Efficient ASP Techniques for Solving Hard Problems

Carmine Dodaro
DIBRIS, University of Genoa

Arcavacata di Rende, 2-5-6-7 February 2018

■ The idea of ASP:

1 Write a program representing a computational problem \rightarrow i.e., such that answer sets correspond to solutions
2 Use a solver to find solutions

■ The idea of ASP:
1 Write a program representing a computational problem \rightarrow i.e., such that answer sets correspond to solutions
2 Use a solver to find solutions

■ Why is the knowledge of ASP Solving important?

■ The idea of ASP:
1 Write a program representing a computational problem \rightarrow i.e., such that answer sets correspond to solutions
2 Use a solver to find solutions

■ Why is the knowledge of ASP Solving important?
■ Knowledge of programming methodology
\rightarrow you can write programs

■ The idea of ASP:
1 Write a program representing a computational problem
\rightarrow i.e., such that answer sets correspond to solutions
2 Use a solver to find solutions

■ Why is the knowledge of ASP Solving important?
■ Knowledge of programming methodology
\rightarrow you can write programs

- Knowledge of the evaluation process \rightarrow you can write programs more efficiently

■ The idea of ASP:
1 Write a program representing a computational problem
\rightarrow i.e., such that answer sets correspond to solutions
2 Use a solver to find solutions

■ Why is the knowledge of ASP Solving important?
■ Knowledge of programming methodology
\rightarrow you can write programs

- Knowledge of the evaluation process \rightarrow you can write programs more efficiently
- Knowledge of an ASP System
\rightarrow you can actually implement applications and extension

Evaluation of ASP Programs

- Computationally expensive
- Traditionally a two-step process:

1 Instantiation (or grounding)
\rightarrow Variable elimination
2 Propositional search (or solving)
\rightarrow Produce answer sets

About the Instantiation

Some facts:

■ Exponential in the worst case

- Input of a subsequent exponential procedure

■ Significantly affects the performance of the overall process

About the Instantiation

Some facts:

■ Exponential in the worst case
■ Input of a subsequent exponential procedure
■ Significantly affects the performance of the overall process

Intelligent instantiation
■ Keep the size of the instantiation as small as possible

- grounders can solve polynomial problems

About the Instantiation

Some facts:

■ Exponential in the worst case
■ Input of a subsequent exponential procedure
■ Significantly affects the performance of the overall process

Intelligent instantiation
■ Keep the size of the instantiation as small as possible

- grounders can solve polynomial problems
N.B: Naive encodings can lead to the grounding bottleneck

Solver

■ The input is a variable-free ASP program

- The theoretical search space is $O\left(2^{n}\right)$, where n is the number of atoms
- Produces (optimum) answer sets
- Techniques from SAT

■ Backtracking search
■ Based on the pattern: Choose - Propagate - Learn

Solver: The Algorithm

Propagation

Derivation Rules

1. Unit propagation (from SAT)
2. Aggregates propagation
3. Unfounded-free propagation
(from Pseudo-Boolean)
(ASP specific)

Unit and Aggregate propagation

■ Infer a literal if it is the only one which can satisfy a rule

Example (Unit propagation)
a :- b, c.
If b and c are true then a must be true
■ Uses aggregates for further inferences

Example (Aggregate propagation)
:- \#sum\{1,d : d; 2,e : e; 1,f : f\} >= 2
If d is true then e and f must be false

Unfounded-free propagation

■ All atoms in an unfounded set are inferred as false

> Example (Unfounded set)
> $\mathrm{a}:-\mathrm{b}$
> $\mathrm{b}:-\mathrm{a}$
> $\{a, b\}$ is an unfounded set, thus a and b are inferred as false

Solver: An Example

Solver step:

```
col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
```

Idea: Build an answer set step by step
True: \{\}
False: \{\}

Solver: An Example

Solver step: Choose literal

```
col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
:- col(1,red), col(2, red).
:- col(1,green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2,red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
```

True: $\} \leftarrow c o l(1$, red $)$
False: \{\}

Solver: An Example

Solver step: Propagate Deterministic Consequences

```
col(1, red) | col(1, yellow) | col(1, green). \leftarrow 1-minimality propagation
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
    :- col(1,red), col(2,red). \leftarrow 2-unit propagation
    :- col(1, green), col(2, green).
    :- col(1, yellow), col(2, yellow).
    :- col(2, red), col(3,red).
    :- col(2, green), col(3, green).
    :- col(2, yellow), col(3, yellow).
```

True: $\{\operatorname{col}(1, r e d)\}$
False: $\{\operatorname{col}(1$, yellow), col(1, green), col(2, red) $\}$

Solver: An Example

Solver step: Choose literal

```
col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2,red), col(3,red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
```

True: $\{\operatorname{col}(1$, red $)\} \leftarrow \operatorname{col}(2$, yellow $)$
False: \{col(1, yellow), col(1, green), col(2, red)\}

Solver: An Example

Solver step: Propagate Deterministic Consequences

```
col(1, red) | col(1, yellow) | col(1, green).
col(2,red) | col(2, yellow) | col(2, green). \leftarrow1-minimality propagation
col(3, red) | col(3, yellow) | col(3, green).
:- col(1, red), col(2, red).
:- col(1,green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2,red), col(3,red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow). \leftarrow2-unit propagation
```

True: $\{c o l(1, r e d), c o l(2$, yellow $)\}$
False: \{col(1, yellow), col(1, green), col(2, red), col(2, green), col(3, yellow)\}

Solver: An Example

Solver step: Choose literal

```
col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
:- col(1, red), col(2, red).
:- col(1,green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2,red), col(3,red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
```

True: $\{\operatorname{col}(1$, red $), \operatorname{col}(2$, yellow $)\} \leftarrow \operatorname{col}(3$, red $)$
False: \{col(1, yellow), col(1, green), col(2, red), col(2, green), col(3, yellow)\}

Solver: An Example

Solver step: Propagate Deterministic Consequences

```
col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green). \leftarrowminimality propagation
:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).
```

True: $\{\operatorname{col}(1$, red $), \operatorname{col}(2$, yellow $), \operatorname{col}(3$, red $)\}$
False: \{col(1, yellow), col(1, green), col(2, red), col(2, green), col(3, yellow) col(3, green)\}

Solver: An Example

Solver step: Answer set found!

```
col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).
    :- col(1, red), col(2, red).
    :- col(1, green), col(2, green).
    :- col(1, yellow), col(2, yellow).
    :- col(2, red), col(3, red).
    :- col(2, green), col(3, green).
    :- col(2, yellow), col(3, yellow).
```

Answer Set: $\{\operatorname{col}(1$, red $), \operatorname{col}(2$, yellow), col(3, red) \}

Heuristics and learning

Learning

■ Detect the reason of a conflict
■ Learn constraints using 1-UIP schema

Deletion Policy

■ Exponentially many constraints \rightarrow forget something

- Less "useful" constraints are removed

Search Restarts

■ Avoid unfruitful branches by restarting the search

- Based on some heuristic sequence

Branching Heuristics

■ Look back MINISAT heuristic

Optimum answer set search

■ What about programs with weak constraints?
■ Find the answer set with the minimum cost
■ Input: a propositional program Π
■ Output: an optimum answer set of Π

■ Based on MaxSAT algorithms
■ Model-guided
■ Core-guided

Optimum answer set search

■ Model-guided algorithms: OPT, BASIC and MGD

+ Easy to implement
+ Work well on particular domains
+ Produce feasible solutions during the search
- Poor performances on industrial instances

■ Core-guided algorithms: PMRES and OLL

+ Good performances on industrial instances
- Do not produce feasible solutions (in general)
- The implementation is usually nontrivial

Model-guided algorithms

I need a solution! Give me any answer set

Core-guided algorithms

I feel lucky! Try to satisfy all weak constraints

Optimization problems in ASP

Example (Knapsack)

- Stole as much value as possible
$\{\operatorname{in}(X)\}:-$ object (X).
:- \#sum $\{\mathrm{W}, \mathrm{X}:$ weight $(\mathrm{X}, \mathrm{W}), \operatorname{in}(\mathrm{X})\}>15$.
:~ value(X,V), not in(X). [V@1,X]
object(green). ...
value(green,4). ... weight(green,12). ...

Model-guided: Solve by adding objects

Model-guided: Solve by adding objects

2s 1 kg a possible solution

better value

Model-guided: Solve by adding objects

a possible solution
better value
not acceptable weight

Model-guided: Solve by adding objects

Core-guided: Solve by removing objects

Try

Core-guided: Solve by removing objects

Try

Incompatibility

10 si 4 kg (an unsatisfiable core)

Core-guided: Solve by removing objects

Try

Incompatibility

Replace by

where

Core-guided: Solve by removing objects

Try

Incompatibility

Replace by

where

Try

Core-guided: Solve by removing objects

Try

Incompatibility

Replace by

where

Try

We have an optimum solution

Programming for performance: basic idea

Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size Input: node(_) and edge(_,_).

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size Input: node(_) and edge(_,_).

Natural Encoding:
$\begin{array}{lr}\text { inClique }(X) \mid \text { outClique }(X) \text { :- node }(X) . & \text { \% Guess } \\ :- \text { inClique }(X), \text { inClique }(Y) \text {, not edge }(X, Y), X<>Y . & \text { \% Check } \\ : \sim \operatorname{outClique}(X) \cdot[1 @ 1, X] & \text { \% Optimize }\end{array}$

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size Input: node(_) and edge(_,_).

Natural Encoding:
inClique $(X) \mid$ outClique (X) :- node (X). \% Guess
:- inClique (X), inClique (Y), not edge $(X, Y), X<>Y$.
: outClique (X). $[1 @ 1, X]$
First Optimization:
inClique (X) | outClique (X) :- node (X).
:- inClique (X), inClique (Y), not edge $(X, Y), X<Y . \leftarrow$ less constraints!
:~ outClique (X).[1@1, X]

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size Input: node(_) and edge(_,_).

Natural Encoding:

```
inClique \((X) \mid\) outClique \((X)\) :- node \((X)\).
    :- inClique \((X)\), inClique \((Y)\), not edge \((X, Y), X<>Y\).
    :~ outClique \((X)\).[1@1, \(X\) ]
```

```
\(: \sim\) outClique \((X)\).[1@1, \(X\) ]
```


First Optimization:

inClique $(X) \mid$ outClique (X) :- node (X).
:- inClique (X), inClique (Y), not edge $(X, Y), X<Y . \leftarrow$ less constraints!
: outClique (X).[1@1, X]

Second Optimization:

$\{$ inClique $(X)\}$:- node (X).
:- inClique (X), inClique (Y), not edge $(X, Y), X<Y$.
$: \sim$ node (X), not inClique $(X) \cdot[1 @ 1, X] \quad \leftarrow$ removed outClique!

Impact of Optimizations

- How many constraints are not used in the optimized encoding?
\square What is the theoretical search space of the two encodings?
■ Consider a complete graph with 50 nodes

Impact of Optimizations

- How many constraints are not used in the optimized encoding?
- What is the theoretical search space of the two encodings?

■ Consider a complete graph with 50 nodes
■ Natural encoding: 2450 constraints

Impact of Optimizations

- How many constraints are not used in the optimized encoding?
\square What is the theoretical search space of the two encodings?
■ Consider a complete graph with 50 nodes
■ Natural encoding: 2450 constraints
■ Optimized encoding: 1225 constraints

Impact of Optimizations

- How many constraints are not used in the optimized encoding?
\square What is the theoretical search space of the two encodings?
- Consider a complete graph with 50 nodes

■ Natural encoding: 2450 constraints
■ Optimized encoding: 1225 constraints
■ Natural encoding: 2^{100} (50 atoms of type inClique and 50 atoms of the type outClique)

Impact of Optimizations

- How many constraints are not used in the optimized encoding?
- What is the theoretical search space of the two encodings?
- Consider a complete graph with 50 nodes

■ Natural encoding: 2450 constraints
■ Optimized encoding: 1225 constraints
■ Natural encoding: 2^{100} (50 atoms of type inClique and 50 atoms of the type outClique)
■ Optimized encoding: 2^{50} (50 atoms of type inClique)

Impact of Optimizations

- How many constraints are not used in the optimized encoding?
- What is the theoretical search space of the two encodings?
- Consider a complete graph with 50 nodes

■ Natural encoding: 2450 constraints
■ Optimized encoding: 1225 constraints
■ Natural encoding: 2^{100} (50 atoms of type inClique and 50 atoms of the type outClique)
■ Optimized encoding: 2^{50} (50 atoms of type inClique)

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

\% guess a coloring for the nodes
$\operatorname{col}(X$, red $) \mid \operatorname{col}(X$, yellow $) \mid \operatorname{col}(X$, blue $):-\operatorname{node}(X)$.
\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.

Example (3-col- encoding 2)
\% guess a coloring for the nodes

col(X,red)	ncol(X,red)	$:-$ node (X).	\leftarrow three times
$\operatorname{col}(X$, yellow $)$	ncol(X,yellow)	$:-$ node (X).	\leftarrow more
$\operatorname{col}(X$, blue $)$	ncol(X,blue $)$	$:-$ node (X).	\leftarrow ground rules

\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.
$:-\operatorname{col}(X, C 1), \operatorname{col}(Y, C 2), C 1<>C 2$.

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

\% guess a coloring for the nodes
$\operatorname{col}(X$, red $) \mid \operatorname{col}(X$, yellow $) \mid \operatorname{col}(X$, blue $):-\operatorname{node}(X)$.
\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.
\% NB: answer sets are subset minimal \rightarrow only one color per node

Example (3-col- encoding 2)
\% guess a coloring for the nodes

col(X,red)	ncol(X,red)	$:-$ node (X).	\leftarrow three times
$\operatorname{col}(X$, yellow $)$	ncol(X,yellow)	$:-$ node (X).	\leftarrow more
$\operatorname{col}(X$, blue $)$	ncol(X,blue $)$	$:-$ node (X).	\leftarrow ground rules

\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.
$:-\operatorname{col}(X, C 1), \operatorname{col}(Y, C 2), C 1<>C 2 . \quad \leftarrow$ additional constraint

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

\% guess a coloring for the nodes
$\operatorname{col}(X$, red $) \mid \operatorname{col}(X$, yellow $) \mid \operatorname{col}(X$, blue $):-\operatorname{node}(X)$.
\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.

Example (3-col- encoding 2

\% guess a coloring for the nodes

col(X,red)	ncol(X,red)	$:-$ node (X).	\leftarrow three times
$\operatorname{col}(X$, yellow $)$	ncol(X,yellow)	$:-$ node (X).	\leftarrow more
$\operatorname{col}(X$, blue $)$	ncol(X,blue $)$	$:-$ node (X).	\leftarrow ground rules

\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.
$:-\operatorname{col}(X, C 1), \operatorname{col}(Y, C 2), C 1<>C 2$.

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

\% guess a coloring for the nodes
$\operatorname{col}(X$, red $) \mid \operatorname{col}(X$, yellow $) \mid \operatorname{col}(X$, blue $):-\operatorname{node}(X)$.
\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.

Example (3-col- encoding 2
\% guess a coloring for the nodes

col(X,red)	ncol(X,red)	$:-$ node (X).	\leftarrow three times
$\operatorname{col}(X$, yellow $)$	ncol(X,yellow)	$:-$ node (X).	\leftarrow more
$\operatorname{col}(X$, blue $)$	ncol(X,blue $)$	$:-$ node (X).	\leftarrow ground rules

\% check condition
:- edge $(X, Y), \operatorname{col}(X, C), \operatorname{col}(Y, C)$.
$:-\operatorname{col}(X, C 1), \operatorname{col}(Y, C 2), C 1<>C 2$.

Prefer an encoding if:

- Easier to ground
\rightarrow precomputes as much as possible
■ Smaller instantiation
\rightarrow use e.g., minimality, aggregates, ...
■ Produces less ground disjunctive rules and less "guessed atoms"
\rightarrow smaller search space
\rightarrow exponential gain

Programming for Performance:

1 Consider complexity issues
2 Prefer Smaller/Faster Grounding
3 Reduce Search Space

Programming Hints

Programming for Performance:

1 Consider complexity issues
2 Prefer Smaller/Faster Grounding
3 Reduce Search Space
4 Exploit the features of the implementation

Grounding Bottleneck

- When the time and/or the memory required to compute the instantiation is too huge

■ When the number of produced rules cannot be processed by the solver

Grounding Bottleneck

- When the time and/or the memory required to compute the instantiation is too huge

■ When the number of produced rules cannot be processed by the solver

Possible solutions?
■ Improve the encoding!

Grounding Bottleneck

\square When the time and/or the memory required to compute the instantiation is too huge

■ When the number of produced rules cannot be processed by the solver

Possible solutions?
■ Improve the encoding!
■ Use approaches based on lazy grounding

Grounding Bottleneck

■ When the time and/or the memory required to compute the instantiation is too huge

■ When the number of produced rules cannot be processed by the solver

Possible solutions?
■ Improve the encoding!
■ Use approaches based on lazy grounding
■ Replace portion of the encoding using dedicated propagators

Grounding Bottleneck

■ When the time and/or the memory required to compute the instantiation is too huge

■ When the number of produced rules cannot be processed by the solver

Possible solutions?
■ Improve the encoding!
■ Use approaches based on lazy grounding
■ Replace portion of the encoding using dedicated propagators

Stable Marriage

Definition

Given n men and n women, where each person has ranked all members of the opposite sex with a unique number between 1 and n in order of preference, marry the men and women together such that there are no two people of opposite sex who would both rather have each other than their current partners.

M	W	P1	P2	Pref	P1	P2	Pref
john	mary	john	mary	1	mary	john	1
luca	anna	john	anna	2	anna	john	2
		luca	mary	2	mary	luca	2
		luca	anna	1	anna	luca	1

Stable Marriage: Natural Encoding

```
\% guess matching match(M,W) | nMatch(M,W) :- man(M), woman(W).
```

\% no polygamy
:- match(M1,W), match(M,W), $\mathrm{M}<>\mathrm{M} 1$.
:- match(M,W), match(M,W1), W <> W1.
\% no singles
married(M) :- match(M,W).
:- man(M), not married(M).
\% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W, $\operatorname{pref}(\mathrm{M}, \mathrm{W}, \mathrm{Smw}), \operatorname{pref}(\mathrm{M}, \mathrm{W} 1, S m w 1)$, Smw $>$ Smw1, pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

Stable Marriage: First Optimization

```
% guess matching
{match(M,W)} :- man(M), woman(W).
% no polygamy
    :- match(M1,W), match(M,W), M <> M1.
:- match(M,W), match(M,W1), W <> W1.
% no singles
married(M) :- match(M,W).
:- man(M), not married(M).
% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,
pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.
```


Stable Marriage: Second Optimization

```
% guess matching
{match(M,W): woman(W)}=1 :- man(M).
```

\% no singles
married(M) :- match(M,W).
:- woman(M), not married(M).
\% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W, $\operatorname{pref}(\mathrm{M}, \mathrm{W}, \mathrm{Smw}), \operatorname{pref}(\mathrm{M}, \mathrm{W} 1, S m w 1)$, Smw $>$ Smw1, $\operatorname{pref}(\mathrm{W}, \mathrm{M}, \mathrm{Swm}), \operatorname{pref}(\mathrm{W}, \mathrm{M} 1, S w m 1)$, Swm >= Swm1.

Stable Marriage: Third Optimization

```
% guess matching
{match(M,W) : woman(W)} = 1 :- man(M).
% no singles
married(M) :- match(M,W).
:- woman(M), not married(M).
% strong stability condition
matched(m,M,S) :- match(M,W), pref(M,W,S).
    matched(w,W,S-1) :- match(M,W), pref(W,M,S), S > 1.
    matched(T,P,S-1) :- matched(T,P,S), S > 1.
:- pref(M,W,R), pref(W,M,S), not matched(m,M,R), not
matched(w,W,S).
```


Stable Marriage: Impact

■ Can an efficient encoding make a huge difference in performance?

Stable Marriage: Impact

■ Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

Stable Marriage: Impact

■ Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

■ Is this improvement limited to only one grounder?

Stable Marriage: Impact

- Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

- Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Stable Marriage: Impact

- Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

- Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Encoding
Natural encoding

Time
25 seconds

Number of rules approx. 6 millions

Stable Marriage: Impact

- Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

- Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Encoding	Time	Number of rules
Natural encoding	25 seconds	approx. 6 millions
First optimization	25 seconds	approx. 6 millions

Stable Marriage: Impact

- Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

- Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Encoding
Natural encoding
First optimization
Second optimization

Time
25 seconds
25 seconds
22 seconds

Number of rules approx. 6 millions approx. 6 millions approx. 6 millions

Stable Marriage: Impact

- Can an efficient encoding make a huge difference in performance?

■ Does an efficient encoding impact on performance or on number of rules?

- Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Encoding
Natural encoding
First optimization
Second optimization
Third optimization

Time
25 seconds
25 seconds
22 seconds
0.3 seconds

Number of rules approx. 6 millions approx. 6 millions approx. 6 millions approx. 40 thousands

