
Lecture II - part 2
the knowledge base system IDP

June 7, 2016

1 / 44

Inference of the KBS: progress report
Model expansion and visualisation
Imperative + Declarative Programming (IDP)

2 / 44

Inference of the KBS: progress report
Model expansion and visualisation
Imperative + Declarative Programming (IDP)

3 / 44

How to use Logic for problem solving

I A logic theory is a bag of (descriptive) information

I A logic theory cannot be executed
I A logic theory is not a program
I A logic theory is not a representation of a problem

I So how can we use a logic theory to solve problems?

4 / 44

A Knowledge Base System (KBS)

Knowledge Base

Inference 2 Inference 3

Inference 4
Inference 1

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

5 / 44

A Knowledge Base System (KBS)

Knowledge Base

Inference 2 Inference 3

Inference 4
Inference 1

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

6 / 44

A Knowledge Base System (KBS)

Knowledge Base

Inference 2 Inference 3

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule

I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

7 / 44

A Knowledge Base System (KBS)

Knowledge Base

Model checking Inference 3

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule

I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

8 / 44

A Knowledge Base System (KBS)

Knowledge Base

Model checking Revision Inference

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule

I Deduction for verification of the KB
Querying of defined predicates, . . .

9 / 44

A Knowledge Base System (KBS)

Knowledge Base

Model checking Revision Inference

Deduction, Querying
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule
. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . . 10 / 44

A KBS demo

The course selection demo: interactive configuration
http://krr.bitbucket.org/courses/

5 Used forms of inference:

I Model Checking (P)

I Propagation (P)

I Model Generation (NP)

I Model Generation+Optimization (NPNP)

I Explanation (P)

11 / 44

http://krr.bitbucket.org/courses/

A KBS demo

Demonstrating a principle that procedural programming languages
can’t do:

Reusing the same specification/theory/knowledge
base to solve different types of problems.

12 / 44

Implementation of KBS

IDP3:

I A KBS system
I Programming environment

I Programming with theories, structures, inference methods
I In an extension of procedural language Lua:

Built by KRR-members Broes De Cat, Bart Bogaerts, Joachim
Jansen, Pieter Van Hertum, Jo Devriendt, Ingmar Dasseville (and
ex-members Johan Wittocx, Maarten Mariën, Stef De Pooter)

13 / 44

Implementation of KBS

I Forms of inference currently under development:
I (Finite) Model expansion (the core component of IDP3)
I Optimisation
I Propagation
I Querying structures
I ∆-model generation and revision:

I ∼view materialisation and update in databases
I computing & updating defined predicates

I Progression of temporal FO(.) theories.
I Model revision
I Debugging, Explanation.

14 / 44

Model generation/expansion

Model Expansion

I Input:
I An FO(.) theory T
I An (finite) structure Ai for a subvocabulary of

T , expressing domain and data.

I Output: a model A of T expanding Ai

Special case: Herbrand Model Generation

15 / 44

The grounder

Grounding = Eliminating quantification

Term Rewrite

Type derivation

Symmetry

breaking

Lifted unit

propagation

Grounding with

bounds

Evaluate known

definitions

FO(.) theory

CNF – ECNF – SMT (- FlatZinc)

16 / 44

MinisatID: SMT solver

Solving = computing a model

MinisatID

Model

CNF – ECNF – OPB – ASP - QBF

PC solver

SAT-solver

ID-module
0..*

Agg-module Minisat++

CP-module Gecode

17 / 44

Technology

Technologies from different computational logic areas integrated:

I Constraint Programming technology

I Sat Modulo Theory (SMT)

I Logic Programming

I Answer Set Programming

I MIP: Mixed Integer Programming

18 / 44

Solver AST (sec.) PSI (%)

minisatid 950.91 51.62
g12cpx 1126.98 41.68
fzn2smt 1143.47 38.13
ortools 1316.25 30.65
g12lazyfd 1306.10 30.31
gecode 1354.65 29.51
izplus 1350.42 28.05
bprolog 1423.45 24.73
jacop 1435.123 24.67
g12fd 1424.80 23.57
mistral 1525.83 16.91
g12mip 1597.54 12.58

Table : Experimental evaluation of MiniZinc solvers on the CSPs in
Benchmark Set B AmadiniGM13.

19 / 44

Benchmark # solved IDP # solved Gringo-Clasp

Perm. P. Matching 10 10
Valves Location * 7 4
Still-Life * 2 3
Graceful Graphs 3 9
Bottle Filling 10 10
NoMystery 9 6
Sokoban 7 5
Ricochet Robots 7 10
Crossing Minim. * 0 9
Solitaire 8 9
Weighted Sequence 10 10
Stable Marriage 10 10
Incremental Sched. 6 5
Visit All core 6 7
Knight’s Tour core 1 0
Maximal Clique *core 0 1
Graph Colouring core 7 4

Table : Experimental results for benchmarks of the 2013 ASP
competition.

20 / 44

Other demos

I Model expansion with logic-based visualisation

I Programming with logical inference

I Temporal Reasoning: planning

I Temporal reasoning: execution and optimisation

Demos and examples can be accessed from
https://dtai.cs.kuleuven.be/software/idp/

21 / 44

https://dtai.cs.kuleuven.be/software/idp/

IDPd3: logic based visualisation

dtai.cs.kuleuven.be/krr/idp-ide/?present=

SudokuVisualisatie

I This application serves to solve sudoku puzzles and to
visualise the outcome. The theory T expresses the 3 laws of
sudokus: one occurrence of each number in each row, column
and block. Model expansion inference solves a puzzle specified
in the input structure by returning a model A. De solution is
sudokuA. The user theory T D3 (see next slide) is mainly a
definition of IDPd3 graphical predicate and function symbols
defined in terms of symbols interpreted in A. ∆-model
expansion on T D3 and input structure A computes a value
for these predicates which is then transferred to the graphical
program d3.

I This is a simple illustration of logic to transform one sort of
datastructure in another.

22 / 44

dtai.cs.kuleuven.be/krr/idp-ide/?present=SudokuVisualisatie
dtai.cs.kuleuven.be/krr/idp-ide/?present=SudokuVisualisatie

theory T D3 : V out {
{

d3 type(1, Cell(r,k)) = rect <-.

d3 rect width(1, Cell(r,k)) = 4 <-.

d3 rect height(1, Cell(r,k)) = 4 <-.

d3 color(1, Cell(r,k)) = "white" <-.

d3 x(1, Cell(r,k)) = 5*k <-.

d3 y(1, Cell(r,k)) = 5*r <-.

d3 type(1, Text(r, k)) = text <-.

d3 x(1, Text(r, k)) = 5*k <-.

d3 y(1, Text(r, k)) = 5*r + 1 <-.

d3 text size(1, Text(r, k)) = 3 <-.

d3 text label(1, Text(r, k)) = t <-

sudoku(r, k) = c & toString(c) = t.

d3 color(1, Text(r, k)) = "black" <-.

d3 order(1, Cell(r, k)) = 0 <-.

d3 order(1, Text(r,k)) = 1 <-.

}
}

This definition defines slide 1
(argument 1) with:

I for each cell (r , c) a
rectangular object
denoted Cell(r,c), and a
text object Text(r,k).

I It defines type, width,
height, color, x and y
position of the
rectangular object.

I It defines type, text size
and label, color, x and y
position of the text object

I The sudoku number at
cell (r , c) is the label of
the text object..

I that text objects are in
front of rectangular
objects

∆-model expansion expands a
structure interpreting sudoku
into a structure interpreting all
these graphical symbols. This is
fed into d3. 23 / 44

IDPd3: an example

Input structure

sudoku = {1, 1 → 1; . . . ; 9, 9 → 4}
. . .

↓ ∆-model generation

d3 type = {1,Cell(1, 1) → rect; 1,Text(1, 1) → text; . . . }
d3 color = {1,Cell(1, 1) → white; 1,Text(1, 1) → black; . . . }
d3 x = {1,Cell(1, 1) → 5; 1,Cell(1, 2) → 10; . . . }
. . .

↓ translation to d3 input + d3

24 / 44

A prototype of a knowledge-based programming environment

I IDP3: A programming environment

I High level objects: vocabularies, theories, structures

I Functionalities for manipulation and inference

I Implemented in the language Lua

I A new way of mixing Declarative and Procedural knowledge

25 / 44

A demo: generating Sudoku-puzzles

Sudoku-puzzle requirements’

I (consistency) It should allow one unique solution

I (minimality) If we delete any value of the puzzle, it has at
least two solutions.

26 / 44

Background knowledge base in IDP

Vocabulary

vocabulary sudokuVoc {

extern vocabulary grid:: simpleGridVoc

type Num isa nat

type Block isa nat

Sudoku(Row ,Col) : Num

InBlock(Block ,Row ,Col)

}

Theory

theory sudokuTheory : sudokuVoc {

! r n : ?1 c : Sudoku(r,c) = n.

! c n : ?1 r : Sudoku(r,c) = n.

! b n : ?1 r c : InBlock(b,r,c) & Sudoku(r,c) = n.

! b r c : InBlock(b,r,c)

<=> b = ((r -1)/3)*3 + ((c -1)/3) + 1.

}

27 / 44

A demo: generating Sudoku-puzzles

Puzzle := empty
Generate at most 2 solutions for Puzzle
While 2 solutions were found do{

Select a random position where the two solutions differ
Extend Puzzle with the value of the first solution at this position
Generate at most 2 solutions for Puzzle
}

For each position of Puzzle that contains a value do {
Delete the value at this position
Generate at most 2 solutions for Puzzle
If there are two solutions, undo the deletion of the value.
}

Visualize the puzzle and its unique solution

28 / 44

Procedures

procedure createSudoku () {

math.randomseed(os.time ())

local puzzle = grid:: makeEmptyGrid (9)

stdoptions.nrmodels = 2

local currsols = modelExpand(sudokuTheory ,puzzle)

while #currsols > 1 do

repeat

col = math.random (1,9)

row = math.random (1,9)

num = currsols [1][sudokuVoc :: Sudoku](row ,col)

until num ~= currsols [2][sudokuVoc :: Sudoku](row ,col)

makeTrue(puzzle[sudokuVoc :: Sudoku].graph ,{row ,col ,num})

currsols = modelExpand(sudokuTheory ,puzzle)

end

printSudoku(puzzle)

}
29 / 44

Discussion

Two sorts of inferences:

I generating solutions to puzzles: model expansion
I Visualizing through ∆-model expansion

I computing a model of a definition ∆
I A special case of model expansion
I No search
I Can be implemented very differently
I = View materialisation in deductive databases.

Acces and manipulation of structures.

I Structures are objects in the environment

I Puzzle and its solutions are structures

I Checking and updating values at positions of puzzle

30 / 44

Reasoning on Temporal theories

I Temporal theory T : Linear Time Calculus
I Use Model expansion for planning with optimisation

I In the lecture I show a little video showing a idpd3-generated
video with the optimal plan to remove all gold.

I Use Progression for interactive execution.
I Input: T , structure A representing state at time i
I Output: structure A′ representing possible state at time i + 1.

I Illustration: pacman.

IDP is the only system that we know of that can use the same
formal specification to solve both tasks.

31 / 44

Reasoning on Temporal theories

I Temporal theory T : Linear Time Calculus
I Use Model expansion for planning with optimisation

I In the lecture I show a little video showing a idpd3-generated
video with the optimal plan to remove all gold.

I Use Progression for interactive execution.
I Input: T , structure A representing state at time i
I Output: structure A′ representing possible state at time i + 1.

I Illustration: pacman.

IDP is the only system that we know of that can use the same
formal specification to solve both tasks.

32 / 44

The pacman demo:

I Go to the IDP-web page
https://dtai.cs.kuleuven.be/software/idp/

I Let column: select ”Demos”

I Next page contains different visualised demos of IDP. Select
bottom middle ”More visualised demos.

I Next page, select link below ”Pacman”.

I Next page, press Run

I A labyrinth with above, a green and black rectangles appear,
indicating possible move actions van the pacman. Click the
black rectangles and pacman moves in the right direction.

I Due to memory limitations on the server, only a few moves
can be played.

I To avoid memory limitations, download the system.

33 / 44

https://dtai.cs.kuleuven.be/software/idp/

A company running standard software systems on this principle:

I LogicBlox - Datalog :
http://www.logicblox.com/

34 / 44

http://www.logicblox.com/

35 / 44

36 / 44

Generic interactive configuration

http://krr.bitbucket.org/autoconfig/

Another application, selectable from the demos webpage (left
middle box) is interactive decision enactment = business logic
terminology for generic interactive configuration.

I Automatic generation of a window with values for all ground
literals of a configuration problem

I Three-valued structure underneath

I User can select values
I System propagates user choices
I Optimal propagation versus approximate propagation

I System expands current partial structure on demand
I System searches model minimizing a cost term on demand
I Generic, incremental:

I Adding symbols
I Other vocabularies

37 / 44

http://krr.bitbucket.org/autoconfig/

The application is a benchmark problem of business rules

I USERV

I Deciding car insurance policy for client.

To be submitted to RuleML.

38 / 44

Advantages compared to business rule systems

I Clear declarative sematincs: formal and informal

I Reasoning backward from desired outcome.
I Increased functionalities

I computing solutions under uncertainty
I propagation
I optimisation
I explanation (is not implemented)
I . . .

39 / 44

Integrating logic in imperative languages

Joost Vennekens: Lowering the learning curve for declarative
programming: a Python API for the IDP system. International
Workshop on User-Oriented Logic Programming (IULP 2015) 31st
August 2015, Cork (Ireland) CoRR abs/1511.00916

40 / 44

idp.Type("Number", range(10))

idp.Function("Given(Square): Number", d)

idp.Function("Sol(Square): Number")

idp.Define("Diff(Square, Square)", "lambda x,y: x !=

y and (SameRow(x,y) or SameCol(x,y) or

SameSmallSq(x,y))")

idp.Constraint("all(Sol(x) == Given(x) for x in

Square if Given(x) != 0)")

idp.Constraint("all(Sol(x) != 0 for x in Square)")

idp.Constraint("all(Sol(x) != Sol(y) for (x,y) in

Diff)")

show(idp.Sol)

41 / 44

See webpages:

I https://dtai.cs.kuleuven.be/software/idp/

I Online IDE (edit, safe, download, run, many examples)
I Demos

I map coloring
I interactive course selection
I more visualised demos

I pacman - interactive execution
I Science Week example : visualisation of errors

I tutorial, manual

I ICLP-contest 2015 solutions

42 / 44

https://dtai.cs.kuleuven.be/software/idp/

Future

Knowledge-based software engineering
I Important gains to be made:

I development time
I compactness
I correctness
I reuse
I maintainability

I Great scientific and practical challenges

We are in the process of searching niches with industry where our
technology could already make a difference

43 / 44

A KRR-team with Ingmar Dasseville, Jo Devriendt and Matthias
van der Hallen won the International Logic Programming and
Constraint Programming competition with IDP.

44 / 44

	Inference of the KBS: progress report
	Model expansion and visualisation
	Imperative + Declarative Programming (IDP)

