
Efficient ASP Techniques
for Solving Hard Problems

Carmine Dodaro
DIBRIS, University of Genoa

Arcavacata di Rende, 2-5-6-7 February 2018

Context (1)

Answer Set Programming (ASP)

Declarative programming paradigm

Based on the stable model (answer set) semantics

Idea:

1. Logic programs represent computational problems

2. Answer sets correspond to solutions

3. Use a solver to find solutions

2 / 37

Context (2)

Applications in several fields

3 / 37

ASP Syntax

Rule: (r) a1| . . . |an︸ ︷︷ ︸ :- b1, . . . ,bk ,not bk+1, . . . ,not bm.︸ ︷︷ ︸
head body

Atoms, and Literals: ai , bi , not bi
Head of r : H(r) = {a1, . . . ,an}
Body of r : B(r) = B+(r) ∪ B−(r)
Positive Body: B+(r) = {b1, . . . ,bk}
Negative Body: B−(r) = {not bk+1, . . . ,not bm.}

Variables: Begin with uppercase letter
Safety: Variables must occur in the positive body

Fact: Rule with empty body
Constraint: Rule with empty head

4 / 37

ASP Syntax

Rule: (r) a1| . . . |an︸ ︷︷ ︸ :- b1, . . . ,bk ,not bk+1, . . . ,not bm.︸ ︷︷ ︸
head body

Atoms, and Literals: ai , bi , not bi
Head of r : H(r) = {a1, . . . ,an}
Body of r : B(r) = B+(r) ∪ B−(r)
Positive Body: B+(r) = {b1, . . . ,bk}
Negative Body: B−(r) = {not bk+1, . . . ,not bm.}

Variables: Begin with uppercase letter
Safety: Variables must occur in the positive body

Fact: Rule with empty body
Constraint: Rule with empty head

4 / 37

Examples of Rules

Example (Disjunction, Negation, Constraints)

% Disjunctive knowledge: “A parent P is either a father
% or a mother”
mother(P,S) | father(P,S) :-parent(P,S).

% Default Negation: “Check if an undirected graph”
% is not connected”
disconnected :-node(X),node(Y), not reachable(X ,Y).

% Constraints: “Admit only connected graphs.”
:-disconnected .

% Facts: Often used to define the input
node(1) :- .

In case of facts symbol :- is omitted.

5 / 37

Examples of Rules

Example (Disjunction, Negation, Constraints)

% Disjunctive knowledge: “A parent P is either a father
% or a mother”
mother(P,S) | father(P,S) :-parent(P,S).

% Default Negation: “Check if an undirected graph”
% is not connected”
disconnected :-node(X),node(Y), not reachable(X ,Y).

% Constraints: “Admit only connected graphs.”
:-disconnected .

% Facts: Often used to define the input
node(1) :- .

In case of facts symbol :- is omitted.

5 / 37

ASP Computation

Grounder

Eliminates variables

Produces an equivalent propositional theory

Solver

Works on propositional theory

Produces answer sets

6 / 37

Example Grounding

Input Program P

c(1).
c(2).
a(X) | b(X) :− c(X).

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

7 / 37

Example Grounding

Input Program P

c(1).
c(2).
a(X) | b(X) :− c(X).

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

7 / 37

Arithmetic Expressions and Builtins

Arithmetic and comparison operators
<,>,<=, >=,=

+,−, ∗, /

Example (Fibonacci numbers)

fib(0,0).
fib(1,1).
fib(N + 2,Y1 + Y 2) :- fib(N,Y1), fib(N + 1,Y 2),N < 19.

N < 19 guarantees the termination!

8 / 37

Arithmetic Expressions and Builtins

Arithmetic and comparison operators
<,>,<=, >=,=

+,−, ∗, /

Example (Fibonacci numbers)

fib(0,0).
fib(1,1).
fib(N + 2,Y1 + Y 2) :- fib(N,Y1), fib(N + 1,Y 2),N < 19.
N < 19 guarantees the termination!

8 / 37

Informal Semantics (1)
Disjunctive Rule:

a1 | . . . | an :- b1, . . . ,bk ,not bk+1, . . . ,not bm.

Informal Semantics:

“If all b1, . . . ,bk are true and all bk+1, . . . ,bm are not true,
then at least one among a1, . . . ,an is true”.

Example

isInterestedinASP(john) | isCurious(john) :-attendsASP(john).

attendsASP(john).

Three models encoding three plausible scenarios:
M1: {isInterestedinASP(john), attendsASP(john)}

M2: {isCurious(john), attendsASP(john)}

M3: {isCurious(john), isInterestedinASP(john), attendsASP(john)}

M1 and M2 are answer sets, while M3 is not an answer set!

9 / 37

Informal Semantics (1)
Disjunctive Rule:

a1 | . . . | an :- b1, . . . ,bk ,not bk+1, . . . ,not bm.

Informal Semantics:

“If all b1, . . . ,bk are true and all bk+1, . . . ,bm are not true,
then at least one among a1, . . . ,an is true”.

Example

isInterestedinASP(john) | isCurious(john) :-attendsASP(john).

attendsASP(john).

Three models encoding three plausible scenarios:
M1: {isInterestedinASP(john), attendsASP(john)}

M2: {isCurious(john), attendsASP(john)}

M3: {isCurious(john), isInterestedinASP(john), attendsASP(john)}

M1 and M2 are answer sets, while M3 is not an answer set!

9 / 37

Informal Semantics (1)
Disjunctive Rule:

a1 | . . . | an :- b1, . . . ,bk ,not bk+1, . . . ,not bm.

Informal Semantics:

“If all b1, . . . ,bk are true and all bk+1, . . . ,bm are not true,
then at least one among a1, . . . ,an is true”.

Example

isInterestedinASP(john) | isCurious(john) :-attendsASP(john).

attendsASP(john).

Three models encoding three plausible scenarios:
M1: {isInterestedinASP(john), attendsASP(john)}

M2: {isCurious(john), attendsASP(john)}

M3: {isCurious(john), isInterestedinASP(john), attendsASP(john)}

M1 and M2 are answer sets, while M3 is not an answer set!

9 / 37

Informal Semantics (2)
Constraint:

:- b1, . . . ,bk ,not bk+1, . . . ,not bm.

Informal Semantics:

“It is not possible that all b1, . . . ,bk are true, and
all bk+1, . . . ,bm are false”.

Example

isInterestedinASP(john) | isCurious(john) :-attendsASP(john).

:-hatesASP(john), isInterestedinASP(john).

attendsASP(john). hatesASP(john).

Only one plausible scenario:
M1:{isInterestedinASP(john),attendsASP(john).}
M2:{isCurious(john),attendsASP(john),hatesASP(john).}

10 / 37

Informal Semantics (2)
Constraint:

:- b1, . . . ,bk ,not bk+1, . . . ,not bm.

Informal Semantics:

“It is not possible that all b1, . . . ,bk are true, and
all bk+1, . . . ,bm are false”.

Example

isInterestedinASP(john) | isCurious(john) :-attendsASP(john).

:-hatesASP(john), isInterestedinASP(john).

attendsASP(john). hatesASP(john).

Only one plausible scenario:
M1:{isInterestedinASP(john),attendsASP(john).}
M2:{isCurious(john),attendsASP(john),hatesASP(john).}

10 / 37

Informal Semantics (3)

Semantics of disjunction is:

Minimal
a | b | c. ⇒ {a}, {b}, {c}

Actually subset minimal
a | b.
a | c. ⇒ {a}, {b, c}
...but not exclusive
a | b.
a | c.
b | c. ⇒ {a,b}, {a, c}, {b, c}

11 / 37

Informal Semantics (3)

Semantics of disjunction is:

Minimal
a | b | c. ⇒ {a}, {b}, {c}
Actually subset minimal
a | b.
a | c. ⇒ {a}, {b, c}

...but not exclusive
a | b.
a | c.
b | c. ⇒ {a,b}, {a, c}, {b, c}

11 / 37

Informal Semantics (3)

Semantics of disjunction is:

Minimal
a | b | c. ⇒ {a}, {b}, {c}
Actually subset minimal
a | b.
a | c. ⇒ {a}, {b, c}
...but not exclusive
a | b.
a | c.
b | c. ⇒ {a,b}, {a, c}, {b, c}

11 / 37

Informal Semantics (4)

Disjunctive rules “generate models”

a | b.
a | c.
b | c.
⇒ {a,b}, {a, c}, {b, c}

Integrity constraints “discard” unwanted models:
% Add:
:-a,not b.
⇒ {a,b}, {b, c}

12 / 37

Informal Semantics (5)

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

Answer sets

{a(1),a(2), c(1), c(2)}
{a(1),b(2), c(1), c(2)}
{b(1),a(2), c(1), c(2)}
{b(1),b(2), c(1), c(2)}

13 / 37

Informal Semantics (5)

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

Answer sets

{a(1),a(2), c(1), c(2)}

{a(1),b(2), c(1), c(2)}
{b(1),a(2), c(1), c(2)}
{b(1),b(2), c(1), c(2)}

13 / 37

Informal Semantics (5)

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

Answer sets

{a(1),a(2), c(1), c(2)}
{a(1),b(2), c(1), c(2)}

{b(1),a(2), c(1), c(2)}
{b(1),b(2), c(1), c(2)}

13 / 37

Informal Semantics (5)

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

Answer sets

{a(1),a(2), c(1), c(2)}
{a(1),b(2), c(1), c(2)}
{b(1),a(2), c(1), c(2)}

{b(1),b(2), c(1), c(2)}

13 / 37

Informal Semantics (5)

Ground Program Π

c(1).
c(2).
a(1) | b(1) :− c(1).
a(2) | b(2) :− c(2).

Answer sets

{a(1),a(2), c(1), c(2)}
{a(1),b(2), c(1), c(2)}
{b(1),a(2), c(1), c(2)}
{b(1),b(2), c(1), c(2)}

13 / 37

Reduct of a Program

The formal semantics is based on the concept of reduct

A model M is an answer set (stable model) of a program Π
if M is a subset minimal model of ΠM , which is the reduct
of Π w.r.t. M.

Program Π

a | b ← c
a← b
b ← a
c ← not d
d ← not c

Model M1

a,b, c

Reduct ΠM1

a | b ← c
a← b
b ← a
c ← not d
d ← not c

3 M1: an answer set

Model M2

a,b,d

Reduct ΠM2

a | b ← c
a← b
b ← a
c ← not d
d ← not c

7 M2: not an answer
set

14 / 37

Reduct of a Program

The formal semantics is based on the concept of reduct

A model M is an answer set (stable model) of a program Π
if M is a subset minimal model of ΠM , which is the reduct
of Π w.r.t. M.

Program Π

a | b ← c
a← b
b ← a
c ← not d
d ← not c

Model M1

a,b, c

Reduct ΠM1

a | b ← c
a← b
b ← a
c ← not d
d ← not c

3 M1: an answer set

Model M2

a,b,d

Reduct ΠM2

a | b ← c
a← b
b ← a
c ← not d
d ← not c

7 M2: not an answer
set

14 / 37

Reduct of a Program

The formal semantics is based on the concept of reduct

A model M is an answer set (stable model) of a program Π
if M is a subset minimal model of ΠM , which is the reduct
of Π w.r.t. M.

Program Π

a | b ← c
a← b
b ← a
c ← not d
d ← not c

Model M1

a,b, c

Reduct ΠM1

a | b ← c
a← b
b ← a
c ← not d
d ← not c

3 M1: an answer set

Model M2

a,b,d

Reduct ΠM2

a | b ← c
a← b
b ← a
c ← not d
d ← not c

7 M2: not an answer
set

14 / 37

Reduct of a Program

The formal semantics is based on the concept of reduct

A model M is an answer set (stable model) of a program Π
if M is a subset minimal model of ΠM , which is the reduct
of Π w.r.t. M.

Program Π

a | b ← c
a← b
b ← a
c ← not d
d ← not c

Model M1

a,b, c

Reduct ΠM1

a | b ← c
a← b
b ← a
c ← not d
d ← not c

3 M1: an answer set

Model M2

a,b,d

Reduct ΠM2

a | b ← c
a← b
b ← a
c ← not d
d ← not c

7 M2: not an answer
set

14 / 37

Reduct of a Program

The formal semantics is based on the concept of reduct

A model M is an answer set (stable model) of a program Π
if M is a subset minimal model of ΠM , which is the reduct
of Π w.r.t. M.

Program Π

a | b ← c
a← b
b ← a
c ← not d
d ← not c

Model M1

a,b, c

Reduct ΠM1

a | b ← c
a← b
b ← a
c ← not d
d ← not c

3 M1: an answer set

Model M2

a,b,d

Reduct ΠM2

a | b ← c
a← b
b ← a
c ← not d
d ← not c

7 M2: not an answer
set 14 / 37

Complex Constructs

Extension of the plain language:
Choice rules

Aggregates

Weak constraints

15 / 37

Choice Rules (1)
A choice rule

Allows to perform a
“free” choice on
some atoms
The choice rule {a}.
can be viewed as a
shortcut for a | na
where na is a fresh
symbol which does
not appear in the
answer sets

Program Π

c(1).
c(2).
{a(X)} :− c(X).
{b(X)} :− c(X).

Answer sets

{c(1), c(2)}
{c(1), c(2), b(1)}
{c(1), c(2), a(2), b(1)}
{c(1), c(2), a(2)}
{c(1), c(2), a(1), a(2)}
{c(1), c(2), a(1), a(2), b(1)}
{c(1), c(2), a(1), b(1)}
{c(1), c(2), a(1)}
{c(1), c(2), b(2), a(1)}
{c(1), c(2), b(2), a(1), b(1)}
{c(1), c(2), b(2), b(1)}
{c(1), c(2), b(2)}
{c(1), c(2), b(2), a(2)}
{c(1), c(2), b(2), a(2), b(1)}
{c(1), c(2), b(2), a(2), a(1), b(1)}
{c(1), c(2), b(2), a(2), a(1)}

16 / 37

Choice Rules (2)

Program Π1

c(1).
c(2).
{a(X) : c(X)}.
{b(X) : c(X)}.

Ground instantiation of Π1

c(1).
c(2).
{a(1); a(2)}.
{b(1); b(2)}.

Program Π2

c(1).
c(2).
{a(X) : c(X); b(X) : c(X)}.

Ground instantiation of Π2

c(1).
c(2).
{a(1); a(2); b(1); b(2)}.

17 / 37

Choice Rules (3)

Program Π1

c(1).
c(2).
1 ≤ {a(X) : c(X)} ≤ 1.
1 ≤ {b(X) : c(X)} ≤ 1.

Answer sets of Π1

{c(1), c(2),b(1),a(1)}
{c(1), c(2),b(1),a(2)}
{c(1), c(2),b(2),a(1)}
{c(1), c(2),b(2),a(2)}

Program Π2

c(1).
c(2).
1 ≤ {a(X) : c(X); b(X) : c(X)} ≤ 1.

Answer sets of Π2

{c(1), c(2),a(1)}
{c(1), c(2),a(2)}
{c(1), c(2),b(1)}
{c(1), c(2),b(2)}

18 / 37

Choice Rules (4)

Program Π2

c(1). c(2).
1 ≤ {a(X) : c(X); b(X) : c(X)} ≤ 1.

Program Π′2

c(1). c(2).
{a(X) : c(X); b(X) : c(X)}.
:− #count{X ,a : a(X), c(X); X ,b : b(X), c(X)} 6= 1.

Grounding of Π′2

c(1). c(2).
{a(1); b(1); a(2); b(2)}.
:− #count{1,a : a(1),1,b : b(1),2,a : a(2),2,b : b(2)} 6= 1.

19 / 37

Aggregates

Aggregates
Concise modeling of properties over sets of data

Type of aggregates are #count, #sum, #min, #max

20 / 37

Aggregates: Example

Choice of products

product(pizza,7). product(pasta,1). product(hamburger ,8).
product(water ,1). budget(8).
{buy(X) : product(X ,Price)}.
:−budget(B),#sum{Price,X : buy(X),product(X ,Price)} > B.

Answer sets (showing only buy)

{}
{buy(hamburger)}
{buy(pasta)}
{buy(water)}
{buy(pizza)}
{buy(pizza),buy(pasta)}
{buy(water),buy(pizza)}
{buy(water),buy(pasta)}

21 / 37

Weak Constraints (1)

Weak constraints
Used to model optimization problems

The idea is to associate a cost to each answer set

Answer sets with the lowest cost are optimum

22 / 37

Weak Constraints (2)

Program Π

c(1).
c(2).
1 ≤ {a(X) : c(X)} ≤ 1.
1 ≤ {b(X) : c(X)} ≤ 1.
:∼ a(X),b(X). [X@1,X]

Answer sets

{c(1), c(2),b(1),a(2)} → COST = 0
{c(1), c(2),b(2),a(1)} → COST = 0
{c(1), c(2),b(1),a(1)} → COST = 1
{c(1), c(2),b(2),a(2)} → COST = 2

23 / 37

Weak Constraints: Example

Choice of products

product(pizza,7). product(pasta,1). budget(8).
product(hamburger ,8). product(water ,1).
{buy(X) : product(X ,Price)}.
pay(S) :− S = #sum{Price,X : buy(X), product(X ,Price)}.
:− budget(B),pay(S),S > B.
:∼ budget(B),pay(S),B > S. [B − S@1,S]

Answer sets (showing only buy)

{buy(hamburger)} → COST = 0
{buy(pizza),buy(pasta)} → COST = 0
{buy(water),buy(pizza)} → COST = 0
{buy(pizza)} → COST = 1
{buy(water),buy(pasta)} → COST = 6
{buy(pasta)} → COST = 7
{buy(water)} → COST = 7
{} → COST = 8 24 / 37

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

25 / 37

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:

1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

25 / 37

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

25 / 37

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

25 / 37

Direct Encodings when...

Use a “Direct” Encoding with Datalog rules for
Polynomial Problems, etc.

Example (Reachability)

Problem: Find all nodes reachable from the others.
Input: edge(_, _).

% X is reachable from Y if an edge (X,Y) exists
reachable(X ,Y) :− edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :− reachable(X ,Z), edge(Z ,Y).

The method in often unfeasible for search problems from NP
and beyond: need for a programming methodology

26 / 37

Direct Encodings when...

Use a “Direct” Encoding with Datalog rules for
Polynomial Problems, etc.

Example (Reachability)

Problem: Find all nodes reachable from the others.
Input: edge(_, _).

% X is reachable from Y if an edge (X,Y) exists
reachable(X ,Y) :− edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :− reachable(X ,Z), edge(Z ,Y).

The method in often unfeasible for search problems from NP
and beyond: need for a programming methodology

26 / 37

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive (or choice) rules
2 Check admissible ones→ using strong constraints

Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive (choice) rules→ generate candidate

solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

27 / 37

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive (or choice) rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive (choice) rules→ generate candidate

solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

27 / 37

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive (or choice) rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive (choice) rules→ generate candidate

solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

27 / 37

Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups,
while avoiding that father and children belong to the same group.

Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments
group(P,1) | group(P,2) :− person(P).
% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group
:− group(P1,G),group(P2,G), father(P1,P2). ...so how does
it work really?

28 / 37

Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups,
while avoiding that father and children belong to the same group.

Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments
group(P,1) | group(P,2) :− person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group
:− group(P1,G),group(P2,G), father(P1,P2). ...so how does
it work really?

28 / 37

Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups,
while avoiding that father and children belong to the same group.

Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments
group(P,1) | group(P,2) :− person(P).
% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group
:− group(P1,G),group(P2,G), father(P1,P2).

...so how does
it work really?

28 / 37

Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups,
while avoiding that father and children belong to the same group.

Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments
group(P,1) | group(P,2) :− person(P).
% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group
:− group(P1,G),group(P2,G), father(P1,P2). ...so how does
it work really?

28 / 37

Guessing part explained

Consider: group(P,1) | group(P,2) :− person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

29 / 37

Guessing part explained

Consider: group(P,1) | group(P,2) :− person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

29 / 37

Guessing part explained

Consider: group(P,1) | group(P,2) :− person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

29 / 37

Checking part explained

Consider: group(P,1) | group(P,2) :− person(P).

Now add: :− group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

30 / 37

Checking part explained

Consider: group(P,1) | group(P,2) :− person(P).

Now add: :− group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

30 / 37

Guess & Check explained

Consider: group(P,1) | group(P,2) :− person(P).
:− group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The answer sets are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}

G&C = Define search space + specify desired solutions

31 / 37

Guess and Check (Example 2)

Example (3-col)

Problem: Given a graph assign one color out of 3 colors to each node such
that two adjacent nodes have always different colors.

Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :− node(X).

% discard colorings where adjacent nodes have the same color
(c) :− edge(X ,Y), col(X ,C), col(Y ,C).

32 / 37

Guess and Check (Example 2)

Example (3-col)

Problem: Given a graph assign one color out of 3 colors to each node such
that two adjacent nodes have always different colors.

Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :− node(X).

% discard colorings where adjacent nodes have the same color
(c) :− edge(X ,Y), col(X ,C), col(Y ,C).

32 / 37

Guess and Check (Example 2)

Example (3-col)

Problem: Given a graph assign one color out of 3 colors to each node such
that two adjacent nodes have always different colors.

Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :− node(X).

% discard colorings where adjacent nodes have the same color
(c) :− edge(X ,Y), col(X ,C), col(Y ,C).

32 / 37

Guess and Check (Example 2)

Example (3-col)

Problem: Given a graph assign one color out of 3 colors to each node such
that two adjacent nodes have always different colors.

Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :− node(X).

% discard colorings where adjacent nodes have the same color
(c) :− edge(X ,Y), col(X ,C), col(Y ,C).

32 / 37

Guess and Check (Example 3)

Example (Hamiltonian Path)

Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y).

% A node can be reached only once
:− inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:− node(X), not reached(X).
% The path is not cyclic
:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

33 / 37

Guess and Check (Example 3)

Example (Hamiltonian Path)

Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y).

% A node can be reached only once
:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.

% All nodes must be reached
:− node(X), not reached(X).
% The path is not cyclic
:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

33 / 37

Guess and Check (Example 3)

Example (Hamiltonian Path)

Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y).

% A node can be reached only once
:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:− node(X), not reached(X).

% The path is not cyclic
:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

33 / 37

Guess and Check (Example 3)

Example (Hamiltonian Path)

Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y).

% A node can be reached only once
:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:− node(X), not reached(X).
% The path is not cyclic
:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

33 / 37

Guess and Check (Example 3)

Example (Hamiltonian Path)

Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y).

% A node can be reached only once
:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:− node(X), not reached(X).
% The path is not cyclic
:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

33 / 37

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)

Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y , _).

% Ensure that it is Hamiltonian (as before)
:− inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
:− node(X), not reached(X).

:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@1,X ,Y ,C]

| Guess

|
| Check
|
|
|
| Aux. Rules
|

| Optimize

34 / 37

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)

Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y , _).
% Ensure that it is Hamiltonian (as before)
:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
:− node(X), not reached(X).

:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@1,X ,Y ,C]

| Guess

|
| Check
|
|
|
| Aux. Rules
|

| Optimize

34 / 37

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)

Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :− edge(X ,Y , _).
% Ensure that it is Hamiltonian (as before)
:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.
:− inPath(X ,Y), inPath(X1,Y),X <> X1.
:− node(X), not reached(X).

:− inPath(X ,Y), start(Y).

reached(X) :− reached(Y), inPath(Y ,X).

reached(X) :− start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@1,X ,Y ,C]

| Guess

|
| Check
|
|
|
| Aux. Rules
|

| Optimize

34 / 37

ASP at Work: Systems

Grounders
Gringo - https://potassco.org/
i-DLV - https://github.com/DeMaCS-UNICAL/I-DLV/wiki

Solvers
clasp - https://potassco.org/
wasp - github.com/alviano/wasp

Full systems
clingo (gringo + clasp) - https://potassco.org/clingo/
DLV2 (i-DLV + wasp) - https://www.mat.unical.it/DLV2/

35 / 37

Exercise 1
A gala dinner has to be organized and table composition must
satisfy a number of requirements:

Each table has n chairs.
Each guest must be assigned exactly one table.
People liking each other must sit at the same table.
People disliking each other must not sit at the same table.

Input

% table(number,capacity)
table(1,5). table(2,5).
% guest(name)
guest(luca). guest(francesco). guest(john). guest(mary).
guest(marco). guest(andrea). guest(giovanna). guest(laura).
% like(X,Y), X likes Y
like(luca,francesco). like(luca,mary). like(john,mary).
like(andrea,giovanna). like(giovanna,marco). like(laura,luca).
% dislike(X,Y), X doesn’t like Y
dislike(luca,marco). dislike(luca,andrea). dislike(laura,giovanna).
dislike(laura,andrea). dislike(marco,luca). dislike(marco,francesco).

36 / 37

Exercise 2

Given an undirected graph G = (V ,E), a clique is a subset of
the vertices all adjacent to each other. A clique C is said to be
maximal if for each other clique C′ in G, the number of nodes in
C are larger than or equal to the number of nodes in C′. Write
an ASP encoding to find maximal cliques of an input graph.

Input

node(1). node(2). node(3). node(4). node(5).
edge(1,2). edge(3,4). edge(4,5). edge(3,4).

37 / 37

