Introduction to Stochastic Programming PhD Course

Patrizia Beraldi DIMEG - UNICAL

patrizia.beraldi@unical.it

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming

 The main aim of the course is to provide an introduction to Stochastic Programming

・ 同 ト ・ ヨ ト ・ ヨ ト

- The main aim of the course is to provide an introduction to Stochastic Programming
- SP is a branch of mathematical programming widely used to deal with decision problems under uncertainty

高 とう モン・ く ヨ と

- The main aim of the course is to provide an introduction to Stochastic Programming
- SP is a branch of mathematical programming widely used to deal with decision problems under uncertainty
- SP involves an artful blend of traditional (deterministic) mathematical programs and stochastic models

向下 イヨト イヨト

- The main aim of the course is to provide an introduction to Stochastic Programming
- SP is a branch of mathematical programming widely used to deal with decision problems under uncertainty
- SP involves an artful blend of traditional (deterministic) mathematical programs and stochastic models
- Operations Research, Probability Calculus and Statistics are the main building blocks

伺下 イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○

1. Basic concepts

- 4 回 2 - 4 □ 2 - 4 □

- 1. Basic concepts
- 2. Main paradigms:

回 と く ヨ と く ヨ と

- 1. Basic concepts
- 2. Main paradigms:
 - Recourse Models (two-stage and multi-stage)

-

- 1. Basic concepts
- 2. Main paradigms:
 - Recourse Models (two-stage and multi-stage)
 - Probabilistic Constraints

向下 イヨト イヨト

- 1. Basic concepts
- 2. Main paradigms:
 - Recourse Models (two-stage and multi-stage)
 - Probabilistic Constraints
- 3. Selected applications

-

 Uncertainty represents a key feature of most of real-life applications

回 と く ヨ と く ヨ と

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?

白 ト イヨト イヨト

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty
 - Market related uncertainty

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty
 - Market related uncertainty
 - Weather related

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty
 - Market related uncertainty
 - Weather related
 - Measurement errors

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty
 - Market related uncertainty
 - Weather related
 - Measurement errors
 - ▶ ...

伺 ト イヨト イヨト

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty
 - Market related uncertainty
 - Weather related
 - Measurement errors
 - ▶ ...
- How do we take decisions under uncertainty ?

向下 イヨト イヨト

- Uncertainty represents a key feature of most of real-life applications
- Where does uncertainty come from?
 - Financial uncertainty
 - Market related uncertainty
 - Weather related
 - Measurement errors
 - ▶ ...
- How do we take decisions under uncertainty ?
- Stochastic Programming is a way !

向下 イヨト イヨト

• Let us consider a deterministic linear programming problem:

• 3 >

-≣->

Let us consider a deterministic linear programming problem:

 $\begin{array}{ll} \min \quad \mathbf{c}^T x \\ \mathbf{T} x \geq \mathbf{h} \\ x \geq \mathbf{0} \end{array}$

白 ト イヨト イヨト

Let us consider a deterministic linear programming problem:

 $\begin{array}{ll} \min \quad \mathbf{c}^{\mathsf{T}} x \\ \mathbf{T} x \geq \mathbf{h} \\ x \geq \mathbf{0} \end{array}$

In many practically relevant cases, however, problem data may be subject to uncertainty

向下 イヨト イヨト

• Let us consider a deterministic linear programming problem:

r

min
$$\mathbf{c}^T x$$

 $\mathbf{T} x \ge \mathbf{h}$
 $x \ge 0$

- In many practically relevant cases, however, problem data may be subject to uncertainty
- We assume that uncertain data can be represented as random variables defined on a given probability space (Ω, ℑ, IP)

The previous model becomes

" min "
$$c^{T}(\omega)x$$

 $T(\omega)x \ge h(\omega) \ \forall \omega \in \Omega$
 $x \ge 0$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The previous model becomes

" min "
$$c^{T}(\omega)x$$

 $T(\omega)x \ge h(\omega) \ \forall \omega \in \Omega$
 $x \ge 0$

Dealing with uncertainty makes life much harder:

回 と く ヨ と く ヨ と

The previous model becomes

" min "
$$c^{T}(\omega)x$$

 $T(\omega)x \ge h(\omega) \ \forall \omega \in \Omega$
 $x \ge 0$

- Dealing with uncertainty makes life much harder:
- We have to worry about optimality

回 と く ヨ と く ヨ と

The previous model becomes

" min "
$$c^{T}(\omega)x$$

 $T(\omega)x \ge h(\omega) \ \forall \omega \in \Omega$
 $x \ge 0$

- Dealing with uncertainty makes life much harder:
- We have to worry about optimality
 - What does minimizing a random function mean ? We could consider the expected value or the variance

向下 イヨト イヨト

The previous model becomes

" min "
$$c^{T}(\omega)x$$

 $T(\omega)x \ge h(\omega) \ \forall \omega \in \Omega$
 $x \ge 0$

- Dealing with uncertainty makes life much harder:
- ► We have to worry about optimality
 - What does minimizing a random function mean ? We could consider the expected value or the variance
- ► We should worry about solution feasibility
 - It may occur that a feasible solution in all possible cases does not exist or that it is too expensive!!

・ 同 ト ・ ヨ ト ・ ヨ ト

Let us consider the following problem

min
$$x_1 + x_2$$

 $\omega_1 x_1 + x_2 \ge 7$
 $\omega_2 x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0$

$$\omega_1 \sim U(1,4)$$

 $\omega_2 \sim U(\frac{1}{3},1)$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

What to do ?

$$egin{aligned} &\omega_1 x_1+x_2\geq7 &\omega_1\sim U(1,4)\ &\omega_2 x_1+x_2\geq4 &\omega_2\sim U(rac{1}{3},1) \end{aligned}$$

Take the mean of each random variable

min
$$x_1 + x_2$$

 $\frac{5}{2}x_1 + x_2 \ge 7$
 $\frac{2}{3}x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0$

$$x_1^* = 18/11$$
 $x_2^* = 32/11$

The optimal solution associated with the mean value is not feasible for the problem associated with ω₁ = 1 and ω₂ = 1/3

$$x_1 + x_2 \ge 7$$
$$\frac{18}{11} + \frac{32}{11} \le 7$$

・ 回 と ・ ヨ と ・ ヨ と …

Pessimistic

$$\begin{array}{rl} \min & x_1+x_2 \\ & 1x_1+x_2 \geq 7 \\ & \frac{1}{3}x_1+x_2 \geq 4 \\ & x_1,x_2 \geq 0 \end{array}$$

$$x_1^* = 0 \quad x_2^* = 7 \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimistic

$$\begin{array}{ll} \min & x_1 + x_2 \\ & 4x_1 + x_2 \geq 7 \\ & 1x_1 + x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$

$$x_1^* = 4$$
 $x_2^* = 0$

The optimal solution associated with the scenario (4, 1) is not feasible for the problem associated with the scenario (1, ¹/₃)

$$x_1^* = 4$$
 $x_2^* = 0$

個 と く ヨ と く ヨ と …
Remark

► The optimal solution associated with the scenario (4, 1) is not feasible for the problem associated with the scenario (1, ¹/₃)

$$x_1^* = 4$$
 $x_2^* = 0$

$$\begin{aligned}
 &1x_1 + x_2 \ge 7 \\
 &\frac{1}{3}x_1 + x_2 \ge 4
 \end{aligned}$$

$$4 + 0 \not\geq 7$$
$$\frac{4}{3} + 0 \not\geq 4$$

Pros and Cons of the previous approaches

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming

同 と く き と く き と

We solve a deterministic problem of the same size of the original one

向下 イヨト イヨト

We solve a deterministic problem of the same size of the original one

 $+ \,$ Only rough information about the randomness is needed

We solve a deterministic problem of the same size of the original one

- $+\,$ Only rough information about the randomness is needed
 - Only takes into account one "case" of what randomness might be

We solve a deterministic problem of the same size of the original one

- $+ \$ Only rough information about the randomness is needed
 - Only takes into account one "case" of what randomness might be
 - There might even be ω values for which the chosen optimal solution x^* is infeasible

To cope with the issue of solution feasibility, two main paradigms have been proposed:

・ 回 と ・ ヨ と ・ ヨ と …

- To cope with the issue of solution feasibility, two main paradigms have been proposed:
 - Chance Constraints

個 と く ヨ と く ヨ と …

- To cope with the issue of solution feasibility, two main paradigms have been proposed:
 - Chance Constraints

The optimal solution is feasible with high probability

伺下 イヨト イヨト

- To cope with the issue of solution feasibility, two main paradigms have been proposed:
 - Chance Constraints
 The optimal solution is feasible with high probability
 - Recourse

・ 同 ト ・ ヨ ト ・ ヨ ト

- To cope with the issue of solution feasibility, two main paradigms have been proposed:
 - Chance Constraints
 The optimal solution is feasible with high probability
 - Recourse

We accept infeasibility, but we control the average violation (simple recourse)

伺下 イヨト イヨト

We enforce that the stochastic constraints are satisfied with a prescribed probability level α chosen by the decision maker

3.0

We enforce that the stochastic constraints are satisfied with a prescribed probability level α chosen by the decision maker

$$\mathbb{P}(\omega_1 x_1 + x_2 \ge 7) \ge \alpha$$
$$\mathbb{P}(\omega_2 x_1 + x_2 \ge 4) \ge \alpha$$

3.0

We enforce that the stochastic constraints are satisfied with a prescribed probability level α chosen by the decision maker

$$\mathbb{P}(\omega_1 x_1 + x_2 \ge 7) \ge \alpha$$
$$\mathbb{P}(\omega_2 x_1 + x_2 \ge 4) \ge \alpha$$

 Chance-constrained models are very useful in some situations (reliability of the system), but they are very difficulty to deal with because they are in general not convex

Recourse Approach

 We accept infeasibility, but we properly penalize it in the objective function

同 と く き と く き と

Recourse Approach

 We accept infeasibility, but we properly penalize it in the objective function

> $\omega_1 x_1 + x_2 + y_1(\omega_1) \ge 7$ $\omega_2 x_1 + x_2 + y_2(\omega_2) \ge 4$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Recourse Approach

 We accept infeasibility, but we properly penalize it in the objective function

> $\omega_1 x_1 + x_2 + y_1(\omega_1) \ge 7$ $\omega_2 x_1 + x_2 + y_2(\omega_2) \ge 4$

y₁(ω₁) and y₂(ω₂) will be exactly the shortfall in the two constraints

・ 同 ト ・ ヨ ト ・ ヨ ト …

 We accept infeasibility, but we properly penalize it in the objective function

> $\omega_1 x_1 + x_2 + y_1(\omega_1) \ge 7$ $\omega_2 x_1 + x_2 + y_2(\omega_2) \ge 4$

- y₁(ω₁) and y₂(ω₂) will be exactly the shortfall in the two constraints
- By denoting by q₁ and q₂ the costs associated with the two new variables the objective function becomes

min $x_1 + x_2 + \mathbb{E}_{\omega}[q_1y_1(\omega_1) + q_2y_2(\omega_2)]$

Simple recourse
 We accept infeasibility, but we properly penalize it in the objective function

白 ト く ヨ ト く ヨ ト

 Simple recourse
 We accept infeasibility, but we properly penalize it in the objective function

General recourse

ヨット イヨット イヨッ

- Simple recourse
 We accept infeasibility, but we properly penalize it in the objective function
- General recourse
 We gain feasibility after a correction has been made

- ∢ ⊒ ⊳

Example: Farmer Ted

- ► Farmer Ted can grow Wheat, Corn, or Beet
- Farmer Ted requires 200 tons of wheat and 240 tons of corn to feed his cattle
- These can be grown on his land or bought from a wholesaler.
- Any production in excess of these amounts can be sold for \$170/ton (wheat) and \$150/ton (corn)
- Any shortfall must be bought from the wholesaler at a cost of \$238/ton (wheat) and \$210/ton (corn).
- Farmer Ted can also grow beets
- Beets can be sold at \$36/ton for the first 6000 tons
- Due to economic quotas on beet production, beets in excess of 6000 tons can only be sold at \$10/ton

・ 同 ト ・ ヨ ト ・ ヨ ト

- Farmer Ted has 500 acres available for planting
- The planting unitary costs are 150 for wheat, 230 for corns and 260 for beets, respectively
- On the basis of his experience he can evaluate the Yield of each plantation

(T/acre) 2.5 for wheat, 3 for corn and 20 for beets

- ▶ x_i Acres of Wheat (1), Corn(2), Beets(3) planted
- y_i Tons of Wheat, Corn purchased i = 1, 2
- w₁ Tons of wheat sold
- ▶ w₂ Tons of corn sold
- w_3 Tons of beets sold at favorable price
- w₄ Tons of beets sold at lower price

$$\max z = -150x_1 - 230x_2 - 260x_3 - 238y_1 + 170w_1 - 210y_2 + 150w_2 + 36w_3 + 10w_4$$

$$\begin{array}{c} x_1 + x_2 + x_3 \leq 500 \\ 2.5x_1 + y_1 - w_1 \geq 200 \\ 3x_2 + y_2 - w_2 \geq 240 \\ 20x_3 - w_3 - w_4 \geq 0 \\ w_3 \leq 6000 \\ x_1, x_2, x_3, y_1, y_2, w_1, w_2, w_3, w_4 \geq 0 \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

Solution of the deterministic LP

	WHEAT	CORN	BEETS
Plant (acres)	120	80	300
Production	300	240	6000
Sales	100	0	6000
Purchase	0	0	0

• Profit: \$118,600

・ロト ・回ト ・ヨト ・ヨト

- Farmer Ted is happy to see that the LP solution corresponds to his intuition.
- Plant the land necessary to grow up to his quota limit of beets.
- Plant land necessary to meet his requirements for wheat and corn
- Plant remaining land with wheat sell excess.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Farmer Ted knows well enough to know that his yields aren't always precisely Y = (2.5; 3; 20).
- ▶ He decides to run two more scenarios (+20 %; -20 %)
 - Good weather: 1.2Y
 - Bad weather: 0.8Y

向下 イヨト イヨト

$$\max z = -150x_1 - 230x_2 - 260x_3 - 238y_1 + 170w_1 - 210y_2 + 150w_2 + 36w_3 + 10w_4$$

$$\begin{array}{l} x_1 + x_2 + x_3 \leq 500 \\ 3x_1 + y_1 - w_1 \geq 200 \\ 3.6x_2 + y_2 - w_2 \geq 240 \\ 24x_3 - w_3 - w_4 \geq 0 \\ w_3 \leq 6000 \\ x_1, x_2, x_3, y_1, y_2, w_1, w_2, w_3, w_4 \geq 0 \end{array}$$

▲御▶ ▲理▶ ▲理▶

	WHEAT	CORN	BEETS
Plant (acres)	183.33	66.67	250
Production	550	240	6000
Sales	350	0	6000
Purchase	0	0	0

<回と < 目と < 目と

æ

• Profit: \$167,667

$$\max z = -150x_1 - 230x_2 - 260x_3 - 238y_1 + 170w_1 - 210y_2 + 150w_2 + 36w_3 + 10w_4$$

$$\begin{array}{c} x_1+x_2+x_3 \leq 500\\ 2x_1+y_1-w_1 \geq 200\\ 2.4x_2+y_2-w_2 \geq 240\\ 16x_3-w_3-w_4 \geq 0\\ w_3 \leq 6000\\ x_1,x_2,x_3,y_1,y_2,w_1,w_2,w_3,w_4 \geq 0 \end{array}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

	WHEAT	CORN	BEETS
Plant (acres)	100	25	375
Production	200	60	6000
Sales	0	0	6000
Purchase	0	180	0

æ

• Profit: \$59,950

Remarks

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

 Obviously the answer is quite dependent on the weather and the respective yields.

同 と く き と く き と

- Obviously the answer is quite dependent on the weather and the respective yields.
- It's impossible to make a perfect decision, since planting decisions must be made now, but purchase and sale decisions can be made later.

- Obviously the answer is quite dependent on the weather and the respective yields.
- It's impossible to make a perfect decision, since planting decisions must be made now, but purchase and sale decisions can be made later.
- Idea: include all the scenarios in the same formulation
- Obviously the answer is quite dependent on the weather and the respective yields.
- It's impossible to make a perfect decision, since planting decisions must be made now, but purchase and sale decisions can be made later.
- Idea: include all the scenarios in the same formulation
- Observe that the decisions refer two different temporal moments:

- Obviously the answer is quite dependent on the weather and the respective yields.
- It's impossible to make a perfect decision, since planting decisions must be made now, but purchase and sale decisions can be made later.
- Idea: include all the scenarios in the same formulation
- Observe that the decisions refer two different temporal moments:
- Plant decision should be made here-and-now
- Sell and purchase decision can be postponed.

- Obviously the answer is quite dependent on the weather and the respective yields.
- It's impossible to make a perfect decision, since planting decisions must be made now, but purchase and sale decisions can be made later.
- Idea: include all the scenarios in the same formulation
- Observe that the decisions refer two different temporal moments:
- Plant decision should be made here-and-now
- Sell and purchase decision can be postponed.
- Farmer Ted has recourse. After he observes the weather event, he can decide how much of each crop to sell or purchase !

向下 イヨト イヨト

- Assume that the three scenarios occur with equal probability.
- Attach a scenario subscript s = 1, 2, 3 to each of the purchase and sale variables.
- ▶ s=1 Good, s=2 Average, s=3 Bad
- Thus, for example, *w*_{1s} Tons of corn sold under scenario s *y*_{2s} Tons of corn purchased under scenario s

向下 イヨト イヨト

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 $x_1 + x_2 + x_3 \le 500$

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{aligned} x_1 + x_2 + x_3 &\leq 500 \\ 3x_1 + y_{11} - w_{11} &\geq 200 \\ 3.6x_2 + y_{21} - w_{21} &\geq 240 \\ 24x_3 - w_{31} - w_{41} &\geq 0 \\ w_{31} &\leq 6000 \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{aligned} x_1 + x_2 + x_3 &\leq 500 \\ 3x_1 + y_{11} - w_{11} &\geq 200 \\ 3.6x_2 + y_{21} - w_{21} &\geq 240 \\ 24x_3 - w_{31} - w_{41} &\geq 0 \\ w_{31} &\leq 6000 \\ 2.5x_1 + y_{12} - w_{12} &\geq 200 \\ 3x_2 + y_{22} - w_{22} &\geq 240 \\ 20x_3 - w_{32} - w_{42} &\geq 0 \\ w_{32} &\leq 6000 \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $x_1 + x_2 + x_3 < 500$ $3x_1 + v_{11} - w_{11} > 200$ $3.6x_2 + y_{21} - w_{21} \ge 240$ $24x_3 - w_{31} - w_{41} > 0$ $w_{31} < 6000$ $2.5x_1 + y_{12} - w_{12} > 200$ $3x_2 + y_{22} - w_{22} \ge 240$ $20x_3 - w_{32} - w_{42} > 0$ $w_{32} < 6000$ $2x_1 + y_{13} - w_{13} > 200$ $2.4x_2 + y_{23} - w_{23} > 240$ $16x_3 - w_{33} - w_{43} > 0$ $w_{33} < 6000$

- (回) (三) (=

$$\begin{aligned} \max z &= -150x_1 - 230x_2 - 260x_3 \\ &+ \frac{1}{3}(-238y_{11} + 170w_{11} - 210y_{21} + 150w_{21} + 36w_{31} + 10w_{41}) \\ &+ \frac{1}{3}(-238y_{12} + 170w_{12} - 210y_{22} + 150w_{22} + 36w_{32} + 10w_{42}) \\ &+ \frac{1}{3}(-238y_{13} + 170w_{13} - 210y_{23} + 150w_{23} + 36w_{33} + 10w_{43}) \end{aligned}$$

回 と く ヨ と く ヨ と

æ

Optimal solution of the stochastic formulation

		Wheat	Corn	Beets
\mathbf{s}	Plant (acres)	170	80	250
1	Production	510	288	6000
1	Sales	310	48	6000
1	Purchase	0	0	0
2	Production	425	240	5000
2	Sales	225	0	5000
2	Purchase	0	0	0
3	Production	340	192	4000
3	Sales	140	0	4000
3	Purchase	0	48	0

回 と く ヨ と く ヨ と …

æ

• (Expected) Profit: \$108,390

- Suppose Farmer Ted could with certainty tell whether or not the upcoming growing season was going to have good yields, average yields, or bad yields.
- The real point here is how much Farmer Fred would be willing to pay for this perfect information.
- In real-life problems, how much is it worth to invest in better forecasting technology?

高 とう モン・ く ヨ と

What's it worth ?

- With perfect information, Farmer Ted would plant (wheat, corn, beans).
 - ► Good yield: (183.33, 66.67, 250), Profit: \$167,667
 - Average yield: (120, 80, 300), Profit: \$118,600
 - Bad yield: (100, 25, 375), Profit: \$59,950
- Assuming each of these scenarios occurs with probability 1/3, his long run average profit would be

(1/3)(167667) + (1/3)(118600) + (1/3)(59950) = 115406

- With his (optimal) here-and-now decision of (170, 80, 250), he would make a long run profit of 108390
- This difference (115406-108390) is the expected value of perfect information (EVPI)
- It represents how much farmer Ted is willing to pay to have perfect information

- 4 同 6 4 日 6 4 日 6