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Curse of Dimensionality 

− Classification problem: 3 classes 
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Curse of Dimensionality 

− Classification problem 
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Really the whole spectrum? Second part 

 
• Correlation between bands 

 
− Information redundancy 

− We “change” the bands to have 
independent information in the 
bands 

− By rotating the feature space 
− Then we select new “bands” with 

high variance only 
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Principal Components Analysis 
Exercise 10 
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A typical Landsat Image 

•Morro Bay, California, USA 
 

•RGB Combination 
•(First three bands from the Landsat TM 

scene) 
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Let‘s have a look... 

− A typical Landsat image has 7 bands 

− Blue 

− Green 

− Red 

− Near Infrared 

− Shortwave Infrared 

− Thermal Infrared 

− Shortwave Infrared2 

− Do these bands look really different? 

− How much redundant information is 
there? 
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Principal Components Analysis 

−Principal Components Analysis (PCA) is a technique used to reduce 
multidimensional data sets to lower dimensions 

− It describes n-dimensional data with a set of p synthetic variables, with p <n 

− The new variables are uncorrelated and are called Principal Components (PC) 

− This process leads to some information loss 

− PCA ensures that this loss is minimal 

 

−Also known as:  

− Karhunen-Loève transform 

− Hotelling transform 

− Proper Orthogonal Decomposition (POD) 
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Principal Components Analysis 

 

−PCA is widely used in remote sensing  dimensionality reduction aids 
data exploration 

 

− It reveals the internal structure of the data by ignoring not relevant 
information 

− It highlights similarities and differences within the data 

 

− First of all, let’s see how PCA can be useful… 
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Let‘s compare some bands... 
Morro Bay (California, USA) Landsat Scene 
 

• What do you understand from the scatter plot?  
• Can we predict the value of band 2 knowing band 1? 

•Band 1 

•Band 1 

•Band 2 

•RGB Combination 
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Dimensionality reduction: why? 

−How to visualize multidimensional data?  

− In the previous example, out of a 7-band image only 3 
bands could be visualized 

 

−  ↑ Data  ↑ Information? Not always.. 

− Redundancies 

− In the previous plot we can predict the value of band 2 on 
the basis of band 1 

 

−We would like each band to contain relevant 
information  

− A decorrelation of the bands may help at analyzing the 
images 

Do I really 
need all these 

bands? 
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How does PCA work? 

−PCA is a methodology for transforming a set of correlated variables into 
a new set of uncorrelated variables 

−Achieved through a rotation of the original dimensions/axes to new 
orthogonal axes 

−The rotation is performed in order to have maximum variability in each 
new dimension 

−No correlation between new variables 

In one slide, 
please? 
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Histograms of First and Second Principal Components 
Morro Bay Landsat Scene 

 

PC1 PC2 

 Check both the histograms and the images: 

Which principal component contains more information, PC1 or PC2? 



14 

Institut für Methodik der Fernerkundung 

Plot of First vs. Second Principal Component 

 Check the scatter plot: 

 In which area are most of the uncorrelated data to be found? 

 Which pixels are still correlated? 
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PC 1 
Close to what we 
would expect for a 
b/w picture of the 
scene 
Max Information 

PC 2 

Several 
features can 
be spotted in 

the sea 

PC 3 

Bright and dark 
gray for two 
classes of 
vegetation 

RGB 
Combination 

Each component has its characteristics... 
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Still some patterns in 
medium gray over the 
mountains 

PC 6 

This component 
appears noisy 

 

Informational 
content ↓ 

RGB 
Combination 

Different PC = different information! 

 

The main keyword for PCA is...  

DECORRELATION! 

PC 4 

Each component has its characteristics... 
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RGB Combination 
(First three bands from the Landsat scene) 

 

Combination of 3 PC 

The information available in the Principal Components can be better 
revealed by combining them visually in a color composition  

Two Different Band Combinations 
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RGB Combination Three Principal Components 

Which picture contains more information? 

How many kinds of terrain can you spot in each one? 

Two Different Band Combinations 
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•Beach Bar 
 

•Wave Breakers 
 

•Vegetation1 
 

•Vegetation2 
 

•Golf Course 
 

•Urban Area 
 

•Shadows 
 

•Sea 
 

•Mountains (bright slopes) 
 

•.... 
 

We can now identify many different areas... 
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A second Landsat scene 

RGB Combination Three Principal Components after Decorrelation 
Stretch (DS) 

 

DS= Emphatization of the differences in color 
between the pixels 

A more dramatic example 
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Kaolinite        

Alunite 

Chalcedony  

Buddingtonite 



22 

Institut für Methodik der Fernerkundung 

How do we get there? 

−How do we express a principal component as a linear combination of the 
image bands? 

−A pixel p(i,j) at row i, column j is a vector of 7 bands b1...b7:  

 

−Then a pixel of a PC can be expressed as: 

p(i,j) = [b1(i,j),b2(i,j),b3(i,j),b4(i,j),b5(i,j),b6(i,j),b7(i,j)] 

PC1(i,j) = [a(1,1)b1(i,j), a(1,2)b2(i,j), a(1,3)b3(i,j), a(1,4)b4(i,j), a(1,5)b5(i,j), a(1,6)b6(i,j), a(1,7)b7(i,j)] 

•How can we find these a(m,n) indices for each band and each PC? 
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Let‘s see it through an Example... 

− Let‘s analyze this simple 2-dimensional dataset 

− Easy to visualize and to work with 

− The same procedure can be applied on the 7 dimensional Landsat scene, as well as on n- 
dimensional data (as long as n is finite) 

  

Data 
x        y 
2.5   2.4 
0.5   0.7 
2.2   2.9 
1.9   2.2 
3.1   3.0 
2.3   2.7 
2   1.6 
1   1.1 
1.5   1.6 
1.1   0.9 

That‘s 
better! 
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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Organize the Dataset 

− Represent the data with a m x n matrix M 

− m variables (in our case x and y) 

− n observations per variable 







































=

9.01.1
6.15.1
1.11
6.12
7.23.2
0.31.3
2.29.1
9.22.2
7.05.0
4.25.2

M
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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Subtract the mean 
 

− Let x and y be the means of the x and y 
variables, respectively 

− For every x value: x = x – x 

− For every y value: y = y – y 

−The mean of the data set is now zero 

−Subtracting the mean makes next 
variance and covariance calculation 
easier by simplifying their equations 

−The variance and co-variance values are 
not affected by the mean value 






































−−
−−
−−
−

−−

⇒







































=

01.171.0
31.031.0
81.081.0
31.019.0

79.049.0
09.129.1
29.009.0
99.039.0
21.131.1

49.069.0

9.01.1
6.15.1
1.11
6.12
7.23.2
0.31.3
2.29.1
9.22.2
7.05.0
4.25.2

M
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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What is the covariance? 

−The covariance Cov(x,y) between two variables  x and y measures how 
much x and y change together 

−There are two extreme cases: 

1. The variables are independent: knowing the value of x does not help in estimating the 
value of y  Cov(x,y) ≈ 0 

2. The link between the variables is so strong that we can recover the values of y only by 
knowing the values of x  Cov(x,y) = Max 

−Normally, this mutual dependance is somewhere in between 

−High Cov(x,y)  High correlation  When x is positive/negative, so is y 

− If  the mean of x and y has been set to 0 as in the previous example 
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What is a covariance matrix? 
 

 

− If x and y are the mean values of x and y we can think of the covariance as 
the average product of the deviations of x and y from the mean:  

[ ]))((),( yyxxaverageyxCov −−=
 

• For the 2-dimensional case we can write in a matrix the covariances of any 
combination of the two variables 









=

),(),(
),(),(

),(
yyCovxyCov
yxCovxxCov

yxCovM

 

• Where  Cov(i,i) is the covariance of a variable with itself 
• Better known as variance σi² of i  
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Compute the covariance matrix 
 

− Let’s focus on the non-diagonal elements 

− Related to the mutual dependence of the variables 

− This information cannot be found in the values of the 
diagonal containing the variances 

− In this case we are interested in Cov(x,y) 

− It is equal to Cov(y,x) since the covariance matrix is 
always symmetric 

− What kind of value do you think Cov(x,y) will 
assume for the data distribution in the figure? 

 









=

),(),(
),(),(

),(
yyCovxyCov
yxCovxxCov

yxCovM
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Compute the covariance matrix 
 

−Cov(x,y) is positive and comparable to the 
variances of x and y 

−The two variables are strongly correlated! 

−We expect them to vary together 

 









=








=

7166.06154.0
6154.061660

),(),(
),(),(

),(
.

yyCovxyCov
yxCovxxCov

yxCovM
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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What are eigenvectors and eigenvalues? 
 

−A vector v is an eigenvector for a matrix M if and only if 

vMv λ=

• Where λ is the eigenvalue related to the specific 
eigenvector v and is a scalar 

• This means that v does not change if it is multiplied by M 
• The multiplication by the scalar λ „stretches“ the vector, but its 

direction is unaffected 
 

• Eigenvectors are also known as characteristic vectors 

Don‘t panic! 
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vMv λ=

v

Example: here v is an eigenvector for the matrix M, as the result of 
the multiplication Mv does not change the direction of v.  

What are eigenvectors and eigenvalues? 
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







=

21
12

A









−

=
3

3
x 








=

1
0

y

•Given the matrix 

•And the two vectors Which one is an 
eigenvector? 

=Ay

•HINT!! And what is the 
eigenvalue of x? 

It is 1! 
The vector remained 

unchanged 

x did not change after 
being multiplied by A! 

Spot the eigenvector! 
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−Any n x n covariance matrix A, being symmetric, has n real eigenvectors 

− It can be factorized as: 

1−Λ= QQA

• Q  matrix composed by the eigenvectors of A 
• Λ  diagonal matrix containing the eigenvalues λ1... λn 
• The eigenvectors can be chosen to be orthogonal 
• They can form a new orthogonal basis   they can be thought of a new set 

of uncorrelated variables to represent the data! 

Eigenvectors and eigenvalues 
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Eigenvectors and eigenvalues 
 

−Now we can compute the eigenvectors Q and eigenvalues Λ for our 
covariance matrix… 









=

7166.06154.0
6154.061660

),(
.

yxCovM









=

 0.735-   0.678  
0.677-   0.735-

),( yxQ 







=Λ

1.284 
0.049

),( yx
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• Eigenvectors are plotted as diagonal 
dotted lines on the plot  
 

• They are perpendicular to each other 
 

• One of the eigenvectors goes 
through the middle of the points, like 
drawing a line of best fit 
 

• The second eigenvector gives us the 
distance of the points from the first 
eigenvector 
 

• It contains the second, less important 
aspect of the data  

Let‘s project them back... 
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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Sort the eigenvectors 
 

−The eigenvector with the highest eigenvalue is the 
principal component of the data set 

− It contains the highest amount of information on the data 

 

− In our example, it is “in the middle” of the data 

 

− If we sort the eigenvectors from highest to lowest 
eigenvalue we have them in order of significance  

 •2 
•1 








=Λ

1.284 
0.049

),( yx 







=

 0.735-   0.678  
0.677-   0.735-

),( yxQ

1 2 
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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−You can now decide to ignore less meaningful 
components  

− Eigenvectors with low eigenvalue 

 

−Dimensionality reduction is achieved 
− Data compression is also achieved 

 

−Some information is lost, but as few as possible 

 

•Select a subset of the eigenvectors 

•2 
•1 








=Λ

1.284 
0.049

),( yx 







=

 0.735-   0.678  
0.677-   0.735-

),( yxQ

•We can choose only the first component! 

1 2 
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PCA Step by Step 

1. Organize the data set 

2. Subtract the mean 

3. Compute covariance matrix 

4. Find eigenvectors and eigenvalues for the covariance matrix 

5. Sort the eigenvectors 

6. Select a subset of the eigenvectors as basis vectors 

7. Project the values unto the new basis 
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•Deriving the new data 

− We can multiply our old data by our chosen set of eigenvectors  

− We obtain a new representation for the data 

  x             y 
 -.827970186   -.175115307 
1.77758033   .142857227 
-.992197494   .384374989 
-.274210416   .130417207 
-1.67580142   -.209498461 
-.912949103   .175282444 
.0991094375   -.349824698 
1.14457216   .0464172582 
.438046137   .0177646297 
1.22382056   -.162675287 



47 

Institut für Methodik der Fernerkundung 

•New representation of the data using both PCs 
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What if we use only the first PC? 

   x  
            
 -.827970186   
1.77758033    
-.992197494    
-.274210416    
-1.67580142    
-.912949103    
.0991094375   
1.14457216    
.438046137    
1.22382056 

After adding 
back the mean 
values 
subtracted in 
the first steps 
 
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How much information are we keeping? 

•Original 2D Data 
•Data reconstructed on the 

basis of only 1 Principal 
Component 
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•That‘s how we got here! 

•Beach Bar 
 

•Wave Breakers 
 

•Vegetation1 
 

•Vegetation2 
 

•Golf Course 
 

•Urban Area 
 

•Shadows 
 

•Sea 
 

•Mountains (bright slopes) 
 

•.... 
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AVIRIS sensor RGB, Linden, CA , 20-Aug-1992 
 (Hsu, et al. in Frontiers of Remote Sensing Information Processing, WSP 2003)  

One Last Example 

  

Smoke    

Cloud   Hot   Area   

Smoke  -   
small   part.   

Fire   

Shadow   

Grass   
Lake   

Soil   
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The 1st component again resembles a b/w picture of the area 
 
The 2nd highlights an area in which we have a thermal anomaly 
 
The 5th shows the cause of the anomaly (fire), which was hidden in the 
true color composition   

Three Principal Components 
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All major atmospheric and surface features can be identified 

Classification using the 3 PCs 
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PCA is NOT Always Optimal! 

−What happens if x1 and x2 are our first two PCs in 
this example? 
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Questions 

−What is the relation between the eigenvectors of the covariance matrix and 
the principal components? 

−At what point in the PCA process can we decide to compress the data? 

−Why are the principal components orthogonal? 

−How many different covariance values can you calculate for an n-dimensional 
data set? 
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Conclusions 

−PCA can be viewed as a projection of the observations onto orthogonal axes 
contained in the space defined by the original variables 

−The first new variable (PC1) contains the maximum amount of variation  
max information 

−The remaining components PC2..PCn are sorted according to their 
informational content, i.e. to their variance (which is not equal to the variance 
of the variables!!) 

−The rotation is a linear combination of the original bands 
  No information loss, original data can be recovered 

The last components can be ignored, achieving data reduction  
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