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Curse of Dimensionality

— Classification problem: 3 classes
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Curse of Dimensionality

— Classification problem

Classifier performance
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Dimensionality {(number of features)

=

Optimal number of features
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Really the whole spectrum? Second part

B2

B1

— We “"change” the bands to have

e Correlation between bands independent information in the
bands
— Information redundancy - By rotating the feature space

— Then we select new “bands” with
high variance only
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Principal Components Analysis
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A typical Landsat Image

Morro Bay, California, USA

‘RGB Combination

*(First three bands from the Landsat TM
scene)
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Morro Ba_y as Recorded In Different TM bands

é ._'1 i ﬁ.J: ..'F*' p

Let's have a look...

— A typical Landsat image has 7 bands
— Blue
— Green
— Red
— Near Infrared
— Shortwave Infrared
— Thermal Infrared

— Shortwave Infrared?2

— Do these bands look really different?

— How much redundant information is
there?
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Principal Components Analysis

— Principal Components Analysis (PCA) is a technique used to reduce
multidimensional data sets to lower dimensions

— It describes n-dimensional data with a set of p synthetic variables, with p <n
— The new variables are uncorrelated and are called Principal Components (PC)

— This process leads to some information loss

— PCA ensures that this loss is minimal

— Also known as:
— Karhunen-Loéve transform
— Hotelling transform

— Proper Orthogonal Decomposition (POD)
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Principal Components Analysis

—PCA is widely used in remote sensing = dimensionality reduction aids
data exploration

— It reveals the internal structure of the data by ignoring not relevant
information

— It highlights similarities and differences within the data

—First of all, let's see how PCA can be useful...

i DLR




Institut fir Methodik der Fernerkundung

Let's compare some bands...
Morro Bay (California, USA) Landsat Scene
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» What do you understand from the scatter plot?

RGB Combination » Can we predict the value of band 2 knowing band 1?
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Dimensionality reduction: why?

—How to visualize multidimensional data?

— In the previous example, out of a 7-band image only 3
bands could be visualized

— 1 Data = 1 Information? Not always.. e
g R
Eﬂ— "‘;
i gf

— Redundancies

— In the previous plot we can predict the value of band 2 on S
the basis of band 1 s O vt

Do I really
—We would like each band to contain relevant ”"'ega“,{lg?“e

information

— A decorrelation of the bands may help at analyzing the
images
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How does PCA work?

B2 '
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—PCA is a methodology for transforming a set of correlated variables into
a new set of uncorrelated variables

— Achieved through a rotation of the original dimensions/axes to new
orthogonal axes

—The rotation is performed in order to have maximum variability in each
new dimension

4~ No correlation between new !v‘ariables
f .-'-"=' & P, ks
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Histograms of First and Second Principal Components

Morro Bay Landsat Scene

-
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Check both the histograms and the images:

Which principal component contains more information, PC1 or PC27?
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Plot of First vs. Second Principal Component
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Each component has its characteristics...

PC1
RGB Close to what we
Combination would expect for a
b/w picture of the
scene
Max Information
PC 2 PC 3
Bright and dark
Several gray for two
features can classes of
be spotted in vegetation

the sea
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Each component has its characteristics...

PC 4

RGB
Combination

Still some patterns in
medium gray over the
mountains

PC6

This component Different PC = different information!
appears noisy
The main keyword for PCA is...

DECORRELATION!

Informational
content |

i DLR




Institut fir Methodik der Fernerkundung

Two Different Band Combinations

RGB Combination Tl .
(First three bands from the Landsat scene) Combination of 3 PC

The information available in the Principal Components can be better
revealed by combining them visually in a color composition
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Two Different Band Combinations

RGB Combination Three Principal Components

Which picture contains more information?

How many kinds of terrain can you spot in each one?
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We can now identify many different areas...

[] -Beach Bar
. *Wave Breakers
. *Vegetationl
. *Vegetation2
«Golf Course
*Urban Area
«Shadows
*Sea

*Mountains (bright slopes)

B W O 0O
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A more dramatic example

A second Landsat scene

RGB Combination Three Principal Components after Decorrelation
Stretch (DS)

DS= Emphatization of the differences in color
between the pixels
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How do we get there?

—How do we express a principal component as a linear combination of the
image bands?

— A pixel p(i,j) at row i, column j is a vector of 7 bands b1...b7:

p(1.)) = [01(1.)),b2(1.)),b3(1.)),04(1.}),b5(1.}),b6(1.}),b7(i.})]

—Then a pixel of a PC can be expressed as:
PC1(i,j) = [a(1,1)b1(i.j), a(1,2)b2(i.j), a(1,3)b3(i.j), a(1,4)b4(i.j), a(1,5)b5(i.j), a(1,6)b6(i,j), a(L,7)b7i,j)]

‘How can we find these a(m,n) indices for each band and each PC?
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Let's see it through an Example...

' " PCAdata.dat’  +

Data

That's X Y 3| + -
better! 23 24 g

0.5 0.7 .

2.2 2.9 2r T

1.9 2.2 : ool

3.1 3.0 L * i

2.3 2.7 *

2 1.6

1 1.1 ”

15 1.6

1.1 0.9 1 D ; > 3 4

— Let's analyze this simple 2-dimensional dataset

— Easy to visualize and to work with

— The same procedure can be applied on the 7 dimensional Landsat scene, as well as on n-

dimensional data (as long as n is finite)
T T 3B 7 T U e L N A o R



PCA Step by Step
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Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis




PCA Step by Step
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Organize the data set

Subtract the mean
Compute covariance matrix
Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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Organize the Dataset

— Represent the data with a m x n matrix M

— m variables (in our case x and y)

— n observations per variable 25 24

0.5 0.7

4 " jPCAdatadat’  + 22 29

: . 19 22

| S 31 30
- |:'> M =

| 2.3 2.7

1.6

1 11

DI 15 16

1.1 0.9




PCA Step by Step
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Organize the data set

Subtract the mean
Compute covariance matrix
Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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Subtract the mean

—Let xand y be the means of the xand y

variables, respectively 25 2.4 0.69 0.49

— For every x value: X =X —X 0.5 0.7 -131 -1.21
— For everyyvajue: y=y-y 2.2 29 039 099
1.9 22 0.09 0.29

~Th f the data set |
e mean o € data setIs now zero 31 30 1.29 1.09

_ M = =
— Subtracting the mean makes next 2.3 2.7 049 0.79
variance and covariance .calculat.lon 5 16 019 -031
easier by simplifying their equations
1.1 -0.81 -0.81
—The variance and co-variance values are 15 1.6 031 -031
not affected by the mean value
1.1 09 -0.71 -1.01

i DLR




PCA Step by Step
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Organize the data set

Subtract the mean
Compute covariance matrix
Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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What is the covariance?

—The covariance Cov(x,y) between two variables x and y measures how
much x and y change together

—There are two extreme cases:

1. The variables are independent: knowing the value of x does not help in estimating the
value of y = Cov(x,y) =0

2. The link between the variables is so strong that we can recover the values of y only by
knowing the values of x 2 Cov(x,y) = Max

—Normally, this mutual dependance is somewhere in between

—High Cov(x,y) = High correlation = When x is positive/negative, so is y

— If the mean of x and y has been set to 0 as in the previous example

i DLR
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What is a covariance matrix?

—If xand y are the mean values of x and y we can think of the covariance as
the average product of the deviations of x and y from the mean:

Cov(x,y) = average[(X -X)(y - X)J

« For the 2-dimensional case we can write in a matrix the covariances of any
combination of the two variables

CovM (x, ) :[Cov(x,x) Cov(x, y)j

Cov(y,x) Cov(y,y)

« Where Cov(i,I) is the covariance of a variable with itself
«  Better known as variance oi? of i
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Compute the covariance matrix

Cov(x,x) Cov(x,y)

CovM (%, y) = Cov(y,x) Cov(y,y)

"' jPCAdatadat’  +

— Let’s focus on the non-diagonal elements

— Related to the mutual dependence of the variables

— This information cannot be found in the values of the 2
diagonal containing the variances S
— In this case we are interested in Cov(x,y) :

— Itis equal to Cov(y,x) since the covariance matrix is 0
always symmetric

— What kind of value do you think Cov(x,y) will E 0 1 2 3 A
assume for the data distribution in the figure?

i DLR
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Compute the covariance matrix

CovM (X, y) = [COV(X’ X)  Cov(x, Y)j _ [0.6166 0.6154j

Cov(y,x) Cov(y,y)) \0.6154 0.7166

— Cov(x,y) is positive and comparable to the
variances of xand y

—The two variables are strongly correlated!

—We expect them to vary together

i DLR




PCA Step by Step
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Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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What are eigenvectors and eigenvalues?

—Avector vis an eigenvector for a matrix M if and only if

Mv = Av

Where A is the eigenvalue related to the specific
eigenvector v and is a scalar

This means that v does not change If it is multiplied by M

«  The multiplication by the scalar A ,,stretches* the vector, but its
direction is unaffected

Eigenvectors are also known as characteristic vectors

P -

by Y
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What are eigenvectors and eigenvalues?

—

O X

Example: here vis an eigenvector for the matrix M, as the result of
the multiplication Mv does not change the direction of v.




Institut fir Methodik der Fernerkundung

Spot the eigenvector!

being multiplied by Al

Which one is an

-And the two vectors .
eigenvector?

-Given the matrix A = 2 1) x did not change after

A.nd what is the
Ay — 2 1137 [2-3+1-(=3) eigenvalue of x?
AX=01 9|3l T [1-3+2-(=3)
Itis 1!

2] The vector remained

unchanged
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Eigenvectors and eigenvalues

— Any n x n covariance matrix A, being symmetric, has n real eigenvectors

— It can be factorized as:
A=QAQ™

« Q -> matrix composed by the eigenvectors of A
« A -> diagonal matrix containing the eigenvalues Al... An
« The eigenvectors can be chosen to be orthogonal

« They can form a new orthogonal basis -> they can be thought of a new set
of uncorrelated variables to represent the datal!




Institut fir Methodik der Fernerkundung

Eigenvectors and eigenvalues

—Now we can compute the eigenvectors Q and eigenvalues A for our
covariance matrix...

0.6154 0.7166

06166 0.6154
CovM (X, Y) =

0.678 -0.735

-0.735 -0.677
Q(x,Y) =( j

i DLR
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Let‘s project them back...

Mean adjusted data with eigenvectors overayed
2 N T T T

« Eigenvectors are plotted as diagonal

. - 1 LT + )
N 14 Daazi‘éé'f’éﬁ%‘éfééég?x ------- - dotted lines on the plot
15 L W (- 671 855252/- 740682469 )% "":,'-’"' i
| .
i b N ; 1 » They are perpendicular to each other
N + .
05 \ e . .
\“\ e « One of the eigenvectors goes
0 *x,\ through the middle of the points, like
AN drawing a line of best fit
0.5 \ i
‘::‘I_.-‘ \\L‘
Ak s \\ - « The second eigenvector gives us the
e AN distance of the points from the first
e N eigenvector
L LR
2 | | | | | | \\
2 15 -1 0.5 0 0.5 1 15 2

« It contains the second, less important
aspect of the data
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PCA Step by Step
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Organize the data set

Subtract the mean
Compute covariance matrix
Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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Sort the eigenvectors

—The eigenvector with the highest eigenvalue is the
principal component of the data set

— It contains the highest amount of information on the data

—In our example, it is “in the middle” of the data

—If we sort the eigenvectors from highest to lowest
eigenvalue we have them in order of significance

2 1
0.049) -2 -0.735 -0.677
A = X, =
() [1.284) 1 = QY [0.678 -o.735j
o e

ey Y




PCA Step by Step
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Organize the data set

Subtract the mean

Compute covariance matrix

Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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Select a subset of the eigenvectors

—You can now decide to ignore less meaningful

components
— Eigenvectors with low eigenvalue N sy
\\\\
\\
—Dimensionality reduction is achieved \‘:\
— Data compression is also achieved E \
|
—Some information is lost, but as few as possible 5 1
A(X,Y) 0.049 ) -2 QX V) -0.735 [-0.677
X, = —> X, Y)=
y 1.284 ) -1 0.678 |-0.735

Leid T N O, R .
We can choose only ‘rhe flrsT componen‘rI
Fat. o

i DLR
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PCA Step by Step
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Organize the data set

Subtract the mean
Compute covariance matrix
Find eigenvectors and eigenvalues for the covariance matrix
Sort the eigenvectors

Select a subset of the eigenvectors as basis vectors

Project the values unto the new basis
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Deriving the new data

— We can multiply our old data by our chosen set of eigenvectors

— We obtain a new representation for the data

X y
-.827970186 -175115307
1.77758033 142857227
-.992197494 384374989
-274210416 130417207
-1.67580142 -.209498461
-.912949103 175282444
0991094375 349824698
1.14457216 0464172582
438046137 0177646297
1.22382056 -162675287
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*New representation of the data using both PCs

Data transformed with 2 eigenvectors
2 T T T

" jdolbleveciingl dat” = +

1k 4

05 —

0 + n

05 -

gL 4

158 -

2 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 05 1 15 2

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.
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What if we use only the first PC?

Criginal data restored using only a single sigenvechor

4 [ [ I
X “Nossyplusmean.dat”  +

-.8279701 3k ! :

827970186 - After adding
1.77758033 ’ back the mean
-.992197494 2 - + J values
-.274210416 . subtracted in

the first steps

-1.67580142 L - | P
-.912949103 . <
0991094375 D
1.14457216
438046137
1.22382056 1 : 4 > ; 4

Figure 3.5: The reconstruction from the data that was derived using only a single eigen-
vector
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How much information are we keeping?

" PCAdatadat’  + 4 ' - lossyplusmeandar -
3k . + - 3t " .
+ ) +
2+ . 2 -
1L + N 1k i i
0 ]
_1 1 1 1
-1 : : : -1 0 1 2 3 4
-1 0 1 2 3 4
-Data reconstructed on the
-Original 2D Data basis of only 1 Principal
Component
o oy
DLR £1 B e

Y




*That‘s how we got here!

Institut fir Methodik der Fernerkundung

O
O
=
=
O

B W O 0O

«Beach Bar

*Wave Breakers

*Vegetationl

*Vegetation2

«Golf Course

«Urban Area

«Shadows

«Sea

*Mountains (bright slopes)
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One Last Example

AVIRIS sensor RGB, Linden, CA, 20-Aug-1992

(Hsu, et al. in Frontiers of Remote Sensing Information Processing, WSP 2003)
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Three Principal Components

1st PC (Clouds/background)

2 PC (Hot area)

X ¥

The 1st component again resembles a b/w picture of the area
The 2" highlights an area in which we have a thermal anomaly

The 5™ shows the cause of the anomaly (fire), which was hidden in the
true color composition
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Classification using the 3 PCs

| [] cloud

Smoke
small particle

Smoke
large particle

- [] clear

| [l shadow
B Hot

[ ] Fire

All major atmospheric and surface features can be identified
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A\

PCA is NOT Always Optimal!

x> (minor direction)

x; (principal direction)

— What happens if xZand x2are our first two PCs in
this example?

i DLR
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Questions

pc2 \

—What is the relation between the eigenvectors of the covariance matrix and
the principal components?

— At what point in the PCA process can we decide to compress the data?
—Why are the principal components orthogonal?

—How many different covariance values can you calculate for an n-dimensional
data set?

i DLR
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B2

Conclusions .
I'ill"l B1

—PCA can be viewed as a projection of the observations onto orthogonal axes
contained in the space defined by the original variables

—The first new variable (PC1) contains the maximum amount of variation 2
max information

—The remaining components PC2..PCn are sorted according to their
informational content, i.e. to their variance (which is not equal to the variance
of the variables!!)

—The rotation is a linear combination of the original bands
- No information loss, original data can be recovered

—> The last components can be ignored, achieving data reduction

I ﬂr”i o Wiy - ¥
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