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Introduction

I Multistage stochastic programming formulations arise
naturally as a generalization of two-stage models

I In the two-stage case, the decision process can be represented
as follows

x
ω−→ y(ω)

I In the multi-stage case, we consider a planning horizon
divided in a given number of stages t = 1, . . . ,T

I Thus, the decision process can be represented as

x1
ω1−→ x2 . . . . . . xt

ωt−→ xt+1
ωt+2−→ xt+2 . . . . . .

I xt ∈ IRnt denotes the decisions taken at stage t
I ωt represents the uncertainty whose realizations become

known at time t
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Remarks

I stage is a moment in time, when decisions are taken

I time period is a time interval between two stages

I The multi-stage models can be introduced by considering
alternative formulations

I We shall start by introducing the most intuitive one, where
the evolution of the uncertain parameters is represented by a
scenario tree
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The scenario tree

Scenario tree for a three-stage problem
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The scenario tree: notation

I The root node 0 is associated with the first stage and refers
to deterministic data

I Each node n at level t ≥ 2 represents a possible realization of
the random event ωt

I Each node n at level t has a unique ancestor (father) at level
t − 1 denoted by a(n) and certain number of successors
(children) at level t + 1

I Nodes with no children are called leaf nodes

I There is a correspondence between the leaf nodes and the
scenarios

I A scenario is path from the root node to a leaf node, i.e. it is
a joint realization of the random parameters over all the time
stages
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The scenario tree: notation

I We denote by N the set of nodes in the scenario tree

I Let l be the ancestor of node n (l = a(n))

I Let ρln be the probability of moving from node l to node n
I Remark:

I ρln is a conditional probability
I ρln ≥ 0 and the sum of the ρln associated with the children of l

should be 1

I Starting from the ρln it is possible to compute the probability
associated with each scenario

I Let n1, n2, nT be the nodes forming the path from the root
node to a leaf node

I The probability associated with the scenario is defined by

ρn1n2 ∗ ρn2n3 ∗ · · · ∗ ρnT−1nT
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The scenario tree: example
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Remarks

I The branching factor may be arbitrary in principle

I The more branches we use, the better our ability to model
uncertainty

I Unfortunately, the number of nodes grows exponentially with
the number of stages, as well as the computational effort

I In practice, we are interested in the decisions that must be
implemented here and now, i.e., those corresponding to the
root node of the tree

I The other (recourse) decision variables are instrumental to the
aim of devising a robust plan, but they are not implemented
in practice, as the multistage model is solved on a rolling
horizon basis
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Remarks

I In order to model the uncertainty as accurately as possible
with a limited computational effort, a possible idea is to
branch many paths from the root node, and less from the
subsequent nodes

I The design of appropriate scenario generation techniques is
currently a subject of intensive research since the quality of
scenario tree impacts on the recommendations provided by the
solution of the stochastic programming formulations

I Given the limited time, we shall not address this important
issue in this short course
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Multi-stage problems: the compact formulation

For each node n ∈ N we denote by

I pn the node probability

I xn the vector of associated decision variables

I cn, h
n,T n,W n the corresponding matrices and vectors

min z =
∑
n∈N

pnc
T
n xn

Ax0 = b

T nxa(n) + W nxn = hn ∀n ∈ N − {0}
xn ≥ 0 ∀n ∈ N
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Multi-stage problems: The split-variable formulation

I In the compact formulation, the non-anticipativity constraints
are implicitly included

I These constraints state that the decisions associated with two
scenarios that share the same history for a given number k of
periods, should be identical up to k

I The issue may be understood by looking at the following
figure, where horizontal lines correspond to non-anticipativity
requirements
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The original tree
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The split tree

 

00 0 0 0 0 0 0 

1 1 2 2 3 3 3 

4 5 9 8 7 6 
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The split-variable formulation

I We make a copy of all variables for each scenario
I We denote by x st the decisions taken at time t under scenario s
I We add non-anticipativity constraints to force logical identical

variables to agree across scenarios
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The non-anticipativity condition

I In our example

x11 = x21 = · · · = x61 = x0

x12 = x22 = x1

x32 = x42 = x2

x42 = x52 = x3

I In general
x st(n) = xn ∀n ∀s ∈ S(n)

I t(n) stage of node n
I S(n) set of scenarios passing through node n

S(0) = {1, 2, 3, 4, 5, 6}
S(1) = {1, 2}
S(2) = {3, 4}
S(3) = {5, 6}
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The split-variable formulation

min z =
S∑

s=1

ps

T∑
t=1

cst x
s
t

Ax s1 = b s = 1, . . .S

T s
t x

s
t−1 + W s

t x
s
t = hst ∀t ≥ 2, s = 1, . . .S

xn − x st(n) = 0 ∀n ∈ N ∀s ∈ S(n)

x st ≥ 0 t = 1, . . .T s = 1, . . . ,S
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Stochastic Programming in Finance

I Finance represents one of the main application domains where
the SP framework has been widely used to model real-life
problems

I The main motivation is related to high volatility of financial
markets that makes the explicit inclusion of the uncertainty in
the mathematical model mandatory to derive financial plans
that can be used in practice

I In particular, the multistage framework offers a valuable
paradigm allowing to define optimal investment plans that can
revised over the time as new information becomes available
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A multi-stage model for Portfolio Optimization

I We consider a planning horizon divided into a number of
elementary periods t = 1, 2, . . .T

I At each period t of the planning horizon, the investor must
decide:

I The amount of security i to be purchased Bit

I The amount of security i to sell Sit
I The amount of security i to be maintained in the portfolio Hit

I The monetary amount to invest in a risk-free asset vt
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The deterministic model

I Physical balance constraints (i = 1, . . .N)

Hit = Hit−1 + Bit − Sit t=2,. . . ,T-1

Hi1 = InitHoldi + Bi1 − Si1 t=1

(SiT = H1T−1)

I Monetary balance constraints

(1− g)
N∑
i=1

PitSit + Ft + (1 + rt)vt−1 =

(1 + g)
N∑
i=1

PitBit + Lt + vt t = 2, . . . ,T − 1

(1− g)
N∑
i=1

Pi1Si1 + F1+ = (1 + g)
N∑
i=1

Pi1Bi1 + L1 + v1
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The deterministic model

I The objective function

max WT = (1− g)
N∑
i=1

PiTHiT−1 + (1 + rT )vT−1 + FT − LT
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The scenario tree

Scenario tree for a three-stage problem
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The multi-stage node formulation

I In this case the decision variables are associated with the
nodes of the scenario tree which we use to represent the
dynamic evolution of the uncertain parameters

I Let N denote the set of nodes of the scenario tree
I For each node n ∈ N we denote by

I Pin the price of asset i
I Ln the liability
I Fn the available fund to invest
I rn the risk-free interest rate
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The multi-stage node formulation

For each node n ∈ N we denote by

I Sin the amount of security i to sell

I Bin the amount of security i to be purchased

I Hin the amount of security i to be maintained in the portfolio

I vn the monetary amount invested in a risk-free asset
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The multi-stage node formulation

I Physical balance constraints

Hin = Hia(n) + Bin − Sin ∀i ∀n ∈ N − {0} − {leaf node}
Hi0 = InitHoldi + Bi0 − Si0 i = 1, . . .N

Sin = Hia(n) i = 1, . . .N ∀n ∈ {leaf node}

I Monetary balance constraints

(1− g)
N∑
i=1

Pi0Si0 + F0 = (1 + g)
N∑
i=1

Pi0Bi0 + L0 + v0

(1− g)
N∑
i=1

PinSin + Fn + (1 + rn)va(n) =

(1 + g)
N∑
i=1

PinBin + Ln + vn n ∈ N − {0} − {leaf node}
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The multi-stage node formulation

I Definition of the wealth at the leaf nodes

Wn = (1− g)
N∑
i=1

PinHia(n) + (1 + rn)va(n) + Fn − Ln ∀n leaf node

I The objective function

max z =
∑

n ∈{leaf nodes}

pn ∗Wn

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



The multi-stage node formulation

I Definition of the wealth at the leaf nodes

Wn = (1− g)
N∑
i=1

PinHia(n) + (1 + rn)va(n) + Fn − Ln ∀n leaf node

I The objective function

max z =
∑

n ∈{leaf nodes}

pn ∗Wn

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



The multi-stage split formulation

In this case the decision variables have a double index (stage,
scenario)
We denote by

I Ps
it the price of asset i at stage t under scenario s

I Lst the liability at stage t under scenario s

I F s
t the available fund to invest at stage t under scenario s

I r st the risk-free interest rate at stage t under scenario s
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The multi-stage split formulation

For t ands we denote by

I S s
it the amount of security i to sell at stage t under scenario s

I Bs
it the amount of security i to be purchased at stage t under

scenario s

I Hs
it the amount of security i to be maintained in the portfolio

at stage t under scenario s

I v st the monetary amount invested in a risk-free asset at stage
t under scenario s

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



The multi-stage split formulation

For t ands we denote by

I S s
it the amount of security i to sell at stage t under scenario s

I Bs
it the amount of security i to be purchased at stage t under

scenario s

I Hs
it the amount of security i to be maintained in the portfolio

at stage t under scenario s

I v st the monetary amount invested in a risk-free asset at stage
t under scenario s

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



The multi-stage split formulation

I Physical balance constraints

Hs
it = Hs

it−1 + Bs
it − S s

it i = 1, . . .N t = 2, . . .T − 1 ∀s
Hs
i1 = InitHoldi + Bs

i1 − S s
i1 i = 1, . . .N s = 1, . . .S

S s
iT = Hs

1T−1 i = 1, . . .N ∀s

I Monetary balance constraints

(1− g)
N∑
i=1

Ps
i1S

s
i1 + F s

1 = (1 + g)
N∑
i=1

Ps
i1B

s
i1 + Ls1 + v s1 ∀s

(1− g)
N∑
i=1

Ps
itS

s
it + F s

t + (1 + r st )v st−1 =

(1 + g)
N∑
i=1

Ps
itB

s
it + Lst + v st t = 2, . . .T − 1 ∀s
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The multi-stage node formulation

I Definition of the last stage

W s
T = (1− g)

N∑
i=1

Ps
iTH

s
iT−1 + (1 + r sT )v sT−1 + F s

T − LsT ∀s

I The non-anticipativity constraints

Hin = Hs
it(n) ∀n ∈ N s ∈ S(n)

Sin = S s
it(n) ∀n ∈ N s ∈ S(n)

Bin = Bs
it(n) ∀n ∈ N s ∈ S(n)

vn = v st(n) ∀n ∈ N s ∈ S(n)

I The objective function

max z =
S∑

s=1

psW
s
T
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Exercise

I Let us consider a classical production problem defined over a
time horizon divided in a given number T of periods.

I For the sake of simplicity, we shall consider a single product.

I At each period t, we have to decide the amount to produce so
to satisfy a given demand

I We consider the possibility to stock the eventual amount in
excess

I Define the deterministic and the stochastic models assuming
that the evolution of the uncertain demand can be
represented as the scenario tree reported below
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The deterministic version

For each time period t = 1, . . . ,T we denote by

I ct the unitary production cost

I πt the unitary inventory cost

I dt the demand

I xt the amount to produce

I It the amount to stock

min z =
T∑
t=1

(ct ∗ xt + πt ∗ It)

It = It−1 + xt − dt t = 1, . . .T

xt ≥ 0, It ≥ 0 t = 1, . . . ,T
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The scenario tree: example

         

 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         

 0,04 0,2 0,16  0,42  0,18  
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