Design and Implementation of a Modern
ASP Grounder

Jessica Zangari

Abstract

Answer Set Programming (ASP) is a declarative programming paradigm proposed
in the area of non-monotonic reasoning and logic programming in the late 80 and
early ’90. Thanks to its expressivity and capability of dealing with incomplete knowl-
edge, ASP became widely used in AT and recognized as a powerful tool for Knowledge
Representation and Reasoning (KRR). On the other hand, its high expressivity comes
at the price of a high computational cost, thus requiring reliable and high-performance
implementations. Throughout the years, a significant effort has been spent in order
to define techniques for an efficient computation of its semantics. In turn, the avail-
ability of efficient ASP systems made ASP a powerful tool for developing advanced
applications in many research areas as well as in industrial contexts. Furthermore, a
significant amount of work has been carried out in order to extend the “basic” lan-
guage and ease knowledge representation tasks with ASP, and recently a standard
input language, namely ASP-Core-2, has been defined, also with the aim of fostering
interoperability among ASP systems.

Although different approaches for the evaluation of ASP logic programs have been
proposed, the canonical approach, which is adopted in mainstream ASP systems, mim-
ics the definition of answer set semantics by relying on a grounding module (grounder),
that generates a propositional theory semantically equivalent to the input program,
coupled with a subsequent module (solver) that applies propositional techniques for
generating its answer sets.

The former phase, called grounding or instantiation, plays a key role for the suc-
cessful deployment in real-world contexts, as in general the produced ground program
is potentially of exponential size with respect to the input program, and therefore the
subsequent solving step, in the worst case, takes exponential time in the size of the
input. To mitigate these issues, modern grounders employ smart procedures to obtain
ground programs significantly smaller than the theoretical instantiation, in general.

This thesis focuses on the ex-novo design and implementation of a new modern
and efficient ASP instantiator. To this end, we study a series of techniques geared to-
wards the optimization of the grounding process, questioning the techniques employed
by modern grounders with the aim of improving them and introducing further opti-
mization strategies, which lend themselves to the integration into a generic grounder
module of a traditional ASP system following a ground & solve approach. In particu-
lar, we herein present the novel system Z-DLV that incorporates all these techniques
leveraging on their synergy to perform an efficient instantiation. The system features
full support to ASP-Core-2 standard language, advanced flexibility and customizabil-
ity mechanisms, and is endowed with extensible design that eases the incorporation
of language updates and optimization techniques. Moreover, its usage is twofold: be-
sides being a stand-alone grounder, it is also a full-fledged deductive database engine.
In addition, along with the solver wasp it has been integrated in the new version of
the widespread ASP system DLV recently released.



