Efficient ASP Techniques for Solving Hard Problems

Carmine Dodaro DIBRIS, University of Genoa

Arcavacata di Rende, 2-5-6-7 February 2018

Answer Set Programming (ASP)

- Declarative programming paradigm
- Based on the stable model (answer set) semantics

Idea:

- 1. Logic programs represent computational problems
- 2. Answer sets correspond to solutions
- 3. Use a solver to find solutions

Applications in several fields

ASP Syntax

ASP Syntax

Rule: (*r*)
$$\underbrace{a_1 | \dots | a_n}_{head} := \underbrace{b_1, \dots, b_k, not \ b_{k+1}, \dots, not \ b_m}_{body}.$$

Atoms, and Literals: a_i , b_i , not b_i Head of r: $H(r) = \{a_1, \ldots, a_n\}$ Body of r: $B(r) = B^+(r) \cup B^-(r)$ Positive Body: $B^+(r) = \{b_1, \ldots, b_k\}$ Negative Body: $B^-(r) = \{not \ b_{k+1}, \ldots, not \ b_m.\}$

Variables: Begin with uppercase letter Safety: Variables must occur in the positive body

Fact: Rule with empty body **Constraint**: Rule with empty head

Examples of Rules

Example (Disjunction, Negation, Constraints)

% Disjunctive knowledge: "A parent *P* is either a father % or a mother" mother(P, S) | father(P, S) := parent(P, S).

% Default Negation: "Check if an undirected graph" % is not connected" *disconnected* :- *node*(*X*), *node*(*Y*), *not reachable*(*X*, *Y*).

% Constraints: "Admit only connected graphs."

:- disconnected.

% Facts: Often used to define the input *node*(1):-.

Example (Disjunction, Negation, Constraints)

% Disjunctive knowledge: "A parent *P* is either a father % or a mother" mother(P, S) | father(P, S) := parent(P, S).

% Default Negation: "Check if an undirected graph"
% is not connected" *disconnected* :- node(X), node(Y), not reachable(X, Y).

% Constraints: "Admit only connected graphs."

:- disconnected.

% Facts: Often used to define the input *node*(1):-.

In case of facts symbol :- is omitted.

Grounder

- Eliminates variables
- Produces an equivalent propositional theory
- Solver
 - Works on propositional theory
 - Produces answer sets

Input Program ${\cal P}$

c(1).c(2). $a(X) \mid b(X) := c(X).$

Input Program ${\cal P}$

c(1).c(2). $a(X) \mid b(X) := c(X).$

Ground Program Π

c(1).c(2).a(1) | b(1) :- c(1).a(2) | b(2) :- c(2).

Arithmetic Expressions and Builtins

Arithmetic and comparison operators

Example (Fibonacci numbers)

 $\begin{array}{l} \textit{fib}(0,0).\\ \textit{fib}(1,1).\\ \textit{fib}(N+2,Y1+Y2) \coloneqq \textit{fib}(N,Y1),\textit{fib}(N+1,Y2), N < 19. \end{array}$

Arithmetic Expressions and Builtins

Arithmetic and comparison operators

Example (Fibonacci numbers)

fib(0, 0). fib(1, 1). fib(N + 2, Y1 + Y2) := fib(N, Y1), fib(N + 1, Y2), N < 19.N < 19 guarantees the termination!

Informal Semantics (1)

Disjunctive Rule:

 $a_1 \mid \ldots \mid a_n \coloneqq b_1, \ldots, b_k, not \ b_{k+1}, \ldots, not \ b_m.$

Informal Semantics:

"If all b_1, \ldots, b_k are true and all b_{k+1}, \ldots, b_m are not true, then at least one among a_1, \ldots, a_n is true".

Informal Semantics (1)

Disjunctive Rule:

 $a_1 \mid \ldots \mid a_n \coloneqq b_1, \ldots, b_k, not \ b_{k+1}, \ldots, not \ b_m.$

Informal Semantics:

"If all b_1, \ldots, b_k are true and all b_{k+1}, \ldots, b_m are not true, then at least one among a_1, \ldots, a_n is true".

Example

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). attendsASP(john).

Three models encoding three plausible scenarios:

- *M*₁: {*isInterestedinASP*(*john*), *attendsASP*(*john*)}
- M₂: {isCurious(john), attendsASP(john)}
- M₃: {isCurious(john), isInterestedinASP(john), attendsASP(john)}

Informal Semantics (1)

Disjunctive Rule:

 $a_1 \mid \ldots \mid a_n \coloneqq b_1, \ldots, b_k, not \ b_{k+1}, \ldots, not \ b_m.$

Informal Semantics:

"If all b_1, \ldots, b_k are true and all b_{k+1}, \ldots, b_m are not true, then at least one among a_1, \ldots, a_n is true".

Example

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). attendsASP(john).

Three models encoding three plausible scenarios:

- *M*₁: {*isInterestedinASP*(*john*), *attendsASP*(*john*)}
- M₂: {isCurious(john), attendsASP(john)}
- M₃: {isCurious(john), isInterestedinASP(john), attendsASP(john)}

 M_1 and M_2 are answer sets, while M_3 is not an answer set!

Informal Semantics (2)

Constraint:

:- b_1, \ldots, b_k , not b_{k+1}, \ldots , not b_m .

Informal Semantics:

"It is not possible that all b_1, \ldots, b_k are true, and all b_{k+1}, \ldots, b_m are false".

Informal Semantics (2)

Constraint:

$$:= b_1, \ldots, b_k, not b_{k+1}, \ldots, not b_m.$$

Informal Semantics:

"It is not possible that all b_1, \ldots, b_k are true, and all b_{k+1}, \ldots, b_m are false".

Example

isInterestedinASP(john) | isCurious(john) :- attendsASP(john).

:- hatesASP(john), isInterestedinASP(john).

attendsASP(john). hatesASP(john).

Only one plausible scenario:

- *M*₁:{*isInterestedinASP(john)*, *attendsASP(john)*.}
- M₂:{*isCurious(john)*, *attendsASP(john)*, *hatesASP(john)*.}

Semantics of disjunction is:

Minimal

 $a \mid b \mid c. \Rightarrow \{a\}, \{b\}, \{c\}$

Semantics of disjunction is:

Minimal

 $\textit{a} \mid \textit{b} \mid \textit{c}. \ \Rightarrow \{\textit{a}\}, \{\textit{b}\}, \{\textit{c}\}$

Actually subset minimal

 $a \mid b.$ $a \mid c. \Rightarrow \{a\}, \{b, c\}$

Semantics of disjunction is:

Minimal $a \mid b \mid c. \Rightarrow \{a\}, \{b\}, \{c\}$ Actually subset minimal a | b. $a \mid c. \Rightarrow \{a\}, \{b, c\}$...but not exclusive a | b. a | c. $b \mid c. \Rightarrow \{a, b\}, \{a, c\}, \{b, c\}$

Informal Semantics (4)

Disjunctive rules "generate models"

a | b. a | c. b | c.⇒ {a, b}, {a, c}, {b, c}

Integrity constraints "discard" unwanted models:
 % Add:

- := a, not b.
- \Rightarrow {**a**, **b**}, {**b**, **c**}

c(1). c(2). $a(1) \mid b(1) := c(1).$ $a(2) \mid b(2) := c(2).$

Answer sets

13/37

c(1). c(2). $a(1) \mid b(1) := c(1).$ $a(2) \mid b(2) := c(2).$

```
\{a(1),a(2),c(1),c(2)\}
```

c(1). c(2). $a(1) \mid b(1) := c(1).$ $a(2) \mid b(2) := c(2).$

$${a(1), a(2), c(1), c(2)}$$

 ${a(1), b(2), c(1), c(2)}$

c(1). c(2). $a(1) \mid b(1) := c(1).$ $a(2) \mid b(2) := c(2).$

$$\begin{array}{l} \{a(1), a(2), c(1), c(2)\} \\ \{a(1), b(2), c(1), c(2)\} \\ \{b(1), a(2), c(1), c(2)\} \end{array}$$

c(1). c(2). $a(1) \mid b(1) := c(1).$ $a(2) \mid b(2) := c(2).$

$$\{a(1), a(2), c(1), c(2)\} \\ \{a(1), b(2), c(1), c(2)\} \\ \{b(1), a(2), c(1), c(2)\} \\ \{b(1), b(2), c(1), c(2)\}$$

- The formal semantics is based on the concept of reduct
- A model M is an answer set (stable model) of a program Π if M is a subset minimal model of Π^M, which is the reduct of Π w.r.t. M.

Program П	Model <i>M</i> ₁	Model M ₂
a b ← c	<i>a</i> , <i>b</i> , <i>c</i>	<i>a</i> , <i>b</i> , <i>d</i>
$a \leftarrow b$		
$b \leftarrow a$		
$c \leftarrow not d$		
$d \leftarrow \textit{not } c$		

- The formal semantics is based on the concept of reduct
- A model M is an answer set (stable model) of a program Π if M is a subset minimal model of Π^M, which is the reduct of Π w.r.t. M.

Program П	Model <i>M</i> ₁	Model M ₂
$a \mid b \leftarrow c$	a, b, c	a, b, d
$egin{array}{cl} \leftarrow b \\ b \leftarrow a \\ c \leftarrow not \ d \\ d \leftarrow not \ c \end{array}$	$ \begin{array}{c} Reduct \ \Pi^{M_1} \\ a \mid b \leftarrow c \\ a \leftarrow b \end{array} $	
	b ← a c ← not d d ← not c	

- The formal semantics is based on the concept of reduct
- A model M is an answer set (stable model) of a program Π if M is a subset minimal model of Π^M, which is the reduct of Π w.r.t. M.

Program П	Model M ₁	Model M ₂
$a \mid b \leftarrow c$	a, b, c	a, b, d
$egin{array}{l} \leftarrow b \ b \leftarrow a \ c \leftarrow not \ d \ d \leftarrow not \ c \end{array}$	$\begin{array}{c} Reduct \ \Pi^{M_1} \\ a \mid b \leftarrow c \\ a \leftarrow b \\ b \leftarrow a \\ c \leftarrow \textit{not } d \\ d \leftarrow \textit{not } c \end{array}$	

 \checkmark M_1 : an answer set

- The formal semantics is based on the concept of reduct
- A model M is an answer set (stable model) of a program Π if M is a subset minimal model of Π^M, which is the reduct of Π w.r.t. M.

Model M ₁	Model M ₂
a, b, c	a, b, d
$\begin{array}{c} Reduct \ \Pi^{M_1} \\ a \mid b \leftarrow c \end{array}$	Reduct Π ^M ₂ a b ← c
a ← b b ← a	a
$c \leftarrow \frac{not d}{d}$	$c \leftarrow not d$
	Model M_1 a, b, c Reduct Π^{M_1} $a \mid b \leftarrow c$ $a \leftarrow b$ $b \leftarrow a$ $c \leftarrow not d$ $d \leftarrow not c$

✓ M₁: an answer set

- The formal semantics is based on the concept of reduct
- A model M is an answer set (stable model) of a program Π if M is a subset minimal model of Π^M , which is the reduct of П w.r.t. *M*.

Program П	Model M ₁	Model M ₂
$a \mid b \leftarrow c$	a, b, c	a, b, d
$egin{array}{c} \leftarrow b \ b \leftarrow a \ c \leftarrow not \ d \ d \leftarrow not \ c \end{array}$	$\begin{array}{c} Reduct \ \Pi^{M_1} \\ a \mid b \leftarrow c \\ a \leftarrow b \end{array}$	$\begin{array}{c} \text{Reduct } \Pi^{M_2} \\ \hline a \mid b \leftarrow c \\ a \leftarrow b \\ \hline c \\ a \leftarrow c \end{array}$
	$b \leftarrow a$ $c \leftarrow not d$ $d \leftarrow not c$	$b \leftarrow a$ $c \leftarrow not d$ $d \leftarrow not c$
	✓ M₁: an answer set	$X M_2$: not an answer

set 14/37

Extension of the plain language:

- Choice rules
- Aggregates
- Weak constraints

Choice Rules

A choice rule

- Allows to perform a "free" choice on some atoms
- The choice rule {a}. can be viewed as a shortcut for a | na where na is a fresh symbol which does not appear in the answer sets

Program П

c(1). c(2). $\{a(X)\} := c(X).$ $\{b(X)\} := c(X).$

```
\{c(1), c(2)\}
\{c(1), c(2), b(1)\}
\{c(1), c(2), a(2), b(1)\}
\{c(1), c(2), a(2)\}
\{c(1), c(2), a(1), a(2)\}
\{c(1), c(2), a(1), a(2), b(1)\}
\{c(1), c(2), a(1), b(1)\}
\{c(1), c(2), a(1)\}
\{c(1), c(2), b(2), a(1)\}
\{c(1), c(2), b(2), a(1), b(1)\}
\{c(1), c(2), b(2), b(1)\}
\{c(1), c(2), b(2)\}
\{c(1), c(2), b(2), a(2)\}
\{c(1), c(2), b(2), a(2), b(1)\}
\{c(1), c(2), b(2), a(2), a(1), b(1)\}
\{c(1), c(2), b(2), a(2), a(1)\}
```

Program Π_1

c(1). c(2). $\{a(X) : c(X)\}.$ $\{b(X) : c(X)\}.$

Program Π₂

c(1).c(2). $\{a(X) : c(X); b(X) : c(X)\}.$

Ground instantiation of Π_1

c(1). c(2). {a(1); a(2)}. {b(1); b(2)}.

Ground instantiation of Π_2

c(1).c(2). $\{a(1); a(2); b(1); b(2)\}.$

Program Π₁

c(1). c(2). $1 \le \{a(X) : c(X)\} \le 1.$ $1 \le \{b(X) : c(X)\} \le 1.$

Program Π_2

c(1). c(2). $1 \leq \{a(X) : c(X); b(X) : c(X)\} \leq 1.$

Answer sets of Π_1

 $\begin{aligned} & \{c(1), c(2), b(1), a(1)\} \\ & \{c(1), c(2), b(1), a(2)\} \\ & \{c(1), c(2), b(2), a(1)\} \\ & \{c(1), c(2), b(2), a(2)\} \end{aligned}$

Answer sets of II2

$$\{ c(1), c(2), a(1) \} \\ \{ c(1), c(2), a(2) \} \\ \{ c(1), c(2), b(1) \} \\ \{ c(1), c(2), b(2) \}$$

Choice Rules

Program Π₂

$$c(1).$$
 $c(2).$
 $1 \leq \{a(X) : c(X); b(X) : c(X)\} \leq 1.$

Program Π'_2

$$\begin{array}{ll} c(1). & c(2). \\ \{a(X) : c(X); b(X) : c(X)\}. \\ \vdots - \# count\{X, a : a(X), c(X); X, b : b(X), c(X)\} \neq 1 \end{array}$$

Grounding of Π_2'

$$c(1). c(2). \\ \{a(1); b(1); a(2); b(2)\}. \\ :- #count\{1, a : a(1), 1, b : b(1), 2, a : a(2), 2, b : b(2)\} \neq 1.$$
Aggregates

- Concise modeling of properties over sets of data
- Type of aggregates are #count, #sum, #min, #max

Choice of products

```
product(pizza, 7). product(pasta, 1). product(hamburger, 8).
product(water, 1). budget(8).
\{buy(X) : product(X, Price)\}.
```

 $:-budget(B), #sum{Price, X : buy(X), product(X, Price)} > B.$

Answer sets (showing only buy)

```
{}
{buy(hamburger)}
{buy(pasta)}
{buy(water)}
{buy(pizza)}
{buy(pizza), buy(pasta)}
{buy(water), buy(pizza)}
{buy(water), buy(pasta)}
```

Weak constraints

- Used to model optimization problems
- The idea is to associate a cost to each answer set
- Answer sets with the lowest cost are optimum

Program П

 $\begin{array}{l} c(1).\\ c(2).\\ 1 \leq \{a(X):c(X)\} \leq 1.\\ 1 \leq \{b(X):c(X)\} \leq 1.\\ \because a(X), b(X). \quad [X@1, X] \end{array}$

Answer sets

$$\{c(1), c(2), b(1), a(2)\} \rightarrow COST = 0$$

 $\{c(1), c(2), b(2), a(1)\} \rightarrow COST = 0$
 $\{c(1), c(2), b(1), a(1)\} \rightarrow COST = 1$
 $\{c(1), c(2), b(2), a(2)\} \rightarrow COST = 2$

Choice of products

product(pizza,7). product(pasta,1). budget(8). product(hamburger,8). product(water,1). {buy(X) : product(X, Price)}. pay(S) :- $S = \#sum\{Price, X : buy(X), product(X, Price)\}.$:- budget(B), pay(S), S > B. :~ budget(B), pay(S), B > S. [B - S@1, S]

Answer sets (showing only buy)

```
 \{buy(hamburger)\} \rightarrow COST = 0 \\ \{buy(pizza), buy(pasta)\} \rightarrow COST = 0 \\ \{buy(water), buy(pizza)\} \rightarrow COST = 0 \\ \{buy(pizza)\} \rightarrow COST = 1 \\ \{buy(water), buy(pasta)\} \rightarrow COST = 6 \\ \{buy(pasta)\} \rightarrow COST = 7 \\ \{buy(water)\} \rightarrow COST = 7 \\ \{buy(water)\} \rightarrow COST = 7 \\ \{\} \rightarrow COST = 8 \end{cases}
```

1 Write a program representing a computational problem

 \rightarrow i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

1 Write a program representing a computational problem

 \rightarrow i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:

1 Write a program representing a computational problem

 \rightarrow i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:

1 Model your domain

 \rightarrow Single out input/output predicates

1 Write a program representing a computational problem

 \rightarrow i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:

- 1 Model your domain
 - \rightarrow Single out input/output predicates
- 2 Write a logic program modeling your problem
 - \rightarrow Use predicates representing relevant entities
 - \rightarrow Hint: take input data separated from derived ones

Use a "Direct" Encoding with Datalog rules for

Polynomial Problems, etc.

Example (Reachability)

Problem: Find all nodes reachable from the others. **Input:** $edge(_,_)$.

```
% X is reachable from Y if an edge (X,Y) exists reachable(X,Y) := edge(X,Y).
```

```
% Reachability is transitive reachable(X, Z), edge(Z, Y).
```

Use a "Direct" Encoding with Datalog rules for

Polynomial Problems, etc.

Example (Reachability)

```
Problem: Find all nodes reachable from the others. Input: edge(\_,\_).
```

```
% X is reachable from Y if an edge (X,Y) exists reachable(X,Y) := edge(X,Y).
```

```
% Reachability is transitive reachable(X, Z), edge(Z, Y).
```

The method in often unfeasible for search problems from NP and beyond: need for a programming methodology

Guess & Check & Optimize (GCO)

- **1** Guess solutions \rightarrow using disjunctive (or choice) rules
- **2** Check admissible ones \rightarrow using strong constraints

Guess & Check & Optimize (GCO)

1 Guess solutions \rightarrow using disjunctive (or choice) rules

2 Check admissible ones \rightarrow using strong constraints *Optimization problem?*

3 Specify Preference criteria \rightarrow using weak constraints

Guess & Check & Optimize (GCO)

- **1** Guess solutions \rightarrow using disjunctive (or choice) rules
- **2** Check admissible ones \rightarrow using strong constraints *Optimization problem?*
- 3 Specify Preference criteria \rightarrow using weak constraints

In other words...

- 1 disjunctive (choice) rules \rightarrow generate candidate solutions
- 2 constraints \rightarrow test solutions discarding unwanted ones
- ${\tt 3}$ weak constraints \rightarrow single out optimal solutions

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

% a disjunctive rule to "guess" all the possible assignments group(P, 1) | group(P, 2) := person(P).

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

% a disjunctive rule to "guess" all the possible assignments group(P, 1) | group(P, 2) :- person(P).
% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group
:- group(P1, G), group(P2, G), father(P1, P2).

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

% a disjunctive rule to "guess" all the possible assignments group(P, 1) | group(P, 2) :- person(P).
% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group
:- group(P1, G), group(P2, G), father(P1, P2). ...so how does it work really?

Consider:

 $group(P, 1) \mid group(P, 2) := person(P).$

Consider: group(P, 1) | group(P, 2) := person(P).

If the input is: person(john). person(joe). father(john, joe).

Consider: group(P, 1) | group(P, 2) := person(P).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)} Consider: $group(P, 1) \mid group(P, 2) := person(P).$ Now add::= group(P1, G), group(P2, G), father(P1, P2).If the input is:person(john). person(joe). father(john, joe).

Consider: group(P, 1) | group(P, 2) := person(P). Now add: = group(P1, G), group(P2, G), father(P1, P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint "discards" two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Consider: group(P, 1) | group(P, 2) := person(P). :- group(P1, G), group(P2, G), father(P1, P2).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

The answer sets are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}

G&C = Define search space + specify desired solutions

Problem: Given a graph assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).

Problem: Given a graph assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).

% guess a coloring for the nodes (r) col(X, red) | col(X, yellow) | col(X, green) :- node(X).

Problem: Given a graph assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).

% guess a coloring for the nodes (r) col(X, red) | col(X, yellow) | col(X, green) :- node(X).

% discard colorings where adjacent nodes have the same color (c) :- edge(X, Y), col(X, C), col(Y, C).

Problem: Given a graph assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).

% guess a coloring for the nodes (r) col(X, red) | col(X, yellow) | col(X, green) :- node(X).

% discard colorings where adjacent nodes have the same color (c) :- edge(X, Y), col(X, C), col(Y, C).

Problem: Find a path in a Graph beginning at the starting node which contains all nodes of the graph. **Input:** *node*(_) and *edge*(_,_), and *start*(_).

```
% Guess a path
inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
```

Problem: Find a path in a Graph beginning at the starting node which contains all nodes of the graph.
Input: node(_) and edge(_,_), and start(_).
% Guess a path

 $inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).$

% A node can be reached only once :- inPath(X, Y), inPath(X, Y1), Y <> Y1. :- inPath(X, Y), inPath(X1, Y), X <> X1.

```
Problem: Find a path in a Graph beginning at the starting node which contains all nodes of the graph.

Input: node(\_) and edge(\_,\_), and start(\_).

% Guess a path

inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).

% A node can be reached only once

:= inPath(X, Y), inPath(X, Y1), Y <> Y1.

:= inPath(X, Y), inPath(X1, Y), X <> X1.

% All nodes must be reached

:= node(X), not reached(X).
```

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_,_), and start(_).
    % Guess a path
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
    % A node can be reached only once
    :- inPath(X, Y), inPath(X, Y1), Y \ll Y1.
    :- inPath(X, Y), inPath(X1, Y), X \ll X1.
    % All nodes must be reached
    :- node(X), not reached(X).
    % The path is not cyclic
    :- inPath(X, Y), start(Y).
```

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_,_), and start(_).
    % Guess a path
                                                         Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
    % A node can be reached only once
    :- inPath(X, Y), inPath(X, Y1), Y <> Y1.
                                                         Check
    :- inPath(X, Y), inPath(X1, Y), X \ll X1.
    % All nodes must be reached
    :- node(X), not reached(X).
    % The path is not cyclic
    :- inPath(X, Y), start(Y).
    reached(X) := reached(Y), inPath(Y, X).
                                                         Aux. Rules
    reached(X) := start(X).
```

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)

Problem: Find a path of minimum length in a Weighted Graph beginning at the starting node which contains all nodes of the graph. **Input:** *node(_)* and *edge(_,_,_)*, and *start(_)*.

```
% Guess a path
```

```
inPath(X, Y) \mid outPath(X, Y) := edge(X, Y, _).
```

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)

Problem: Find a path of minimum length in a Weighted Graph beginning at the starting node which contains all nodes of the graph. **Input:** *node(_)* and *edge(_,_,_)*, and *start(_)*.

```
% Guess a path
```

```
inPath(X, Y) \mid outPath(X, Y) := edge(X, Y, _).
```

% Ensure that it is Hamiltonian (as before)

- :- inPath(X, Y), inPath(X, Y1), $Y \ll Y1$.
- := inPath(X, Y), inPath(X1, Y), X <> X1.
- :- node(X), not reached(X).
- :- inPath(X, Y), start(Y).

reached(X) := reached(Y), inPath(Y, X).

reached(X) := start(X).

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)

Problem: Find a path of minimum length in a Weighted Graph beginning at the starting node which contains all nodes of the graph. **Input:** *node*(_) and *edge*(_, _, _), and *start*(_). % Guess a path Guess $inPath(X, Y) \mid outPath(X, Y) := edge(X, Y,).$ % Ensure that it is Hamiltonian (as before) :- inPath(X, Y), inPath(X, Y1), $Y \ll Y1$. Check :- inPath(X, Y), inPath(X1, Y), $X \ll X1$. :- node(X), not reached(X). :- inPath(X, Y), start(Y). reached(X) := reached(Y), inPath(Y, X).Aux. Rules reached(X) := start(X). % Minimize the sum of distances | Optimize :~ inPath(X, Y), edge(X, Y, C). [C@1, X, Y, C]
Grounders

- Gringo https://potassco.org/
- i-DLV https://github.com/DeMaCS-UNICAL/I-DLV/wiki

Solvers

- clasp https://potassco.org/
- wasp github.com/alviano/wasp

Full systems

- clingo (gringo + clasp) https://potassco.org/clingo/
- DLV2 (i-DLV + wasp) https://www.mat.unical.it/DLV2/

Exercise 1

A gala dinner has to be organized and table composition must satisfy a number of requirements:

- Each table has n chairs.
- Each guest must be assigned exactly one table.
- People liking each other must sit at the same table.
- People disliking each other must not sit at the same table.

Input

```
% table(number,capacity)
table(1,5). table(2,5).
% guest(name)
guest(luca). guest(francesco).
                                    guest(john).
                                                    guest(mary).
quest(marco). quest(andrea).
                                    quest(giovanna).
                                                        quest(laura).
% like(X,Y), X likes Y
like(luca,francesco). like(luca,mary). like(john,mary).
like(andrea,giovanna).
                         like(giovanna,marco).
                                                 like(laura,luca).
% dislike(X,Y), X doesn't like Y
dislike(luca,marco).
                      dislike(luca,andrea).
                                              dislike(laura.giovanna).
dislike(laura,andrea).
                        dislike(marco,luca).
                                              dislike(marco,francesco).
```

Given an undirected graph G = (V, E), a clique is a subset of the vertices all adjacent to each other. A clique *C* is said to be maximal if for each other clique *C'* in *G*, the number of nodes in *C* are larger than or equal to the number of nodes in *C'*. Write an ASP encoding to find maximal cliques of an input graph.

Input				
node(1).	node(2).	node(3).	node(4).	node(5).
edge(1,2).	edge(3,4).	edge(4,5)	edge(3,	4).