels
The idea of improving the two-dimensional structure of a document with a set
of domain-dependent characteristics, consists in interleaving the strictly structural
analysis with some semantic annotation of content. Recognizing a domain con-
cept in a particular place can in fact improve the outline of the recognized table,
repair some imperfections and, by merging or aligning cells, prepare the “grid”
representation for more efficient processing. This phase is realized by the selected
processor extended with new functionality in the recognition algorithm.

To start with, the domain-specific labels are defined in a label dictionary with
strings and regular expressions, e.g.:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<entities case-sensitive="no">

<entity type="field" name="eu_cv_pinf_label">
<value type="str"> Informazioni personali </value>
<value type="str"> Personal information </value>
<value type="regexp"> Personal inf.* </value>

</entity>
...

<entities>

This dictionary is used in the recognition phase, to improve the two-dimensional
grid representation of the document. The behavior of the algorithm that searches
for the labels within a tabular structure depends on the documents characteristics.
In particular, the orientation of the virtual table is set (horizontal or vertical), and
the column (or row) in which domain labels are expected to appear is fixed. To fo-
cus our attention, we depict in Figure 4.4 the case of a two-column layout, where
in the first column, there should appear the domain labels, and in the second –
the values of the properties denoted by the labels. Then the algorithm proceeds as
follows: for the selected “label” column (resp., row), it tries to match the content
with the label dictionary entries. As labels may span across several rows (resp.,
columns), the algorithm tries to take into account the combined content of the an-
alyzed and following rows (resp., columns) up to a fixed threshold. If a match is

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 51

Load document(s)

Create tables

Set margnins

File(s)

Here the whole page
 or particular regions

can be set

RawData
(coordinates,
content etc.)

Preprocessing:

1. Copy content to 2-column
 string tables
2. Join tables into one
3. Clean the string data
 - remove strange characters
 - remove spaces
 - remove bullets

DocumentGrid

Normalization / Unification:

1. Set orientation (horizontal/vertical)
 and selected column / row
2. In selected column look for label
 - use Dictionary labels
 - try 1 line, the 1&2, then 1&2&3...
3. When a match is found, merge the lines
4. Apply label / normalize data (e.g. dates)
5. Understand the label area (how much
 space till next label)
6. In the other columns (rows) merge
 appropriate number of lines (columns)
 to match the space recognized in step 5.

File(s)

PDF(s)

Dictionary
labels

Figure 4.4: Transformation of a PDF document with table and label recognition

CHAPTER 4. DOCUMENT LAYOUT ANALYSIS 52

found, the cells are merged and the content is annotated with the recognized label.
At this stage, some post-processing can be done. 1 The algorithm then proceeds to
calculate the vertical (resp., horizontal) span of the area related to the recognized
label. Having this value, in the other columns (resp., rows) it merges appropri-
ate number of rows (resp., columns) into one cell and by doing this it aligns the
values, potentially spanned across rows (resp., columns) to the particular heading.
In the end, we obtain a more meaningful representation of the content within the
tabular structure (see Figure 4.5).

(a) Raw tabular structure (b) Annotated grid representation

Figure 4.5: Constructing a two-dimensional representation of a document

The result of the entire two-dimensional recognition and extraction phase pro-
vides a model of a document that also contains information about the positions of
the one- and two-dimensional objects contained therein. The obtained grid repre-
sentation is a base for further IE steps. In particular, it allow to formulate extrac-
tion rules that take into account the spatial context of text portions e.g., after label
X, there is the object Y that I need, but at the same time are not “wired” to physical
encoding of particular file, because the actual layout has been “normalized” into
a grid during the layout analysis process.

1 For instance, in the CV use case, we applied a post-processing for recognized dates such that
their format is normalized and if a range of dates is given, then the number of months between the
start date and the end date is calculated. Such calculations were useful to understand the duration
of particular work experience.

Chapter 5

Ontological Document
Representation

In order to integrate knowledge about the structure, layout and content of a doc-
ument, we either need a common knowledge representation (KR) method, or
knowledge processing such that it will integrate different aspects during reason-
ing. Ontologies [50, 53] constitute an approach to knowledge representation that
is profitably used for conceptualization of heterogeneous knowledge and can be
used a skeleton for different applications. In this chapter, we analyze the pos-
sibilities of unified representation of document, covering aspects of its layout,
structure and content. Such holistic approach will enable us, on the one hand, to
capture all the analyzed aspects and, on the other, allow to process it with the same
methods. In the following sections, we review suitable knowledge representation
methods with focus on ontological languages, then propose a model that captures
the content, structure and layout of a document. We illustrate our proposal with
an example of an ontology for specific homogeneous documents collection.

5.1 Review of knowledge representation formalisms
In this section, we review knowledge representation formalisms, and in particular
we analyze various ontological languages [52, 90]. In recent years, knowledge-
based formalization and sharing activities, indispensable to enable semantic in-
formation management, are attracting more and more attention, especially in dis-
tributed environments such as the Web. To represent knowledge and make it
machine-manipulable, some formalism is required, that allows the information
to be treated in a standardized way, and makes possible automated reasoning. The
choice of formalism is usually a compromise between two opposing needs: the
expressive power of the formalism and complexity of reasoning in it. Below we

53

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 54

present a brief list of relevant formal languages for knowledge representation.

5.1.1 Ontological languages
Ontological languages express a conceptualization of the domain of interest with
classes of objects. The languages vary in their formality levels, resulting in variety
of representations, from informal lexicons, through semi-formal thesauri, up to
formal knowledge bases. For our purpose, we are interested in languages rooted
in formal logic, to utilize the possibilities of automatic manipulation of knowledge
expressed with them. Let us first discuss selected languages based on expressive
formalism of First Order Logic.

KIF (Knowledge Interchange Format [47]) is a formal language designed to en-
sure interoperability and exchange of knowledge formats. It is very expressive;
also, the meaning of its expressions can be understood even without a specialized
interpreter. Its semantics is given by the rules of First Order Logic (FOL). The
main objectives and features of the language can be summarized in three points:
translatability (it is easy to implement translation mechanisms from and to a par-
ticular language with this representation of knowledge); readability (KIF’s syntax
makes it comprehensible to human); and the implementation capability.

CycL [80] is also based on the FOL. It allows to distinguish knowledge related
to a concept from knowledge related to the terms that define it. It is possible to
use higher-level logic elements such as quantification of predicates, functions, or
axioms. CycL allows reification and reflection, i.e., provides the means to make
statements about other statements or assertions about the process for creating the
assertion itself. Moreover, it is based on models,so it is possible to discuss desires,
expectations and not just statements. It also allows for default reasoning. Further-
more, it is possible to use operators for negation, conjunction, and disjunction to
represent the semantics of terminology used in the language to express the rest of
knowledge. With the CycL language, the entire Knowledge Base is defined and
divided into micro-theories i.e., collections of concepts and links, typically con-
cerned about the same subject, which must be contradictions-free.

First Order Logic is an expressive formalism that is undecidable in general
case. Its syntax is oriented towards statements and it is not very intuitive, espe-
cially for non-experts. Thus, other formalisms have been proposed. Among them,
there are frames whose main intuition lays in representing objects that have certain
characteristics.

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 55

Frame-based languages use frames, originally introduced by Marvin Minsky,
as the main tool for representing knowledge. A frame is a structure to represent a
concept or a situation. Frames are supposed to capture the essence of concepts or a
stereotyped situation, by aggregating all the relevant information for that concept.
Frame collections can be organized in systems where frames are interconnected.
The processors that work on such systems are supposed to match each frame to a
specific situation, to use default values to fill unspecified aspects, and so on. Min-
sky explicitly wanted to leave out the idea of what a frame should do. However,
the frame concept evolved over time, and now typically a specific meaning in the
context of the representation of knowledge is assumed.

There are several common features for frame-based languages. First, the
frames are organized into hierarchies. Second, they have slots (attributes) for
which values (scalar values, references to other frames or procedures) must be
specified or calculated. Finally, the properties (values, value restrictions, etc.) are
inherited from super-frames to sub-frames in the hierarchy in accordance with
some inheritance strategy. These organizational principles have proved to be very
useful and many object-oriented languages have adopted them. From a formal
point of view, semantics of frames and inheritance were only given operationally.
Though the frames offer nothing new to the logic of the first order in terms of
expressiveness, they offer a more concise way of expressing knowledge in the
style of object-oriented languages. Moreover, by using only a fragment of the first
order logic, they can offer more efficient means for reasoning.

Ontolingua [39] developed at Stanford University, is a language based on Knowl-
edge Interchange Format (KIF). It provides an environment for navigating, creat-
ing, editing, modifying and using ontologies. It combines frame paradigms with
first order predicates. It can represent concepts, taxonomies of concepts, n-aries
relationships, axioms, instances and procedures. Unfortunately, it does not allow
automatic reasoning.

Loom [78] was developed at the Information Science Institute (ISI) at the Uni-
versity of California. It is a language and environment for building intelligent
applications. Loom’s heart is a system of knowledge representation that is used to
provide deductive support for the declarative part of Loom’s language. Declarative
knowledge in Loom consists of definitions, rules, facts, and default rules. Loom
implements a series of KR functions. A deductive engine (also called a classifier)
uses inductive techniques, semantic unification and object-oriented truth main-
tenance technologies for declarative representation of knowledge in a structured
system to efficiently support the execution of deductable queries.

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 56

F-Logic or Frame Logic [70] was developed at Karlsruhe University in Ger-
many. It is a logical formalism that seeks to capture the features of object-oriented
approaches for computing and rendering data. It aims to bridge the gap between
object-oriented object-based calculation and representation systems and deductive
databases by providing theoretical base for a logic-oriented programming lan-
guage that can be used both as a computational as well as representation tool. The
name of the language makes reference to the frame-based languages. F-Logic sup-
ports complex objects, inheritance, polymorphism and encapsulation. The basic
constructs of language are terms, consisting of function symbols, constants and
variables. The formulas are constructed from the terms using a set of connectors.
Language elements are meant to represent object properties and relationships be-
tween objects. Terms are used to identify objects and to access their properties.
Function symbols play the role of object builders. Formulas allow to build object
assertions. The main weakness of F-Logic is related to the necessary familiar-
ity with logical and mathematical concepts needed to program in the language.
The strengths of F-Logic are its extensibility and ability to represent concepts,
either from object-oriented programming or from frame-based languages. The
main application of F-logic is the Flora-2 system. Flora-2 integrates F-Logic with
other formalisms, such as HiLog (a logical formalism that allows higher-order and
meta-programming features in a computationally tractable setting) and Transac-
tion Logic (which provides a logical foundation for state changes and side effects
in a programming language).

Important descendants of the frame-based approach are the Description Log-
ics [10] that capture the declarative part of the frames using a semantics based
on FOL. Description Logics is a family of knowledge representation languages
that deals with classes of objects, individual objects, and relations among them
with use of logical descriptions. The basic elements of the DL languages are
atomic concepts denoting classes, atomic roles for expressing (binary) relations,
and individuals to denote instances. More complex descriptions are constructed
iteratively by applying a set of constructors. In fact, the allowed set of construc-
tors distinguish one DL language from another. Description Logics semantics
is based on First Order Logic, restricted to unary and binary predicates. Com-
plexity of reasoning have been studied separately for different variants of DL, as
even a small alternation in the expressiveness of the language (addition or mod-
ification of allowed constructors) strongly influences the complexity of reason-
ing in this language (see a complexity “navigator” for different DL languages at
http://www.cs.man.ac.uk/~ezolin/dl/). Although research on Descrip-
tion Logics has been conducted for a few decades, its most popular application is
probably the Semantic Web ontology language OWL, described next.

http://www.cs.man.ac.uk/~ezolin/dl/

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 57

OWL (Web Ontology Language [108]) is a W3C standard for representng on-
tologies for the Semantic Web. It can represent information about object cate-
gories (classes) and can describe their correlations. Following the DL approach,
OWL describes the classes by specifying their properties. OWL has the ability
to describe the various domains and ranges of properties, defining the former as
OWL classes, while the ranges can be both defined with OWL classes and with
externally defined data types (for example, string or integer). In OWL, one can
impose restrictions on the class properties. For instance, a property can be limited
so that its values belong to a given class only or are of a certain type, as defined
with universal or existential quantification or by specifying their cardinality. To
limit the descriptions to the ones significant only to a specific class, one can ar-
range the classes into a hierarchy with sub-classes and super-classes, and also
provide a hierarchical schema for the properties. Another feature of OWL is the
ability to declare the properties transitive, symmetrical, functional or inverse to
other properties, or define for a pair of classes or properties if they are disjoint or
equivalent. Finally, OWL represents individual information (property and class in-
stances), each of which is assigned an identifier in the form of an URI. Individuals
are assigned to a class and tied to other instances through properties e.g., by pro-
viding information about property values, if they are specific objects, and whether
two objects are equal or distinct. OWL is based on classical logic and therefore
adopts different semantic assumptions, such as Open World Assumption (OWA)
or Multiple Names Assumption. It is a sophisticated language and its definition
has had various influences including Description Logics, frame-based formalisms
and the vision of the Semantic Web with standards such as XML and RDF. Given
the diversified needs for OWL and the difficulty of satisfying them all, different
versions of language have been created. OWL DL is called so, because it is based
on descriptive logic, in particular, SHOIN (D) DL, and extension of SH logic
with datatypes. It is characterized by a frame-like syntax and has been designed to
support the industry of existing descriptive logic and has specific computational
properties for reasoning systems. This version guarantees computational com-
pleteness and decisiveness. OWL Lite is a subset of OWL DL corresponding to
logic SHIF(D). It allows only a limited number of constructions, for example
it supports cardinality constraints but only allows values of 0 or 1. OWL Full,
allows, unlike OWL DL and OWL Lite, that a class can be treated simultaneously
as a collection of individuals and as a single object. This expressive freedom,
however, pays the price of having less guarantees at the computational level. In
the new version of OWL, namely OWL 2, three variants have been identified:
OWL 2 EL, OWL 2 QL and OWL 2 RL – each tailored towards different kind of
applications in mind and different requirements for the ontologies. Generally, the
EL variant is oriented towards ontologies with complicated sub-class hierarchy
(such as in medicine), QL is especially suited for ontology-based data access, and

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 58

RL supports limited expression of rules. What is important, all of them ensure
tractable reasoning.

Description Logics and First Order Logic share the Open World Assumption
which means that even when one cannot prove something to be true, based on
the possessed knowledge, it cannot be assumed to be false. This is often counter-
intuitive in real-world applications. Conversely, in the logic programming and
databases communities, the prevailing assumption is that of a Closed World (if
something is absent from a knowledge- or database, it is assumed to be false).
There have been attempts to build “bridges” between ontologies and logic pro-
gramming by either strict or loose integration of the underlying formalisms. The
objective of such endeavours is usually to combine the advantages and possibilites
of both approaches, or to be able to integrate new features into existing systems
and tools. Some of the proposals are presented below.

AL-Log [35] is a knowledge representation system based on description and
deductive logic with the support of the Datalog language. AL-log can be seen as
a combination of two subsystems:

• structural, which allows the definition of knowledge in a structural way
through concepts (classes) and relations between objects and classes; the
language used to express the concepts is ALC (DL Attribute Language
with Complements). It is structured in two parts, intentional and exten-
sional. The intentional part describes the concepts of interest and defines
their properties, while the extensional level allows to define the instances of
declared concepts.

• relational that allows to define the connections between the described ob-
jects and the structural components. The language used is Datalog, a query
language that allows to define queries in a declarative way.

The two components interact with each other, allowing to add to the deduction
process of Datalog particular deduction steps from the concepts declared inALC.
Al-log is highly expressive, but in some respects it is weak, for example it does not
treat in a convincing way the aspect of negation in the relational sub-system and
therefore has shortcomings caused by ignoring some knowledge of the structural
subsystem.

Complex [48] extends Datalog with object-oriented constructions. It supports
normal (non-disjoint) stratified programs. There are three main aspects of the

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 59

system. First, it supports a logic-based language, called C-Datalog (Complex-
Datalog) and enriches this language with semantic constructs for the represen-
tation and manipulation of complex objects. C-Datalog supports two types of
entities: the classes identified by an object identifier and organized within a hierar-
chical structure, and relations that describe the relationships between the declared
classes. Second, it is a system that guarantees the accuracy and completeness of
the inference, based on a bottom-up computation model, which efficiently sup-
ports the declarative semantics of language. Finally, it supports running queries
using a top-down assessment strategy.

5.1.2 Desired characteristics of the formalism
In order to develop a universal yet functional model for representing a document
(including perspectives of both structure and content), we have formulated a few
requirements that the candidate language has to meet.

First, we would like it to be intuitive; more precisely, it should follow the
object-oriented modeling paradigm. Moreover, it must be based on formal logic,
so that automatic manipulation of the represented knowledge is possible. Ideally,
there exist established reasoners that would support the selected language.

The language of choice must use a set of abstraction mechanisms to describe
the structure of knowledge related to a document. In particular, an indispensable
element for modeling any domain of knowledge is that related to the class or entity
concept that can be used to describe an object, with its attributes or properties.
Entities can be of a different type and each entity would belongs to a type that
specifies its nature. In addition, we want to define relationships or associations
between entities, as well as introduce individuals (or instances) and hierarchies
of classes. In fact, it is often useful to organize the entities into a hierarchy of
specialization / generalization. A class in a hierarchy lower than others is called a
sub-class (and the one higher – a super-class).

5.1.3 The language of choice
The formalism we chose for our approach is inspired by the OntoDLP [96] lan-
guage, which is based on logic programming and is particularly suited to design
and reason on ontological knowledge bases. This choice is in accordance with
our need for an ontological formalism. In this context, the OntoDLP language
will be used to represent classes, relationships, and instances. The language is de-
signed for ontological representation, and also provides powerful instruments of
reasoning. It is based on disjoint logic programming (DLP) enriched with object-
oriented programming concepts. Reasoning takes place with deductive mecha-
nisms given by logical formalisms on object-oriented structures.

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 60

Classes A class is the primary notion in modeling any domain of interest. For
example, assuming we want to model a banking domain, we can identify at least
six classes: bank, account, branch, place, business, person.

class bank.
class account.
class office.
class place.
class enterprise.
class person.

In OntoDLP, a class statement requires the use of the ‘class’ keyword before
the class name. In addition to the class name, one can specify attributes, that is,
the characterizing properties of the objects of this class. Each attribute is defined
by the pair <attribute_name>: <attribute_type> indicating, respectively, the at-
tribute name and its type. The type of an attribute can be: text (string), numeric
(integer), or object, that is, a type composed from other objects. For example, if
you want to define more accurately the classes listed above, you could add detailed
information such as:

class bank (name: string, asset: integer).
class account (balance: integer).
class office (bank: bank, address: place, asset: integer).
class place (name: string).
class enterprise (name: name, country: place).
class person (name: string, age: integer, father: person,

mother: person, residence: place).

Objects A domain of knowledge is represented by “populating” the schema
with objects (or instances). Each object belongs to a class and is uniquely iden-
tified by a property called object identifier (oid). In particular, it is possible to
represent instances with logical facts that can be expressed as follows:

’PAPERBANK’: bank (name: ’Paperopoly Bank’, asset: integer).

Note that in this statement, the object identifier (in this case it is ’PAPERBANK’) is
specified, and the values for all the properties are set. The instance identifier will
be used to refer to the object; This type of usage occurs, for example, in creating
an ‘office’ class object for which complex typology types are present:

’fil01’: office(bank:’PAPERBANK’, address:’Gardens Avenue 10’,
asset:1000000).

In this case, fil01 is the object identifier of the instance, while PAPERBANK is
the object identifier of the bank attribute.

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 61

Taxonomies In object-oriented programming languages there is an abstraction
mechanism called inheritance that allows to specialize or generalize classes. In
OntoDLP this mechanism is realized by the binary relation isa, by which it is
possible to indicate the subtype-supertype relationship between two classes. As
for an example, different categories of people, such as clients or employees, are
characterized by a number of attributes, and can be represented easily by defining
appropriate sub-classes of a class ‘person’.

class employee isa person (office: office, skill: string,
mentor: employee).

class client isa person (clientcode: string).

In this modeling, the class ‘person’ corresponds to a more general concept of
‘client’ and ‘employee’, which are, instead, specializations or subclasses of the
class ‘person’. In particular, an employee, in addition to attributes that are in-
herited from the class person, will have an office, a skill, and a mentor (called
local attributes). A client instead has an attribute ‘client code’ which is a string
of text. An important (and useful) consequence of these statements is that every
employee instance will automatically be considered as an instance of the class per-
son (the opposite, of course, is not valid). OntoDLP supports multiple inheritance,
so it is possible to define an unlimited number of sub-classes and super-classes.
For example, consider a possible customer-employee class that must contain all
attributes in the client class and employee: this class could be defined as a spe-
cialization of the above classes. To do this, one needs to add both classes in the
superclass statement:

class client-employee isa {client, employee}.

Based on this statement, the client class will have a set of attributes from the union
of both super-classes.

Relations A fundamental feature of the knowledge representation languages is
the ability to express relationships between objects in a domain. OntoDLP allows
to declare object relationships using a class-like syntax: the ‘relation’ keyword
is followed by the name of the relation and a list of its attributes. For example,
‘hasOwner’ and ‘hasWorked’ relations contain information about the accounts
and their owners, and the employees and offices in which they worked. The two
relations can be declared as follows:

relation hasOwner (account: account, owner: client).
relation hasWorked (empl: employee, office: office,

start-date: date, end-date: date).

The set of attributes of a relationship is called a schema, while the cardinality of it
is called the arity of the relation. The schema of a relation defines the structure of
its instances (tuples). The tuples of a relations, as with class instances, are defined
by claiming appropriate logical facts. An example of a tuple is as follows:

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 62

hasWorked (empl: ’emp0983’, office: ’fil06’,
start-date: ’2006-06-03’, end-date: ’2009-06-21’).

which states that the person with object identifier ’imp0983’ has worked in the
’fil06’ office from 3/06/2006 to 21/06/2009. Unlike class instances, however,
the relations tuples have no oid (identifiers), and are therefore not directly refer-
able. As with the classes, it is possible to represent specialization / generalization
links by defining taxonomies also in relation to the relationships. For example,
suppose we want to define a relationship that associates a person with an identifi-
cation code. In OntoDLP we can write:

relation hasCodeIdentifier (p: person, code: string).

This relation can be further specialized if you consider different codes that can
identify a person, such as the identity card number, the driving license number,
tax code, etc. As a results, we obtain a taxonomy of relation:

relation hasDrivingLicenseId isa {hasCodeIdentifier}
(issueDate: string, validity: string).

relation hasIdentityCardNumber isa {hasCodeIdentifier}
(issueDate: string, validity: string, country: string).

As is the case for the classes, each tuple of the sub-relation possesses implicitly
the definition of a tuple of the super-relation (and the opposite is not true).

Logical rules and complex terms On OnDLP you can specify logical rules. A
rule is expressed, for example, in the form:

likes(p1:X, p2:Y) v hates(p1:X, p2:Y)
:- colleague(p1: X, p2: Y), X <> Y.

The rule’s head consists of the likes(p1:X, p2:Y) v hates(p1:X, p2:Y)

disjunction and is followed by the conjunction: colleague(p1:X, p2:Y), X

<> Y which constitutes in this case the body of the rule. The intuitive meaning of
this rule is: if X and Y are colleagues, X either likes or hates Y . OntoDLP rules
support the use of “complex” predicates that allow to access classes and relations
in an ontology. More in detail, OntoDLP rules are made up of two different types
of predicates: class predicates and relation predicates. Using a class predicate:
oid:class(att_1,....,att_n) where ‘oid’ is a variable or instance name
and ‘att_i’, where 1 ≤ i ≤ n are pairs (attribute name, attribute value), you can
access instances of a class. For example, P: person(name: ’Giovanna’) is
a class predicate where the oid is represented by the variable P and the attribute
‘name’ assumes the value ‘Giovanna’. If a class has multiple attributes, it is not re-
quired that all of them are specified, but only those who are interested. Also, they

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 63

can be specified in any order. This kind of notation, in which the programmer se-
lects the only attributes they are interested in by their name is called non-positional
notation. OntoDLP allows to specify complex objects (i.e., objects that have ob-
ject type attributes). Finally, in order to get access to the values of the attributes
of complex objects, it is possible to make use of so-called complex terms. For ex-
ample, if we wanted to indicate with X the name of the mentor of an employee Y
we could write: Y: employee (mentor: person (name: X)). This is pos-
sible because the ‘mentor’ attribute is of a type ‘person’ and the language allows
to directly access its attributes. By means of a relation predicate, it is possible to
“navigate” the objects through their associations. This also allows to combine the
declarative style of logic programming with the one of object-oriented systems.

Lists OntoDLP features also lists as a possible type, an ordered collection of in-
stances that accept copies of the same instance. Given a class C, one can define the
C-list class type, defined as [C] and composed of instances (individuals) belonging
to class C. For example, the [string] class represents the list of Strings. Likewise,
[‘This’, ‘That’] is the list that contains the strings ‘This’ followed by ‘That’. The
list construct is particularly useful for representing multi-valued attributes. Sup-
pose, for example, that in an account domain (discussed in the example in this
section) an account has associated a number of services that can be purchased
in the bank (access to online services, credit card, etc.). A bank account can be
represented as:

class account_service (cost: int).
internet: account_service (cost: 5).
credit_card: servizio_conto (cost: 10).
...

The definition of the bank account class can now be extended by enriching it with
the new attribute for available services, such as “list of services”:

class account(services:[account_service], budget:int).
a0001:account(services:[internet, credit_card], budget:2000).

where the second is a bank account instance that has two associated services,
internet and a credit card.

Queries An important feature of the OntoDLP language is supporting queries to
extract information from a knowledge base. A query on OntoDLP is a conjunction
of atoms. For example, one can request the list of employees whose mentor was
born in Rome by writing the following query:

X:employee(mentor:P), P:person(place:L), L:place(name:’Roma’)?

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 64

In general, one can use both predicates of class and relations. Note that one can
specify only the attributes whose values are important, and omit attributes that are
not relevant to the specific query, obtaining a more compact specification.

5.2 Principles of the proposed model
The proposed ontology group classes grouped under two main categories: layout
objects and content objects. The layout objects in the ontology define the struc-
tural elements of a document (such as cells, text fragment, tokens and delimiters),
independently of a domain of interest. The user of a system that uses the ontology
does not to alter it, add any classes etc. for the system to work properly. The layout
objects, when it comes to the Information Extraction process, should be identified
by one- and two-dimensional tokenizers during the phase of bidimensional docu-
ment analysis. The content objects, in turn, cover the objects located within the
content of a document. Among the content objects, we further distinguish:

1. category markers – that are parts of the document that identify particular
sections and subsections point to some interesting or recurring elements
within a collection of homogeneous data etc. They are not interesting them-
selves from the point of view of the target database. However, they play an
important role in the extraction process by identifying pieces of document
where the actual information to extract is. For instance, for a Curriculum Vi-
tae, these are section and subsection labels, such as: ‘Personal Information’,
‘Work Experience’, ‘Education’ etc. For another use case of Business Pro-
cess Documentation, these include e.g., ‘Process purpose’, ‘Process Scope’,
‘Process Input’ parts, and more similar to them.

2. relevant objects – that represent the actual content to be extracted from a
document. Here, we further distinguished:

• basic objects: which are common categories such as “email”, “date”
etc. that do not belong to a single domain. We have identified them as
recurring in different domains, and thus potentially useful for various
use cases. This part of the ontology is given to the user and it may
be edited and extended as needed. The objects of this part should be
recognized by annotators that use various methods: named entities,
regular expressions, thesauri etc.;

• domain objects: here the objects typical for a given domain are stored.
For instance, for the CV domain, we are interested in objects such
as: Places, Employers, Skills, Education Institutions etc. For business
processes, we would define Actions, Connections, Actors and such.

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 65

This part of the ontology is intended to be designed for a particular
use case. From the IE point of view, the objects from this part may be
recognized by semantic annotators or semantic descriptors constructed
by the user. Obviously, if a hierarchy of classes if defined, then the
instances of super-classes may be inferred from the sub-classes and
the subsumption relations.

5.2.1 Layout representation
This section is devoted to the layout representation. We propose to view the doc-
ument as a two-dimensional artifact, what leads us to identify the basic one- and
two-dimensional objects. We build complex objects based on the atomic ones.

The minimal discourse unit, essential to grasping the minimal structure of a
text, is defined by the concept of “token”. In fact, a token is an elementary ob-
ject, that represents in the modeling the basic element returned by a text analysis
process. We decided to change the keyword to identify class objects by using ‘en-
tity’ instead of ‘class’, as it is considered more adherent to the scope and purpose
of the whole project. In fact, as a framework for extracting semantic informa-
tion, starting from recognized entities through specialized annotators, choosing
this keyword suggests better the meaning of the underlying concept. Formally a
token is defined as:

e n t i t y t o k e n .

In the ontological modeling paradigm, it is usual to introduce a “root” for all the
objects within the domain, so it is implicitly assumed to be the “ancestor” of all
the defined entities.

e n t i t y o n t o l o g y O b j e c t .

The definition of the token entity could be therefore better defined as:

e n t i t y t o k e n i s a o n t o l o g y O b j e c t (v a l u e : s t r i n g) .

The relationship is-a represents the well-known subclass-superclass relation-
ship that realizes a hierarchy between the entities involved. The token class will
be populated by instances representing single text units (for example, in the sim-
plest case, words). This will be achieved by a tokenization process that, given a
string and data of the separators (or characters to be ignored, such as space), is
able to divide the string into suitable token. The “value” attribute stored the piece
of text associated with the recognized token.

However, this is not enough to fully represent an occurrence of a text (word)
within a document. In fact, what is needed to locate the specific instance of the
token class is its position within the document. In turn, to find the exact position
where a token appears, it is necessary to know its coordinates: the starting position
and the end position, relative to the input text input string in the tokenization

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 66

process. To this end, we introduce a position relation that binds a specific object
(or entity) to its coordinates. Formally, this is defined as:

r e l a t i o n p o s i t i o n (o b j : o n t o l o g y O b j e c t , s t a r t : i n t , end : i n t) .

The position relation is used for each token instance, where each of them is asso-
ciated with the start and end attributes representing the initial and final position of
the token in the string.

This modeling is capable of capturing the entities and their positions with as-
sumption that the whole document is considered “one-dimensionally” (one could
imagine a normalization of a document to a single very long string). In the pres-
ence of two-dimensional documents (more close to the intuitive view on docu-
ments), this model needs to be enriched to adapt to the new requirements. In order
to locate atomic and more complex elements within a document, we define an in-
ternal representation of the spatial placement of one- and two-dimensional objects.
In the following listing we present the structural elements of a two-dimensional
document: one-dimensional objects such as token and delimiters, and two-dimen-
sional ones such as empty and filled cells.

e n t i t y o n t o l o g y O b j e c t .
e n t i t y l a y o u t O b j e c t i s a o n t o l o g y O b j e c t .

e n t i t y o n e D i m e n s i o n a l O b j e c t i s a l a y o u t O b j e c t .
e n t i t y t o k e n i s a o n e D i m e n s i o n a l O b j e c t (v a l u e : s t r i n g) .
e n t i t y d e l i m i t e r i s a o n e D i m e n s i o n a l O b j e c t .

e n t i t y s t a r t O f L i n e i s a d e l i m i t e r .
e n t i t y endOfLine i s a d e l i m i t e r .

e n t i t y b i D i m e n s i o n a l O b j e c t i s a l a y o u t O b j e c t .
e n t i t y c e l l i s a b i D i m e n s i o n a l O b j e c t .

e n t i t y emptyCe l l i s a c e l l .
e n t i t y f i l l e d C e l l i s a c e l l (v a l u e : s t r i n g) .

For each two-dimensional object, a bi_position relation is defined that
specifies the line and column on the abstract grid of the document where the spe-
cific object appears. For one-dimensional objects that are placed inside the cells,
two relations have been provided: one_position that denotes the position of
the object within the cell and belongs_to which identifies the cell in which it
appears by object identifiers. Below is the formal definition of such relationships.

r e l a t i o n p o s i t i o n (o b j : o n t o l o g y O b j e c t , s t a r t : i n t , end : i n t) .
r e l a t i o n o n e _ p o s i t i o n (o b j : o n e D i m e n s i o n a l O b j e c t , s t a r t : i n t ,

end : i n t) .
r e l a t i o n b i _ p o s i t i o n (o b j : b i D i m e n s i o n a l O b j e c t , x s t a r t : i n t ,

y s t a r t : i n t , xend : i n t , yend : i n t) .
r e l a t i o n b e l o n g s _ t o (o b j : o n e D i m e n s i o n a l O b j e c t , ob j2 :

b i D i m e n s i o n a l O b j e c t) .

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 67

5.2.2 Content representation
The main part of the proposed model is the representation of the document con-
tent. Most of the concepts in this part of the ontology will vary between the
domains, but a general structure and main classes are included in the ontology
regardless of the domain. In the case of homogeneous collections, we propose to
distinguish even further the concepts that are somehow “between” the individual
content of a document, interesting from the Information Extraction perspective,
and the content that is common to all the documents in collection and that is help-
ful in the extraction, but not destined to be included in the target database.

Taking into account the ontological representation of a generic document pro-
vided in the previous section, the next step, for the purpose of using the specific
domain information that can be tracked in the document, is to provide a correct
modeling of the application domain to which the the document belongs. In this
modeling operation, it becomes relevant to identify entities of interest and the
relationships in which they are involved e.g.:

e n t i t y e m a i l i s a o n t o l o g y O b j e c t (u s e r : s t r i n g , domain : s t r i n g) .
e n t i t y d a t e i s a o n t o l o g y O b j e c t (day : i n t , month : i n t , y e a r : i n t) .

The purpose is to describe the information of the reality of interest according
to a conceptual representation of the domain of the problem. It is also a cru-
cial step for the simplification and effectiveness of subsequent processing phases.
Some of the concepts anticipated in the documents may be domain-specific, while
the others may also appear in other collections and domains. This may have prac-
tical implications e.g., for the domain-independent, common classes, there may
exist semantic annotators, while for the collection-specific categories, they may
be missing. Thus, we have distinguished basic objects to denote the general con-
cepts from the domain objects that are specific for a given collection.

Another perspective on the content in a homogeneous collection of documents
is that of the recurring elements, typical labels. These are also domain-specific
objects, but rather from the domain of the structure and layout of these specific
documents, and not the topics they are concerned about. For these typical labels,
we have identifies a separate category of category markers, as the objects them-
selves are not interesting from the Information Extraction viewpoint, but rather
serve to localize the specific objects within the documents. In the end, we capture
both perspectives with the following structure of entities:

e n t i t y o n t o l o g y O b j e c t .
e n t i t y c o n t e n t O b j e c t i s a o n t o l o g y O b j e c t .

e n t i t y c a t e g o r y M a r k e r i s a c o n t e n t O b j e c t .
e n t i t y r e l e v a n t O b j e c t i s a c o n t e n t O b j e c t .

e n t i t y b a s i c O b j e c t i s a r e l e v a n t O b j e c t .
e n t i t y domainObjec t i s a r e l e v a n t O b j e c t .

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 68

5.3 Use case example
To illustrate the concepts introduced in this chapter, in this section we show the
application of our model to a homogeneous documents collection of Curriculum
Vitae. The accepted format is the one established by the Europass standard for
the definition of curriculum vitae. The Europass format has a fixed structure orga-
nized in sections and subsections that allows to present candidate’s qualifications
and skills. A candidate must enter their personal information; provide a descrip-
tion of the professional experience; describe educational and training path; as
well as portray in detail their skills and competences, acquired during the course
of training, career or daily life. In particular, a generic curriculum vitae is struc-
tured in the following sections: Personal information, Professional experience
(multiple blocks can be present), Education and Training (Multiple Blocks can be
present), Personal skills and competences, Social skills and competences, Organi-
zational skills and competences, Technical and computer skills and competences,
Other skills and competences, Further information.

Choosing this format ensures that the input documents have roughly the same
two-column layout, and that the content is similarly organized in specific sec-
tions. In addition, there is a predefined set of labels in the documents, which
define the characteristics of a candidate, and a common domain of values (con-
sidering curriculum in the same language). In reality, there may be differences
between documents, in fact, candidates tend to adapt the model to their needs.
However, a collection of Europass documents can be considered homogeneous
and a reference model can be assumed.

The application of the described approach translates into the definition of dif-
ferent entities, instances, hierarchies capable of modeling the specific domain con-
sidered in addition to the already-depicted basic components. With the ultimate
aim of capturing the information pertaining to each section, it may be useful to
identify the sections of a curriculum. This can be achieved by introducing an
label entity that will mark the specific sections having their name as an attribute:

e n t i t y l a b e l i s a c a t e g o r y M a r k e r (name : s t r i n g) .

An instance of this class is, for example, personal_info_label:label(name: "Per-
sonal Information") which represents the first section. For simplicity and unifor-
mity of representation, the same class can be used to represent any subsections of
a section. For example, the following are some of the subsections relating to the
Personal Information section:

a d d r e s s _ l a b e l : l a b e l (name : " Address ") .
t e l e p h o n e _ l a b e l : l a b e l (name : " Te lephone ") .
e m a i l _ l a b e l : l a b e l (name : " Email ") .
n a t i o n a l i t y _ l a b e l : l a b e l (name : " N a t i o n a l i t y ") .
g e n d e r _ l a b e l : l a b e l (name : " Gender ") .

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 69

These definitions allow to capture the static part of the document, but dependent
on the domain. To extract information from the most variable and unpredictable
parts (the actual content), one needs to provide other entities that are appropriate
to the exact purpose. For example, one could define entities such as:

e n t i t y candida teName i s a domainObjec t (name : s t r i n g) .
e n t i t y c a n d i d a t e A d d r e s s i s a domainObjec t (a d d r e s s : s t r i n g) .
e n t i t y candida tePhoneNumber i s a domainObjec t (phone : s t r i n g) .
e n t i t y c a n d i d a t e E m a i l i s a domainObjec t (e m a i l : s t r i n g) .

to refer to the candidate’s specific information. In addition, one could define se-
mantic categories of interest for the application domain: :

e n t i t y p e r s o n i s a domainObjec t (name : s t r i n g , surname : s t r i n g ,
b i r t h d a t e : da t e , i d : s t r i n g) .

e n t i t y p l a c e i s a domainObjec t (name : s t r i n g) .
e n t i t y d a t e and i s domainObjec t (day : i n t e g e r , month : i n t e g e r ,

y e a r : i n t e g e r) .
e n t i t y company i s a domainObjec t (name : s t r i n g) .
e n t i t y e d u c a t i o n I n s t i t u t i o n i s a domainObjec t (name : s t r i n g ,

c o u n t r y : s t r i n g) .

Graphically, the representative ontology for this use case is depicted in Figure 5.1.

CHAPTER 5. ONTOLOGICAL DOCUMENT REPRESENTATION 70

Figure 5.1: Fragment of the ontology for a collection of CVs documents.

Chapter 6

Semantic Descriptors

The analysis of the semantics of document content, and of the layout and struc-
ture of a document are the two main tasks that prepare basic objects for further
processing in our Information Extraction process. The unified ontological rep-
resentation of these objects provides basic inference mechanisms (subsumption
reasoning). In order to extract more complex objects, we need a more advanced
method of knowledge processing. In this chapter, we introduce a rule-based for-
malism of semantic descriptors. We explain their application and assumptions.
present the syntax and semantics and show how they can be evaluated thanks to a
translation to an ASP program.

6.1 Existing rule-based solutions for IE
The semantic descriptors follows the line of rule-based IE. In fact, rules were an-
alyzed as the first method for information extraction. Currently, more attention in
academic world is devoted to statistical and machine-learning approaches. How-
ever, in a corporate world, the interest in rules reborns, as the grounded rule-based
formalisms are effective and more intuitive for non-experts.

In general, Information Extraction strategies based on machine learning tech-
niques and algorithms first analyze a (often manually annotated) document or text
corpus to learn extraction rules, and then examines new documents to propose au-
tomatically generated extractions to the user. The user can confirm or correct the
proposed extractions. Instead, a rule-based Information Extraction strategy does
not require the learning phase. The rules for extracting information are created
manually. These approaches have been applied in a variety of academic applica-
tions (Araneus [82], DEByE [74], Minerva [30], NoDoSE [1], TSIMMIS [58],
SoftMealy [63], RAPIER [19], WebOQL [9], WHISK [109], SRV [43, 44],
WIEN [73], and XWrap [77]. STALKER [85], W4F [99], Squirrel [24] and

71

CHAPTER 6. SEMANTIC DESCRIPTORS 72

RoadRunner [31]. Numerous tools have been developed in this area, offering com-
plete and robust software packages: Denodo (www.denodo.com), Kapow Tech-
nologies (www.kapowtech.com), QL2 (www.ql2.com), Dapper (www.dapper.
com),
Fetch Technologies (www.fetch.com) or Lixto (www.lixto.com).

Existing tools can be classified according to different features: the input of
the extraction process, the degree of process automation, and the techniques for
writing the extraction rules. Other types of classifications for Information Extrac-
tion systems take into account additional aspects: page content (columns, tables,
figures), patterns and extraction methods (regular expressions, Prolog rules, NLP
rules, heuristics, Markov models); degree of automation, background knowledge,
output. As for the type of documents processed, the input documents of an ex-
traction task can be classified as structured, semi-structured or unstructured. In
addition, different systems work exclusively on the HTML tag structure (W4F,
XWRAP, RoadRunner). while others support non-HTML inputs (RAPIER, Soft-
Mealy, TSIMMIS, Minerva, Jedi, NoDo, SRV, Stalker, Lixto).

Systems can also be classified according to their “category” which allows to
distinguish different approaches. One approach is that followed by HTML-aware
systems. This group of systems closely depends on the structural features of
HTML documents for data extraction. The systems usually use tree represen-
tations that reflect the hierarchy of HTML markup. Another approach is the one
offered by Natural Language Processing techniques. In this case, the systems
apply various procedures such as semantic filtering and tagging to build relation-
ships between the elements of the document, in order to derive the extraction
rules. These rules are based on syntactic and semantic constraints that help iden-
tify relevant information within the documents. A slightly different capability is
offered by wrapper induction systems. The induction process consists in gener-
ating extraction rules from a set of training examples. Unlike NLP-based tools,
these systems are not based on linguistic constraints, but rather on the structure of
the document and this makes them more suitable for use on HTML documents.
Finally, there are ontology-based systems: this class includes the systems that,
given a target structure (schema) for the objects of interest, try to locate portions
of data that implicitly meet the schema in the pages. The ontology-based sys-
tems provide that, given a specific application domain, one can use an ontology to
locate the terms in a document and build objects.

With respect to the types of extraction rules, many systems use rules that are
represented by regular grammars to identify the beginning and end of relevant
data, while some use rules following the first order logic. Using regular expres-
sions is more suitable for semi-structured inputs, especially template-based, while
for unstructured documents the use of first-order logic tools has yielded better re-
sults. Despite the differences, it is possible to identify the characteristics common

www.denodo.com
www.kapowtech.com
www.ql2.com
www.dapper.com
www.dapper.com
www.fetch.com
www.lixto.com

CHAPTER 6. SEMANTIC DESCRIPTORS 73

to the different Information Extraction systems. Such systems allow, typically, to
represent extraction rules that express patterns defined on the basis of the syntactic
structure of the information to be extracted. In other words, existing approaches
depend, to a large extent, on the internal representation of digitally processed
documents, and therefore are specialized in specific internal formats (plain text,
HTML, XML, etc.). Moreover, the formalisms used to represent the extraction
rules have rather limited expressivity.

A limitation common to many solutions is the adoption of syntactic approaches,
often carried out by using regular expressions (regex). Regular expressions are a
simple and declarative formalism to specify patterns to extract. An advantage of
regular expressions is that they can be evaluated efficiently: recognizing whether
a string belongs to a regular language is feasible in linear time. However, one of
the disadvantages of this approach is the limited expressive power, which is not
suitable for supporting robust Information Extraction tasks. In addition, the use of
regular expressions in complex tasks is often verbose, chaotic and non-modular.

Another weakness of traditional approaches is their dependence on the specific
format of the document. This means that systems designed to manage HTML
documents often are not equally suitable for working on documents in a different
format, such as PDF. The process of extraction from such sources is certainly
more complex, since these documents are not hierarchical structures as in the case
of HTML. There is extensive literature about the analysis and interpretation of
PDF documents [40, 42, 76] which often seeks to recreate such structures. Other
aspects that are not fully managed are those that can be used to express patterns
that capture two-dimensional data structures such as tables, lists, etc. Utilizing
a two-dimensional representation of semi-structured and unstructured documents
would allow an abstract and unifying representation of the different formats of
existing documents: pattern recognition would be exploited by using semantics
and spatial relationships between objects.

6.2 The semantic descriptors approach
In this section, we present the semantic descriptors approach. We introduce with
examples what kind of situations can be captured, and what can be analyzed to
extract interesting information from a document. We show how the semantic de-
scriptors refer to the structure and content of a document and how the knowledge
about these two aspects can be used to create and extract new objects.

The proposed language is mainly characterized by two aspects. First, it allows
the definition of semantic object-oriented extraction rules. Second, it can be used
on structured, semi-structured or unstructured documents. The use of an onto-
logical support language meets the need to provide adequate semantic support for

CHAPTER 6. SEMANTIC DESCRIPTORS 74

extracting meaningful information from unstructured and semi-structured docu-
ments. To extract meaningful information from this type of files, it is necessary
to analyze them from a semantic point of view using a priori and/or contextual
knowledge. An ontology is a useful tool for managing information semantically,
and the language itself aims to allow associations between pieces of information
and ontological concepts from which new knowledge can be derived. Pattern
specification rules can therefore account for ontological language objects. The
approach, fits perfectly to the integration of existing techniques. It makes it pos-
sible to extract information from different document formats thanks to the high
level of abstraction provided by the logical view of the document.

Note that the notion of semantic descriptor was inherited by HiLeX [79]. The
idea behind the definition of that language was to provide a tool that combines
simple knowledge elements to obtain and build more complex objects. In our
work, we have extended the language of the descriptors defined in [79] to be able
to treat both one-dimensional and two-dimensional objects in a uniform way and
to allow for some intuitive constructions (such as ‘...’ for skipping not-interesting
elements in text) that represent more advanced operations on text.

The phase of formulating semantic descriptors requires some attention. In par-
ticular, the designer should build objects according to a bottom-up logic, starting
from the “leaves” provided by the annotators. This is because semantic descriptors
allow to organize two-dimensional objects (such as cells) and one-dimensional
(such as tokens) in descriptions to build new information, encoded into more com-
plex objects. To better understand the use of language, and before giving it a more
formal definition, we provide an overview of its features by using examples.

Example 1 A user can identify parts of the document that will help to structure
it, and help to localize other data portions, e.g.:

<cv_email_label_box()> ::- <filledCell(X)>
CONTAINS <cv_email_label()>

With this simple descriptor, we intend to create a two-dimensional entity that we
call cv_email_label_box that defines a cell in which there is a one-dimensional
object cv_email_label. The object we want to extract always resides on the
left-hand-side of the operator “::-” (in the head of a descriptor), while on the
right (in the body), there are objects that must be found in order to create it. In
this example, we look for a cell, in particular a filledCell within which (this
is expressed with a keyword CONTAINS) there is a particular domain concept, an
cv_email_label. On the one hand, one can assume that the whole document
is divided into filled and empty cells (these facts are given by bi-dimensional to-
kenizer). On the other, an cv_email_label is a concept that can be recognized
by a label annotator. Thus, if we find a cell with this label inside, the cell can be

CHAPTER 6. SEMANTIC DESCRIPTORS 75

recognized as a cv_email_label_box. In this example, we do not use nor pass
any attribute values.

Example 2 Descriptors can join several cells that appear in a document one
after another (horizontally or vertically). This is useful, if we want to say that
there exist a particular object, if there is a specific sequence of cells:

<candidateEmail(E)> ::- {E:=’’;} <cv_email_label_box()>
(<filledCell(X)> CONTAINS <email(X)> {E:=X;})

In this example, the description should be read as: “A candidateEmail is a
bi-dimensional object that captures two cells: the first is a cell which has been
recognized as an cv_email_label_box and is followed by a filledCell that
contains a (one-dimensional) object email with value X. The new object spans
across both cells, and the value of the object email becomes the value of the
object candidateEmail.

Note the introduction of an attribute here. If we want to give an attribute to
the new object (the one declared in the head of a descriptor), this attribute must
be initialized at the beginning of the descriptor body. Here, we initialize it with
an empty value ({E:=”;}). If we want to pass the value of an attribute from the
concept in body to the concept in head, we do it with an assignment instruction,
{E:=X;}. In this example, we use:

• a concept email that is recognized by a semantic annotator,

• a concept from another semantic descriptor: cv_email_label_box,

• a class filledCell given by a two-dimensional tokenizer.

This descriptor extracts an object with an attribute that stores the actual value of
the candidate’s e-mail address. By using the context (first there is a box with an
e-mail label, and then there is a cell with an e-mail address), we ensure that, even
if the CV contains a few e-mail addresses, we select the correct one, because if
the e-mail address appears in this place, it must be in the Personal Information
section and thus, it is the e-mail of the candidate.

Example 3 We can also aggregate the concepts and attributes extracted by other
semantic descriptors to build more complex ones:

<personalInformation(N, S, A, P, E, Nt G)> ::-
{N:=’’;S:=’’;A:=’’;P:=’’;E:=’’;Nt:=’’;G:=’’;}

<candidateName(X)> {N:=X;} <candidateSurname(X)> {S:=X;}
<candidateAddress(X)> {A:=X;} <candidatePhone(X)> {P:=X;}

<candNationality(X)> {Nt:=X;} <candidateGender(X)> {G:=X;}

CHAPTER 6. SEMANTIC DESCRIPTORS 76

This semantic descriptor aggregates results of other descriptors that extract single
information about a candidate. First, we have the initialization of all the attributes,
and then a sequence of concepts that must appear one after another (vertically or
horizontally). Note that this aggregation must adheres to the template of the input
documents (it must reflect the order in which information is given in the docu-
ments). The line breaks within the descriptor do not influence its semantics. The
aggregation is checked horizontally and vertically to cover all the possibilities.

Example 4 Within cells, we can create complex one-dimensional objects by
using a recurrence structure “(sequence of terms)+” and a keyword “...”
that allows to skip some objects, e.g.:

<list_of_skills(S)> ::- {S:=’’;} <startOfLine> ...
(<IndustryTerm(S1)>{S+=S1;} ...)+ <endOfLine>

This descriptor works for one-dimensional objects that are all located in one
cell (treated as a single line). Here, we want to create a list of attributes, so
we initialize the attribute S:=”. Then, we look for a concept IndustryTerm,
given by a semantic annotator, append its attribute value to S, and place the term
in a recurrence structure. The expression (<IndustryTerm(S1)>{S+=S1;}

...)+ means that there may be some objects after the IndustryTerm that we
ignore, and if we find another object IndustryTerm, we append its attribute
value to the list again. By using the keyword “...” before the recurrence, we
say that before encountering the recurrence, we can skip some objects; it means
that the recurrence structure may appear anywhere between the startOfLine

and the endOfLine. The descriptor creates a new object list_of_skills that
stores as an attribute a list of IndustryTerm objects’ attributes. The concepts
startOfLine and endOfLine are delimiters given by a tokenizer.

Example 5 Finally, semantic descriptors may use the information about the
placement of semantically-enriched data within the document (e.g. presence of
a given object within specific section) to produce new objects that are not explic-
itly present in text, e.g.:

<list_of_practical_skills(S)> ::- {S:=’’}
<cv_work_activities_and_responsibilities_label_box()>
(<filledCell(X)> CONTAINS <list_of_skills(X)> {S:=X;})

In this example, we use a concept from the domain ontology, which is a filled
cell cv_activities_and_responsibilities_label_box, to check if the
list of skills (for which a descriptor is given in the previous example) has been
found in the Work Experience section (only in this section, a label for “activities
and responsibilities” can be found).

CHAPTER 6. SEMANTIC DESCRIPTORS 77

6.3 Syntax and semantics
In this section, we present the syntax and semantic of the descriptors. The syntax
is based on a concept of positive rules. The semantic will be explained by giving
a reference to automata representation and evaluation with logic programming.

Syntax A semantic descriptor d is defined as

head(d) ALIGNMENT body(d)

where head(d) represents the head of the descriptor and body(d) represents its
body. ALIGNMENT is a symbol from the set ::−, :: |, :: and defines the type of
alignment of the descriptor d. Specifically ::− encodes horizontal two-dimensional
alignment, :: | encodes two-dimensional vertical alignment and :: encodes one-
dimensional alignment.

Consider an ontology O and a set of Z values, such that Z is composed of two
subsets Zint and Zstr that identify the set of natural numbers and the set of strings
on a given alphabet, respectively. The head of the descriptor head(d) is made up
of a class atom on ontology O. The body of the descriptor body(d) is defined
as a sequence of at most 3 blocks in the order: LeftBlock, CapturingBlock and
RightBlock. Each block, in turn, consists in at most three sequences. In practical
examples, the descriptors’ bodies often consist of only one block. If there are
more blocks, their internal structure is usually simple. However, the full possible
structure of a descriptor body is shown in Figure 6.1.

seq
1

seq
2

seq
3

+

I

LeftBlock

seq
1

seq
2

seq
3

+

II

CapturingBlock

seq
1

seq
2

seq
3

+

III

RightBlock

Figure 6.1: General structure of a semantic descriptor’s body

To be more specific, a descriptor may have one of the following form:

• 〈Le f tBlock〉 〈CapturingBlock〉 〈RightBlock〉

• 〈Le f tBlock〉

• 〈Le f tBlock〉 〈CapturingBlock〉

• 〈CapturingBlock〉 〈RightBlock〉

CHAPTER 6. SEMANTIC DESCRIPTORS 78

Left and right blocks have identical structures. A capturing block has additional
brackets around the actual block content (“[. . .]”) to mark the spatial range within
a document that will be used for the new object created with that descriptor.

Each block consists of sequences. The following forms of blocks are possible:

• seq1 (seq2)+ seq3

• seq1

• seq1 (seq2)+

• (seq2)+ seq3

• (seq2)+

The expression“(seq)+” denotes a recurrence structure. It means that the content
of such a sequence may be found several times one after another.
Finally, each sequence consists of terms: 〈term1〉 . . .〈termn〉 and instructions. The
terms represent basic objects in the content, such as tokens and delimiters, and also
objects annotated by semantic annotators (Persons, Places etc.). A term can be:

• A simple term

• A term defined from simple terms as: simple term CONTAINS simple term

• An anonymous term defined by the symbol ‘...’

An instruction can be:

• an assignment instruction, for setting a value to a variable

• an arithmetic instruction, for performing simple operations on integer vari-
ables (addition, substraction multiplication etc)

• a list instruction, for manipulating lists, mainly to add an element to a list

Semantics Let us now discuss the semantic aspects in accordance with the de-
scriptor definition that has been provided. Without loss of generality, we can
consider a single block. Within each block, five different structures are allowed:
seq1 (seq2)+ seq3, seq1, seq1 (seq2)+, (seq2)+ seq3 and (seq2)+. If we consider
the body of the descriptor as a regular expression of terms, then it is possible to
construct an equivalent Finite State Machine (FSM) for it, denoted as M(d). For
example, in the Figure 6.2 the FSM associated with a block of the most complete
form: seq1 (seq2)+ seq3 is depicted.

CHAPTER 6. SEMANTIC DESCRIPTORS 79

Figure 6.2: Automata-based representation of a semantic descriptor’s body

This representation encodes the semantics of a block that contains no anonymous
terms ‘...’. On the other hand, if an anonymous term appears, the finite state ma-
chine changes and an additional loop, that encodes the mechanism of an implicit
“recurrence” of the anonymous term, is added. For example, in the Fig. 6.3, the
finite state machine associated with the body of a full-size block: seq1 (seq2)+
seq3, where anonymous terms occur in seq1 and (seq2)+ sequences, is depicted.

Figure 6.3: Automata-based representation of a block with anonymous terms

Note that the presence of a term defined by combination of simple terms: sim-
ple term CONTAINS simple term does not require any modification to the defini-
tion of the finite state machine, since it is solved by a simple check of a condition,
if one object is within the two-dimensional boundaries (coordinates) of another.
This type of term is used to check whether one simple term that represents a two-
dimensional objects such as a cell contains another simple term that refer to an

CHAPTER 6. SEMANTIC DESCRIPTORS 80

one-dimensional ontological object, such as a token or a text semantically anno-
tated with a specific category.

In the presence of two or more blocks, the finite state machine representing the
whole descriptor body is obtained from the composition of the single finite state
machines representing each block. Intuitively, by default, the positions to be at-
tributed to the object defined in the head of the descriptor coincide with the range
of positions starting at LeftBlock and ending at the positions of the RightBlock.
However, in the presence of a [CapturingBlock], the positions to be attributed to
the object defined in the head of the descriptor coincide with those of the captur-
ing block. In a sense, in the latter case, the left and right blocks constitute the
“context” in which the actual object is identified.

6.4 Logic-based evaluation
In this section, we explain how the semantic descriptors can be evaluated with use
of existing inference engines. We show how a single descriptor represents seman-
tics of a set of logic rules, and how we generate them by using an intermediate
matrix-based representation of finite state machines.

6.4.1 Translation to logic rules
For the translation of a semantic descriptor into a set of logic rules, more specif-
ically, a DLV program, we use the automata representation of the descriptors in-
troduced in the previous section. For each descriptor, we build at most three au-
tomata, an automaton for each block. The elements of the blocks are mapped onto
the automata transitions and organized appropriately. These transitions contain
information about the terms that are looked for in a document, and the order in
which they must appear. In the end, all the automata are “concatenated”, such that
the last state of one automaton is followed by the first state of the consequent one.
This representation is then used to generate appropriate logic rules; first, the one
that represents an initial state (for the whole descriptor), and then the rules that
represent transitions of the descriptor’s automata. In order to reflect the “orienta-
tion” of the descriptor (horizontal or vertical), the alignment of the descriptor is
recognized and used to set appropriate coordinate variables in the rules. At the
end, the algorithm generates a separate set of rules whose aim is to create a new
object that is defined in the head of the considered descriptor. The algorithm for a
set of descriptors into a DLV program is shown in Listing 1.

Let us take a closer look at the particular stages of the algorithm, namely:
(1) creating automata that represent the descriptor body, (2) building logical rules

CHAPTER 6. SEMANTIC DESCRIPTORS 81

Algorithm 1 Translate a set of descriptors into a DLV program
1: procedure BUILDDLVPROGRAM(Descriptors)
2: rules← /0
3: for all d ∈ Descriptors do
4: rules← rules ∪ BUILDINITIALSTATE(d)
5: automata← CREATEAUTOMATA(d)
6: for all a ∈ automata do
7: if a 6= null then
8: align← ALIGNMENT(d)
9: rules← rules ∪BUILDRULES(a,align)

10: end if
11: end for
12: rules← rules ∪BUILDOBJECT(d)
13: end for
14: return rules
15: end procedure

from the automata transitions, and (3) building rules to construct a new object
defined in the descriptor head.

Creating automata Listing 2 presents the CREATEAUTOMATA(d) function that
for each block in the descriptor creates an automaton. The transitions inside each
automaton take into consideration the offset which ensures that the next automaton
starts where the previous ends.

Algorithm 2 Constructing automata for a descriptor
function CREATEAUTOMATA(d)

offset← 0,a← /0
for block ∈ {d.Le f tBlock,d.CapturingBlock,d.RightBlock} do

if block 6= null then
a← a ∪ CREATEAUTOMATONFORBLOCK(block,offset)
offset← offset+ sizeO f (block)

end if
end for
return a

end function

Function CREATEAUTOMATONFORBLOCK(block,offset) creates a matrix rep-
resentation of an automaton for a block, taking into account the offset. Each au-
tomaton has a size equal to the number of terms within the associated block. The

CHAPTER 6. SEMANTIC DESCRIPTORS 82

transitions of the automaton are constructed from the sequences of terms in the
associated block, as depicted in Figure 6.4. The numbers of the automaton states

0 1 2 3 4 5 6 7

0 t1

1 t2

2 t3

3 t4

4 t5

5 t3 t6

6 t7

7

Exemplary block (made of 3 sequences):

Seqence 1 = <t1><t2> Sequence 2 = (<t3><t4><t5>)+ Sequence 3 = <t6><t7>

<tk1> <tk2> (<tk3> <tk4> <tk5>)+ <tk6> <tk7>

0 1 2 3 4 5 6 7
t1 t2 t3 t4 t5 t6 t7

t3Corresponding automaton:

Matrix representation of the automaton:

Figure 6.4: Creating an automaton for a single block

are mapped onto rows and columns of a matrix, and the transitions are placed at
the intersection of appropriate row and column i.e., for a transition τ from state si
to state s j with a transition label term the value term is placed in the (si,s j) po-
sition in the matrix. Note that if we encounter recurrent structure (t1, . . . , tn)+ in
the descriptor, then the first element of the sequence placed inside the recurrence
will appear twice in the matrix.

CHAPTER 6. SEMANTIC DESCRIPTORS 83

Building logic rules for the automata After constructing the automata, the al-
gorithm build the rules. First, the initial state is built. In fact, this rule is indepen-
dent from the automata structure, for it is simply a logic fact. The predicate name
is constructed from the keywords: init_conf_ and a descriptor name (predi-
cate name in the descriptor head), and there is a set of variables: the first is always
equal to 0, as it represent the initial state, and the rest are placeholders for as many
variables as many attributes are defined for the considered object in the descrip-
tor’s head.

Then, the rules that represent the transitions of the automata are added. For
every row r and for every column c in the matrix representation of the descriptor
body, if there is a value on the position (r,c), we build a logic rule that represents
the transition from state number r to state numbered c as follows:

1. We create a DLV term representing previous state (here the predicate name
is init_conf_descriptor-name with initialization of attributes, or
conf_descriptor-name with arguments representing position and variables).

2. We create DLV terms representing the transition term (the one that must be
encounter to proceed): the term name and attributes, two- or one-position
relation, optionally terms representing the keyword CONTAINS.

3. We build the head of rule, representing the next state (appropriate variables,
attributes, location must be updated.

4. We build the rule of the above head and the body elements.

Building logic rules to create a new object Finally, there are rules that con-
struct a new object, given by the descriptor. A new object is associated with a new
unique identifier, and a bi_- or one_position relation, depending on whether
this object is bi-dimensional or one-dimensional. We start by building an auxiliary
rule whose predicate name is aux_descriptor-name, and whose attributes are:

1. attribute 1: a new unique identifier,

2. attribute 2: content of the new object captured by the descriptor,

3. attributes 3-4 or 3-6: 2 or 4 coordinates of the object.

Then we build a rule, in which in the head we construct a term, whose predicate
name is descriptor-name, and the attributes (identifier and content) are copied
from the auxiliary rule. We do not copy the positions. Finally, we build a rule, in
the head of which we construct a term, whose predicate name is bi_position
or one_position, and the attributes (identifier and position) are copied from the
auxiliary rule.

CHAPTER 6. SEMANTIC DESCRIPTORS 84

6.4.2 Exemplary translations
Let us now show a few examples to illustrate the details of the translation.

Example 1 Let the semantic descriptor be:

<candidateEmail(E)> ::- {E:="";} <filledCell(C)>
CONTAINS <email(X)>{E:=X;}.

In this descriptor, we have only one block that contains only one sequence. We
want to find a cell that contains a fragment annotated as email. The automata
representation is very simple, it consist in only two states and one transition.

The initial state rule is built as follows:

init_conf_candidateEmail(0,"").

The following rule is as follows:

conf_candidateEmail(1, Lc6, Xs, Ys, Xe, Ye) :-
init_conf_candidateEmail(0,""), % previous state
filledCell(Id, Lc5), % next term to find
bi_position(Id, Xs, Ys, Xe, Ye),% the term’s position
email(IdContains, Lc6), % an object inside
belongs_to(IdContains,Id).

Finally, the rules constructing the object are as follows:

% auxiliary rule
aux_candidateEmail(AutoGen,Gl3, Xs, Ys, Xe, Ye) :-

conf_candidateEmail(1,Gl3, Xs, Ys, Xe, Ye),
#newId(AutoGen).

% building a new object
candidateEmail(AutoGen,Gl3) :-

aux_candidateEmail(AutoGen,Gl3, Xs, Ys, Xe, Ye).
% setting the object position
bi_position(AutoGen, Xs, Ys, Xe, Ye) :-

aux_candidateEmail(AutoGen,Gl3, Xs, Ys, Xe, Ye).

Example 2 Let the next descriptor be:

<candidateName(X)> ::- {N:="";} <eu_cv_name_label(L)>
[<filledCell(X)> {N:=X;}].

CHAPTER 6. SEMANTIC DESCRIPTORS 85

This descriptor is also relatively simple, but it is composed of two blocks, Left
and Capturing. We want to find two cells following on another, the first being
a specific label, and the second – a filled cell with a value. For the final object,
however, we only want to extract the position of the second cell. The automata
representation consists of two automata, each with one transition.

The translation is as follows: Initial state rule

init_conf_candidateName(0,"").

The following rules

conf_candidateName(1, "", Xs, Ys, Xe, Ye) :-
init_conf_candidateName(0,""),
eu_cv_name_label(Id, Lc1),
bi_position(Id, Xs, Ys, Xe, Ye).

conf_candidateName(2, Lc2, Xe, Ys, Xe_1, Ye) :-
conf_candidateName(1, Gl1, Xs, Ys, Xe, Ye),
filledCell(Id, Lc2),
bi_position(Id, Xe, Ys, Xe_1, Ye).

Rules building the object:

aux_candidateName(AutoGen,Gl1, Xs, Ys, Xe, Ye) :-
conf_candidateName(2,Gl1, _,Ys,_,Ye),
conf_candidateName(1, _ , _, _,Xs,_),
conf_candidateName(2, _ , _, _, Xe, _),
#newId(AutoGen).

candidateName(AutoGen,Gl1) :-
aux_candidateName(AutoGen,Gl1, Xs, Ys, Xe, Ye).

bi_position(AutoGen, Xs, Ys, Xe, Ye) :-
aux_candidateName(AutoGen,Gl1, Xs, Ys, Xe, Ye).

With respect to the previous example, note the difference in the rules building
the new object. Here, the Capturing block is reflected by recalling appropriate
positions that were present at particular states.

Example 3 Let the next descriptor be a vertical bi-dimensional one:

<personalInformation(P, E, Nt, B)> ::|
{P:="";E:="";Nt:="";B := "";}
<candidatePhone(X)> {P:=X;}
<candidateEmail(X)> {E:=X;}
<candidateNationality(X)> {Nt:=X;}
<candidateBirthdate(X)> {B:=X;}.

CHAPTER 6. SEMANTIC DESCRIPTORS 86

This descriptor aggregates vertically several objects (extracted with use of other
descriptors). In the automata representation, there are 5 states and 4 transition.

The translation is as follows: Initial state rule:

init_conf_personalInformation(0,"","","","").

The following rules:

conf_personalInformation(1,Lc11,"","","",Xs,Ys,Xe,Ye) :-
init_conf_personalInformation(0,"","","",""),
candidatePhone(Id, Lc11),
bi_position(Id, Xs, Ys, Xe, Ye).

conf_personalInformation(2,Gl6,Lc11,Gl8,Gl9,Xs,Ye,Xe,Ye_1) :-
conf_personalInformation(1,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye),
candidateEmail(Id, Lc11),
bi_position(Id, Xs, Ye, Xe, Ye_1).

conf_personalInformation(3,Gl6,Gl7,Lc11,Gl9,Xs,Ye,Xe,Ye_1) :-
conf_personalInformation(2,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye),
candidateNationality(Id, Lc11),
bi_position(Id, Xs, Ye, Xe, Ye_1).

conf_personalInformation(4,Gl6,Gl7,Gl8,Lc11,Xs,Ye,Xe,Ye_1) :-
conf_personalInformation(3,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye),
candidateBirthdate(Id, Lc11),
bi_position(Id, Xs, Ye, Xe, Ye_1).

Rules building the object:

aux_personalInformation(AutoGen,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye):-
conf_personalInformation(4,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye),
#newId(AutoGen).

personalInformation(AutoGen,Gl6,Gl7,Gl8,Gl9) :-
aux_personalInformation(AutoGen,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye).

bi_position(AutoGen, Xs, Ys, Xe, Ye) :-
aux_personalInformation(AutoGen,Gl6,Gl7,Gl8,Gl9,Xs,Ys,Xe,Ye).

Chapter 7

Ontology-driven IE: The Knowrex
Framework

Everything that was presented so far in the thesis, will be used in this chapter to
introduce Knowrex — a framework for information extraction from a homoge-
neous collection of documents. From the semantic and document layout analysis,
through the ontology-based knowledge representation, to the rule-based process-
ing — everything is integrated and working together. First, we will show what
are the essential features and the architecture of Knowrex framework. Then, we
will recount how the user interacts with the system: how a generic framework
can be adapted to a specific task (collection of documents), and how the system
transforms a set of pdf documents into an instance of a database. Finally, we will
explain how particular elements have been implemented, and how respective im-
plementation decisions influence the functionality and flexibility of the system.
This chapter is partially based on the co-authored papers [2, 3].

7.1 System overview and architecture
Knowrex is an Information Extraction system. It can process both single docu-
ments and collections of them. The system has a modular architecture, it consists
of a core part and external tools. In this section, we explain the main assumptions
of the framework and functionality of the respective modules.

KnowRex is a framework that allows to develop systems for Semantic Infor-
mation Extraction (i.e., information extraction based on the meaning of data). In
our approach, what drives the whole process is a semantic view of the input data.
It means that we start developing a new project with KnowRex by deciding what
information we want to obtain in the end, and how we want to organize it. It is
often possible to semi-formally model the organization of data within a document

87

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK88

(e.g. the DOM model for (X)HTML an XML languages). In KnowRex, however,
we take a step further and allow users to define the final semantic view that is in-
dependent from the initial structure. This approach is closer to practical use cases,
in which specialists are asked to populate existing knowledge (or data) bases by
extracting appropriate information from a collection of documents.

When we consider a homogeneous collection of documents, we can assume
that the input files share some specific features, that we can capture with a no-
tion of a “template”. Based on a template one can define an object model that
will more formally define the sort of data contained within the documents and,
to some extend, the way it is organized (sections or subsections, keywords etc.)
Once a model for the collection (characterized with some template) is defined,
the information extraction from a set of documents complying to this template
will populate the object model with instances from each input document. This
is, however, only a part of work. The other important stage of the process is for-
mulating a mapping from the object model to a target schema. Such a mapping
allows to reorganize objects extracted from the documents and transform them
into instances of the desired semantic view (see Figure 7.1).

It is possible to define more semantic views for the same collection of data
(e.g. for different use cases). One can even imagine defining several object models
for the same input and target schema. KnowRex framework ensures flexibility in
these respects, by separating the stages of extraction and the mapping to target
schema and enabling reuse of the components.

Within KnowRex, several tools and techniques have been used, namely:

1. a two-dimensional processor for recognizing structural elements of docu-
ments,

2. one- and two-dimensional tokenizers for identifying basic elements of text,

3. annotators (third-party semantic annotators, natural language processing
tools, pattern recognition tools etc.) that label single words or phrases as
belonging to particular categories,

4. semantic descriptors that allow to build the object model from the objects
obtained from structural and semantic analysis, and

5. logical rules that allow to formulate a mapping between knowledge repre-
sentations (the object model and the target schema).

Deployment of a new project with KnowRex is relatively easy and consists in
adapting the core of the system and the external tools to work on specific data to
obtain desired results. Development of a new project is divided into two phases:

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK89

design and runtime. In the former, the designer works on a conceptual level defin-
ing the object model (by assuming a certain template) and the target schema, and
by setting the tools and writing rules that will govern the data and information
transformations. For the extraction step, the bi-dimensional processing tools, the
annotators and the descriptors must be adapted, and for the mapping to target
schema, logic rules must be defined. These design choices, described in details in
Sect. 7.2.1, are materialized and applied in the runtime phase to extract informa-
tion from the actual documents and populate semantic view(s) defined for them.

Design Phase

Runtime Phase

Semantic
View

Template
(common
properties)

Object
Model

Target
Schema

Structured
representation

of the
documents

Documents
(homogeneous

data)

Semantic Information Extraction

[conceptual layer]

[instance layer]

mapping mapping

annotators
2D processing tools
semantic descriptors

logic
rules

Figure 7.1: Semantic Information Extraction with KnowRex

KnowRex consists of a core system and a set of external tools (see a simplified
architecture in Fig. 7.2, for a multi-perspective view see Fig. 1.1). The Semantic
Information Extraction is governed by three main components: Bi-Dimensional
Unit, Annotation Unit and Language Unit, that are configured during the design
phase, and during runtime are responsible for consecutive stages of document
analysis, information extraction and processing.

The Bidimensional Unit is responsible for a structural analysis of the input
documents. In a general case, the input document may be treated as a one big
cell, on which all the analysis is performed. However, the more information about
the expected layout, structure or typical features of the input documents is given,
the better representation will be obtained, and better quality of information ex-
traction during later stages can be achieved. This unit produces a model of the
input document that contains information about its structural elements. After the
two-dimensional processing, an ontological model of the structure of the input
document is obtained, that is further analyzed semantically. The goal of this unit

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK90

KnowRex
Core

Visual Front-End

Bidimensional Unit

Bidimensional
Manager

Configuration
Manager

DLV EngineExternal
tools

Language Unit

Language
Manager

parser translator DLP rewriter 1D
tokenizer

 2D
tokenizer

abstract 2D
 processor

Annotation Unit

Annotation
Manager

abstract annotator

Annotators
Annotators

Annotators

cfg.xml

2D Processor

Figure 7.2: Architecture of the KnowRex system

is to recognize the elements of the structure of the document and annotate parts of
document with accordance to the model described in Chapter 5.

The system is highly configurable. In the Annotation Unit, the system uses ex-
ternal tools to identify objects of certain classes within the document. There exist
mature implementations of semantic annotators and NLP tools, often optimized
for certain domains or classes, and using different techniques for recognizing en-
tities. It is beneficial to use one or a few of them to obtain most accurate results.
Also, one can write their own annotator tool for recognizing entities from selected
domain, thanks to an abstract annotator interface present in KnowRex. The set of
used annotators and classes to be extracted is configured in the design phase.

The Language Unit is responsible for high-level extraction of information.
The semantic descriptors used here work with the results of the annotation and
bi-dimensional stages. They take as input information about the structure of the
document, the objects identified by semantic annotators, their placement within
the document, proximity to each other etc., and build more complex objects for
the object model.

7.2 Using the framework
One of the main advantages of the framework is that it is universal, yet can be
adapted for specific domains. The process in which a user describe the charac-
teristic features of their document collection is called a design phase. It basically

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK91

consists in extending a basic ontology to cover domain-specific concepts, and then
specifying how these concepts should be recognized. In particular, they can either
be recognized by available annotators, or by custom extraction rules specified by
the user in a form of appropriate semantic descriptors. Also, in this phase a user
define the target schema and mapping rules that will help the system map the on-
tology of extracted objects to the final format (usually relational). Once the design
is done, all the settings are compiled into set of executable logical rules, appropri-
ate configuration files etc. In the runtime phase, these settings and files are used
to automatically extract information from a given collection of documents.

7.2.1 Design phase
During the design phase, a KnowRex project is configured to perform operations
on a collection of documents, to obtain information desired by user, in a particular
form. To do it, the designer should reflect on what they have and what the want to
obtain (see Figure 7.3). The former means identifying a template which a vague

Target Schema

domain
concepts

annotators'
concepts

semantic
descriptors'
concepts

Object Model

mapping
rules

Figure 7.3: Design Phase concepts: object model, mapping, and target schema

concept for describing the common features of documents. A template must be
formalized in the form of object model. Elements of it will be extracted by dif-
ferent components (two-dimensional processing tools, annotators, and semantic
descriptors). The target schema, in turn, is typically formalized as an ontology or
database schema. The designer configures the system and arranges the external
tools so that the object model can be built. Then, they write logic rules that map
the object model into target schema. The result of the design phase is used at
runtime to process the actual documents to create the semantic view.

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK92

Definition of the Target Schema This step is crucial for the definition of a
desired output of the system. The designer has to decide how to organize the in-
formation that will be extracted from the documents. The target schema may be
either for a relational database or for an ontology. For the target database, we
may consider only the portion of information relevant. To focus attention, let us
assume the following target schema:

candidate(Id, Name, Surname, Phone, Email, Address, Nationality, License);
workExperience(Id, Company, BusinessSector, StartDate, EndDate);
candWE(IdCandidate, IdWorkExperience).

The schema should be consistent and realistic i.e., it should be easy to populate it
manually, only by analyzing the input documents.

Analyzing the document template and target schema, the designer should cre-
ate an object model for the input documents. The model does not necessarily
represent all the information that can be extracted from the input. It may, for
instance, focus only on some of the relevant sections.

Definition of the Object Model By considering the template and the target
schema, the designer fixes an object model (the ontology) for considered collec-
tion, which consists of a hierarchical forest-like structure. To define it, we use the
ontology languagein which one can define object types, relation types and express
relationships between objects. Recall that object types are preceded by keyword
entity, and the subclass relationship is expressed via the term isa. Objects may
have zero or more attributes which are specified in the type definition, by giving
their names and types. By default, a class inherits attributes from its super-class.
Relation types can be defined by keyword relation, and giving a name and at-
tributes for this relation.

Within the object model, a few types of objects are identified. First, there
are layout objects — concepts that belong to an ontology representation of a
document. This representation is independent of the use case, it is present in
KnowRex by default and does not need configuration (see Figure 7.4).

In the second group of concepts, the content objects, there are categories that
can be identified within the content of the document. This set of concepts is de-
fined by a designer and heavily depends on the use case. Recall from Chapter 5
that within the content objects, we distinguish “category markers” – classes denot-
ing collection-specific objects that have a specific role: they mark portions of text
in the documents. A user can extend this general class by providing sub-classes
for it. The class itself, however, cannot be modified (see Figure 7.5).

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK93

Figure 7.4: Layout objects of the ontology in a KnowRex project

Finally, the user can specify a sub-hierarchy of domain-specific classes. This
part of the object model is fully editable; the user can add and remove sub-classes,
define additional attributes for any class etc. (see Figure 7.6).

Arrangement of the Semantic Annotators In this step, the designer selects
the annotators to be used to extract instances of a particular class, chooses classes
that should be searched for, and configures each annotator: provides a mapping
from the tool’s output to the object model, and sets the tool’s specific properties.
In the case of Europass CV analysis, we have selected: StanfordNER, a custom
annotator for recognizing e-mail addresses and dates, a dictionary-based annota-
tor for recognizing skills defined in the European e-Competence Framework 1,
and a label annotator based on pattern recognition that recognizes labels typical
for Europass CV. Decisions about the arrangement of annotators are made experi-
mentally. Sometimes, it is beneficial to use more than one tool for recognizing the
same category. The resulting potential redundancy is not harmful, instead the re-
call of extraction may improve. With the ontology editor provide with KnowRex ,
one can simply select an annotator from available ones when editing particular
object. This way, the output of this annotator will be automatically mapped to the
selected ontology object.

1See http://www.ecompetences.eu/.

http://www.ecompetences.eu/

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK94

Figure 7.5: Refinement of a general “category marker” concept

Two-dimensional Document Analysis Knowing the context in which certain
phrase appears is helpful for semantic information extraction. In some input data
formats, e.g. pdf documents, the information about the structure is lost; while
visible to human eye, it is not obvious for a machine. Thus, we need to recover
the structure to obtain a meaningful representation of the input documents. To this
end, this step configures an external two-dimensional processor and a refinement
module inside KnowRex. As a two-dimensional processor, we have used Quablo
(http://www.quablo.eu/) that can recognize a set of regular tables within
a pdf document. The representation obtained from this tool is then improved by a
special module that works with domain concepts, such as labels of the Europass
template. The module produces improved structure, merging appropriate cells (for
example, if a label spans across two cells, these cells will be merged). Moreover,
one- and two-dimensional tokenizers (tools inside the KnowRex core) are used to
identify the basic one- and two-dimensional objects of the document. In the end,
we obtain a grid representation of the document that consists of two-dimensional
objects (cells) containing one-dimensional ones (text fragments, delimiters). For a
regular user, the basic task of this stage is to define the instances of (specification
of) category markers as they will be used be the two-dimensional processor to
improve the structure analysis (see the details of the methods in Chapter 4). More
advanced settings of the processor are possible in a text mode.

Semantic Descriptors Specification While the semantic annotators identify sin-
gle words or phrases as belonging to specific classes (producing the “leaves” of

http://www.quablo.eu/

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK95

Figure 7.6: Fully editable domain-specific concepts in an ontology designed by a
user for a particular KnowRex project

the object model), and the two-dimensional processing adds structure to the input,
the semantic descriptors can combine and use the above information to build more
complex objects. As explained in Chapter 6, semantic descriptors are rules that or-
ganize two-dimensional and one-dimensional objects into descriptions to extract
additional information. This is done on several levels (cf. the examples given in
Section 6.2). First, a designer should identify parts of the document that will help
to localize other data portions. Descriptors can join several cells that appear in a
document one after another (horizontally or vertically). This is useful, if we want
to say that there exist a particular object, if there is a specific sequence of cells.
We can also aggregate the concepts and attributes extracted by other semantic de-
scriptors to build more complex ones. Within cells, we can create one-dimensional
descriptors by using the operator “::”. Finally, semantic descriptors may use the
information about the placement of objects within the document (e.g. presence of
a given object within specific section) to extract new objects that are not explicitly
defined in text.

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK96

Defining a Mapping from Object Model to Target Schema The design phase
in KnowRex is completed with the definition of a mapping from object model
classes to the concepts of the target schema. This mapping, written in a form of
Datalog rules, is used to automatically create a semantic view of the (structured)
input documents during the runtime phase. In the head of rules, there are concepts
from the target schema, and in the body – objects from the object model (and
auxiliary objects such as candidate ID). For example, a mapping of the object
model to the target schema may be as follows:

candidate(Id,N,S,P,E,A,G,Nt,D,L) :- ID:cv_candidate_id(Id),
PI:personalInformation(N,S,A,P,E,Nt,D,G),
CDL:candidateDrivingLicence(L).

workExperience(WExpId, Company, BusinessSector, Start, End)
:- C:company(WExpId,Company,BusinessSector),

WED:workExperienceDates(WExpId,Start,End).

When the design phase ends, all the decisions are saved in the configuration files
of the system. The semantic descriptors are translated into logic rules.

7.2.2 Runtime phase
Once the design of the project is done, KnowRex can be run over a collection of
input documents. The flow of the operations and the relations between the design
and runtime phases may be observed in Figure 7.7. In the stage of the document
analysis, first, a two-dimensional processor is used. Its output is then refined
according to domain knowledge (specific labels, structure elements or keywords).
This improved structure is analyzed by one- and two-dimensional tokenizers, tools
hidden from a user, that identify the atomic one- and two-dimensional components
of a document (tokens and cells). A logical fact base is obtained that represent
the document as a two-dimensional “grid”. KnowRex uses a two-dimensional
representation of objects that helps localize them within the documents. Recall
the definitions of the position relations from Chapter 5:

r e l a t i o n p o s i t i o n (o b j : o n t o l o g y O b j e c t , s t a r t : i n t , end : i n t) .
r e l a t i o n o n e P o s i t i o n (o b j : oneDimObject , s t a r t : i n t , end : i n t

) .
r e l a t i o n b i P o s i t i o n (o b j : b iDimObject , x s t a r t : i n t , y s t a r t :

i n t , xend : i n t , yend : i n t) .
r e l a t i o n be longsTo (o b j : oneDimObject , ob j2 : b iDimObjec t)

At the end of the two-dimensional processing stage, an ontological model of
the document is obtained. It contains information about positions of the one- and
two-dimensional objects within the document. For each two-dimensional object,
a relation biPosition is added that specify the row and column on the document
“grid”, where the object appears, e.g.:

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK97

Design Phase Runtime Phase

configuration file
for the

2D Processor
domain

concepts

2D
Processor

.XML

.DLV

DLV Engine objects

instances

1D
tokenizer

2D
tokenizer

Compiled
Semantic

Descriptors

mapping
rules

mapping
engine

.DLV

sa#1

sa#n

sa#2
...

configuration file
for the

Semantic Annotators

...
cfg. file
for sa#1

cfg. file
for sa#n

annotators'
concepts

descriptors'
concepts

Target Schema

Figure 7.7: Runtime Phase of KnowRex system

filled19:filledCell(’anna@w3.org’). biPosition(filled19,1,8,2,9).

For all one-dimensional objects (that are located inside the two-dimensional
cells), two relations are added: belongsTo that identifies the containing cell by
its id, and onePosition which denotes the position of the object within a cell:

tk123:token(’manager’). one_position(tk123,0,6).
belongs_to(tk123,filled80). tk124:token(’of’).
one_position(tk124,6,7).belongs_to(tk124,filled80).

This representation is normalized i.e., the positions of blank spaces are omitted
and the tokens follow one another. Such a representation is a reference for seman-
tic annotators that may treat blank spaces differently.

Then comes the annotation stage, in which selected semantic annotators are
run over the identified cells and label the parts of text as objects belonging to
different classes (such as Places, Persons, IndustryTerms, etc.) The representation
of the identified objects (new logic facts that carry information about the annotator
that found the object) is added to the fact base, e.g.:

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK98

annS2:email(’anna@w3.org’). one_position(0,10).
belongs_to(annS2,filled19).

Once the annotation stage is finished, the semantic descriptors which have
been compiled into logic rules are executed over the facts representing the objects
within a document. Each descriptor is transformed into a set of logical rules that
first extract the portion of the document complying to the descriptor body, and
then create a new object, specified in the descriptor head.

Each descriptor is internally represented as an automaton. After setting the ini-
tial configuration, each element of a descriptor is treated as a transition that allows
to go from one state to the next one. The condition that one object must appear
after another in a document is realized by checking the positions of the objects
using biPosition and onePosition relations. The relation belongsTo
checks the conditions expressed by the CONTAINS keyword. The attributes of
the objects are passed between the rules by using variables.

For instance, the descriptor from Example 2 in Section 7.2.1:

<candidateEmail(E)> ::- {E:=’’;} <eucv_email_label_box()>
<filledCell(X)> CONTAINS <email(X)> {E:=X;}

is translated into the following logic rules:

1. Extracting candidate email from the document:

init_conf_candidateEmail(0,"").
conf_candidateEmail(1, "", Xe, Ys, Xe_1, Ye) :-

init_conf_candidateEmail(0,""),
eu_cv_email_label_box(Id, Lc4),
bi_position(Id, Xe, Ys, Xe_1, Ye).

conf_candidateEmail(2, Lc1, Xs, Ys, Xe_1, Ye) :-
conf_candidateEmail(1, Gl3, Xs, Ys, Xe, Ye),
filledCell(Id, Lc1), bi_position(Id, Xe, Ys, Xe_1, Ye).

conf_candidateEmail(3, Lc2, Xe, Ys, Xe_1, Ye) :-
conf_candidateEmail(1, Gl3, Xs, Ys, Xe, Ye),
filledCell(Id, Lc1), bi_position(Id, Xe, Ys, Xe_1, Ye),
email(IdContains, Lc2), belongs_to(IdContains,Id).

2. Creating a new object for the object model, with its position:

aux_candidateEmail(AutoGen,Gl3, Xs, Ys, Xe, Ye) :-
conf_candidateEmail(3,Gl3, Xs, Ys, Xe, Ye), AutoGen=#newID.

AutoGen : candidateEmail(Gl3) :-
aux_candidateEmail(AutoGen,Gl3, Xs, Ys, Xe, Ye).

bi_position(AutoGen, Xs, Ys, Xe, Ye) :-
aux_candidateEmail(AutoGen,Gl3, Xs, Ys, Xe, Ye).

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK99

These rules use the output of the extraction and create an object in OntoDLP,
together with its one- or bi-dimensional position (and optionally, belonging
to a cell, if it is a one-dimensional object).

Finally, the extracted objects are transformed into the instances of the semantic
view (see Figure 7.8) with use of the mapping defined in the design phase. Tech-

Candidate table:
Id Name Surname Phone Email Address Gender Nationality Driving License

12 Weronika Adrian +39 123 456 7890 w.adrian@mat.unical.it Via Pietro Bucci F PL B

13 Anna Falcone +48 987 654 321 anna@w3.org - F IT A

WorkExperience table:
Id Company Business Sector Start Date End Date

1 The International School of Kraków Education 2006 2008

2 HolidayCheck AG Information technology 2008 2008

3 AGH University of Science and
Technology

Science and education 2009 -

4 World Wide Web Consortium (W3C) Information technology 2010 2012

CandWE table:
Id
Candidate

Id Work
Experience

12 1

12 2

12 3

13 4

Figure 7.8: Table output of the input documents

nically, this is done by additional logic rules that create instances for the target
representation from the objects (in OntoDLP) of the object model.

7.3 Implementation principles
In this section, we describe how selected solutions have been realized during the
development of the KnowRex framework. We show how the implementation prin-
ciples we followed and the design choices we made enabled us to develop a func-
tional, universal and flexible system.

7.3.1 Ontology-driven extraction
The process of Information Extraction in KnowRex is based on the ontology that
covers all the classes expected to be encountered during processing a collection
of documents from a given domain. Upon the extraction, the object model (OM,
the ontology) is populated with the found objects. The objects may be recognized
by semantic annotators, tokenizers, semantic descriptors and/or ontological infer-
ence (in particular by reasoning about subclasses and superclasses). Populating
the whole object model requires appropriate configuration and use of a number

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK100

Object Model Target Schema

R1

R2

Rn

...

O1

O2
O3

Om

mapping
rulesTokenizers

Annotators

Semantic
descriptors

Ontological
rules

System configuration

m
in

im
iz

at
io

n

...

Figure 7.9: Minimization process for reducing the not needed extraction

of annotating tools, as well as rewriting and executing all the defined semantic
descriptors and ontological relations compiled into logic rules.

Recall that the Information Extraction process follows the bottom-up approach.
First, simple objects are recognized by annotating single words or phrases. This
is done in the two-dimensional analysis phase by tokenizers, as well as in the an-
notation phase by semantic annotators. Then, based on these simple objects, more
complex ones can be created, by executing the compiled semantic descriptors.
Moreover, the ontological subsumption inference is applied to infer the instantia-
tion of any superclasses of the found classes. To populate the target schema (TS),
the mapping from the object model is used. The relations defined in the target
schema depend on the objects from the object model.

Although this approach is intuitive and practical, it may result in generating
facts irrelevant from the point of view of the target schema. Recall that the object
model is independent from the target schema and even for the same ontology, a
user may change the desired output. For a particular extraction task (which in
practice means: for a selected set of target relations), it may happen that not all
of the ontology objects must be instantiated. The cost of the extraction may be
significantly reduced if the system configures only those tools and include only
those descriptors and ontological relations that are necessary to obtain the objects
needed for the selected relations. Therefore, we perform a minimization process

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK101

(see Fig. 7.9). In order to select only necessary objects and know which tools
to configure and which rules to include, we analyze all the dependencies among
objects, and build an appropriate “Dependency Graph”. In the graph, the nodes
are the objects that must be extracted, and the arcs are constructed based on the
dependencies, both taxonomical and those related to the Information Extraction
process.

Regarding the first group (taxonomical dependencies), the ontology contains
the hierarchy of objects. The superclass-subclass relations map to logical rules of
the form:

∀x. subclass(X)→ superclass(X)

or in the DLV format: superclass(X):- subclass(X). To materialize
the whole knowledge stored in the ontology, a great number of rules have to be
added to the program. However, for particular IE task, not all of them are always
needed. In fact, if we need an object of a class a, then we should find in the
document either an instance of this class or an instance of one of its (direct or
indirect) subclasses (see Fig. ??). If we find an X that is an instance of a subclass
of a, then using the rule presented above we can conclude that it is also an instance
of the class a.

Object Model Target Schema

R

...

O1

O3O4

R O Orelations
objects
given by
semantic
descriptors

objects
given by
annotators

O
ontology
objects of
superclasses

Figure 7.10: Selecting appropriate classes from the ontology

As for the second kind of dependencies – the ones resulting from the Infor-
mation Extraction process, they are depicted in Figure 7.11. In particular, target

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK102

schema’s relations depend on the objects extracted by the semantic descriptors
as defined in mapping rules. Objects in semantic descriptors’ heads depend on
the objects in their bodies. The object in the descriptors’ bodies may be: objects
defined in other semantic descriptors’ heads, one- and two-dimensional objects
of the document “grid” that are recognized by tokenizers, objects recognized by
annotators with use of appropriate mapping from annotator-specific entities or
regular expressions to the ontology objects, or objects not directly recognized by
any tool but being instances of superclasses of other classes.

R1 R2 Rn...

SDO1

SDO2

SDO3

SDO4

Om

1DO1 2DO1 2DOl

1D
tokenizer

2D
tokenizer

1DOk... ... AO1 AO2 ...

Annotator 1 Annotator s

...

AOj

... ...

Target Schema

Semantic Descriptors

O
N

T
O

LO
G

Y
 E

N
T

IT
IE

S

mapping
rules

annotators'
mapping

Annotating Tools

R SDO
1DO

2DO
AOrelations

objects
given by
semantic
descriptors

objects
given by
tokenizers

objects
given by
annotators

regular
expressions,
annotators'
entities etc.

Om
ontology
objects of
superclasses

E1 Ep REx1 REx2 RExr

E

REx

...

Figure 7.11: Dependencies between the target schema relations, object model
objects, and tools’ configuration

Let us now define the Dependency Graph, based on which we can determine
which objects we need for the particular extraction task, and consequently which
tools we have to configure and which logical rules we must include. Let us define:

• MR – set of mapping rules (from object model to target schema),

• SD – set of semantic descriptors,

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK103

• T R – set of taxonomic subclass relations represented as logic rules,

• If r is a rule or a semantic descriptor, then H(r) denotes the head of this
rule/descriptor and B(r) – the body of it.

Let the structure of the dependencies be defined as a directed graph G =<
N,A >, such as the set of nodes N is partitioned into two disjoint sets:

N = NR∪NO

where

• NR – set of the selected relations in target schema,

• NO – set of objects defined in the ontology.

In turn, the set NO is partitioned into the following (not pairwise disjoint) sets:

NO = NDesOb j∪NSupOb j∪NDocOb j∪NAnnOb j

where

• NDesOb j – set of objects defined in semantic descriptors’ heads:

o ∈ NDesOb j ⇐⇒ ∃d ∈ SD such that o ∈ H(d)

• NSupOb j – set of objects defined as superclasses in the ontology:

o ∈ NSupOb j ⇐⇒ ∃r ∈ T R such that o ∈ H(r)

• NDocOb j – set of objects recognized by tokenizers (one- and two-dimensional
elements of the document “grid”)

• NAnnOb j – set of objects recognized by annotators

and the set of arcs is a subset of the following set A f ull:

A⊆ A f ull = {(r,s) : r ∈ NR∧ s ∈ NDesOb j∧∃rule ∈MR s.t. r ∈ H(rule)∧ s ∈ B(rule),
(s,s′) : s,s′ ∈ NDesOb j∧∃d ∈ SD s.t. s ∈ H(d)∧ s′ ∈ B(d),
(s,b) : s ∈ NDesOb j∧b ∈ NDocOb j∧∃d ∈ SD s.t. s ∈ H(d)∧b ∈ B(d),
(s,a) : s ∈ NDesOb j∧a ∈ NAnnOb j∧∃d ∈ SD s.t. s ∈ H(d)∧a ∈ B(d),
(o,o′) : ∃t ∈ T R s.t. o ∈ H(t)∧o′ ∈ B(t)}

Construction of the graph for a particular case is presented next.

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK104

Constructing the dependency graph The dependency graph is built based on
the selected ontological and IE-realted dependencies. Starting from selected tar-
get relations, we proceed to the objects needed to obtain them, and repeat it recur-
sively up to the objects that do not depend on others but are directly recognized
by some tools. For each object the following things must be considered:

1. Is the object defined by one or more semantic descriptor(s) (are there de-
scriptors that have this object in their head)? If so, we should add all the
objects in the bodies of these descriptors to the graph.

2. Is the object a superclass of some other objects? If so, the sub-classes ob-
jects should be added to the graph.

We proceed to the added nodes and repeat the analysis, expanding the graph. The
algorithm for constructing the dependency graph is shown in Listing 3.

Traversing the graph Once the graph is constructed, it can be traversed in or-
der to determine what should be configured to obtain the desired objects. For
all the selected target relations, we have to follow the sub-graph containing their
dependencies and analyze the objects found in this sub-graph. And exemplary
dependency sub-graph for a single target relation can be observed in Figure 7.12.

The dependency graph is in fact a forest. Each tree has a root in a node repre-
senting a selected target relation. The trees may share some of the nodes, although
in practice it is not frequent. Therefore, for the traversal we chose a slightly mod-
ified Breadth-First Search traversal that we start for all and only those nodes that
belong to the NR set. The algorithm is presented in Listing 4.

It may happen that a specific object is defined by more tools of the same
method, e.g. two semantic descriptors, three annotators etc., or more than one
method as depicted in Fig. 7.13. For instance, it may by defined by a semantic
descriptor, but can be also recognized by a semantic annotator or may be inferred
from the ontology, if a subclass has been recognized. Such redundancy is not
harmful. On the contrary, it may improve the recall of the information extraction.
Thus, for each node, all the possibilities must be explored i.e., we perform the
following analysis over each node:

1. Is the object defined by one or more semantic descriptors? If so, add these
descriptors to the program.

2. Is the object a superclass of some other objects? If so, add the (direct)
subsumption rules to the program.

3. Is the object recognized by a semantic annotator? If so, consult the annota-
tors’ mapping and localize the mapping of the object to a particular annota-
tor and its entity. Enable this annotator and this entity for the annotator.

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK105

Algorithm 3 Constructing the dependency graph.
Input: Set of desired relations: DesRelations⊂ TargetSchema
Output: Dependency Graph G =< N,A >

1: Create empty queue: DesOb jects← /0,
2: for all r ∈ DesRelations do
3: for all rule ∈MR such that r ∈ H(rule) do
4: for all o such that o ∈ B(rule) do
5: N := N∪{o}
6: A := A∪{(r,o)}
7: if o /∈ DesOb jects then
8: DesOb jects.enqueue(o)
9: end if

10: end for
11: end for
12: end for
13: while DesOb jects is not empty do
14: current← DesOb jects.dequeue
15: for all descriptor ∈ SD such that current ∈ H(descriptor) do
16: for all o such that o ∈ B(descriptor) do
17: N := N∪{o}
18: A := A∪{(current,o)}
19: if o /∈ DesOb jects then
20: DesOb jects.enqueue(o)
21: end if
22: end for
23: end for
24: for all rule ∈ T R such that current ∈ H(rule) do
25: N := N∪{o : o ∈ B(rule)}
26: A := A∪{(current,o)}
27: if o /∈ DesOb jects then
28: DesOb jects.enqueue(o)
29: end if
30: end for
31: end while

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK106

R1 R2 Rn...

SDO1

SDO2

SDO3

SDO4

Om

1DO1 2DO1 2DOl

1D
tokenizer

2D
tokenizer

1DOk... ... AO1 AO2 ...

Annotator 1 Annotator s

...

AOj

... ...

Target Schema

Semantic Descriptors

O
N

T
O

LO
G

Y
 E

N
T

IT
IE

S

mapping
rules

annotators'
mapping

Annotating Tools

E1 Ep REx1 REx2 RExr

Figure 7.12: Exemplary relation and its dependency path

4. Is the object a layout object? If so, configure appropriate tool for two-
dimensional analysis.

In order to avoid multiple analysis of the nodes, we mark the visited nodes.
The results of the minimization process are visible in the configuration of the

project as the process itself is realized once the design is finished and a user select
the ‘Compile’ functionality. First, only some of the available annotators are shown
as activated. Second, the number of all the defined and the only needed descriptors
are presented to the user.

7.3.2 Annotation engine
An important part of research (and subsequent implementation) was directed at
the design of an annotation framework capable of integrating and specializing the
annotation capabilities provided by the number of available tools. This is referred
to as annotator engine, a processor capable of providing end users with various
annotation tools through an interface level that simplifies and uniforms their use,
as well as the integration of new annotation systems.

The choice of features that an annotator to integrate into the platform should

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK107

Algorithm 4 Traversal of the dependency graph with the analysis of the objects.
Input: The dependency graph G =< N,A >
Output: (1) Set of required mapping rules: RecMR, (2) set of required semantic

descriptors: RecSD, (3) set of required taxonomical rules: RecT R, (4) set of
pairs of the required annotators and their selected entities: RecAE, and (5) set
of pairs of the required tokenizers and their selected entities: RecT E.

1: Create empty sets: RecMR ← /0, RecSD ← /0, RecT R ← /0, RecAE ← /0
RecT E← /0

2: Create empty queue: Ob j← /0,
3: for all rel ∈ NR do
4: Ob j.enqueue(rel)
5: while Ob j is not empty do
6: current← Ob j.dequeue . Beginning of the object analysis
7: if current ∈ NR then
8: for all rule ∈MR such that current ∈ H(rule) do
9: RecMR.add(rule)

10: end for
11: else . NR set is disjoint with the ontology objects set NO
12: if current ∈ NDesOb j then
13: for all d ∈ SD such that current ∈ H(d) do
14: RecSD.add(d)
15: end for
16: end if
17: if current ∈ NSupOb j then
18: for all d ∈ SD such that current ∈ H(d) do
19: RecSD.add(d)
20: end for
21: end if
22: if current ∈ NDocOb j then
23: for all (tok,entity) such that tok.entity = current do
24: RecT E.add(tok,entity)
25: end for
26: end if
27: if current ∈ NAnnOb j then
28: for all (ann,entity) such that map(ann.entity) = current do
29: RecAE.add(ann,entity)
30: end for
31: end if
32: end if
33: Mark current as analyzed . End of the object analysis
34: for all (current,next) such that (current,next) ∈ A do
35: if next is not marked as analyzed then
36: Ob j.enqueue(next)
37: end if
38: end for
39: end while
40: end for

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK108

Rn

...

SDO3

SDO4

Om

2DOl

2D
tokenizer

...

AO2

Annotator 1 Annotator s

R SDO
1DO

2DO
AOrelations

objects
given by
semantic
descriptors

objects
given by
tokenizers

objects
given by
annotators

regular
expressions,
annotators'
entities etc.

Om
ontology
objects of
superclasses

E1 REx2

E

REx

Figure 7.13: Dependencies of an object recognized with different methods

exhibit, was largely driven by the requirements stated for the implementation of
the annotation suite itself. In fact, the criteria of choice have been oriented to-
wards the “semantic” annotators, that is, the ones that are able to use ontological
knowledge for the implementation of the annotation tasks. Among these a further
selection was made on the basis of the specific features.

First of all, with respect to the accepted input type, annotators must be able to
handle inputs in the form of files or, more generally, text strings. In addition, only
the automatic configurable annotation systems were considered, which can inter-
fere directly with a machine. Another discriminating element was related to the
type of output provided as a result of the annotation process. In particular, in or-
der to use the results of the annotation, it was considered indispensable to acquire
(also in different formats) information about the positioning of the annotated text
within the considered document (starting and end position of the annotated text).

Integrated annotators (discussed in Chapter 2) are available in KnowRex for
a regular user (designer), who can select them and particular entities supported
by them during the design phase. In addition, the KnowRex system provides

CHAPTER 7. ONTOLOGY-DRIVEN IE: THE KNOWREX FRAMEWORK109

the expert user with an interface (API) that can specialize in implementing user-
definable ad-hoc annotation mechanisms.

There is a particular case of a “label annotator”, constructed ad hoc for the
recognition of the typical labels in a given collection of documents. This annotator
uses regular expressions for finding and extracting entities that match the given
patterns. To make this mechanism more flexible and general, there is an additional
configuration file for this annotator.

Chapter 8

Experimental Evaluation

In this chapter, we show how the solutions proposed in the thesis work on real
world examples. The experimental evaluation we conduct is divided into parts
that concentrate on individual tasks. First, we analyze the generation of a lexicon
for a semantic annotator and then we focus on the layout analysis of a document.
We exhibit some statistics and portray individual examples to illustrate the actions
and effects of the solutions.

8.1 Automatic lexicon generation
In this section, our attention goes back to the semantic analysis and annotation.
Specifically, we evaluate the automatic lexicon generation tools described in Chap-
ter 2. For our tests, we have selected a number of different domains, to demon-
strate different challenges we faced and addressed when solving the problem. Let
us consider examples that illustrate different challenges of the problem.

Amusement parks in Europe Let us say that we want to explore fun parks in
Europe, and we are looking for something like Efteling or Gardaland – two places
we visited and liked. Let us put these two words as seeds. A representative entity
network for them, limited to the hypernymy relations, consists of only 14 nodes
and 13 edges. Moreover, for each words, only one sense has been found which
for Efteling denotes a ‘theme park’, and for Gardaland – an “amusement park’.
An optimal common ancestor is the ‘amusement park’ (represented by an entity
〈{wn:8494231n, bn:00003695n}, {amusement park, fun park, ...}〉), that
is a superclass of the ‘theme park’. The shared relation is 〈{wd:P17 },{country}〉
and the image set contains two units: Italy for Gardaland, and Netherlands for
Efteling. We further expand a network for Italy and Netherlands, and we obtain
that both are ‘nations’, ‘states’ and ‘European countries’ that share a relation ‘con-

110

CHAPTER 8. EXPERIMENTAL EVALUATION 111

tinent’ and have the common image of it, namely Europe. Moreover, they are both
‘members of’ a number of international organizations (for space limitations, we
do not list all of them). They are also both ‘located in time zone’ Central Euro-
pean Time. As Italy and Netherlands are famous entities with numerous relations,
we set the limit of our analysis limit to stop immediately after collecting their
common properties with exactly the same values. After querying WebIsADb and
evaluating new instances with BabelNet, we obtain the following expanded list of
entities: Portaventura, Euro disney, Tivoli gardens, Europa park, Legoland, Terra
mitica, Parc Asterix, Disneyland Paris and Puy du fou.

Cities or movies? Let us consider Rome and Budapest – words that have a lot
of meanings. With 27 possible senses for Rome and 6 for Budapest, we obtain a
representative entity network whose underlying graph (limited to hypernymy re-
lations) consists of 248 nodes and 430 edges. For this quite a big structure, the
sense detector still computes the optimal sense combinations very efficiently. In
fact, we obtain 8 “best” combinations of senses, associated with their 11 optimal
common ancestors. The disambiguated meanings include: capital cities (with op-
timal ancestors: ‘national capital’ and ‘provincial capital’, bands (‘people’, ‘rock
group’), films (‘movie’, ‘work of art’) and more. We can select the intended
sense, or add a new seed to clarify our intentions. Let us add the word Vienna (19
senses) to the seed set. The resulting graph has 294 nodes and 558 edges. Here,
the situation with best sense combinations is even more complicated, because for
each seed, there are two examples of musical albums or singles. So, even though
some senses are discarded, e.g. ‘rock group’, we obtain 9 best combinations of
senses grouped under 7 optimal common ancestors. If we now add another seed,
say Zagreb (2 senses), we get a slightly bigger graph, but we obtain a single best
combination of senses denoting the capital cities with optimal common ancestors:
{‘national capital’,‘provincial capital’}. Further analysis reveals that the seeds
share the relation: ‘country’ and again, we expand the network for the countries
related to the our seeds and obtain that all of them are in Europe.

The problem of entity set expansion is not a new topic. Over the last two
decades, there has been work on gradually improving the classsification methods
and expansion algorithms. More recently, the improvements concentrate on de-
tails such as: the quality of the seeds and their influence on the process, metrics
for patterns and seeds evaluation, etc. The approaches described in literature come
with some small examples, but a systematic comparison with the real tools is dif-
ficult, because they are not available on-line. To the best of our knowledge, there
is no complete system for entity set expansion available for comparison now.

The last years brought the explosion of interest in the word representation,

CHAPTER 8. EXPERIMENTAL EVALUATION 112

in particular, the so-called word embeddings i.e., techniques that map words or
phrases to vectors or real numbers, usually learned with neural networks over
large corpus. The word representations may take into account the words around
them in text context (the bag-of-words approach), but also some more information
such as part of speech of the word, possible senses etc. The collection of word
embedding are available online for use in different applications, including the en-
tity set expansion. The interest in ESE is visible in the corporate world. Only
a few years ago, such functionality was available in Google Docs spreadsheets,
where one could write a few examples and ask the spreadsheet to expand the set.
This feature has been now deactivated, and currently the underlying solution —
which unfortunately is closed and private to the company— is used in the Google
Knowledge Graph for information retrieval. Still the results are not fully satisfi-
able, depend on various factors: time, user settings etc. (it may be even hard to
reproduce some of the results) and hard to compare methodically.

With our approach, we address the old problem in a moderm semantic way.
Instead of relying on the lexical level, we utilize the online semantic resources,
that were not available before, to build a better representation, based on semantic
relations. The graph-based approach have been considered before, e.g., [71] pro-
posed a graph structure that represented popularity of nodes and their potential to
generate new seeds. Also the semantic resource we use are graph- or network-
based. Our approach allows to leverage existing resources, and we believe that
with the theoretical foundations and efficient ASP-based implementation of pro-
totypes, that we already have, we can build, with further engineering effort, an
integrated, configurable system.

8.2 Document layout analysis
This section is devoted to the analysis of documents in terms of their structure
and layout (see Chapter 4). Recall that our label-content approach to document
layout analysis consists in recognizing two-dimensional, tabular structures within
a PDF file, and then refining the obtained tables with domain-dependent labels,
specified by user. The result of the analysis is an ontological representation of
one- and two-dimensional objects: cells, tokens and delimiters, equipped with
their positions within a document, and a graphical representation of them that is
helpful for further processing (e.g. formulating semantic descriptors). Working on
a collection of over 80 curricula, we obtained promising results, and also noticed
concrete limitations that we describe at the end of the section.

For testing our approach to the two-dimensional document analysis, we adopted
the following assumptions:

The test requires: (i) defining the dictionary of “category markers” for a given

CHAPTER 8. EXPERIMENTAL EVALUATION 113

homogeneous collection of documents, and (ii) (optionally) configuring the
parameters of the two-dimensional processor.

The input is: a collection of homogeneous documents in PDF format and the
configuration settings.

The output consists in: two-dimensional representation of the documents (in a
form of logical facts and a HTML document).

Test preparation, pre-processing: For each file in the test, we counted (manu-
ally) the number of labels present in a file that should be recognized, and
the number of content cells that should be assigned to particular labels (i.e.
correctly aligned within the refined structure). We evaluated both (i) the
effectiveness of label recognition (taking into consideration correctly rec-
ognized cells – “true positives”, incorrectly recognized ones – “false pos-
itives” and not recognized “false negative”), and (ii) the quality of the fi-
nal two-dimensional representation, which follows the accuracy of aligning
content cells to their respective labels.

Evaluation criteria: We decided to use the well known criteria of: precision,
recall and F-measure. Given the number of true positives tp, false positives
fp and false negatives fn, Precision is defined as follows:

Precision =
tp

tp+ fp

Recall:
Recall =

tp
tp+ fn

and the F-measure:
F =

Precision∗Recall
Precision+Recall

With respect to the labels, the meaning of true/false positives and negatives
is standard; true positive means that a label has been recognized correctly
(a given portion of text has been assigned the correct meaning), false posi-
tive – that a label was recognized, where it should not have been, and false
negative – that a portion of text that should have been recognized as a la-
bel, was not. To unify the results of recognizing labels and refining the
structure with domain concepts, we “overloaded” the meaning of true/false
positives/negatives for content cells, such that tp denote correctly aligned
cells, fp mean that a cell was aligned (additionally) with a label that should
not be and fn denote the cells that were not aligned properly although their
respective labels were correctly recognized.

CHAPTER 8. EXPERIMENTAL EVALUATION 114

We tested four collections of Curriculum Vitae in Europass standard. Two of
them were in English and the other two in Italian. Moreover, we analyzed two ver-
sions of the Europass standard (older, “classical” and newer, “modern” view see
Fig. 8.1). For both variants, we identified the template i.e., informal description

!
!"#$%&'()*&+%#,'-*%&

"#$%&!'()*+%,!-!./$'()*+%,! ."#%&*/')01#*'&

011$*%%+*%, 2#(!3#*&$4!5/66#

7*8*9:4'*+%, ;<=!>?<!@AB!CD=E

FG)(#8 HI(1$#('J)(&I/'#6(8I#&

K('(8#&L 348#%:

M*'1*$ "*)(8*

.%#/)"23"#*"&4"

N(&*% >EI?EE=G9$*%*'&

O66/9('!4$!94%#'!:*81 P*%*($6:!Q!7*(6:#'R!0%%#%&('&

S(#'!(6&#T#&#*%!('1!$*%94'%#U#8#&#*% P*%*($6:V!.*)('!7*6:'484R#*%W!X4R#6!3$4R$())#'RW!Y'4H8*1R*!F'R#'**$#'RZ
7*(6:#'RV!['#\-MK[-X#'/\W!08R4$#&:)%!('1!N(&(!.&$/6&/$*%W!O9*$(&#'R!.L%&*)%W!.*)('!]*U

K()*!('1!(11$*%%!4^!*)984L*$ 0M_!['#T*$%#&L!4^!.6#*'6*!('1!7*6:'484RL

7L9*!4^!U/%#'*%%!4$!%*6&4$.6#*'6*!('1!*1/6('

N(&*% DI?EEDG=I?EED

O66/9('!4$!94%#'!:*81 .4^&H($*!N*T*849*$

S(#'!(6&#T#&#*%!('1!$*%94'%#U#8#&#*%]*U!3$4R$())#'R!+:&)8W!6%%W!`(T(%6$#9&W!9:9W!(`(\W!)L%a8,

K()*!('1!(11$*%%!4^!*)984L*$ _48#1(Lb:*6c!0M

7L9*!4^!U/%#'*%%!4$!%*6&4$ d'^4$)('!7*6:'484RL

3(R*!>->!G!b/$$#6/8/)!T#&(*!4^!
./$'()*+%,!"#$%&!'()*+%,!

"4$!)4$*!#'^4$)('!4'!F/$49(%%!R4!&4!:&&9V--*/$49(%%I6*1*^49I*/$49(I*/
e!F/$49*('!['#4'W!?EE@G?E>E!!!?@ED?E>E

(a) Classical Europass view (b) Modern Europass view

Figure 8.1: Curricula in different variants of Europass standard

of the layout and structure of the documents. In particular, both variants share the
two-column layout and some of the labels (‘Personal Information’, ‘Work Experi-
ence’ etc.). The older, classical layout, is more detailed, in a sense that almost all
the content cells in the second column of the layout can be aligned with the respec-
tive labels from the first column (see Fig. 8.1a). Instead, in the newer version of
Europass, some of the information is grouped together, e.g. personal information
details, or work experience items ordered by dates of employment (cf. Fig. 8.1b).
This has an impact on the further phases of information extraction. More specifi-
cally, the resulting two-dimensional representation will influence the development
of semantic descriptors, which obviously will have to respect the two-dimensional
representation.

Because a significant number of typical labels is shared among the collection,
we decided to develop a single “label dictionary”. It consists of around 60 label
instances described with approx. 240 strings and regular expressions. This statis-
tics reflects how we decided to describe particular labels, sometimes with exact
string, other times with regular expressions, to keep the design phase as simple
and intuitive as possible. This number could be easily minimized by using more
optimized expressions. Note also that the dictionary covers two languages. For a
single label in a fixed language, we estimate that one typically needs from 1 to 3
“descriptions” to keep the balance between readability and compactness.

The results of the conducted tests have been summarized in Tables 8.1 and 8.2.

CHAPTER 8. EXPERIMENTAL EVALUATION 115

Dataset (# of documents) Test Precision Recall F-measure

1 Dataset_CV_EN (16)
labels 96.25% 71.30% 80.60%

content 100.00% 78.04% 86.31%
TOTAL 97.95% 74.05% 83.08%

2 Dataset_CV_IT (50)
labels 98.35% 61.56% 74.25%

content 99.76% 68.34% 79.27%
TOTAL 99.01% 64.73% 76.70%

3 Dataset_NewCV_EN (51)
labels 97.99% 87.77% 91.14%

content 97.07% 92.51% 94.10%
TOTAL 97.51% 89.87% 92.58%

4 Dataset_NewCV_IT (7)
labels 100.00% 56.80% 69.00%

content 99.40% 88.42% 92.59%
TOTAL 99.73% 70.83% 81.35%

Table 8.1: Results of two-dimensional processing of documents.

The best results have been obtained for the dataset ‘Dataset_NewCV_EN’
(curricula in English, following the modern view). This may be related to the
fact that although all the documents were acquired from the Web, for the modern
format there exist generating them tools that produce very accurate documents,
while the older format documents were probably edited manually. The ‘CV_IT’
dataset has the worst recall of all. Low recall in label recognition in curricula in
Italian may be related to the presence of special characters e.g. "à’" that were not
recognized by the two-dimensional processor. Dataset CV_IT has significantly
many poorly recognized documents (for 30% of documents, the F-measure was
lower than 70%), the small datasets ‘CV_EN’ and ‘NewCV_IT’ are more bal-
anced (see Table 8.2).

Dataset name F>90% 80%<F<90% 70%<F<80% F<70%
1 Dataset_CV_EN 31.25% 25% 18.75% 25%
2 Dataset_CV_IT 20% 34% 16% 30%
3 Dataset_NewCV_EN 74.51% 7.84% 7.84% 9.80%
4 Dataset_NewCV_IT 28.57% 28.57% 28.57% 14.29%

Table 8.2: Results of two-dimensional processing of documents (2).

The tests revealed some technical limitations. In particular, the use of Quablo
restricts the number of documents in a collection to 20 documents to be processed
at once, otherwise, the tool throws and exception. Moreover, the nested tables,
such as language competence tables in the old Europass format, are difficult to
recognize and are either “flattened” during the analysis or not recognized at all.

CHAPTER 8. EXPERIMENTAL EVALUATION 116

As a possible solution to this particular problem,we improved the process of
invoking the Quablo processor. Instead of setting the “region of interest” to the
whole page, we first analyze the page layout to identify candidate regionsand then
invoke Quablo for all the regions separately. The technique for this pre-processing
has been described in a Master thesis related to the work presented in this thesis.
We have presented the combined approach of purely geometrical and structural-
semantic analysis in [4].

Chapter 9

Discussion and Conclusion

In this work, we addressed a few interesting problems of Information Extraction.
We considered the document analysis from different perspectives: from the se-
mantic analysis of single words and phrases, through the analysis of layout and
structure of a document, up to analyzing typical elements shared within a collec-
tion of documents. The objective of this thesis was to propose a novel method
of information extraction from a collection of similar documents that would com-
bine and profitably use these different levels of analysis. The results of the work
consists, from the one side, in a number of detailed solutions that address the par-
ticular tasks, and from the other, in presenting a framework that integrates all of
them and a system that realizes the proposed method.

9.1 Summary of the results
We have analyzed the landscape of modern semantic annotators and in particular,
evaluated their adaptability and possibilities to integrate their results. It appeared
that despite the plethora of available tools, only a small subset can be used within
a bigger framework, using well defined interface describe with a public API. The
additional requirement we posed, to allow for mapping of the annotation results
to a single ontological concept, further diminished the available annotators pool.
Based on the analysis of the selected annotators, we have designed and devel-
oped and “abstract annotator” that is able to integrate and treat in a uniform way
the results of multiple annotation tools. The interface we propose can serve as a
guideline for annotators developers; extending our framework with a new tool is
simple and comes down to implementing a few required methods.

While for general concepts, appearing in multiple domains (such as: ‘place’,
‘person’, ‘e-mail’, ‘date’ etc.) there exist annotation solutions, recognizing domain-
specific concepts poses a greater challenge. The domain terms can either be not

117

CHAPTER 9. DISCUSSION AND CONCLUSION 118

“popular” enough to be taken into account, or they may be even assigned a dif-
ferent meaning within particular domain that does not agree with a “common”
understanding of the word. This is why the best annotators in this field are those
which work using lexicons of the domain terms, often supported with example
instances. In this thesis, we proposed a new method for automatic lexicon gen-
eration based on integration of Web-accessible knowledge stored in the so-called
semantic resources, such as WordNet, BabelNet or Wikidata. We described a for-
mal model of an entity network by which we represent the integrated knowledge
and showed how starting from a set of words, the network can be built and ex-
panded, and, consequently, how the common category of the objects, represented
by these seed words, can be formulated. We also tackled the problem of words
ambiguity and proposed a graph-based solution the determines their “best” senses
in the context, by introducing a concept of an optimal common ancestor. These
newly designed techniques, supported by tools implemented in ASP, allows to
build lexicons for any domains starting with a set of seed words. This approach is
intuitive even for non-experts, as the user interested in extracting some category,
has only to provide the system with some positive examples of the desired class.

The next problem addressed in this thesis, was the structure and layout analysis
of complex documents. We concentrated on PDF format and analyzed the files
both structurally – using table recognition techniques, and semantically – looking
for domain-specific labels. As a result, we proposed a method that, given a PDF
file, produces a “grid” representation of it, in which common (section) markers
are aligned with the parts of text that are semantically associated to them. The
approach has been realized, by extending the Quablo tool, produced by Exeura Srl.
(the actual implementation of the algorithm has been carried out by the company
as their work in the KnowRex project).

With respect to the ontological representation, we have analyzed the possibil-
ities of ontological language and selected the formalism of OntoDLP to build a
generic model of a document. In our approach, we incorporated both structure
and content objects, and equipped them with properties that describe their spatial
relations. We have combined the two layers: the one of a two-dimensional “grid”
representation of a document that is made of one- and two-dimensional layout ob-
jects such as cells, tokens etc.; and the other in which the actual content objects,
both relevant objects and category markers, appear.

On such representation we were able to build “semantic extraction rules”, by
means of the formalism of semantic descriptors. In this thesis, we have extended
the capabilities of the descriptors language, introducing useful and intuitive con-
structs that allows a user to describe desired objects. The automatic translation
of these descriptors into logic rules allows for an evaluation performed by a logic
reasoner. In particular, we have applied the Answer Set Programming and used
the DLV reasoning engine for this.

CHAPTER 9. DISCUSSION AND CONCLUSION 119

9.2 Future work
During the research, we have identified further problems and areas for improve-
ment. The research directions for future work are summarized below:

1. Common relations analysis for the lexicon generation. Currently, the se-
mantic relations of example (seed) objects, are treated all in the same way,
without taking into account their specificity. However, they could be ana-
lyzed in more details, using resources such as DBPedia and Wikidata. In
particular, the information about the relations’ properties such as transitiv-
ity, symmetry etc. would allow for more intelligent processing of them.
Moreover, the relations could be also clustered to avoid relying only on ex-
actly the same relations when comparing objects.

2. Improving the expansion and evaluation phases of the lexicon construc-
tion. One idea for this point is the transition from a set of properties that
describe the desired category to a human-readable and machine-ready cat-
egory description, that could be used to query selected semantic resource
for further instances. Finally, the new instances, instead of being simply ac-
cepted or rejected, could be scored based on the degree to which they agree
with the intended category.

3. Automatic identification of common labels within a collection of doc-
uments. Currently, the “common labels” used in the structure recognition
phase are given by user in a form of a label dictionary. In this dictionary,
the user must explicitly write string patterns that represent the intended la-
bels. Thus, it would be desirable for a system to automatically recognize
repeating markers that appear in all or most of the documents and propose
an initial set of the labels, together with their associated patterns, to the user.

4. Tuning the framework implementation. The execution of the system over
collections of documents is relatively slow due to the number of different
operations that must be performed consecutively. As future work, the speed
of the execution should be increased. The interface of the framework could
be further simplified, for instance the calibration of the input documents
could be purely visual, instead of relying on manual parameters setting.

One of the most satisfying results of the thesis is the complete proposal of the
Information Extraction framework that successfully integrates different perspec-
tives of document analysis. This forms a basis for further improvements, that can
be added to selected components, and contribute to the overall effectiveness of
the system. New application domain and types of document collections may also
inspire new refinements and solutions that will build on the generic approach.

Bibliography

[1] Brad Adelberg. NoDoSE – a tool for semi-automatically extracting struc-
tured and semistructured data from text documents. SIGMOD Rec.,
27(2):283–294, 1998.

[2] Weronika T. Adrian, Nicola Leone, and Marco Manna. Ontology-driven
information extraction. CoRR, abs/1512.06034, 2015.

[3] Weronika T. Adrian, Nicola Leone, and Marco Manna. Semantic views of
homogeneous unstructured data. In Balder ten Cate and Alessandra Mileo,
editors, Web Reasoning and Rule Systems - 9th International Conference,
RR 2015, Berlin, Germany, August 4-5, 2015, Proceedings, volume 9209
of Lecture Notes in Computer Science, pages 19–29. Springer, 2015.

[4] Weronika T. Adrian, Nicola Leone, Marco Manna, and Cinzia Marte. Doc-
ument layout analysis for semantic information extraction. In 16th Inter-
national Conference of the Italian Association for Artificial Intelligence
(AI*IA 2017). Submitted.

[5] Weronika T. Adrian, Marco Manna, Nicola Leone, Giovanni Amendola,
and Marek Adrian. Entity set expansion from the web via asp. In Interna-
tional Conference on Logic Programming (ICLP 2017), 2017. Accepted.

[6] Raghu Anantharangachar, Srinivasan Ramani, and S. Rajagopalan. On-
tology guided information extraction from unstructured text. CoRR,
abs/1302.1335, 2013.

[7] Apostolos Antonacopoulos, Christian Clausner, Christos Papadopoulos,
and Stefan Pletschacher. Historical document layout analysis competition.
In Document Analysis and Recognition (ICDAR), 2011 International Con-
ference on, pages 1516–1520. IEEE, 2011.

[8] Emilia Apostolova and Noriko Tomuro. Combining visual and textual fea-
tures for information extraction from online flyers. In EMNLP, pages 1924–
1929, 2014.

120

BIBLIOGRAPHY 121

[9] Gustavo O. Arocena and Alberto O. Mendelzon. WebOQL: restructuring
documents, databases, and webs. Theor. Pract. Object Syst., 5(3):127–141,
1999.

[10] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook. Cambridge
University Press, New York, NY, USA, 2007.

[11] Wolf-Tilo Balke. Introduction to information extraction: Basic notions and
current trends. Datenbank-Spektrum, 12(2):81–88, 2012.

[12] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broadhead,
and Oren Etzioni. Open information extraction from the web. In Proceed-
ings of IJCAI ’07, Hyderabad, India, pages 2670–2676, San Francisco, CA,
USA, 2007. Morgan Kaufmann Publishers Inc.

[13] Chitta Baral. Knowledge Representation, Reasoning, and Declarative
Problem Solving. Cambridge University Press, 2003.

[14] Sean Bechhofer, Leslie Carr, Carole Goble, Simon Kampa, and Timothy
Miles-Board. The semantics of semantic annotation. On the Move to
Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, pages
1152–1167, 2002.

[15] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. Oiled:
a reason-able ontology editor for the semantic web. KI 2001: Advances in
Artificial Intelligence, pages 396–408, 2001.

[16] Sean Bechhofer, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Debo-
rah L McGuinness, Peter F Patel-Schneider, Lynn Andrea Stein, et al. Owl
web ontology language reference. W3C recommendation, 10(02), 2004.

[17] Kalina Bontcheva, Leon Derczynski, Adam Funk, Mark A Greenwood,
Diana Maynard, and Niraj Aswani. Twitie: An open-source information
extraction pipeline for microblog text. In RANLP, pages 83–90, 2013.

[18] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set
programming at a glance. Communications of the ACM, 54(12):92–103,
2011.

[19] Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-
match rules for information extraction. In Proc. of AAAI/IAAI, Orlando,
Florida, pages 328–334, 1999.

BIBLIOGRAPHY 122

[20] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari.
I-DLV: the new intelligent grounder of DLV. Intelligenza Artificiale,
11(1):5–20, 2017.

[21] José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli.
A unified multilingual semantic representation of concepts. In Proc. of
ACL’15, pages 741–751, 2015.

[22] Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hr-
uschka, Jr., and Tom M. Mitchell. Coupled semi-supervised learning for
information extraction. In Proc. of WSDM ’10, pages 101–110, 2010.

[23] Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hr-
uschka Jr, and Tom M Mitchell. Coupled semi-supervised learning for
information extraction. In Proceedings of the third ACM international con-
ference on Web search and data mining, pages 101–110. ACM, 2010.

[24] Julien Carme, RÈmi Gilleron, AurÈlien Lemay, and Joachim Niehren. In-
teractive learning of node selecting tree transducer. Machine Learning,
66(1):33–67, 2007.

[25] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled F.
Shaalan. A Survey of Web Information Extraction Systems. IEEE Trans.
on Kn. and Data Eng., 18(10):1411–1428, 2006.

[26] Luying Chen, Stefano Ortona, Giorgio Orsi, and Michael Benedikt. Aggre-
gating semantic annotators. Proc. VLDB Endow., 6(13):1486–1497, August
2013.

[27] Laura Chiticariu, Yunyao Li, and Frederick R Reiss. Rule-based informa-
tion extraction is dead! long live rule-based information extraction sys-
tems! In EMNLP, number October, pages 827–832, 2013.

[28] Fabio Ciravegna, Alexiei Dingli, Jose Iria, and Yorick Wilks. Multi-
strategy definition of annotation services in melita. In ISWC 2003 INTER-
NATIONAL SEMANTIC WEB CONFERENCE. Citeseer, 2003.

[29] Fabio Ciravegna, Alexiei Dingli, Daniela Petrelli, and Yorick Wilks. User-
system cooperation in document annotation based on information extrac-
tion. In International Conference on Knowledge Engineering and Knowl-
edge Management, pages 122–137. Springer, 2002.

[30] Valter Crescenzi and Giansalvatore Mecca. Grammars have exceptions. Inf.
Syst., 23(9):539–565, 1998.

BIBLIOGRAPHY 123

[31] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner:
Towards automatic data extraction from large web sites. In Proceedings
of VLDB ’01, pages 109–118, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[32] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin
Tablan. Gate: An architecture for development of robust hlt applications.
In Proc. of the 40th Annual Meeting on Association for Computational Lin-
guistics, ACL ’02, pages 168–175, 2002.

[33] James R. Curran, Tara Murphy, and Bernhard Scholz. Minimising semantic
drift with mutual exclusion bootstrapping. In Proc.PACLING’07, pages
172–180, 2007.

[34] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, Ramanathan
Guha, Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew
Tomkins, John A Tomlin, et al. Semtag and seeker: Bootstrapping the
semantic web via automated semantic annotation. In Proceedings of the
12th international conference on World Wide Web, pages 178–186. ACM,
2003.

[35] Francesco M Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Al-log: Integrating datalog and description logics. Journal of
Intelligent Information Systems, 10(3):227–252, 1998.

[36] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal
Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Un-
supervised named-entity extraction from the web: An experimental study.
Artificial Intelligence, 165(1):91–134, 2005.

[37] Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and
Mausam Mausam. Open information extraction: The second generation.
In IJCAI, volume 11, pages 3–10, 2011.

[38] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying rela-
tions for open information extraction. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1535–1545.
Association for Computational Linguistics, 2011.

[39] Adam Farquhar, Richard Fikes, and James Rice. The ontolingua server:
A tool for collaborative ontology construction. International journal of
human-computer studies, 46(6):707–727, 1997.

BIBLIOGRAPHY 124

[40] Bettina Fazzinga, Sergio Flesca, Andrea Tagarelli, Salvatore Garruzzo, and
Elio Masciari. A wrapper generation system for pdf documents. In Pro-
ceedings of the 2008 ACM symposium on Applied computing, pages 442–
446. ACM, 2008.

[41] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorpo-
rating non-local information into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 363–370. Association for Computational
Linguistics, 2005.

[42] Sergio Flesca, Elio Masciari, and Andrea Tagarelli. A fuzzy logic approach
to wrapping pdf documents. IEEE Transactions on Knowledge and Data
Engineering, 23(12):1826–1841, 2011.

[43] Dayne Freitag. Information extraction from HTML: application of a gen-
eral machine learning approach. In Proc. of AAAI/IAAI, Madison, WI, US,
pages 517–523, 1998.

[44] Dayne Freitag. Machine learning for information extraction in informal
domains. Machine Learning, 39(2):169–202, 2000.

[45] Tim Furche, Georg Gottlob, Giovanni Grasso, Giorgio Orsi, Christian
Schallhart, and Cheng Wang. Little knowledge rules the web: Domain-
centric result page extraction. In Web Reasoning and Rule Systems, volume
6902 of LNCS, pages 61–76. 2011.

[46] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Comput., 9(3/4):365–
386, 1991.

[47] Michael R Genesereth, Richard E Fikes, et al. Knowledge interchange
format-version 3.0: reference manual. 1992.

[48] Sergio Greco, Nicola Leone, and Pasquale Rullo. Complex: an object-
oriented logic programming system. IEEE Transactions on Knowledge and
Data Engineering, 4(4):344–359, 1992.

[49] Ralph Grishman. Tipster architecture design document version 2.3. Tech-
nical report, Technical report, DARPA, 1997.

[50] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5(2):199–220, 1993.

BIBLIOGRAPHY 125

[51] Thomas R Gruber. Toward principles for the design of ontologies used
for knowledge sharing? International journal of human-computer studies,
43(5-6):907–928, 1995.

[52] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

[53] Nicola Guarino. Formal ontology and information systems. In Interna-
tional Conference On Formal Ontology In Information Systems FOIS’98,
pages 3–15, Trento, ITALY, 1998. Amsterdam, IOS Press.

[54] Ramanathan Guha and Rob McCool. Tap: a semantic web platform. Com-
puter Networks, 42(5):557–577, 2003.

[55] Sonal Gupta. Distantly Supervised Information Extraction Using Boot-
strapped Patterns. PhD thesis, Stanford University, 2015.

[56] Sonal Gupta and Christopher Manning. Improved pattern learning for boot-
strapped entity extraction. In Proc. of CoNLL’14, pages 98–108, 2014.

[57] Sonal Gupta and Christopher D. Manning. Distributed representations of
words to guide bootstrapped entity classifiers. In Proc. of HLT-NAACL’15,
pages 1215–1220, 2015.

[58] Joachim Hammer, Héctor García-Molina, Svetlozar Nestorov, Ramana
Yerneni, Marcus Breunig, and Vasilis Vassalos. Template-based wrappers
in the TSIMMIS system. SIGMOD Rec., 26(2), 1997.

[59] Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna. S-cream—semi-
automatic creation of metadata. In International Conference on Knowledge
Engineering and Knowledge Management, pages 358–372. Springer, 2002.

[60] T. Hassan and R. Baumgartner. Table recognition and understanding from
pdf files. In Proceedings of ICDAR ’07, pages 1143–1147, Washington,
DC, USA, 2007. IEEE Computer Society.

[61] Marti A Hearst. Automatic acquisition of hyponyms from large text cor-
pora. In Proceedings of the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Computational Linguistics,
1992.

[62] Alexander Hogenboom, Frederik Hogenboom, Flavius Frasincar, Kim
Schouten, and Otto van der Meer. Semantics-based information extrac-
tion for detecting economic events. Multimedia Tools and Applications,
64(1):27–52, 2013.

BIBLIOGRAPHY 126

[63] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state transducers
for semi-structured data extraction from the Web. Inf. Syst., 23(9):521–538,
1998.

[64] Ruihong Huang and Ellen Riloff. Inducing domain-specific semantic class
taggers from (almost) nothing. In Proc. of ACL’10, pages 275–285, 2010.

[65] Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli.
Sensembed: Learning sense embeddings for word and relational similar-
ity. In Proc. of ACL’15, pages 95–105, 2015.

[66] Jing Jiang. Information extraction from text. In Mining Text Data, pages
11–41. 2012.

[67] Aditya Kalyanpur, James Hendler, Bijan Parsia, and Jennifer Golbeck.
Smore-semantic markup, ontology, and rdf editor. Technical report, DTIC
Document, 2006.

[68] Soner Kara, ’́Ozg’́ur Alan, Orkunt Sabuncu, Samet Akpinar, Nihan K. Ci-
cekli, and Ferda N. Alpaslan. An ontology-based retrieval system using
semantic indexing. Information Systems, 37(4):294 – 305, 2012.

[69] Vangelis Karkaletsis, Pavlina Fragkou, Georgios Petasis, and Elias Iosif.
Ontology based information extraction from text. In Knowledge-Driven
Multimedia Information Extraction and Ontology Evolution, volume 6050
of LNCS, pages 89–109. 2011.

[70] Michael Kifer and Georg Lausen. F-logic: a higher-order language for rea-
soning about objects, inheritance, and scheme. In ACM SIGMOD Record,
volume 18, pages 134–146. ACM, 1989.

[71] Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. Semantic class learning
from the web with hyponym pattern linkage graphs. In Proc. of ACL’08,
pages 1048–1056, 2008.

[72] Trausti Kristjansson, Aron Culotta, Paul Viola, and Andrew McCallum. In-
teractive information extraction with constrained conditional random fields.
In AAAI, volume 4, pages 412–418, 2004.

[73] Nicholas Kushmerick. Wrapper induction: efficiency and expressiveness.
Artif. Intell., 118(1-2):15–68, 2000.

[74] Alberto HF Laender, Berthier Ribeiro-Neto, and Altigran S da Silva.
Debye–data extraction by example. Data & Knowledge Engineering,
40(2):121–154, 2002.

BIBLIOGRAPHY 127

[75] John Lafferty, Andrew McCallum, Fernando Pereira, et al. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. 2001.

[76] Mario Lipinski, Kevin Yao, Corinna Breitinger, Joeran Beel, and Bela
Gipp. Evaluation of header metadata extraction approaches and tools for
scientific pdf documents. In Proceedings of the 13th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL ’13, pages 385–386, New York,
NY, USA, 2013. ACM.

[77] L. Liu, C. Pu, and W. Han. XWRAP: An XML-Enabled Wrapper Construc-
tion System for Web Information Sources. In Proc. of ICDE, San Diego,
CA, USA, 2000.

[78] Robert MacGregor. Retrospective on loom. Information Sciences Institute,
University of Southern California, Tech. Rep, 1999.

[79] Marco Manna, Ermelinda Oro, Massimo Ruffolo, Mario Alviano, and
Nicola Leone. The HıLεX system for semantic information extraction. In
Trans. on Large-Scale Data- and Knowledge-Centered Systems V, volume
7100, pages 91–125. 2012.

[80] Cynthia Matuszek, John Cabral, Michael J Witbrock, and John DeOliveira.
An introduction to the syntax and content of cyc. In AAAI Spring Sympo-
sium: Formalizing and Compiling Background Knowledge and Its Applica-
tions to Knowledge Representation and Question Answering, pages 44–49,
2006.

[81] Andrew McCallum. Information extraction: Distilling structured data from
unstructured text. Queue, 3(9):48–57, 2005.

[82] G. Mecca, P. Atzeni, A. Masci, G. Sindoni, and P. Merialdo. The Araneus
Web-based management system. SIGMOD Rec., 27(2):544–546, 1998.

[83] George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[84] Qian Mo and Yi-hong Chen. Ontology-based web information extrac-
tion. In Communications and Information Processing, volume 288 of CCIS,
pages 118–126. 2012.

[85] Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical Wrapper
Induction for Semistructured Information Sources. Aut. A. and M.-A. Syst.,
4(1-2):93–114, 2001.

BIBLIOGRAPHY 128

[86] Anoop M Namboodiri and Anil K Jain. Document structure and layout
analysis. In Digital Document Processing, pages 29–48. Springer, 2007.

[87] Roberto Navigli. Word sense disambiguation: A survey. ACM Computing
Surveys, 41(2):10, 2009.

[88] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilingual
semantic network. Artificial Intelligence, 193:217–250, 2012.

[89] Eyal Oren, Knud Möller, Simon Scerri, Siegfried Handschuh, and Michael
Sintek. What are semantic annotations. Relatório técnico. DERI Galway,
9:62, 2006.

[90] Óscar Corcho and Asunción Gómez-Pérez. A roadmap to ontology spec-
ification languages. In Proceedings of EKAW ’00, pages 80–96, London,
UK, 2000. Springer-Verlag.

[91] Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu, and
Vishnu Vyas. Web-scale distributional similarity and entity set expansion.
In Proc. of EMNLP ’09, pages 938–947, 2009.

[92] Fuchun Peng and Andrew McCallum. Information extraction from research
papers using conditional random fields. Information processing & manage-
ment, 42(4):963–979, 2006.

[93] Jakub Piskorski and Roman Yangarber. Information extraction: past,
present and future. In Multi-source, multilingual information extraction
and summarization, pages 23–49. Springer, 2013.

[94] Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan
Ognyanoff, and Miroslav Goranov. Kim–semantic annotation platform. In
International Semantic Web Conference, pages 834–849. Springer, 2003.

[95] Lawrence Reeve and Hyoil Han. Survey of semantic annotation platforms.
In Proceedings of the 2005 ACM Symposium on Applied Computing, SAC
’05, pages 1634–1638, New York, NY, USA, 2005. ACM.

[96] Francesco Ricca and Nicola Leone. Disjunctive logic programming with
types and objects: The dlv+ system. Journal of Applied Logic, 5(3):545–
573, 2007.

[97] Ellen Riloff. Automatically constructing a dictionary for information ex-
traction tasks. In Proceedings of the Eleventh National Conference on Ar-
tificial Intelligence, pages 811–816. MIT Press, 1993.

BIBLIOGRAPHY 129

[98] Ellen Riloff and Rosie Jones. Learning dictionaries for information extrac-
tion by multi-level bootstrapping. In Proc. of AAAI ’99 and IAAI ’99, pages
474–479, 1999.

[99] Arnaud Sahuguet and Fabien Azavant. Building intelligent Web applica-
tions using lightweight wrappers. Data Knowl. Eng., 36(3):283–316, 2001.

[100] Sunita Sarawagi and William W Cohen. Semi-markov conditional random
fields for information extraction. In Advances in neural information pro-
cessing systems, pages 1185–1192, 2005.

[101] Luís Sarmento, Valentin Jijkoun, Maarten de Rijke, and Eugenio Oliveira.
"more like these": growing entity classes from seeds. In Proc. of CIKM’07,
pages 959–962, 2007.

[102] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden
markov models for information extraction. In International Symposium on
Intelligent Data Analysis, pages 309–318. Springer, 2001.

[103] Julian Seitner, Christian Bizer, Kai Eckert, Stefano Faralli, Robert Meusel,
Heiko Paulheim, and Simone Paolo Ponzetto. A large database of hyper-
nymy relations extracted from the web. In Proc. of LREC’16, 2016.

[104] Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning hid-
den markov model structure for information extraction. In AAAI-99 work-
shop on machine learning for information extraction, pages 37–42, 1999.

[105] Anikó Simon, J-C Pret, and A Peter Johnson. A fast algorithm for bottom-
up document layout analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(3):273–277, 1997.

[106] Mayank Singh, Barnopriyo Barua, Priyank Palod, Manvi Garg, Sid-
hartha Satapathy, Samuel Bushi, Kumar Ayush, Krishna Sai Rohith, Tulasi
Gamidi, Pawan Goyal, et al. Ocr++: A robust framework for information
extraction from scholarly articles. arXiv preprint arXiv:1609.06423, 2016.

[107] Marios Skounakis, Mark Craven, and Soumya Ray. Hierarchical hidden
markov models for information extraction. In IJCAI, pages 427–433, 2003.

[108] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web
ontology language guide. W3c recommendation, World Wide Web Con-
sortium, 2004.

[109] Stephen Soderland. Learning Information Extraction Rules for Semi-
Structured and Free Text. Mach. Learn., 34(1-3):233–272, 1999.

BIBLIOGRAPHY 130

[110] Michael Thelen and Ellen Riloff. A bootstrapping method for learning
semantic lexicons using extraction pattern contexts. In Proceedings of the
ACL-02 conference on Empirical methods in natural language processing-
Volume 10, pages 214–221. Association for Comp. Linguistics, 2002.

[111] Michael Thelen and Ellen Riloff. A bootstrapping method for learning
semantic lexicons using extraction pattern contexts. In Proc. of EMNLP
’02, pages 214–221, 2002.

[112] Martin Toepfer, Hamo Corovic, Georg Fette, Peter Klügl, Stefan Störk, and
Frank Puppe. Fine-grained information extraction from german transtho-
racic echocardiography reports. BMC medical informatics and decision
making, 15(1):91, 2015.

[113] Melanie Tosik, Carsten Lygteskov Hansen, Gerard Goossen, and Mihai Ro-
taru. Word embeddings vs word types for sequence labeling: the curious
case of cv parsing. In VS@ HLT-NAACL, pages 123–128, 2015.

[114] Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria
Vargas-Vera, Enrico Motta, and Fabio Ciravegna. Semantic annotation for
knowledge management: Requirements and a survey of the state of the
art. Web Semantics: science, services and agents on the World Wide Web,
4(1):14–28, 2006.

[115] Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia Lanzoni, Arthur
Stutt, and Fabio Ciravegna. Mnm: Ontology driven semi-automatic and
automatic support for semantic markup. In Intern. Conf. on Knowledge
Engineering and Knowledge Management, pages 379–391. Springer, 2002.

[116] Kwan Y. Wong, Richard G. Casey, and Friedrich M. Wahl. Document
analysis system. IBM journal of research and development, 26(6):647–656,
1982.

[117] Fei Wu and Daniel S Weld. Open information extraction using wikipedia.
In Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 118–127. ACL, 2010.

[118] Burcu Yildiz, Katharina Kaiser, and Silvia Miksch. pdf2table: A method to
extract table information from pdf files. In IICAI, pages 1773–1785, 2005.

[119] Richard Zanibbi, Dorothea Blostein, and James R Cordy. A survey of table
recognition. Document Analysis and Recognition, 7(1):1–16, 2004.

	Introduction
	Context
	Motivation
	Contributions
	Organization of the thesis

	Semantic Annotation
	Different perspectives on text annotation
	Free and commercial tools
	A critical overview

	Automatic Lexicon Generation
	Motivation
	Related work
	Semantic resources and entity networks
	Semantic resources
	Entity networks
	ASP-based network construction

	Word sense disambiguation
	Optimal common ancestors
	ASP-based sense detector

	Lexicon generation via entity set expansion

	Document Layout Analysis
	Problem specification
	Existing solutions
	PDF file management systems
	Table recognition challenge

	The label-content approach
	Recognizing the document structure
	Improving the recognition with domain labels

	Ontological Document Representation
	Review of knowledge representation formalisms
	Ontological languages
	Desired characteristics of the formalism
	The language of choice

	Principles of the proposed model
	Layout representation
	Content representation

	Use case example

	Semantic Descriptors
	Existing rule-based solutions for IE
	The semantic descriptors approach
	Syntax and semantics
	Logic-based evaluation
	Translation to logic rules
	Exemplary translations

	Ontology-driven IE: The Knowrex Framework
	System overview and architecture
	Using the framework
	Design phase
	Runtime phase

	Implementation principles
	Ontology-driven extraction
	Annotation engine

	Experimental Evaluation
	Automatic lexicon generation
	Document layout analysis

	Discussion and Conclusion
	Summary of the results
	Future work

