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Previous Lesson

m The idea of ASP:

Write a program representing a computational problem
— i.e., such that answer sets correspond to solutions
Use a solver to find solutions

m Why is the knowledge of ASP Solving important?
m Knowledge of programming methodology
— you can write programs
m Knowledge of the evaluation process
—Yyou can write programs more efficiently
m Knowledge of an ASP System
— you can actually implement applications and extension
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Evaluation of ASP Programs

m Computationally expensive
m Traditionally a two-step process:
Instantiation (or grounding)

— Variable elimination

Propositional search (or solving)

— Produce answer sets
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About the Instantiation

Some facts:
m Exponential in the worst case

m Input of a subsequent exponential procedure

m Significantly affects the performance of the overall process
Intelligent instantiation

m Keep the size of the instantiation as small as possible

m grounders can solve polynomial problems

N.B: Naive encodings can lead to the grounding bottleneck



Solver

m The input is a variable-free ASP program

m The theoretical search space is O(2"), where nis the
number of atoms

m Produces (optimum) answer sets

m Techniques from SAT
m Backtracking search

m Based on the pattern: Choose — Propagate — Learn



Solver: The Algorithm

!

[I = preprocessing()]

[ = chooseUndeﬁnedLitera/(/)}7

| := propagation(l)

[consistent]

[inconsistent]

analyzeConflict(l))

learning

[l := restoreConsistency ( /)]

backjumping

[succeed]

[fail]

Incoherent

[no undefined literals]

AnswerSet := |

®

AnswerSet
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Propagation

Derivation Rules

1. Unit propagation (from SAT)

2. Aggregates propagation (from Pseudo-Boolean)

3. Unfounded-free propagation (ASP specific)



Unit and Aggregate propagation

m Infer a literal if it is the only one which can satisfy a rule

Example (Unit propagation)

a - b,c.
If b and c are true then a must be true
m Uses aggregates for further inferences

Example (Aggregate propagation)
— #sum{1,d:d;2,e:e;1,f:f} >=2

If d is true then e and f must be false



Unfounded-free propagation

m All atoms in an unfounded set are inferred as false

Example (Unfounded set)

a-»>b
b-a

{a, b} is an unfounded set, thus a and b are inferred as false



Solver: An Example

Solver step:

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

= col(1, red), col(2, red).

= col(1, green), col(2, green).
= col(1, yellow), col(2, yellow).
= col(2, red), col(3, red).

— col(2, green), col(3, green).
= col(2, yellow), col(3, yellow).

Idea: Build an answer set step by step

True: {}
False: {}
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Solver: An Example

Solver step: Choose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

= col(1, red), col(2, red).

- col(1, green), col(2, green).
= col(1, yellow), col(2, yellow).
= col(2, red), col(3, red).

= col(2, green), col(3, green).
= col(2, yellow), col(3, yellow).

True: {} < col(1, red)
False: {}
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Solver: An Example

Solver step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green). «+ 1-minimality propagation
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

= col(1,red), col(2, red). < 2-unit propagation
= col(1, green), col(2, green).

= col(1, yellow), col(2, yellow).

= col(2, red), col(3, red).

= col(2, green), col(3, green).

= col(2, yellow), col(3, yellow).

True: {col(1, red)}
False: {col(1, yellow), col(1, green), col(2, red)}
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Solver: An Example

Solver step: Propagate Deterministic Consequences

col(1,red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green). «+—minimality propagation

= col(1, red), col(2, red).

- col(1, green), col(2, green).
= col(1, yellow), col(2, yellow).
= col(2, red), col(3, red).

= col(2, green), col(3, green).
= col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow), col(3, red)}

False: {col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) col(3, green)}

9/29



Solver: An Example

Solver step: Answer set found!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
= col(1,red), col(2, red).

= col(1, green), col(2, green).

= col(1, yellow), col(2, yellow).

= col(2, red), col(3, red).

= col(2, green), col(3, green).

= col(2, yellow), col(3, yellow).

Answer Set: {col(1, red), col(2, yellow), col(3, red) }
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Heuristics and learning

Learning
m Detect the reason of a conflict
m Learn constraints using 1-UIP schema

Deletion Policy
m Exponentially many constraints — forget something
m Less “useful” constraints are removed

Search Restarts
m Avoid unfruitful branches by restarting the search
m Based on some heuristic sequence

Branching Heuristics
m Look back MINISAT heuristic
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Optimum answer set search

m What about programs with weak constraints?

m Find the answer set with the minimum cost
m Input: a propositional program I1

m Output: an optimum answer set of I

m Based on MaxSAT algorithms

m Model-guided
m Core-guided
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Optimum answer set search

m Model-guided algorithms: OPT, BASIC and MGD
+ Easy to implement
+ Work well on particular domains
+ Produce feasible solutions during the search

- Poor performances on industrial instances
m Core-guided algorithms: PMRES and OLL

+ Good performances on industrial instances
- Do not produce feasible solutions (in general)

- The implementation is usually nontrivial
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Model-guided algorithms

|
| need a solution! Give me any answer set

?

[remove weak constraints from the programj

solver

incoherent
[ ] ®

Optimum found

[coherent]

[add violated weak constraints to the programj

l
[update upper boundj
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Core-guided algorithms

|
| feel lucky! Try to satisfy all weak constraints

(consider weak constraints as hard]

—{solver]

[coherent]

O

[ f
[incoherent] Optimum found

[analyze unsatisfiable core}

|
—[update lower bound}
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Optimization problems in ASP

Example (Knapsack)

m Stole as much value as possible

{in(X)}:— object(X).
— #sum{W,X : weight(X,W), in(X)} > 15.
:~ value(X,V), not in(X). [V@1,X]

object(green). ... <>
value(green,4). ... ﬁ!ﬂ %
R

weight(green,12). ...
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Model-guided: Solve by adding objects

-

% Ssp@  apossible solution
T
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Model-guided: Solve by adding objects

a possible solution
better value

not acceptable weight
better value

better value

better value

better value (optimum)
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Core-guided: Solve by removing objects

% < < > = <>
o=
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Core-guided: Solve by removing objects
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Incompatibility w ?ﬂ (an unsatisfiable core)
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Core-guided: Solve by removing objects
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Core-guided: Solve by removing objects

-

ok,
Incompatibility (an unsatisfiable core)
Replace by
where implies one of

We have an optimum solution

Tr

<

Tr

<
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Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_,_).
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Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_,_).

Natural Encoding:

inClique(X) | outClique(X) - node(X). % Guess
- inClique(X), inClique(Y), not edge(X, Y), X <> Y. % Check
~ outClique(X).[101, X] % Optimize

First Optimization:
inClique(X) | outClique(X) - node(X).
- inClique(X), inClique(Y), not edge(X, Y), X < Y. < less constraints!
~ outClique(X).[1@1, X]

Second Optimization:
{inClique(X)} - node(X).
— inClique(X), inClique(Y), not edge(X, Y), X < Y.
i~ node(X), not inClique(X).[10@1, X] + removed outClique!
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Impact of Optimizations

m How many constraints are not used in the optimized
encoding?

m What is the theoretical search space of the two encodings?

m Consider a complete graph with 50 nodes
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Programming for performance: basic idea (2)

Example (3-col- encoding 1)

% guess a coloring for the nodes
col(X, red) | col(X, yellow) | col(X, blue) - node(X).

% check condition
~ edge(X, Y),col(X,C), col(Y,C).

Example (3-col- encoding 2 )

% guess a coloring for the nodes

col(X,red) | ncol(X,red) - node(X). <« threetimes
col(X,yellow) | ncol(X,yellow) - node(X). < more
col(X,blue) | ncol(X,blue) - node(X). <+ ground rules

% check condition
= edge(X,Y),col(X,C), col(Y,C).
=~ col(X,C1), col(Y,C2),C1 <> C2.
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Programming for performance: basic idea (2)

Example (3-col- encoding 1)

% guess a coloring for the nodes
col(X, red) | col(X, yellow) | col(X, blue) - node(X).

% check condition
~ edge(X, Y),col(X,C), col(Y,C).
% NB: answer sets are subset minimal — only one color per node

Example (3-col- encoding 2 )

% guess a coloring for the nodes

col(X,red) | ncol(X,red) - node(X). <« threetimes
col(X,yellow) | ncol(X,yellow) - node(X). < more
col(X,blue) | ncol(X,blue) - node(X). <+ ground rules

% check condition
— edge(X,Y),col(X,C), col(Y,C).
- col(X,C1), col(Y,C2),C1 <> C2. <+ additional constraint
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Programming for performance: lesson learned

Prefer an encoding if:

m Easier to ground
— precomputes as much as possible
m Smaller instantiation
— use e.g., minimality, aggregates, ...
m Produces less ground disjunctive rules and less “guessed atoms”
— smaller search space
— exponential gain
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Programming Hints

Programming for Performance:

Consider complexity issues
Prefer Smaller/Faster Grounding
Reduce Search Space
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Programming Hints

Programming for Performance:

Consider complexity issues

Prefer Smaller/Faster Grounding

Reduce Search Space

Exploit the features of the implementation
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Grounding Bottleneck

m When the time and/or the memory required to compute the
instantiation is too huge

m When the number of produced rules cannot be processed
by the solver
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Stable Marriage

Definition

Given n men and n women, where each person has ranked all
members of the opposite sex with a unique number between 1
and n in order of preference, marry the men and women
together such that there are no two people of opposite sex who
would both rather have each other than their current partners.

M w P1 P2 Pref P1 P2 Pref

john  mary john mary 1 mary john 1

luca anna john anna 2 anna john 2
luca mary 2 mary luca 2
luca anna 1 anna luca 1
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Stable Marriage: Natural Encoding

|
% guess matching
match(M,W) | nMatch(M,W) - man(M), woman(W).

% no polygamy
— match(M1,W), match(M,W), M <> M1.
— match(M,W), match(M,W1), W <> W1.

% no singles
married(M) :- match(M,W).
:- man(M), not married(M).

% strong stability condition

- match(M,W1), match(M1,W), W1 <> W,
pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.
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Stable Marriage: First Optimization

|
% guess matching
{match(M,W)} - man(M), woman(W).

% no polygamy
— match(M1,W), match(M,W), M <> M1.
— match(M,W), match(M,W1), W <> W1.

% no singles

married(M) :- match(M,W).

= man(M), not married(M).

% strong stability condition

— match(M,W1), match(M1,W), W1 <> W,
pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.
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Stable Marriage: Second Optimization

|
% guess matching
{match(M,W) : woman(W)} = 1 = man(M).

% no singles

married(M) :- match(M,W).

:— woman(M), not married(M).

% strong stability condition

— match(M,W1), match(M1,W), W1 <> W,
pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.
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Stable Marriage: Third Optimization

|
% guess matching
{match(M,W) : woman(W)} = 1 = man(M).

% no singles
married(M) :- match(M,W).
= woman(M), not married(M).

% strong stability condition
matched(m,M,S) - match(M,W), pref(M,W,S).
matched(w,W,S-1) = match(M,W), pref(W,M,S), S > 1.
matched(T,P,S-1) —matched(T,RS), S > 1.

— pref(M,W,R), pref(W,M,S), not matched(m,M,R), not

matched(w,W,S).
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Stable Marriage: Impact

m Can an efficient encoding make a huge difference in
performance?
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Stable Marriage: Impact

m Can an efficient encoding make a huge difference in
performance?

m Does an efficient encoding impact on performance or on
number of rules?

m |s this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions

Third optimization 0.3 seconds approx. 40 thousands
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