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Two-stage models with recourse

As we have seen in the farmer Ted example, there are some
situations in which the decision process can be divided in stages:
some of the decisions must be made ”‘here”’ and ”‘now”’ before
knowing the realization of the random parameters, while others
can be delayed afterward.

1. We make a decision now (first-stage decisions)

2. Nature makes a random decision

3. We make a second decision that attempts to repair the havoc
procured by nature (second-stage decisions)
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Two-stage models with recourse

I The first-stage decisions x ≥ 0 must satisfy immediate
constraints Ax = b and have immediate (first-stage) cost cT x

I At the second stage, a random event ω occurs, associated
with uncertain data. Given this information, a set of
second-stage (recourse) actions y(ω) ≥ 0 are taken.

I The second stage decisions are related to first-stage decisions
by constraints

T (ω)x + W (ω)y(ω) = h(ω) ∀ ω ∈ Ω

I The second stage decisions result in a cost q(ω)T y(ω).

I We want to minimize the sum of the first-stage cost and the
expected value of second-stage cost.
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Two-stage models with recourse

We obtain the following optimization model:

min cT x + IEω[qT (ω)y(ω)]

Ax = b

T (ω)x + W (ω)y(ω) = h(ω) ∀ ω ∈ Ω

y(ω) ≥ 0 ∀ ω ∈ Ω

x ≥ 0

I T (ω) technology matrix

I W (ω) recourse matrix

I If W (ω) does not change with ω we have a fixed recourse

I If W = (I − I ) where I denotes the identity matrix we have a
fixed simple recourse
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Remarks

I So far, no assumption on the nature of the random variables
has been made

I The case of continuous random variables is more difficult to
deal with (the evaluation of the objective function requires a
multi-dimensional integration)

I We focus on the case of discrete distributions

I They arise either naturally or as approximation of the
continuous case
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Two-stage models with recourse: the discrete case

I We assume that the random parameters take a given number
S of realizations (scenarios) each occurring with a given
probability ps

I Scenarios are represented by the following scenario tree (fan)
I First-stage decisions x must be made here and now, at the

root of the tree
I Second-stage decisions y s are scenario-dependent

 

 

 

 

 

Future scenarios 

S 

x                                               ys 
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Two-stage models with recourse: the discrete case

I The two-stage model can formulated as follows:

min cT x +
S∑

s=1

psq
sT y s

Ax = b

T sx + W sy s = hs s = 1, . . .S

x ≥ 0

y s ≥ 0 s = 1, . . . ,S

I x ∈ IRn1 , y s ∈ IRn2

I A ∈ IRm1×n1 , b ∈ IRm1 , c ∈ IRn1

I T s ∈ IRm2×n1 s = 1, . . .S

I hs ∈ IRm2 s = 1, . . . ,S
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Remarks

The deterministic equivalent form of two-stage problems has a
matrix constraint of huge size


A
T 1 W 1

T 2 W 2

. . .
T S W S


I (m1 + S ×m2) rows and (n1 + S × n2) columns

I If the decision variables x would also depend on the scenarios
the problem could be decomposed
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The nonanticipative constraints

For each scenario s = 1, . . . ,S

Ax s = b

T sx s + W sy s = hs

I Non anticipative condition

x = x s s = 1, . . . ,S

whatever the realization of the random event is, the first stage
decision should be the same

I The explicit inclusion of the nonanticipativity constraints is at
the basis of the decomposition methods specifically tailored
for solving two-stage stochastic programming problems.
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The value of the stochastic solution

I The solution of a stochastic programming model is typically
difficult because of the size of the corresponding deterministic
equivalent problem

I Thus, the question is to evaluate the advantage arising from
solving a stochastic model rather than a deterministic one

I To this end, a specific measure has been introduced

I The Value of the Stochastic Solution, VSS, measures the
possible profit deriving from the solution of the stochastic
model with the respect to the deterministic model obtained by
replacing the random quantities with their expected values
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How to compute the VSS

I Solve the mean-value problem to get a first stage solution x

min z = cT x

Ax = b

Tx = h

x ≥ 0

I Fix the first stage solution at that value x , and solve for all
the scenarios the second stage problem.

min zs = qsT y s

T sx + W sy s = hs

y s ≥ 0
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How to compute the VSS

I Take the weighted (by probability) average of the optimal
objective value for each scenario

EEV = cT x +
S∑

s=1

psz
s

I Compute
VSS = EEV − RP

where RP is the objective function value of the recourse
problem

I It can be shown that VSS ≥ 0. A large VSS value suggests
that solving the stochastic problem is well worth the effort; a
small value suggests the opportunity to take the much simpler
deterministic approach

I VSS measures how much we lose by disregarding uncertainty
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The News Vendor Problem

I Let us consider the case of a company that should decide the
amount x of a given product to be purchased in order to
satisfy some demand d .

I It is a classic problem that should be addressed in the case of
perishable or seasonal products (for example, Christmas trees,
Flowers on Valentines day...)

I Suppose, for example, that in October we have to decide the
number of Christmas trees to buy. Obviously at the moment
we do not know what the demand will be. Thus, we have to
address a decision problem under uncertainty
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The News Vendor Problem

In the scientific literature, such a problem is known as the News
Vendor Problem.
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The News Vendor Problem: notation

Let us denote by x the number of news paper to buy and assume
that at most N news paper can be bought
Let

I cp be the unitary purchasing price

I cs be the selling price

I cf be the price at which the amount in excess to the demand
can be sold

The problem aims at determining the number of newspaper to buy
so to maximize the profit
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The News Vendor Problem

I The demand is evidently unknown, but we assume to know its
probability distribution (eventually determined on the basis of
the historical data available)

I In order to formulate the problem, we have to determine the
relationship between x and d̃

I To this aim we introduce the profit function

F (x , d̃) :=

{
csx − cpx , if x ≤ d̃ ,

cs d̃ + cf (x − d̃)− cpx , if x > d̃ .

The function F (x , d̃) can be also written as

F (x , d̃) = cs min(x , d̃)− cpx + cf max(0, x − d̃)
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The News vendor formulation

Considering the expected value, the problem can be formulated as

max IE[F (x , d̃)]

x ≤ N

x ≥ 0 integer

I If demand distribution is continuous, the objective function is
an integral depending on x.

I If we assume that the random demand is discretely
distributed, it is possible to determine a solution by solving
the problem by an enumeration scheme
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The News vendor problem: a toy example

I Let us assume that the demand is discrete and uniformly
distributed between 5 and 15 and each outcome has
probability 1

11

I Let cp = 20, cs = 25 and cf = 0 (no salvage value)

I In this case {
(cs − cp)x , if x ≤ d̃ ,

cs d̃ − cpx , if x > d̃ .

I Hence, the expected profit is:

EP(x) =
1

11
[

x∑
d=5

(csd − cpx) +
15∑

d=x+1

(cs − cp)x ]
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The News vendor: a toy example

I For instance, if we choose x = 5, profit is 25 in any demand
scenario.

EP(5) =
1

11
[(25 ∗ 5− 20 ∗ 5) ∗ 11] = 25

I If we choose x = 6

EP(6) =
1

11
[(25 ∗ 5− 20 ∗ 6) + (25 ∗ 6− 20 ∗ 6) ∗ 10] = 27.73
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The News vendor problem: a toy example

I To choose the best order quantity, we may tabulate the
expected profit:

x EP(x)

5 25.00
6 27.73
7 28.18
8 26.36
9 22.27

10 15.91
11 7.27
12 -3.64
13 -16.82
14 -32.27
15 -50.00

I We see that the optimal solution is not the expected value of
demand (10), but a more conservative value (7).
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The News vendor: the two-stage formulation

I We assume that the demand follows a discrete distribution

I We denote by ds the demand under scenario s and by ps the
corresponding probability

I The set of decisions can be divided in two subsets

1. First-stage decision x – number of news paper to buy
2. Second-stage decision y s – number of newspaper sold under

scenario s
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The News vendor problem: the two-stage formulation

max z = −cpx +
S∑

s=1

ps(csy
s + cf (x − y s))

x ≤ N

y s ≤ x s = 1, . . .S

y s ≤ d s s = 1, . . . ,S

x ≥ 0 integer

y s ≥ 0 s = 1, . . .S integer
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