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Recourse Philosophy

In the general recourse models, we guarantee feasibility by the
correction action of the second-stage variables

min cT x + IEω[qT (ω)y(ω)]

Ax = b

T (ω)x + W (ω)y(ω) = h(ω) ∀ ω ∈ Ω

y(ω) ≥ 0 ∀ ω ∈ Ω

x ≥ 0
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Probabilistic Constraints

We admit the violation of the stochastic constraints provided that
this occurs with a very low level of probability
Thus, the stochastic constraints

T (ω)x ≥ h(ω)

are replaced by
IP(T (ω)x ≥ h(ω)) ≥ α

We impose the satisfaction of the stochastic constraints with a
level of probability α typically high
In other terms, we admit its violation with probability (1− α)
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Probabilistic Constraints: formulation

Assuming that the cost coefficient are deterministic (or replacing
the random variables with their expected values), we get

min cT x

IP(T (ω)x ≥ h(ω)) ≥ α
Ax = b

x ≥ 0

I The choice of the α value is up to the decision maker

I The higher the value the worse the objective function value
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Remarks

The use of probabilistic constraints is appropriate in many
applicative contexts

I Localization of the emergency systems
Determine the location of the emergency stations so to satisfy
the random service demand with a high reliability level

I Portfolio optimization
Define the optimal portfolio composition so to guarantee that
a given target value is met with high confidence

I Routing problems
Determine the set of routes used by a fleet of vehicles to serve
a given set of customers with random demand with high
probability level

I . . .
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Remarks

The probabilistic constraints can be

I jointly imposed

IP(T (ω)x ≥ h(ω)) ≥ α

I individually imposed

IP(Ti (ω)x ≥ hi (ω)) ≥ αi i = 1, . . . ,m2

where Ti (ω) denotes the i-th row of the stochastic matrix and
hi (ω) is the i-th component of the vector h(ω)

The choice of joint or individual chance constraints depends on the
specific application
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The special case of normal distribution

I The probabilistic constraints are very difficult to deal with
because the feasible set is typically non convex

I We derive a deterministic equivalent formulation in the
specific case of a single probabilistic constraint

I We shall assume that the components tj(ω) of the matrix T
follow a Normal distribution

tj(ω) ∼ N(µj , σ
2
j )

I For the sake of simplicity, we shall assume that h is a
deterministic value
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The deterministic equivalent reformulation

In order to derive the deterministic equivalent reformulation, we
use the properties of the normal random variables
We recall that

n∑
j=1

tj(ω)xj

is a normal random variable with expected value equal to

n∑
j=1

µjxj

and variance
n∑

i=1

n∑
j=1

σijxixj

where σij is the covariance between ti and tj
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The deterministic equivalent reformulation

We now ”‘normalize”’ the constraint

P


∑n

j=1 tj(ω)xj −
∑n

j=1 µjxj√∑n
i=1

∑n
j=1 σijxixj︸ ︷︷ ︸

z̃

≥
h −

∑n
j=1 µjxj√∑n

i=1

∑n
j=1 σijxixj

 ≥ α

P

z̃ ≥
h −

∑n
j=1 µjxj√∑n

i=1

∑n
j=1 σijxixj

 ≥ α
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The deterministic equivalent reformulation

1− P

z̃ ≤
h −

∑n
j=1 µjxj√∑n

i=1

∑n
j=1 σijxixj

 ≥ α
Φz̃

 h −
∑n

j=1 µjxj√∑n
i=1

∑n
j=1 σijxixj

 ≤ (1− α)

h −
∑n

j=1 µjxj√∑n
i=1

∑n
j=1 σijxixj

≤ Φ−1(1− α)
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The deterministic equivalent reformulation

n∑
j=1

µjxj ≥ h − Φ−1(1− α)

√√√√ n∑
i=1

n∑
j=1

σijxixj

Here Φ−1(1− α) represents the (1− α) quantile of the normal
standard distribution function
The corresponding model belongs to the class of nonlinear integer
mathematical programming problems
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Portfolio optimization with probabilistic constraints

I Consider n investment opportunities with random return rate
R1, . . . ,Rn in the next year

I We have a certain initial capital and our aim is to invest in
such a way that the expected value of our investment after a
year is maximized, under the condition that the chance of
achieving a given target η is at least α

I Let x1, . . . , xn be the fractions of our capital invested in the
assets

I The problem can be modeled as

max
n∑

i=1

E [Ri ]xi

P(
n∑

i=1

Ri xi ≥ η) ≥ α

n∑
i=1

xi = 1

xi ≥ 0 ∀i
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Reformulation in the case of discrete distributions

I We assume that the random parameters take a given number
S of realizations (scenarios) each occurring with a given
probability ps

I We denote by T s and hs the s-th realization of the random
technology matrix and resource vector

Γs = {x |T sx ≥ hs}

⋂
s∈I

Γs

{I ⊆ {1, . . . ,S}|
∑
s∈I

ps ≥ α}
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Reformulation in the case of discrete distributions

I Disjunctive reformulation ⋃
I∈∆

⋂
s∈I

Γs

where
∆ = {I |I ⊆ {1, . . . ,S},

∑
s∈I

ps ≥ α}

I We introduce a binary variable zs for each scenario s

zs =

{
0, if Γs is satisfied

1, otherwise.
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Reformulation in the case of discrete distributions

min cT x

T sx + Mszs ≥ hs s = 1, . . . ,S
S∑

s=1

ps ∗ zs ≤ (1− α)

x ≥ 0

zs ∈ {0, 1}

Here Ms denotes a big positive number
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Conclusions

I We have introduced SP as mathematical framework to
address decision problems under uncertainty

I Two main paradigms:

I Recourse models (two-stage and multi-stage)
I Probabilistically constrained models

I Some selected applications

I Some references
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