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In the KB-paradigm, a logic theory:

I is not a program

I cannot be executed

I cannot be run

I does not do anything

I does not specify a problem

In the KB-paradigm,

I a logic theory is a knowledge base

I it is a bag of information/knowledge.
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Knowledge in philosophical logic

What is knowledge?

I True, justified belief of the agent in the real world

What is belief?

I Information/propositions believed to be true by the agent in
the real world

But what is information?
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Knowledge in KRR & computational logic

I In our applications (ASP, constraint programming), the
information we represent is often not true and justified in the
real world.

I The domains or systems that we specify are often not the real
world:

I may be for the future (e.g., computing a schedule),
I maybe only in our imagination (e.g., a game)

I So, a philosphical logician might argue that what we do
I is not knowledge representation
I but information representation.
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My terminology:

Knowledge Representation
=

formal specification
=

modelling in a logic

We specify ”information” about an existing, future or imaginary
domain.
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What are the most important human resources?

Air, water, food, . . . information?

Where is the formal science of knowledge/information?

I There is no commonly known, well accepted science.
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Logic and the scientific study of information

I Logic is usually defined as the study of correct reasoning.

I But, all reasoning needs a resource: this is information.

I And so, the formal study of reasoning (logic) went hand in
hand with the development of a formal language to represent
information: this is how classical logic came about.

I The old ones were aware of this.
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I Gottfried Wilhelm Leibniz (± 1700) :

I That complex thoughts in our mind are composed from
simpler thoughts, using mathematical operators analogous to
arithmetical operators +,×,−, . . . .

I George Boole (± 1850):
I identified a number of these operators : ∧,∨,¬ and developed

Boolean algebra, aka propositional logic.

An Investigation of the Laws of Though (1854)

I Gottlob Frege (± 1880)
I added quantification a.o. . His Begriffschrift (1879) counts as

the first presentation of classical logic.
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I According to Alex Bochman (personal communication), the
faith in being able to formally study information waned
around 1920.

I When Lewis discovered the problems leading up to modal
logic (±1915)

I ”The morning star is the evening star, but it is not a
necessarily the case that the morning start is the evening star”
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Formal science: how does it work?

I A formal science of some empirical domain uses mathematical
methods to build abstractions of the entities in the domain.

I What is certainly needed to have a formal science:
I Mathematical objects that are abstract representations of the

real entities in the domain
I A clear understanding of the link between mathematical

objects and the real entities
I An experimental verification methodology to refute or

corroborate mathematical results.
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An example – physics, Newtons gravity theory

Newtons gravity theory restricted to two bodies b1, b2:

One body’s acceleration is proportional to the mass of the other
bodiy and inverse proportional to the square of the distance.

d2Fi(t)
d2t

(t) = G × m2
||F2(t)−F1(t)||2

d2F2(t)
d2t

(t) = G × m1
||F2(t)−F1(t)||2

where objects bi are abstracted as pairs (mi ,Fi ) with

I mi : the mass,

I Fi : R+ → R3: the trajectory over time.
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I (Mathematical) structures:
I assignments of values to the symbols mi ,Fi .
I they are abstractions of potential states of affairs of the

empirical reality

I Solutions: structures that satisfy the equations
I This scientific theory represents information about the

physical reality by allowing to distinguish between:
I possible worlds having abstractions that are structures

satisfying the theory
I impossible worlds having abstractions that do not satify the

theory

I Calculemus!: A range of very different problems can now be
solved.

17 / 161



Newtons gravitation theory is a formal empirical scientific theory

I there are mathematical abstractions, with good understanding
of their link to the empirical reality

I there is an experimental methodology

I it was refuted
I but it is still of great utility

I it is approximately correct in a range of well-understood
conditions

I extremely accurate under standard conditions
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Some problems with a formal science of information

I Information is not directly observable
I it is a thought
I it resides in our brain
I it can be expressed only via natural language

19 / 161



I am not here in the happy position of a mineralogist who
shows his audience a rock-crystal: I cannot put a thought
in the hands of my readers with the request that they
should examine it from all sides. Something in itself not
perceptible by sense, the thought is presented to the
reader—and I must be content with that—wrapped up in
a perceptible linguistic form.

Gottlob Frege, Der Gedanke
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Some problems with a formal science of information

I Information is only observable via natural language

I Natural language is unreliable, vague, ambiguous

I Information and natural language are of overwhelming
complexity
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It is here that Montague made his biggest contribution:

To most logicians (like the first author) trained in
model-theoretic semantics, natural language was an
anathema, impossibly vague and incoherent.

To us, the revolutionary idea in Montagues PTQ paper
(and earlier papers) is the claim that natural language is
not impossibly incoherent, as his teacher Tarski had led
us to believe, but that large portions of its semantics can
be treated by combining known tools from logic, tools
like functions of finite type, the λ-calculus, generalized
quantifiers, tense and modal logic, and all the rest.

Jon Barwise, Robin Cooper. 1981. Generalized
quantifiers and natural language. Linguistics and
Philosophy 4(4). 159219.
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Some problems with a formal science of information

I Information is only observable via natural language

I Unreliablity, vagueness, ambiguity of natural language

I Overwhelming complexity of information and of natural
language

I Absence of widely accepted mathematical modellings of
information.
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Current views in Computational Logic and Knowledge Representation

I Natural language is considered impossibly vague, incoherent,
ambiguous.

I ”Information” is unreachable for the methods of formal
science.

I Reflected in the attitude towards informal semantics of
knowledge representation logics

I Informal semantics = general theory of what information is
expressed by formal expressions of the logic

I The link between
I formal mathematical objects: logic expressions, and
I the reality that it represents : the information, which may be

our knowledge

I Informal semantics of KR logics: ignored, distrusted, poorly
understood, considered of little importance

24 / 161



E.g., in Logic Programming and ASP what is the informal
semantics/intuitive meaning of

I negation as failure?

I the rule operator?
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In contrast, some formal empirical sciences give extreme attention
to the link between

I formal mathematical objects

I the real entities that they represent.

E.g., Consider the methods of extreme accuracy in physics to
measure weight, distance, time.

I Measuring is translating empirical phenomena to
mathematical abstractions.
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Some mitigating observations
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On the complexity of information

I Yes, information can be extremely complex in general, even in
small talk in NL.

I But in application domains of declarative problem solving and
formal specification, knowledge is simple and objective

I E.g., a configuration problem.
I No introspective agents around, no complex propositional

attitudes.
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Rome was not built on one day. Lets start to study this simple
information.
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On the ambiguity of natural language

I Yes, natural language can be very complex, vague, incoherent,
ambiguous.

I But if used with care, it can be very precise and clear too.
I E.g., mathematicians and formal scientists build formal

sciences in natural language, and they are trained to convey
their thoughts with mathematical precision.

I E.g., ”a prime number is a number divisible only by 1 and
itself.”

I If natural language could not be precise, formal science could
not even be built.
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A ”quantum of information”:

I ”Exactly one person in this room wears a hat.”

A simple clear piece of objective information.
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Small talk:

I ”Yesterday, I wanted to go to the sea, but it was bad
wheather and I changed my mind.”

A sentence with quite clear meaning but of really complex modal
nature.
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So, let us start by building formal languages based on the precise
language constructs used in formal science and mathematics.
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Informal semantics

I If we build a formal language based on clear, precise language
constructs used in mathematics and formal science, it should
be possible to give it a precise informal semantics.
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Experimental validation through possible world analysis

I Wittgenstein: if you believe that two propositions in natural
language are not equivalent, you should be able to give a
situation in which one is true and the other is false.

I ⇒ possible world analysis: a simple experimentation method.

I Does not work always, but works often and it is surprisingly
simple and effective, even in subtle cases.

I In use in philosophical logic.

I I will use it to prove non-equivalence of two different views on
the meaning of negation as failure.
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E.g., stress in a sentence is important to understand the meaning
of the sentence. I.e., stress on a different word may result in a
different meaning.

Apply a possible world analysis to show that they are not
equivalent:

I “I” did not drive your car.

I I did not drive “your” car.

I I did not drive your “car”.

E.g., a situation where Bob drove your car, and I did not drive at
all, satisfies the first and violates second and third.
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Formal model semantics

Formal possible world semantics: (prototype is FO semantics)

I Structures to represent abstractions of potential states of
affairs.

I A mathematical theory formalizing the value of formal
expressions in structures.
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This naturally induces a number of basic semantical concepts:
I the satisfaction/truth relation: A |= ϕ if the value of the

(boolean) expression ϕ is t (true).
I A is a model of ϕ.

I Per expression, a function from structures to its value: an
infon, an intensional object (Montague).

I Entailment relation, validity, tautology, contradiction,
satisfiability/consistency.
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This simulates how formal science works.

I Remember: solutions of Newtons theory are mathematical
structures that satisfy it.
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Answer set programming

I In origin, the stable semantics of logic programs (LP) and
extended logic programs (ELP) is not a possible world
semantics.

I Gelfond and Lifschitz

I A stable model = a belief set, the set of literals in one
epistemic state of a rational introspective agent whose beliefs
are expressed by the program.

I ELP was the basis of ASP.
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A problem of model semantics

I Possible world analysis and model semantics are under fire.

I It suffices to analyse meaning up to the level of logical
equivalence

I There are deeper levels of meaning than logical equivalence.

I E.g., all tautologies are equivalent, but they do not have the
same meaning.
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Compare (non-tautologies)

P ∧ (P ⇒ Q)

Q ∧ (Q ⇒ P)

I Are they logically equivalent?

I Do they have the same meaning?
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Yes, but

I In a mature formal empirical science, one frequently uses
scientific theories that are only approximately correct.

I E.g., Newtons gravitation theory

I The point then is to understand where they work correctly,
under what conditions they are (sufficiently) precise.

I Formal model theory is sufficiently precise to be extremely
useful in formal specification and declarative problem solving.

I So, lets be mature scientists, and use model theory for what it
is worth and see where it is not sufficiently precise.
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Conclusion

For the FO(.)-KB project:

I Focuss on language constructs known from mathematical text

I Formal model semantics as possible world analysis of
mathematical precision

I Clear and precise informal semantics.
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In origin, ELP was based on logics from common sense reasoning

I embeddings to default logic

I embeddings to autoepistemic logic

Mathematical information versus common sense information
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Why FO as a foundation ?

FO: the language that failed in the seventies?
I Too expressive for building “practical” systems?

I Undecidability
I Expressivity/Efficiency trade-off

I FO is not suitable for describing common sense knowledge?
I Nonmonotonic reasoning

I FO as a language is too difficult for practical use?
I E.g., quantifiers
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Why FO as a foundation ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”

I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:

∧,∨,¬,∀,∃,⇔,⇒
I Essential for KR, the right semantics in FO

I Crystal clear informal semantics

∀x(Human(x)⇒ Man(x) ∨Woman(x))
means

All humans are men or women

I Model semantics as a way to formalize meaning.

52 / 161



Why FO as a foundation ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”

I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:

∧,∨,¬, ∀,∃,⇔,⇒
I Essential for KR, the right semantics in FO

I Crystal clear informal semantics

∀x(Human(x)⇒ Man(x) ∨Woman(x))
means

All humans are men or women

I Model semantics as a way to formalize meaning.

53 / 161



Why FO as a foundation ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”

I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:

∧,∨,¬, ∀,∃,⇔,⇒
I Essential for KR, the right semantics in FO

I Crystal clear informal semantics

∀x(Human(x)⇒ Man(x) ∨Woman(x))
means

All humans are men or women

I Model semantics as a way to formalize meaning.

54 / 161



Why FO as a foundation ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”

I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:

∧,∨,¬, ∀,∃,⇔,⇒
I Essential for KR, the right semantics in FO

I Crystal clear informal semantics

∀x(Human(x)⇒ Man(x) ∨Woman(x))
means

All humans are men or women

I Model semantics as a way to formalize meaning.
55 / 161



Claims

(1) Every expressive declarative modelling language has a
substantial overlap with FO, in one form or the other.

I For some languages, the syntax, conceptuology, terminology
may severely obscure the relationship.

I SQL
I ALLOY
I Zinc (a constraint programming language)
I Answer Set Programming

(2) But FO is not enough for practical KR.
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I FO is undecidable?

I To be precise:
I Deductive inference in FO is Undecidable

I Other forms of inference are tractable (P) or almost (NP)

I Other forms of inference have far more applications.
I Much richer “logics” are in use in industry (SQL, ILOG, Zinc)

I Implementing other forms of inference
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I In the FO(·)-KBS project, we focus on knowledge, information

I The aim is to develop expressive natural KR languages
suitable to express domain knowledge in real problems.

I (We ignore the expressivity/tractability trade-off in the
development of the logic.)

I We hope that cheaper forms of inference will suffice to solve
the problems.

I We hope that more expressive KR logics are better in
capturing the natural structure of the knowledge, and that
this leads to improved efficiency.
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Vocabularies and structures in FO

I Vocabulary Σ: a set of constant, predicate and function
symbols

I Σ-structures A
I a set D, called the domain or the universe of A;
I for each symbol σ ∈ Σ an appropriate value σA:

I for function symbol (F/n :) ∈ Σ, a (total) function
FA : Dn → D;

I for each predicate symbol P/n ∈ Σ, an n-ary relation
PA ⊆ Dn;

We often denote D by DA.
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Values of symbols of arity 0:

I for each constant C ∈ Σ, CA is a domain element of D.

I for each propositional symbol P ∈ Σ, PA ∈ B = {t, f}.
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Denoting structures

Different notations for a structure A of Σ = {0/0 :, S/1 :,P : 1}.
I Graphical notation:

a

b

c

d

0 

S

S
S

S

DP

I Mathematical notation:
I D = {a, b, c , d}

(a, . . . , d are identifiers for domain elements, not symbols from
Σ.)

I OA = a
I SA = {(a, b), (b, c), (c , a), (d , d)}
I PA = {a, b, c}
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Vocabulary and structure in IDP

vocabulary V{
type D

O:D

P(D)

S(D):D

}
structure S:V{

D={ a; b; c; d}
O=a

S={a-> b; b->c; c->a; d->d}
P={a; b; c}

}

Symbols a,..,d are identifiers/place holders of objects, not constant
symbols. They are not allowed to occur in logical formulas.
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Structures in IDP

They play an important role in IDP to express domains

I They are used to express basic facts.

I They play the same role as a database

Structures in IDP correspond to sets of atoms in ASP.
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Syntax in Bachus Naur Form (BNF):

s, t, u, v ::= C term (constant)
| x variable
| f (s1, . . . , sn) functional term

A,B ::= P(s1, . . . , sn) atom
| (s = t) equality atom

α, β, ϕ ::= A atomic formula
| ¬α negation
| (α ∧ β) conjunction
| (α ∨ β) disjunction
| (α⇒ β) material implication
| (α⇔ β) equivalence
| ∀x α universal quantification
| ∃x α existential quantification

70 / 161



Interpretation/evaluation of terms

Let A interpret all free symbols of term t.

The interpretation tA of term t in structure A is defined by
induction on the structure of t:

I If t is a constant symbol, then tA is the domain element
assigned by A to t.

I If t is a term F (t1, . . . , tn) then tA = FA(tA1 , . . . , t
A
n ).

Sometimes, we call tA the value of t in A.
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The satisfaction relation

Let A interpret all free symbols of formule ϕ.

We define that A satisfies ϕ (denoted A |= ϕ) by induction on the
structure of ϕ:

I A |= P(t1, . . . , tn) if (tA1 , . . . , t
A
n ) ∈ PA;

I A |= α ∧ β if A |= α and A |= β;
I A |= α ∨ β if A |= α or A |= β or both;
I A |= ¬α if A 6|= α; (that is, A does not satisfy ϕ);
I A |= α⇒ β if it is the case that if A |= α then A |= β;

i.e., either A 6|= α or A |= β
I A |= α⇔ β if it is the case that A |= α if and only if A |= β;
I A |= ∃x(α) if there exists an element d ∈ DA such that
A[x : d ] |= α;

I A |= ∀x(α) if for each element d ∈ DA, it holds that
A[x : d ] |= α;

I A |= t = s if tA = sA.
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For a given structure A, a symbol σ and a suitable value v for σ in
A, we denote by A[σ : v ] the structure identical to A except that
σA[σ:v ] = v .
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Terminology (reminder)

If A |= ϕ, we also say that

I A satisfies ϕ;

I A is a model of ϕ;

I ϕ is true in A.
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FO’s theory of informal semantics

I An FO sentence ϕ over Σ contains logical and non-logical
symbols.

I To determine the informal semantics of formulas over Σ, we
first need to specify the meaning of the non-logical symbols.

I This is the intended interpretation of the symbols of Σ.
I The interpretation of the logical symbols is given:

I In fact, their meaning ¬,∧,∨,⇒,⇔,∀,∃ is explicitly specified
in the definition of |=

I The inductive definition of |= is an recursive translation table.

I Thus, in principle, determining the empirical interpretation of
FO sentences is easy.
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Ex.
I The intended interpretation of the vocabulary:

I Constant t: Tom;
I Constant m: G0B23;
I P(x): x is a passing grades;
I G (x , y , z): student x has grade z for exam of course y.

I The sentence ∃g(G (t,m, g) ∧ P(g)) expresses:

I There exists a g such that Tom has grade g for course G0B23
and g is a passing grade.

I I.e., Tom passes for course G0B23.

The informal semantics of a sentence under an intended
interpretation is also called its declarative or intuitive reading.
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The informal semantics

I FO as a kind of shorthand notation for a special subset of NL
sentences.

I No poetry, but the sort of language found in mathematical
texts.

I precise!

I Impact for knowledge representation: One should be capable
to reformulate information and knowledge in this style.

I This is sometimes surprisingly difficult. See secton below on
pragmatics.
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A first example: Group theory

A group is a mathematical structure consisting of a domain, a
(total) binary operator and neutral element that satisfies three
properties as expressed below.

I Vocabulary: Σ = {e/0 :,+/2 :} – two function symbols with
obvious intended interpretation.

I Axioms:
I Associativity:

∀x∀y∀z(x + (y + z) = (x + y) + z)
I Neutral element

∀x(x + e = x ∧ e + x = x)
I Inverse element

∀x∃y(x + y = e ∧ y + x = e)

A model of this theory represents a group.
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To see the same theory written in IDP syntax:
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=group

Push “run” to see all models A with domain {a, b, c , d} and
eA = a
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Graph colouring

A graph consists of vertices and directed edges between them.
Vertices are labeled by a color. Two adjacent vertices have
different color.

I Σ = {Vertex/1,Edge/2,Col/1,Colour/1 :} – obvious
intended interpretations

I Theory

∀x Vertex(x)⇒ Col(Colour(x))
∀x∀y(Edge(x , y)⇒ ¬(Colour(x) = Colour(y)))

A model of this theory represents

a set of colours and a correctly
coloured graph.
But how do we solve a specific graph colouring problem using it?
The answer follows ..
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A model in graphical notation

D
1

2

3

4

5

r

g

b

VertexEdgeCol

Colour

Note:

I values for every symbol

I the value of Colour maps each color to itself. Indeed, since it
should be a total function, the maps of each color should
exist. However, the value is an arbitrary choice.
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d

b

f

D

0 

S

S
S

S

P

h

g

Q

Homework 1: What does the following proposition mean:

P(0) ∧ ∀x(P(x)⇒ P(S(x))

Verify whether this structure satisfies it. Propose an alternative
interpretation of P such that the formula is not satisfied. If we
replace P by Q, is the formula true? Express that P is a subset of
Q as a formula. Try to express that g cannot be reached from 0
through the function S . Does it work? 87 / 161
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Abstract syntax

I Syntax is not very important.

I Other syntaxes, same abstract syntax:

FORALL x: IF x ∈ human THEN x ∈ woman OR x ∈ man

∀x(human(x)⇒ woman(x) ∨man(x))

FORALL x: x ∈ adult IFF x ∈ human AND x.age > 18

∀x(adult(x)⇔ human(x) ∧ age(x) > 18)

Which do you prefer? Would it make a big difference for you?
It is no big deal in principle.
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Some fundamental properties

I FO’s semantics satisfies Frege’s compositionality principle
I the meaning of a connective does not depends on the context

in which it occurs.

I Connectives of FO are truth functional:

I The value of a composite formula is computed by applying a
boolean function on the value of the component formulas.
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E.g., a non-truth functional natural language connective:
“I went home and then I called her”:
Homework 2: Do a possible world analysis. Think up two worlds in
which the two subsentences are true but the value of the entire
sentence is different.

91 / 161



Is the informal semantics of FO really precise?
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Overloading and ambiguity

Like other words in natural language, many natural language
connectives have multiple meanings. They are overloaded.

I E.g., the word “and” has a different meaning in the following
two sentences.

I The earth is a planet and the sun a star.
I I got up this morning and brushed my teeth.

The first and is the standard “logical” conjunction. The
second and is the temporal conjunction that states that the
first conjunct precedes the second in time.

I Similarly, “or” in natural language may be intended inclusively
or exclusively.

I As a reward, you can choose a bike or a train subscription.
(one only)

I Hillary or Bill will be home. (At least one, perhaps both).
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I Notice that these statements were not ambiguous. You
figgered out what was meant and correctly determined the
intended meaning of the connective. (Or so I hope for you).

I Our subconscious language interpreting brain module is
extremely strong in disambiguating overloaded words.

I Thus, overloading does not necessarily lead to ambiguity.
Sometimes it does, but often it does not. In carefully phrased
text, as we find it in science and mathematics, or in law texts,
we avoid ambiguity even if we use overloaded words, by
providing enough context to disambiguate them.
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I In logic, every connective has a unique meaning. It is not
overloaded, and that is how it should be in a formal language.

I If a different meaning of some natural language connective is
needed, a new connective should be added (e.g., exclusive
disjunction).

I In the definition of satisfaction, we define the meaning of
formal connectives in terms of disambiguated versions of the
natural language connective. E.g., the inductive rule:

A |= ϕ ∧ ψ if A |= ϕ and A |= ψ

Here the logical and is meant, not the temporal one. E.g., the
inductive rule:

A |= ϕ ∨ ψ if A |= ϕ or A |= ψ (or both)

We had added “or both” to disambiguate the disjunction as
inclusive.

I In case any ambiguity is left (which I doubt), the truth tables
for connectives and quantifiers eliminates it.
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The conditional and material implication

I One of the most overloaded connectives is “if . . . then . . . ”.
I This is called the conditional in linguistics.
I Linguistics have distinguished more than 30 different

meanings and uses.
I Material implication, as embodied in FO, captures just one of

these meanings!
I Unavoidably, some conditional statements in natural language

will not be correctly represented by material implication in FO.
I Sometimes, this may be very subtle, as we shall see.
I We will later introduce another conditional in this chapter.
I The many meanings of the conditional have caused quite a bit

of confusion and controversy about material implication.
I Yet, the material implication covers most applications of

“if. . . then..”, certainly those seen in this course. It is probably
the most common form of conditional. We really need it!
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Intermezzo: material implication

I Compare:
I If you succeed for all courses, then you pass.

I Proposed formalization:

(∀c Succ(c))⇒ Pass

I There is a course such that, if you succeed for it, you pass
I Proposed formalization:

∃c(Succ(c)⇒ Pass)

I Are the NL statements equivalent?

No!

By possible world analysis: our university satisfies the first but not
the second formula.

I Are the proposed formalizations logically equivalent? Yes! :
∃c(Succ(c)⇒ Pass) ≡ (∀c Succ(c))⇒ Pass.

I This means that at least one of these FO sentences does not
correctly formalize the corresponding NL-statement. Indeed, the
problem is with ∃c(Succ(c)⇒ Pass).
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Intermezzo: material implication

The following derivation is a correct proof:

∃c(Succ(c)⇒ Pass)
is logically equivalent to ∃c(¬Succ(c) ∨ Pass)
is logically equivalent to (∃c(¬Succ(c))) ∨ Pass)
is logically equivalent to (¬∀c Succ(c)) ∨ Pass)
is logically equivalent to (∀c Succ(c))⇒ Pass

Every step is correct. The only reason why it surprises us is that
one of the original sentences does not mean what we think it
means.
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Intermezzo: material implication

Homework 3: What is wrong with the formula
∃c(Succ(c)⇒ Pass), intuitively?

The paradox on the previous slides is similar to Smullyans drinkers
paradox. https://en.wikipedia.org/wiki/Drinker_paradox
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Equivalences

I The equivalence sign is misleadingly simple. It is easy to make
mistakes that are hard to trace.

I E.g., we define a person has fever if his temperature is more
than 37.

∀x∀t(Fever(x)⇔ Temperature(x , t) ∧ t > 37)

Correct?

Not even close.
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I Let us split in equivalent statement:

∀x∀t(Fever(x)⇐ Temperature(x , t) ∧ t > 37)∧
∀x∀t(Fever(x)⇒ Temperature(x , t) ∧ t > 37)

Because t does not occur in the premisse of sentence 2, it is
logically equivalent to:

∀x(Fever(x)⇒ ∀t(Temperature(x , t) ∧ t > 37)

This says that if some x has fever, every object t in the
universe is the temperature of x and also, that t is also larger
than 37. Incorrect!

I How to correct?

∀x(Fever(x)⇔ ∃t(Temperature(x , t) ∧ t > 37))
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Assume that we want to define Even to be exactly the set of all
even numbers, that is two-folds of natural numbers Nat. Here is a
proposed formula:

∀n(Even(2× n)⇔ Nat(n))

Is this a correct representation?

Let us verify.

I ∀n(Even(2× n)⇒ Nat(n)): this is true if Even is the set of
even numbers. Notice that it is also true if Even is a superset
of the even numbers.

I ∀n(Even(2× n)⇐ Nat(n)): this is true if Even is the set of
even numbers. But it is also true if Even is a superset of the
even numbers.

E.g., take the structure A, where NatA = EvenA = N, the set of
natural numbers, and 2A,×A have the expected value. Clearly, this
structure does not satisfy the definition, and yet, it satisfies the
equivalence.
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We intend to define narcistic love as self love. That is:
NarcisticLove = {(n, n)|Love(n, n)}: follows:

∀x(NarcisticLove(x , x)⇔ Love(x , x))

Completely wrong! See: http://dtai.cs.kuleuven.be/krr/

idp-ide/?present=BadEquiLove

We define that P is the set of all sums n + m with n,m ∈ Q:

∀n∀m(P(n + m)⇔ Q(n) ∧ Q(m))

Completely wrong! See: http:

//dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum

109 / 161

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum


We intend to define narcistic love as self love. That is:
NarcisticLove = {(n, n)|Love(n, n)}: follows:

∀x(NarcisticLove(x , x)⇔ Love(x , x))

Completely wrong! See: http://dtai.cs.kuleuven.be/krr/

idp-ide/?present=BadEquiLove

We define that P is the set of all sums n + m with n,m ∈ Q:

∀n∀m(P(n + m)⇔ Q(n) ∧ Q(m))

Completely wrong! See: http:

//dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum

110 / 161

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum


We intend to define narcistic love as self love. That is:
NarcisticLove = {(n, n)|Love(n, n)}: follows:

∀x(NarcisticLove(x , x)⇔ Love(x , x))

Completely wrong! See: http://dtai.cs.kuleuven.be/krr/

idp-ide/?present=BadEquiLove

We define that P is the set of all sums n + m with n,m ∈ Q:

∀n∀m(P(n + m)⇔ Q(n) ∧ Q(m))

Completely wrong! See: http:

//dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum

111 / 161

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum


We intend to define narcistic love as self love. That is:
NarcisticLove = {(n, n)|Love(n, n)}: follows:

∀x(NarcisticLove(x , x)⇔ Love(x , x))

Completely wrong! See: http://dtai.cs.kuleuven.be/krr/

idp-ide/?present=BadEquiLove

We define that P is the set of all sums n + m with n,m ∈ Q:

∀n∀m(P(n + m)⇔ Q(n) ∧ Q(m))

Completely wrong! See: http:

//dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum

112 / 161

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiLove
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum
 http://dtai.cs.kuleuven.be/krr/idp-ide/?present=BadEquiSum


The openness of FO

I Unlike many other logics, FO makes no hidden assumptions.
I FO has the open domain assumption: the domain is arbitrary:

maybe finite or infinite. Unless an axiom states differently.
I FO has the free term assumption: any pair of terms could be

equal or not. Unless an axiom states differently.
I FO makes no default assumption about the truth of atoms, or

any connection between them. They can be true or false, in
arbitrary combination. Unless an axiom states differently.

I This openess is visible in its formal semantics (see next slide).

I If information is known about domain, identity of terms, truth
or falsity of atoms, then this information should be explicitly
expressed in FO

I This openess has its advantages and its disadvantages.
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I Where does FO’s openess come from, semantically?
I From the unconstrained nature of the class of structures that

FO admits.

I The class of models of the empty theory over vocabulary Σ is
the class of all Σ-structures. This is big!

I Structures with arbitrary domain, of arbitrary size (finite,
countably infinite, uncountably infinite), with arbitray
interpretation of function symbols, and predicate symbols.
They abstractly represent more states of affairs than we
sometimes can imagine.

I For any such structure A, if we do not consider it to be an
abstraction of a possible state of affairs, we should add an
axiom to our theory that is violated in A. If we do not, then
FO “thinks” this state of affairs is possible.

This causes FO not to make no assumptions at all.
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In other modelling logics, the class of models is typically much
more constrained.

I The structures of logic programs are Herbrand structures
(their domain is the set of all terms over Σ, and the value of
different terms is always different).

As said, this has its advantages and disadvantages. (See below).
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Use case: expressing information from a database in FO

Consider two tables from a database:

Instructor/2

Ray CS230
Hec CS230
Wal HD87
Mar HD87

Enrolled/2

Jill CS230
Jack CS230
Tom HD87

Can we express this information in FO?

116 / 161



Use case: expressing information from a database in FO

I First idea:
I Define Σ consisting of predicate symbols

Instructor/2,Enrolled/2 and constant symbols
Ray ,Hec , . . . ,CS230, . . . , Jill , . . . .

I Express information by the following conjunction that
enumerates all table rows as a conjunction of atoms:

Instructor(Ray ,CS230) ∧ · · · ∧ Enrolled(Jill ,CS230) ∧ . . . (∗)

I This is not correct:
I The database contains negative information, e.g.,

I that different constant symbols Ray ,Hec,CS230, . . .
represent different objects;

I that facts not in table are false, e.g, Instructor(HD87,HD87)
is false

I In contrast, the above formula contains no negative
information that was available in the database.
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A correct modelling

Two sorts of axiomas are needed

I Equality axioms to express different constants denote different
objects: UNA

I Precise definitions of Instructor and Enrolled , that describe
what is in and what is out the tables.

119 / 161



UNA axiom

I UNA: Unique Names Axioms:

I Let Σ be a set of constant symbols. Then UNA(Σ) is the
conjunction of axioms:

¬C1 = C2

where C1,C2 ∈ Σ,C1 6= C2.

I Note that this is a quadratic number of axioms in the size of
Σ. Obviously, FO should be extended with a new construct to
express this axiom compactly.

I In IDP, this is done by constructed types (see below).
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Predicate completion

For the predicates, we need an axiom that exactly expresses which
tuples are in it and which are out:

∀x(∀y(Instructor(x , y)⇔
(x = Ray ∧ y = CS230)∨
(x = Hec ∧ y = CS230)∨
(x = Wal ∧ y = HD87)∨
(x = Mar ∧ y = HD87)))

We call this a completed definition of Instructor/2.
A similar completed definition is needed for Enrolled .
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The combination of UNA and the two completed definitons can be
shown to capture all the information in the two tables.
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Evaluation:

I in many modelling applications, a possibly large number of
objects need to be modelled. Symbols need to be chosen as
identifiers for objects. In pure FO, we need to explicitly add
UNA axioms for all these constants.

I In other languages such as logic programming, Answer Set
Programming, UNA is implicitly imposed. In this case,
constants and function symbols become constructors

I we cannot use them anymore to express real functions or
constants of free identity.

I E.g., constants Obama,PresidentOfUs in the obvious intended
interpretation in the actual world denote the same individual.
Thus, UNA cannot be imposed on these atoms.
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How to avoid UNA in IDP?

I Constructors and constructed types:

type day constructed from { mon; tue; wed; thu;

fri; sat; sun }
this logically means:

I ∀x(day(x)⇔ x = mon ∨ · · · ∨ x = sun)
I UNA({mon, . . . , sun})

I The object identifiers in structures are assumed to denote
different objects. They are not symbols of the vocabulary and
cannot be used in the theory.
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In the future, we want more flexible schemes to combine the
advantages of identifiers and constructors (implicit UNA) with
non-constructor constant and function symbols.
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I As mentioned before, we believe that FO’s connectives and
quantifiers are fundamental for KR.

I However, it does not suffice for knowledge representation.
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Typed FO: FO(Types)

I In standard FO, there is a unique base type where all
quantification, functions and predicates range over.

I Just like in other languages, types in FO can often be useful
I (1) to improve the precision of the modeling and
I (2) reduce the amount of human errors.

E.g., in the graph colouring, there are two natural types:
vertices and colors. We would like to define the colouring
function as a function from vertices to colors so that it is not
defined on colors.

I It is straightforward to extend FO with types.
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FO(Types)

I The IDP system supports typed logic with subsorts.

I IDP performs type derivation for variables. That is, it
“guesses” the type of variables from the positions in which it
occurs.
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Example

Graph-colouring:

I Types Vertex and Col

I Symbols G(Vertex,Vertex), Colour(Vertex):Col

I A well-typed axiom
! x y : (G(x,y) => Colour(x)∼=Colour(y))
Variables x, y are derived to be of type Vertex.

I Explicit typing:
! x[Vertex] y[Vertex] : (G(x,y) =>

Colour(x)∼=Colour(y))
I Badly typed on variable y:
! x y : (G(x,y) => Colour(x)=y)

132 / 161



FO(Types,Arit)

I FO(Types) is a basis for adding interpreted types.
I FO(Types,Arit) is obtained by adding the integer numbers:

I type symbol int
I numerals: strings 0, 12,−5, . . .
I arithmetic operator symbols +,×, ˆ(power), <,≤, >,≥, . . .

I Their value in every structure A is the obvious one.
I E.g., the value 12A of numeral 12 in A is the number 12.
I E.g., the value < A of symbol < in A is the standard strict

order relation < on integers, that is, {(n,m) ∈ Z2 | n < m}.
Notice the difference between a symbol and a value. Here, we
used colors to distinguish between them , e.g., symbols 12, ≤
and values 12 and ≤.
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FO(Types,Arit)

I Now we can use integer arithmetic in our theories.
I E.g., Fermats last theorem is now formalized as follows:

¬∃x∃y∃z∃n(n > 2 ∧ x ˆn + y ˆn = z ˆn)

(It is true, but was not easy to prove (>300years).)

I We can do the same for other types of numbers N,Q,R.

I IDP currently only supports finitely bounded arithmetic. Every
numerical symbol has to be declared to be an element of a
finite subtype of integers.
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IDP example

vocabulary V{
type someIntegers isa int

C1 : someIntegers

C2 : someIntegers

}
theory T: V{

C1 + C1 = C2.

}
structure S:V{

someIntegers = {1..5}
}

I a subtype declaration using isa
I A bounded integer type declaration {1..5}
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FO(Agg)

I Sometimes, it is useful to be able to talk about properties of
sets, e.g., its cardinality.

∀c∀r(Course(c)∧Room(c , r)⇒ #{y : Enr(y , c)} ≤ Capac(r))

The room in which some course is taught must be larger than
the number of students enrolled in the course.

I # is the cardinality aggregate and represents the function
from sets to natural numbers.

I It takes as argument a set expression {(x1, . . . , xn) : ϕ}.
I It denotes the cardinality of the set represented by this set

expression.
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FO(Agg)

Useful aggregates:

I #{(x1, . . . , xn) : ϕ} represents the function mapping a set to
its number of elements.

I Min{x : ϕ} represents the function mapping a set of integer
numbers to its least number.

I Max{x : ϕ} represents the function mapping a set of natural
numbers to its largest number.

I Sum{(x , x1, . . . , xn) : ϕ} represents the function from a set of
tuples to the sum of the first arguments of these tuples:

Sum{(x , x1, . . . , xn) : ϕ} =
∑

{(x ,x1,...,xn):ϕ}

x
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The sum aggregate

I Expressing that the study load of a student should be less
than 65 study points:

∀s(Sum{(l , c) : SelCourse(s, c) ∧ StudyPoints(c , l)} ≤ 65)

In words: the sum of the first arguments of all tuples in the
set of tuples (l , c) such that l is the number of study points of
a course followed by a student s should be less than 65, for
each student s.

I Defining the total studyload StudyL/1 : of a student:

∀s StudyL(s) = Sum

{
(l , c) :

(
SelCourse(s, c)∧
StudyPoints(c , l)

)}
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The sum aggregate

∀s(Sum{(l , c) : SelCourse(s, c) ∧ StudyPoints(c , l)} ≤ 65)

I Why do we sum over the first arguments of tuples, why do we
need the other arguments?

I Compare the above constraints with the following one:

∀s(Sum{l : ∃c(SelCourse(s, c) ∧ StudyPoints(c , l))} ≤ 65)
I Imagine that a student Bob follows 10 courses c1,..,c10 of 8

study points each. His total load is 80, far above the threshold.
I Now compare the sets
{(l , c) : SelCourse(Bob, c) ∧ StudyPoints(c , l)}
{l : ∃c(SelCourse(Bob, c) ∧ StudyPoints(c , l))}
What is the sum of these sets?

I Respectively 80 and 8. Therefore, the second constraint is
wrong, is too weak. By adding more arguments, we can
distinguish between different occurrences of the same study
load for different courses.
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Extending FO to FO(Agg)

Syntax:

I If x is a tuple of variable symbols, ϕ a FO-formula, then
{x : ϕ} is a set expression

I If s is a set expression and Agg is an aggregate symbol (e.g.,
#,Sum,Min, . . . ) then Agg(s) is a term (called an aggregate
term)

Semantics:

I {x : ϕ}A = {d̄ |A[x : d̄ ] |= ϕ}
I Agg(s)A = AggA(sA)

(That is all it takes in FO.)
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In IDP, aggregates are represented in a slightly different syntax:

I number of elements of P
#{x,y: P(x,y)}.

I sum of x+y, for all (x,y)∈ P
sum{x,y: P(x,y) : x+y}.

I minimum of set { x : Q(x)& R(x)}
min{x: Q(x)& R(x) : x}.

I maximum :
max{x: Q(x)& R(x) : x}.

I Nesting is allowed, as in:
Pnest= sum{x[num]:x=#{y:Q(x,y)} : x }.
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http://dtai.cs.kuleuven.be/krr/idp-ide/?present=Agg

Homework 4: Experiment with different input/output.

I Compute value aggregate expressions from values for P, R.

I Compute values of P, R from value aggregates expressions.

I Compute minimal structure satisfying aggregates expressions.
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There is a difference in the theoretical language en the concrete
language of IDP.
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Definitions in KR

I Together with axioms (equations), definitions are a basic
component of scientific and mathematical theories.
E.g., an example of a definition in the gravitation theory in
Chapter II is that of the unity vectors V̄ij which were defined
(by an equation) as the vector of length 1 in the direction
from body i to j.

I Frequently, we need auxiliary concepts that can be defined in
terms of more basic ones. We introduce a new symbol and
define it in terms of the existing one.

I Some definitions are inductive/recursive.

I It is well-known that inductive definitions in general cannot be
expressed in FO (and we will prove it later in this course).
Therefore, the last extension of FO that we consider here, is a
language construct for definitions.
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Proof idea:

I Take a proposition that can be expressed using inductive
definitions

There is a path from vertex A to vertex B in graph G

I Show that the proposition cannot be expressed in FO.
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Mod(T ): the class of models of theory T .

Definition
A theory T over Σ expresses a class of Σ-structures C if
Mod(T ) = C.
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The compactness theorem of FO

Compactness Theorem of FO

An infinite FO theory Ψ is unsatisfiable iff at least
one finite subset is unsatisfiable.

I The compactness theorem is historically the first technique to
prove inexpressibility in FO.

I More advanced techniques exist. E.g., Ehrenfeucht-Fräıssé
Games.
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Unreachability can be infinitely expressed

“There is no path from A to B in graph G”

I Σ = {A,B,G/2}
I The proposition is expressed by the theory TUnR =

¬G (A,B),
¬∃x1(G (A, x1) ∧ G (x2,B)),
. . .
¬∃x1 . . . ∃xn(G (A, x1) ∧ · · · ∧ G (xn,B)),
. . .


Proof. The propositions express: there is no path of length 1, of
length 2, of length 3, . . . . A structure in which there is no path
from A to B satisfies each of these propositions, and vice versa, a
structure that satisfies each of these propositions cannot have a
path from A to B.

158 / 161



Reachability cannot be expressed

Theorem

“There is a path from A to B in graph G” is not
expressible in FO.

Proof. Let Σ = {A,B,G/2}. Every Σ-structure specifies a graph
and vertices corresponding to A,B.

I Consider the class CR of Σ-structures A with a path from AA

to BA in graph GA.
I Assume CR is expressible by FO theory TR . Then the infinite

theory TR ∪ TUnR is unsatisfiable.
I Hence, it has an unsatisfiable finite subset Ω.
I Let n be the largest path length forbidden by Ω. Every

structure with a shortest path from A to B that is strictly
longer than n satisfies Ω.

I Contradiction
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I Reachability, transitive closure are important concepts in
many applications, but they cannot be expressed in FO.

I Adding inductive definitions to FO will solve this problem.
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It will be expressed by the FO(ID) theory:{
R(A).
∀x(R(x)← ∃y(R(y) ∧ G (y , x)))

}
R(B)
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A language construct for expressing (inductive) definitions

I To be able to express also inductive definitions, we introduce
a new language construct, inspired by the way inductive
definitions are presented in mathematical text.

I Two prototypical examples:

The reachability relation R of G is defined
inductively:
- (x, y) ∈ R if (x, y) ∈ G ;
- (x, y) ∈ R if for some vertex z,

(x, z), (z, y) ∈ R.

We define A |= ϕ by induction:

- A |= P(t1, . . . , tn) if (tA1 , . . . , t
A
n ) ∈

PA

- ...
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A 6|= α - ...

I They are often presented as a collection of rules, providing
base cases and inductive cases.
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