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Recourse Philosophy

In the general recourse models, we guarantee feasibility by the
correction action of the second-stage variables

min ¢’ x+Eylq" (w)y(w)]
Ax=0>b
T(w)x+ W(wly(w) = hlw) VYVwe
y(w)>0 VYVwe
x>0

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



Probabilistic Constraints

We admit the violation of the stochastic constraints provided that
this occurs with a very low level of probability
Thus, the stochastic constraints

T(w)x > h(w)

are replaced by
P(T(w)x > h(w)) > «

We impose the satisfaction of the stochastic constraints with a
level of probability « typically high
In other terms, we admit its violation with probability (1 — «)
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Probabilistic Constraints: formulation

Assuming that the cost coefficient are deterministic (or replacing
the random variables with their expected values), we get

» The choice of the « value is up to the decision maker

» The higher the value the worse the objective function value
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Remarks

The use of probabilistic constraints is appropriate in many
applicative contexts
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The use of probabilistic constraints is appropriate in many
applicative contexts
» Localization of the emergency systems

Determine the location of the emergency stations so to satisfy
the random service demand with a high reliability level
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The use of probabilistic constraints is appropriate in many
applicative contexts
» Localization of the emergency systems
Determine the location of the emergency stations so to satisfy
the random service demand with a high reliability level

» Portfolio optimization
Define the optimal portfolio composition so to guarantee that
a given target value is met with high confidence
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The use of probabilistic constraints is appropriate in many
applicative contexts

» Localization of the emergency systems
Determine the location of the emergency stations so to satisfy
the random service demand with a high reliability level

» Portfolio optimization
Define the optimal portfolio composition so to guarantee that
a given target value is met with high confidence

» Routing problems
Determine the set of routes used by a fleet of vehicles to serve
a given set of customers with random demand with high
probability level
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Remarks

The probabilistic constraints can be
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The probabilistic constraints can be

» jointly imposed

IP(T(w)x > h(w)) > «
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The probabilistic constraints can be

» jointly imposed

IP(T(w)x > h(w)) > «

» individually imposed
P(Ti(w)x > hi(w)) >a; i=1,....,m

where T;(w) denotes the i-th row of the stochastic matrix and
hi(w) is the i-th component of the vector h(w)
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The probabilistic constraints can be

» jointly imposed

IP(T(w)x > h(w)) > «

» individually imposed
P(Ti(w)x > hi(w)) >a; i=1,....,m

where T;(w) denotes the i-th row of the stochastic matrix and
hi(w) is the i-th component of the vector h(w)

The choice of joint or individual chance constraints depends on the
specific application
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The special case of normal distribution

» The probabilistic constraints are very difficult to deal with
because the feasible set is typically non convex

» We derive a deterministic equivalent formulation in the
specific case of a single probabilistic constraint

» We shall assume that the components tj(w) of the matrix T
follow a Normal distribution

tj(w) (MJ? j )

» For the sake of simplicity, we shall assume that h is a
deterministic value
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The deterministic equivalent reformulation

In order to derive the deterministic equivalent reformulation, we
use the properties of the normal random variables
We recall that

n

> ti(w)x

Jj=1

is a normal random variable with expected value equal to
n
E HjXj
j=1

and variance
n n
E E TiiXiX;
i=1 j=1

where oj; is the covariance between t; and t;
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The deterministic equivalent reformulation

We now " ‘normalize”’ the constraint

G = djamx  h =Y
\/27:1 Zf:l O ijXiXj \/27:1 Zle OijXiXj

z

P
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The deterministic equivalent reformulation

We now " ‘normalize”’ the constraint

p| Tt — D Y |
\/27:1 Zf:l TjjXiXj - \/27:1 Zle TjjXiXj -
- ,
pls> h— Zf:l HjXj

\/27:1 Z_?:l TijXiXj
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The deterministic equivalent reformulation
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The deterministic equivalent reformulation

n
h = i1 1

S s
i=1 2j=1 O ijXiX;

1-P|2<
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The deterministic equivalent reformulation

1-P LY SV S
\/Z, 1 JnlO-UX’XJ
h—S"
'y i1 % <(1-a)
n n
\/Zi:l j=1 T ijXiXj
n
S
21 1% <o7H1-a)

S ey
i=1 2j=1 T ijXiX;
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The deterministic equivalent reformulation
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The deterministic equivalent reformulation

> = h- 01— a)
j=1

Here ®~1(1 — ) represents the (1 — «) quantile of the normal
standard distribution function
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The deterministic equivalent reformulation

> = h- 01— a)
j=1

Here ®~1(1 — ) represents the (1 — «) quantile of the normal

standard distribution function
The corresponding model belongs to the class of nonlinear integer

mathematical programming problems

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



Portfolio optimization with probabilistic constraints

» Consider n investment opportunities with random return rate
Ri,..., R, in the next year
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Portfolio optimization with probabilistic constraints

» Consider n investment opportunities with random return rate
Ri,..., R, in the next year

» We have a certain initial capital and our aim is to invest in
such a way that the expected value of our investment after a
year is maximized, under the condition that the chance of
achieving a given target 7 is at least «
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Portfolio optimization with probabilistic constraints

» Consider n investment opportunities with random return rate
Ri,..., R, in the next year

» We have a certain initial capital and our aim is to invest in
such a way that the expected value of our investment after a
year is maximized, under the condition that the chance of
achieving a given target 7 is at least «

» Let x1,...,x, be the fractions of our capital invested in the
assets

> The problem can be modeled as
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Portfolio optimization with probabilistic constraints

» Consider n investment opportunities with random return rate
Ri,..., R, in the next year

» We have a certain initial capital and our aim is to invest in
such a way that the expected value of our investment after a
year is maximized, under the condition that the chance of
achieving a given target 7 is at least «

» Let x1,...,x, be the fractions of our capital invested in the
assets

> The problem can be modeled as

n
max Z E[R;]x;
i=1

n
PO Rxi2m) > a
i=1
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Reformulation in the case of discrete distributions

> We assume that the random parameters take a given number
S of realizations (scenarios) each occurring with a given
probability ps
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Reformulation in the case of discrete distributions

> We assume that the random parameters take a given number
S of realizations (scenarios) each occurring with a given
probability ps

» We denote by T° and h® the s-th realization of the random
technology matrix and resource vector
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Reformulation in the case of discrete distributions

> We assume that the random parameters take a given number
S of realizations (scenarios) each occurring with a given
probability ps

» We denote by T° and h® the s-th realization of the random
technology matrix and resource vector

M ={x|T°x > h*}
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Reformulation in the case of discrete distributions

> We assume that the random parameters take a given number
S of realizations (scenarios) each occurring with a given
probability ps

» We denote by T° and h® the s-th realization of the random
technology matrix and resource vector

M ={x|T°x > h*}

nr

sel

{1<{1,....S}HD ps > a}

sel
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Reformulation in the case of discrete distributions

» Disjunctive reformulation

Jnr

leA sel

where

A={l1C{L...,ShY poza}

sel
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Reformulation in the case of discrete distributions

» Disjunctive reformulation

Jnr

leA sel

where

A={l1C{L...,ShY poza}

sel

» We introduce a binary variable z° for each scenario s

S {0, if ['* is satisfied

1, otherwise.
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Reformulation in the case of discrete distributions

min ¢’ x

T°x+M°z2>h" s=1,...,5

S
Zps*zsg(l—a)
s=1

x>0
z° € {0,1}

Here M?® denotes a big positive number
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Conclusions

» We have introduced SP as mathematical framework to
address decision problems under uncertainty
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Conclusions

» We have introduced SP as mathematical framework to
address decision problems under uncertainty

» Two main paradigms:

» Recourse models (two-stage and multi-stage)
» Probabilistically constrained models
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Conclusions

» We have introduced SP as mathematical framework to
address decision problems under uncertainty

» Two main paradigms:

» Recourse models (two-stage and multi-stage)
» Probabilistically constrained models

» Some selected applications

Patrizia Beraldi DIMEG - UNICAL Introduction to Stochastic Programming



Conclusions

» We have introduced SP as mathematical framework to
address decision problems under uncertainty

» Two main paradigms:

» Recourse models (two-stage and multi-stage)
» Probabilistically constrained models

v

Some selected applications

Some references

v
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