
Lecture II - part I
the logic framework FO(.): extensions

June 7, 2016

1 / 96



Recalling principles

Extending FO
Extending FO with Types
Adding aggregates
Adding definitions to FO
Relation to Prolog
An alternative view on logic programming

2 / 96



The view of knowledge representation:

I formalizing ”information”

The view of knowledge representation language:
I a formal language,

I formal syntax
I formal semantics

I a theory of informal semantics:
I a general theory of what information is expressed by formal

expressions of the logic

3 / 96



If so, a logic is a formal, exact scientific theory of the informal
meaning of the language constructs that it contains.

I E.g., ∧,∨,¬,∀,∃,⇒,⇔ in FO.

4 / 96



The plan:

I building logics with language constructs derived from the
language used in formal science and mathematics.

I Formal possible world semantics:
I Structures are abstractions of potential states of affairs.
I A mathematical theory formalizing the value of formal

expressions in structures
I Models = abstractions of possible states of affairs
I Non-models = abstractions of impossible states of affairs.

I Simulates the methods of formal science (confer Newtons
gravitation theory)

5 / 96



FO as a foundation

I FO is about a small of connectives, essential for KR:

∧,∨,¬, ∀,∃,⇔,⇒
I A formal possible world semantics correctly formalizing the

informal semantics of connectives.

6 / 96



Intermezzo: material implication

I Compare:

I If you succeed for all courses, then you pass.
I Proposed formalization:

(∀c Succ(c)) ⇒ Pass

I There is a course such that, if you succeed for it, you pass
I Proposed formalization:

∃c(Succ(c) ⇒ Pass)

I Are the NL statements equivalent? No.

I Are the proposed formalizations logically equivalent? Yes!

7 / 96



The answer

I What we really expressed is:

∃c(¬Succ(c) ∨ Pass)

I Next, let us reformulate by introducing ”students”

∃c∀st(Succ(st, c)⇒ Pass(st))

Now, the existential quantifier cannot move to the body.

6⇔ ∀st(∀c Succ(st, c)⇒ Pass(st))
I In the propositional formula, we are missing a modal operator.

I There exists a course c , such that in every state of affairs, if
one succeeds for c , one passes.

∃c�(Succ(c)⇒ Pass)

This is strict implication, another conditional studied by Lewis
1915

8 / 96



Recalling principles

Extending FO
Extending FO with Types
Adding aggregates
Adding definitions to FO
Relation to Prolog
An alternative view on logic programming

9 / 96



I We believe that FO is fundamental for KR because of its
connectives.

I However, it does not suffice for knowledge representation.

10 / 96



Recalling principles

Extending FO
Extending FO with Types
Adding aggregates
Adding definitions to FO
Relation to Prolog
An alternative view on logic programming

11 / 96



Typed FO: FO(Types)

I In standard FO, there is a unique base type where all
quantification, functions and predicates range over.

I Just like in other languages, types in FO can often be useful
I (1) to improve the precision of the modeling and
I (2) reduce the amount of human errors.

E.g., in the graph colouring, there are two natural types:
vertices and colors. We would like to define the colouring
function as a function from vertices to colors so that it is not
defined on colors.

I It is straightforward to extend FO with types.

12 / 96



FO(Types)

I The IDP system supports typed logic with subsorts.

I IDP performs type derivation for variables. That is, it
“guesses” the type of variables from the positions in which it
occurs.

13 / 96



Example

Graph-colouring:

I Types Vertex and Col

I Symbols G(Vertex,Vertex), Colour(Vertex):Col

I A well-typed axiom
! x y : (G(x,y) => Colour(x)∼=Colour(y))
Variables x, y are derived to be of type Vertex.

I Explicit typing:
! x[Vertex] y[Vertex] : (G(x,y) =>

Colour(x)∼=Colour(y))
I Badly typed on variable y:
! x y : (G(x,y) => Colour(x)=y)

14 / 96



FO(Types,Arit)

I FO(Types) is a basis for adding interpreted types.
I FO(Types,Arit) is obtained by adding the integer numbers:

I type symbol int
I numerals: strings 0, 12,−5, . . .
I arithmetic operator symbols +,×, ˆ(power), <,≤, >,≥, . . .

I Their value in every structure A is the obvious one.
I E.g., the value 12A of numeral 12 in A is the number 12.
I E.g., the value < A of symbol < in A is the standard strict

order relation < on integers, that is, {(n,m) ∈ Z2 | n < m}.
Overloading! Notice the difference between a symbol and a
value.

15 / 96



FO(Types,Arit)

I Now we can use integer arithmetic in our theories.
I E.g., Fermats last theorem is now formalized as follows:

¬∃x∃y∃z∃n(n > 2 ∧ x ˆn + y ˆn = z ˆn)

(True, but it took 300years to prove.)

I We can do the same for other types of numbers N,Q,R.

I IDP currently only supports finitely bounded arithmetic. Every
numerical symbol has to be declared to be an element of a
finite subtype of integers.

16 / 96



IDP example

vocabulary V{
type someIntegers isa int

C1 : someIntegers

C2 : someIntegers

}
theory T: V{

C1 + C1 = C2.

}
structure S:V{

someIntegers = {1..5}
}

I a subtype declaration using isa
I A bounded integer type declaration {1..5}

17 / 96



Recalling principles

Extending FO
Extending FO with Types
Adding aggregates
Adding definitions to FO
Relation to Prolog
An alternative view on logic programming

18 / 96



Extending FO to FO(Agg)

Syntax:

I If x is a tuple of variable symbols, ϕ a formula, then {x : ϕ}
is a set expression

I If s is a set expression and Agg is an aggregate symbol (e.g.,
#,Sum,Min, . . . ) then Agg(s) is a term (called an aggregate
term)

Semantics:

I {x : ϕ}A = {d̄ | A[x : d̄ ] |= ϕ}
I (Agg(s))A = AggA(sA)

(That is what it takes to extend FO with aggregates.)

19 / 96



In IDP, aggregates are represented in a slightly different syntax:

I number of elements of P
#{x,y: P(x,y)}.

I sum of x+y, for all (x,y)∈ P
sum{x,y: P(x,y) : x+y}.

I minimum of set { x : Q(x)& R(x)}
min{x: Q(x)& R(x) : x}.

I maximum :
max{x: Q(x)& R(x) : x}.

I Nesting is allowed, as in:
Pnest= sum{x[num]:x=#{y:Q(x,y)} : x }.

20 / 96



http://dtai.cs.kuleuven.be/krr/idp-ide/?present=Agg

Homework 1: Experiment with different input/output.

I Compute value aggregate expressions from values for P, R.

I Compute values of P, R from value aggregates expressions.

I Compute minimal structure satisfying aggregates expressions.

21 / 96

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=Agg


Recalling principles

Extending FO
Extending FO with Types
Adding aggregates
Adding definitions to FO
Relation to Prolog
An alternative view on logic programming

22 / 96



Definitions in KR

I Axioms and definitions are the basic building blocks of
scientific and mathematical theories.

I Also in KR and formal modelling, we need to define new
symbols in terms of the existing ones.

I Some definitions are inductive/recursive.

I In general, inductive definitions cannot be expressed in FO
(in databases: Aho& Ullman 79)

I Therefore, the last extension of FO that we consider here, is a
language construct for definitions.

23 / 96



In general, inductive definitions cannot be expressed in FO.

Proof idea:

I Take a proposition that can be expressed using inductive
definitions

There is a path from vertex A to vertex B in graph G

I Show that the proposition cannot be expressed in FO.

24 / 96



I The class of models of theory T is denoted Mod(T ).

I A theory T over Σ expresses a class of Σ-structures C if
Mod(T ) = C.

25 / 96



The compactness theorem of FO

The compactness theorem is historically the first technique to
prove inexpressibility in FO.

Compactness Theorem of FO

An infinite FO theory Ψ is unsatisfiable iff at least
one finite subset is unsatisfiable.

(There exists much more powerful techniques; e.g.,
Ehrenfeucht-Fräıssé Games.)

26 / 96



Unreachability can be infinitely expressed

“There is no path from A to B in graph G”
I Σ = {A,B,G/2}. Every Σ-structure specifies a graph

interpreting G and vertices interpreting A,B.
I The proposition is expressed by the theory TUnR =

¬G (A,B),
¬∃x1(G (A, x1) ∧ G (x2,B)),
. . .
¬∃x1 . . . ∃xn(G (A, x1) ∧ · · · ∧ G (xn,B)),
. . .

Proof. The propositions express: there is no path of length 1, of
length 2, of length 3, . . . . A structure in which there is no path
from A to B satisfies each of these propositions, and vice versa, a
structure that satisfies each of these propositions cannot have a
path from A to B since paths have finite length.

27 / 96



Reachability cannot be expressed

Theorem

“There is a path from A to B in graph G” is not
expressible in FO.

Proof.

I Consider the class CR of Σ-structures A with a path from AA

to BA in graph GA.
I Assume CR is expressible by FO theory TR . Then the infinite

theory TR ∪ TUnR is unsatisfiable.
I Hence, it has an unsatisfiable finite subset Ω.
I Let n be the largest path length forbidden by Ω. Every

structure with a shortest path from A to B that is strictly
longer than n satisfies Ω.

I Contradiction
28 / 96



I Reachability, transitive closure are important concepts in
many applications, but they cannot be expressed in FO.

I Adding inductive definitions to FO will solve this problem.

29 / 96



It will be expressed by the FO(ID) theory using an auxiliary
predicate R: {

R(A).
∀x(R(x)← ∃y(R(y) ∧ G (y , x)))

}
R(B)

30 / 96



Some observations of inductive definitions in mathematics

31 / 96



A prototypical monotone inductive definition

The definition of the reachability relation/transitive closure.

The reachability relation RG of a graph G is defined inductively:
- (x , y) ∈ RG if (x , y) ∈ G ;
- (x , y) ∈ RG if for some vertex z ,

(x , z), (z , y) ∈ RG .

32 / 96



A prototypical inductive definition over an induction order

The satisfaction relation |= of propositional logic.

Let Σ be a vocabulary, A a Σ-structure, ϕ a formula over Σ.
We define A |= ϕ by induction on the structure of ϕ :
- A |= q if q is a propositional variable and q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= α ∨ β if A |= α or A |= β;
- A |= ¬α if A 6|= α.

The induction order:

I the subformula order

33 / 96



Informal inductive definitions (ID’s)

I Definitions in mathematics belong to “informal language”
I serve to define formal objects
I but are not themselves formal objects
I We call them informal definitions

I Informal language, but of a special kind:
I of mathematical precision
I broadly used
I broadly understood

I An ideal topic for formal empirical study.

34 / 96



Some common properties

The transitive closure TG of a graph
G is defined inductively:
- (x , y) ∈ TG if (x , y) ∈ G ;
- (x , y) ∈ TG if for some vertex z,

(x , z), (z, y) ∈ TG .

We define A |= ϕ by induction on
structure of ϕ :
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= α ∨ β if A |= α or A |= β;
- A |= ¬α if A 6|= α

I Linguistically, a set of conditionals

I Semantically, two principles: a structure is a possible world if
I Constructively, the defined set is obtained by iterated rule

application.
I Non-constructively, the defined set is the least set closed under

rule application.

I These two principles coincide – Tarski!

35 / 96



Right?

36 / 96



Properties of informal ID’s

I The two principles coincide for monotone ID’s

I But not in general for ordered ID’s.

We define A |= ϕ by induction on structure of ϕ :
- ...
- A |= ¬α if A 6|= α

(i.e., if not A |= α);

This definition is nonmonotone, has infinitely many minimal
sets closed under its rules, and no least set.

37 / 96



The constructive principle is the fundamental one.

I Starting at the empty set
I Iterated rule-application

I respecting the induction order

I Until the set is saturated.

This is the common basic intuition that we all share and that is
formalized in our theory.

38 / 96



An outline of the theory

I A series of definitions from first principles (Def. 3-16)
formalizing our intuitions and conventions on

I monotone ID’s, ordered ID’s, iterated ID’s
I the induction order
I the induction process
I the defined sets

I Proof that the defined set coincides with the well-founded
model from logic programming.

39 / 96



Syntax of formal definitions

A definition ∆ is a set of definitional rules:

∀x(P(t)← ϕ)

where ϕ is a FO-formula and t a tuple of terms

I Defined symbols def (∆) of ∆ : predicates in the head.

I Parameter symbols pars(∆) of ∆: all other symbols appearing
in it.

I The definitional implication ← (is not material implication!!).

A context structure O: a structure interpreting pars(∆)

40 / 96



The informal semantics of definitions

We say that a formal definition ∆ is a faithful specification of an
informal definition D under an intended interpretation I if

I there is a one to one correspondence between rules of ∆ and
the informal rules of D, such that

I the informal reading of head and bodies of the formal rules
corresponds to the head and body of the informal rule.

Here we fall back on the informal semantics of FO.

41 / 96



Example: transitive closure

The reachability relation R of graph G is defined inductively:
- (x , y) ∈ R if (x , y) ∈ G ;
- (x , y) ∈ R if for some vertex z ,

(x , z), (z , y) ∈ R.

A proposed formalization:

I Σ= { R/2, G/2 }, with obvious intended interpretation

I The formal definition ∆R :{
∀x∀y(R(x , y)← G (x , y))
∀x∀y(R(x , y)← ∃z(R(x , z) ∧ R(z , y))

}

I A context structure O interprets symbol G by a graph

42 / 96



The formal definition ∆R is a faithfull representation of DR .

I This claim can be mathematically proven, using the formal
definition of FO’s satisfaction relation.

43 / 96



We define A |= ϕ by induction on the structure . . . :

I . . .

I A |= ¬α if A 6|= α.

⇓

∆|= =


∀i∀p(Sat(i , p)← Atom(p) ∧ In(p, i))
∀i∀f ∀g(Sat(i ,And(f , g))← Sat(i , f ) ∧ Sat(i , g))
∀i∀f ∀g(Sat(i ,Or(f , g))← Sat(i , f ) ∨ Sat(i , g))
∀i∀f (Sat(i ,Not(f ))← ¬Sat(i , f ))


Defined symbol: Sat/2
Parameter symbols: Atom/1, In/2, function symbols
Not/1,And/2,Or/2,.

44 / 96



A context O:

I Domain: Structures(Σ) ∪ Sentences(Σ)
I Interpretation for parameters:

I NotO = {ψ → ¬ψ|ψ ∈ Sentences(Σ)}
I AtomO = {q | q ∈ Σ}
I . . .

45 / 96



I A natural induction N of ∆ in context O:

A0 → A1 → . . .→ Aβ

where
I A0, . . .Aβ are def (∆)-structures
I A0 = ∅
I Ai+1 is obtained from Ai by applying some rule instances.
I Aβ is closed under all rules.
I Sequence may be transfinite.

46 / 96



A natural induction for ∆|= in OΣ

A0 → A1 → . . .→ Aβ

A sequence of subsets of Structures(Σ)× Sentences(Σ)

I A0 = ∅
I Aβ = the satisfaction relation for Σ

47 / 96



I A is the structure defined by ∆ in O if A is the limit Aβ of a
natural induction in O.

But is this a good definition?

48 / 96



Is this a good definition?

I The process of natural induction is highly non-deterministic.
I The order of rule application is not fixed.
I There are many natural inductions.

I Do they converge to the same limit? If not, the defined set
would be ambiguous. This would be unacceptable in
mathematics.

I Convergence:
I Guaranteed for monotone ID’s (transitive closure)
I But not for non-monotone ID’s (satisfaction relation)
I This is why the induction order is required!

49 / 96



Example: the satisfaction definition

At the initial stage, when Ao = ∅, all instances of the ¬-rule apply:

I |= ¬ϕ if I 6|= ϕ

Applying an arbitrary one is likely an error.

I In A0 = ∅, we have:
{P} 6|= P.

I So we can apply the ¬-rule to derive

{P} |= ¬P.

I This is an error.

50 / 96



A fundamental property of informal definitions

An all important point of the inductive construction process:

All natural inductions of a definition should converge
to the same limit.

In mathematics, there are conventions in place that guarantee this
property.
We have formalized these.

51 / 96



Definition by induction over a well-founded order

Given context O.

I An ordered definition in O is a pair 〈∆,≺〉 with
I ∆ a definition and
I ≺ a strict well-founded order on the set of defined facts.

I A mathematician or formal scientist is not free to take any
order: the order has to match the definition rules

I Rules define entities in terms of strictly smaller entities
I ≺ is a dependency relation of ∆ in O.

52 / 96



We define the grue numbers by induction on standard order
≤ on natnrs:
- n is a grue number if n + 1 is a grue number

What would you do if you were a reviewer of a paper containing
this definition?

I The rule does not match the induction order.
I an inductive rule should define an object in terms of strictly

smaller objects in the induction order

I Reject

53 / 96



Given an ordered inductive definition 〈∆,≺〉 in context O.

I A natural induction N respects ≺ if rules are applied only if
no strictly smaller facts can be derived anymore.

54 / 96



Convergence theorem

Theorem
If (∆,≺) is an ordered definition in context O, then all natural
inductions that respect ≺ converge.

Moreover the limit is independent of ≺.

55 / 96



Some Induction orders ≺ that are dependencies of the satisfaction
relation:

I subformula relation

I size order on formulas

I depth order on formulas

These are strict well-founded orders that are dependency relations
of the rules of the satisfaction relation.

Many well-founded orders ≺ are not a dependency relation.

I E.g., the empty order

Using them, no convergence or an unintended limit.

56 / 96



Take-away message:

I The order of a non-monotone informal definition must be
chosen with care, to match the rules.

I But any order that matches the rules is ok.

Do we really need this order?

57 / 96



Link with well-founded semantics

58 / 96



Natural inductions versus three-valued constructions

I Natural induction N = sequence of two-valued structures
starting at ∅

I N naturally corresponds to a sequence of three-valued
structures

I At each Ai , we have a three-valued structure Ii .
I defined atoms true in Ai are certainly true,
I some false atoms are certain to remain false,
I for some false facts it is unknown if they remain false

I This sequence is a well-founded induction sequence
(Denecker& Vennekens 2007)

I Each well-founded induction sequence constructs the
well-founded model.

59 / 96



Theorem
Let 〈∆,≺〉 be an ordered inductive definition in O.

I Each natural induction of ∆ in O converges to the
well-founded model of ∆ in O.

I The well-founded model of ∆ is two-valued.

60 / 96



The theory also works for Iterated inductive definitions:

I Mixtures of monotone induction and ordered induction

I Have been studied in mathematical logic : IID
(Kleene, Feferman, Martin-Löf, . . . )

I Think of locally stratified logic programs
I recursion over negation but no loops over negation

I Iterated inductive definitions may have many minimal
fixpoints. The induction process that obeys the induction
order constructs one of them.

I The well-founded semantics constructs without an explicit
given order.

61 / 96



A formal scientific study of these types of inductive definitions

I A formal syntax to express definitions

I A formal possible world semantics
I An informal semantics

I We specify a simple criterion to say when an formal definition
expresses an informal definition

a formal definition faithfully represents an informal definition

I The theory is refutable
I Each faithfully representable mathematical definition is an

experiment for the theory.
I Compare the relations defined by the formal semantics with

those defined by the informal definition.

62 / 96



Existing work:

I Inductive/recursive definitions were studied in mathematical
logic

I Language constructs to express inductive definitions were
added to database languages

I fixpoint expressions

Contribution of this work?
I Improved understanding of certain nonmonotone inductive

definitions:
I Ordered Definitions : definitions with an induction order
I Iterated inductive definitions

I Connection with logic programming

63 / 96



Exploring conventions about ordered definitions.

64 / 96



We define the grue numbers by induction over the standard
order ≤ on N:
- 0 is a grue number
- n + 1 is a grue number if n is a grue number

I Monotone and a definition over a well-founded order

I It defines . . . grue numbers = N

65 / 96



We define the grue numbers by induction on the standard
order ≤ on N:
- n + 1 is a grue number if n is a grue number

I It defines . . . grue numbers = ∅
I No base case

66 / 96



We define the grue numbers by induction on the inverse ≥ of
the standard order on N:
- n is a grue number if n + 1 is a grue number

What would you do if you were a reviewer of a paper containing
this definition?

I The induction order needs to be a well-founded order

I Reject the paper

67 / 96



We define the grue numbers by induction on standard order
≤ on natnrs:
- n is a grue number if n + 1 is a grue number

What would you do if you were a reviewer of a paper containing
this definition?

I The rule does not respect the induction order.
I an inductive rule should define an object in terms of strictly

smaller objects in the induction order

I Reject

68 / 96



We define the grue numbers by induction on standard order
≤ on natnrs:
- 0 is a grue number
- n + 1 is a grue number if n is not a grue number

What about this definition?

I A simplified version of the satisfaction definition
I The induction process constructs . . . the even numbers.

→ 0→ 2→ 4→ 6→ . . .→ 2n→ . . .

I Infinitely many minimal sets satisfying the two rules

0, 1, 3, 5, . . . , 2n + 1, . . .

0, 2, 3, 5, . . . , 2n + 1, . . .

0, 2, 4, 5, 7, . . . , 2n + 1, . . . 69 / 96



Defining the logic FO(ID)

70 / 96



FO(ID)

I Syntax:

An FO(ID) theory is a set of FO sentences and
definitions.

I Semantics:
I A |= T if A |= ϕ, for every FO sentence ϕ ∈ T and A is a

well-founded model of ∆, for every definition ∆ ∈ T .

71 / 96



Non-inductive definitions: examples

Definition by exhaustive enumeration:
Instructor(Ray ,CS230)←
Instructor(Hec ,CS230)←
Instructor(Wal ,HD87)←
Instructor(Mar ,HD88)←


Non-inductive definition:

∀x(European(x)← Albanian(x))
∀x(European(x)← Armenian(x))
. . .
∀x(European(x)← Turkish(x))
∀x(European(x)← Ukrainian(x))


50 cases.

Also many non-inductive definitions consists of independent cases
which can be represented by separate rules.

72 / 96



Definition by simultaneous induction

Defining multiple predicates at the same time in the natural
numbers: 

∀x(Even(x)← x = 0))
∀x(Odd(S(x))← Even(x))
∀x(Even(S(x))← Odd(x))


Here S/1 is the successor function, mapping n to n+1.

Homework 2: Verify that we have seen already a mathematical
definition in this course showing simultaneous induction: the
definition of term and formula. Recall that formulas are defined in
term of terms, and we defined aggregate terms (e.g., #{x : ϕ}) in
terms of formulas.

73 / 96



Induction over aggregates

Express the following inductive definition:

A company A controls company B if the total sum of
the shares in company B owned by A or by

companies controlled by A is more than 50%.

Using the vocabulary

I Cont(x , y): company x controls company y .

I OwnsSh(x , y , s): company x owns s shares in company y .

{
∀a∀b(Cont(a, b)← Sum{(s, c) :

(c = a ∨ Cont(a, c))∧
OwnsSh(c, b, s)} > 0.50)

}

74 / 96



Definitions are not procedures

I It is tempting to see a definition as a procedure, to compute
the defined relations from the parameters by iterated rule
application. However, this is not the right view.

I A definition states a logical relationship between defined and
parameter symbols. It frequently occurs that the defined
predicates are known and given, but the parameters are
unknown.

I In that case, we obviously cannot “execute” the rules since we
have no parameter values to start from.

75 / 96



A case of a definition with unknown parameters

Consider the following theory.{
R(A)←
∀x(R(x)← ∃y(R(y) ∧ G (y , x)))

}
∀xR(x)

This theory imposes the constraint on graph G that every element
of the domain should be reachable by a finite path from A. There
is obviously no way we can execute the definition of R here, since
G is not given.

76 / 96



Use IDP at
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=

ReachabilityIsTotal

to compute all graphs G with domain {a, b} and value AA = a
that satisfy this theory. Next, extend the structure with value
GA = {(a, a), (b, b)} and try again to find models. Does it give
what you expected?

77 / 96

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=ReachabilityIsTotal
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=ReachabilityIsTotal


Inductive definitions

I are not material implications

I are not expressible as equivalences in FO

78 / 96



Definitions are not sets of implications

Compare definition :{
∀x(Parent(x , y)← Father(x , y))
∀x(Parent(x , y)← Mother(x , y))

}
with set of material implications:

∀x(Parent(x , y)⇐ Father(x , y))
∀x(Parent(x , y)⇐ Mother(x , y))

With empty Father ,Mother relations.

I According to the definition, the Parent relation is empty.

I According to the implications, the Parent relation is arbitrary.

http:

//dtai.cs.kuleuven.be/krr/idp-ide/?present=DefImp

79 / 96

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=DefImp
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=DefImp


Definitions are not equivalences

Use IDP to compute certain models of the reachability definition
and its completion at
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=

ReachCompletion

Verify that in the unexpected (and incorrect) model of the
completion, R(B) satisfies the completed definition of R, despite
the fact that B is not reachable from A.

80 / 96

http://dtai.cs.kuleuven.be/krr/idp-ide/?present=ReachCompletion
http://dtai.cs.kuleuven.be/krr/idp-ide/?present=ReachCompletion


About the informal semantics of ¬ and ← in FO(ID).

81 / 96



We define A |= ϕ by structural induction:
- A |= P(t1, . . . , tn) if (tA1 , . . . , t

A
n ) ∈ PA

- ...
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A 6|= α
i.e., if it is not the case that A |= α
- ...

What is the meaning of not?

What is the meaning of the conditional?

82 / 96



The conditional in inductive definitions: a third kind of conditional.

83 / 96



Recalling principles

Extending FO
Extending FO with Types
Adding aggregates
Adding definitions to FO
Relation to Prolog
An alternative view on logic programming

84 / 96



Some familiar looking examples

{
∀x∀t(Member(x , .(x , t))← t)
∀x∀h∀t(Member(x , .(h, t))← Member(x , t))

}

{
∀l(Append(Nil , l , l)← t)
∀h∀t∀l∀t1(Append(.(h, t), l , .(h, t1))← Append(t, l , t1))

}

Do these look familiar to you?

85 / 96



Relationship to Prolog

I Prolog (programmation en logique): a declarative
programming language.

I Invented by Robert Kowalski (Imperial College London) and
Alain Colmerauer (U.Marseille) around 1971-1975.

I Rule based, variables start with capitals, negation as failure
not.

I A Prolog interpreter is called by posing a query.
I A procedural semantics: topdown execution of queries,

induced by inference algorithm called SLDNF resolution
(Selective Linear Definite clause resolution with Negation as
Failure).

I Unification, backtracking, negation by failure

I Side-effects (cut !, assert and retract,..) make it impossible to
view Prolog as a whole as a declarative (modelling) logic

I A logic program = a Prolog program without side-effects.

86 / 96



An example logic program with negation
parent child(trude, sally).

parent child(tom, sally).

parent child(tom, erica).

parent child(mike, tom).

female(trude).

sibling(X, Y) :- parent child(Z, X), parent child(Z, Y).

father child(X, Y) :- parent child(X, Y), not female(X).

mother child(X, Y) :- parent child(X, Y), female(X).

Queries:
?- father child(mike,tom).

True

?- father child(tom,X).

X=sally

X=erica

?- mother child(mike,tom)

False 87 / 96



The semantical problem of Logic Programming

I a logic program was introduced as a set of (special) material
implications.

I This cannot explain Prolog’s answers.

I But the answers are so intuitive and also very useful

I What formal semantics can explain these conclusions?

I What informal semantics can explain these conclusion?
I Two main proposals:

I A logic program as a defaul/autoepistemic theory
I Michael Gelfond and Vladimir Lifschitz
I stable semantics
I basis of ASP

I A logic program as a definition.
I Clark, Harel, Schlipf, Denecker et al.

88 / 96



Relationship logic programs - definitions

A proposal:
I The informal semantics of a logic program:

I UNA of all constant symbols
I The set of rules is a (parameter-free) definition defining all

predicate symbols.
I If no rule exists for a predicate, it is defined to be the empty

relation. E.g. if we delete the unique rule for female, female
is defined to be empty and every parent is entailed to be a
father.

I This view explains the answers to all queries in the example.

I It explains also the desired answers to recursive logic
programs.

89 / 96



UNA is needed.
Homework 3: Show that the example logic program on page 87
viewed as a definition in FO(ID) without UNA, does not entail
father child(mike,tom). You need to sketch a structure that
satisfies the definition (but not UNA), in which this atom is false.

90 / 96



Relationship logic programs - FO(ID)

I As a modelling language, logic programming is not expressive.

I a logic program is categorical: has only one model; hence, no
incomplete knowledge can be represented in it.

I FO(ID) arose as an integration of extended LP with FO.
I FO(ID) theories extend logic programs

I No automatic UNA
I Definitions have Parameters!
I Multiple definitions
I FO and FO(.) axioms

91 / 96



E.g., the binary reachability definition has parameter G/2.{
∀x∀y(R(x , y)← G (x , y))
∀x∀y∀z(R(x , y)← R(x , z) ∧ R(z , y))

}
On the other hand, in the following logic program, G/2 is defined
to be the empty relation:

R(x,y) :- G(x,y).

R(x,y) :- R(x,z), R(z,y).

92 / 96



An alternative view on logic programming

The origins of Answer Set Programming

93 / 96



Answer set programming

I In origin, the stable semantics of logic programs (LP) and
extended logic programs (ELP) is not a possible world
semantics.

I Gelfond and Lifschitz

I A stable model = a belief set, the set of literals in one
epistemic state of a rational introspective agent whose beliefs
are expressed by the program.

I ELP was the basis of ASP.

94 / 96



In origin, ELP was based on logics from common sense reasoning

I embeddings to default logic

I embeddings to autoepistemic logic

Mathematical information versus common sense information

95 / 96



FO(·): turning FO into a practical KR language

I FO does not suffice for knowledge representation, modelling,
specification

⇒ FO(Types,ID,Agg,Arit,FD,Mod,HO,Caus,. . . )

I Types
I (Inductive) Definitions
I Aggregates
I Arithmetic
I Coinductive Definitions
I Modal operators
I Higher Order logic
I Causation
I . . .

The FO(·) language framework

96 / 96


	Recalling principles 
	Extending FO
	Extending FO with Types
	Adding aggregates
	Adding definitions to FO
	Relation to Prolog
	An alternative view on logic programming


