
Efficient ASP Techniques
for Solving Hard Problems

Carmine Dodaro
DIBRIS, University of Genoa

Arcavacata di Rende, 2-5-6-7 February 2018

1 / 29

Previous Lesson

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?

Knowledge of programming methodology
→ you can write programs

Knowledge of the evaluation process

→you can write programs more efficiently

Knowledge of an ASP System

→ you can actually implement applications and extension

1 / 29

Previous Lesson

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?

Knowledge of programming methodology
→ you can write programs

Knowledge of the evaluation process

→you can write programs more efficiently

Knowledge of an ASP System

→ you can actually implement applications and extension

1 / 29

Previous Lesson

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs

Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications and extension

1 / 29

Previous Lesson

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently

Knowledge of an ASP System
→ you can actually implement applications and extension

1 / 29

Previous Lesson

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications and extension

1 / 29

Evaluation of ASP Programs

Computationally expensive

Traditionally a two-step process:

1 Instantiation (or grounding)

→ Variable elimination

2 Propositional search (or solving)

→ Produce answer sets

2 / 29

About the Instantiation

Some facts:
Exponential in the worst case

Input of a subsequent exponential procedure

Significantly affects the performance of the overall process

Intelligent instantiation
Keep the size of the instantiation as small as possible

grounders can solve polynomial problems

N.B: Naive encodings can lead to the grounding bottleneck

3 / 29

About the Instantiation

Some facts:
Exponential in the worst case

Input of a subsequent exponential procedure

Significantly affects the performance of the overall process

Intelligent instantiation
Keep the size of the instantiation as small as possible

grounders can solve polynomial problems

N.B: Naive encodings can lead to the grounding bottleneck

3 / 29

About the Instantiation

Some facts:
Exponential in the worst case

Input of a subsequent exponential procedure

Significantly affects the performance of the overall process

Intelligent instantiation
Keep the size of the instantiation as small as possible

grounders can solve polynomial problems

N.B: Naive encodings can lead to the grounding bottleneck

3 / 29

Solver

The input is a variable-free ASP program

The theoretical search space is O(2n), where n is the
number of atoms

Produces (optimum) answer sets

Techniques from SAT

Backtracking search

Based on the pattern: Choose – Propagate – Learn

4 / 29

Solver: The Algorithm

I := preprocessing()

I := propagation(I)

AnswerSet := I

I := chooseUndefinedLiteral(I)

analyzeConflict(I))

I := restoreConsistency(I)

Incoherent AnswerSet

[inconsistent]

learning

backjumping

[consistent]

[no undefined literals]

[fail]

[succeed]

5 / 29

Propagation

Derivation Rules

1. Unit propagation (from SAT)

2. Aggregates propagation (from Pseudo-Boolean)

3. Unfounded-free propagation (ASP specific)

6 / 29

Unit and Aggregate propagation

Infer a literal if it is the only one which can satisfy a rule

Example (Unit propagation)

a :- b, c.

If b and c are true then a must be true

Uses aggregates for further inferences

Example (Aggregate propagation)

:- #sum{1,d : d; 2,e : e; 1,f : f} >= 2

If d is true then e and f must be false

7 / 29

Unfounded-free propagation

All atoms in an unfounded set are inferred as false

Example (Unfounded set)

a :- b
b :- a

{a,b} is an unfounded set, thus a and b are inferred as false

8 / 29

Solver: An Example

Solver step:

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Idea: Build an answer set step by step
True: {}
False: {}

9 / 29

Solver: An Example

Solver step: Choose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {}← col(1, red)
False: {}

9 / 29

Solver: An Example

Solver step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green). ← 1-minimality propagation
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red). ← 2-unit propagation
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red)}
False: {col(1, yellow), col(1, green), col(2, red)}

9 / 29

Solver: An Example

Solver step: Choose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red)}← col(2, yellow)
False: {col(1, yellow), col(1, green), col(2, red)}

9 / 29

Solver: An Example

Solver step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green). ←1-minimality propagation
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow). ← 2-unit propagation

True: {col(1, red), col(2, yellow) }
False: {col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow)}

9 / 29

Solver: An Example

Solver step: Choose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow)}← col(3, red)
False: {col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow)}

9 / 29

Solver: An Example

Solver step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).←minimality propagation

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow), col(3, red)}
False: {col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) col(3, green)}

9 / 29

Solver: An Example

Solver step: Answer set found!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Answer Set: {col(1, red), col(2, yellow), col(3, red) }

9 / 29

Heuristics and learning

Learning
Detect the reason of a conflict
Learn constraints using 1-UIP schema

Deletion Policy
Exponentially many constraints → forget something
Less “useful” constraints are removed

Search Restarts
Avoid unfruitful branches by restarting the search
Based on some heuristic sequence

Branching Heuristics
Look back MINISAT heuristic

10 / 29

Optimum answer set search

What about programs with weak constraints?

Find the answer set with the minimum cost

Input: a propositional program Π

Output: an optimum answer set of Π

Based on MaxSAT algorithms

Model-guided

Core-guided

11 / 29

Optimum answer set search

Model-guided algorithms: OPT, BASIC and MGD

+ Easy to implement

+ Work well on particular domains

+ Produce feasible solutions during the search

- Poor performances on industrial instances

Core-guided algorithms: PMRES and OLL

+ Good performances on industrial instances

- Do not produce feasible solutions (in general)

- The implementation is usually nontrivial

12 / 29

Model-guided algorithms

I need a solution! Give me any answer set

remove weak constraints from the program

solver

add violated weak constraints to the program

update upper bound

Optimum found
[coherent]

[incoherent]

13 / 29

Core-guided algorithms

I feel lucky! Try to satisfy all weak constraints

consider weak constraints as hard

solver

analyze unsatisfiable core

update lower bound

Optimum found
[incoherent]

[coherent]

14 / 29

Optimization problems in ASP

Example (Knapsack)

Stole as much value as possible

{in(X)}:– object(X).
:– #sum{W,X : weight(X,W), in(X)} > 15.
:∼ value(X,V), not in(X). [V@1,X]

object(green). . . .
value(green,4). . . .
weight(green,12). . . .

15 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Model-guided: Solve by adding objects

a possible solution

better value

not acceptable weight

better value

better value

better value

better value (optimum)

16 / 29

Core-guided: Solve by removing objects

Try

Incompatibility (an unsatisfiable core)

Replace by

where implies one of

Try

We have an optimum solution

17 / 29

Core-guided: Solve by removing objects

Try

Incompatibility (an unsatisfiable core)

Replace by

where implies one of

Try

We have an optimum solution

17 / 29

Core-guided: Solve by removing objects

Try

Incompatibility (an unsatisfiable core)

Replace by

where implies one of

Try

We have an optimum solution

17 / 29

Core-guided: Solve by removing objects

Try

Incompatibility (an unsatisfiable core)

Replace by

where implies one of

Try

We have an optimum solution

17 / 29

Core-guided: Solve by removing objects

Try

Incompatibility (an unsatisfiable core)

Replace by

where implies one of

Try

We have an optimum solution

17 / 29

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X) | outClique(X) :- node(X). % Guess
:- inClique(X), inClique(Y), not edge(X ,Y),X <> Y . % Check
:∼ outClique(X).[1@1,X] % Optimize

First Optimization:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y . ← less constraints!
:∼ outClique(X).[1@1,X]

Second Optimization:
{inClique(X)} :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y .
:∼ node(X), not inClique(X).[1@1,X] ← removed outClique!

18 / 29

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X) | outClique(X) :- node(X). % Guess
:- inClique(X), inClique(Y), not edge(X ,Y),X <> Y . % Check
:∼ outClique(X).[1@1,X] % Optimize

First Optimization:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y . ← less constraints!
:∼ outClique(X).[1@1,X]

Second Optimization:
{inClique(X)} :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y .
:∼ node(X), not inClique(X).[1@1,X] ← removed outClique!

18 / 29

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X) | outClique(X) :- node(X). % Guess
:- inClique(X), inClique(Y), not edge(X ,Y),X <> Y . % Check
:∼ outClique(X).[1@1,X] % Optimize

First Optimization:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y . ← less constraints!
:∼ outClique(X).[1@1,X]

Second Optimization:
{inClique(X)} :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y .
:∼ node(X), not inClique(X).[1@1,X] ← removed outClique!

18 / 29

Programming for performance: basic idea

Example (Maximal Clique)

Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X) | outClique(X) :- node(X). % Guess
:- inClique(X), inClique(Y), not edge(X ,Y),X <> Y . % Check
:∼ outClique(X).[1@1,X] % Optimize

First Optimization:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y . ← less constraints!
:∼ outClique(X).[1@1,X]

Second Optimization:
{inClique(X)} :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y .
:∼ node(X), not inClique(X).[1@1,X] ← removed outClique!

18 / 29

Impact of Optimizations

How many constraints are not used in the optimized
encoding?

What is the theoretical search space of the two encodings?

Consider a complete graph with 50 nodes

Natural encoding: 2450 constraints

Optimized encoding: 1225 constraints

Natural encoding: 2100 (50 atoms of type inClique and 50
atoms of the type outClique)

Optimized encoding: 250 (50 atoms of type inClique)

19 / 29

Impact of Optimizations

How many constraints are not used in the optimized
encoding?

What is the theoretical search space of the two encodings?

Consider a complete graph with 50 nodes

Natural encoding: 2450 constraints

Optimized encoding: 1225 constraints

Natural encoding: 2100 (50 atoms of type inClique and 50
atoms of the type outClique)

Optimized encoding: 250 (50 atoms of type inClique)

19 / 29

Impact of Optimizations

How many constraints are not used in the optimized
encoding?

What is the theoretical search space of the two encodings?

Consider a complete graph with 50 nodes

Natural encoding: 2450 constraints

Optimized encoding: 1225 constraints

Natural encoding: 2100 (50 atoms of type inClique and 50
atoms of the type outClique)

Optimized encoding: 250 (50 atoms of type inClique)

19 / 29

Impact of Optimizations

How many constraints are not used in the optimized
encoding?

What is the theoretical search space of the two encodings?

Consider a complete graph with 50 nodes

Natural encoding: 2450 constraints

Optimized encoding: 1225 constraints

Natural encoding: 2100 (50 atoms of type inClique and 50
atoms of the type outClique)

Optimized encoding: 250 (50 atoms of type inClique)

19 / 29

Impact of Optimizations

How many constraints are not used in the optimized
encoding?

What is the theoretical search space of the two encodings?

Consider a complete graph with 50 nodes

Natural encoding: 2450 constraints

Optimized encoding: 1225 constraints

Natural encoding: 2100 (50 atoms of type inClique and 50
atoms of the type outClique)

Optimized encoding: 250 (50 atoms of type inClique)

19 / 29

Impact of Optimizations

How many constraints are not used in the optimized
encoding?

What is the theoretical search space of the two encodings?

Consider a complete graph with 50 nodes

Natural encoding: 2450 constraints

Optimized encoding: 1225 constraints

Natural encoding: 2100 (50 atoms of type inClique and 50
atoms of the type outClique)

Optimized encoding: 250 (50 atoms of type inClique)

19 / 29

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

% guess a coloring for the nodes
col(X , red) | col(X , yellow) | col(X , blue) :- node(X).

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Example (3-col- encoding 2)

% guess a coloring for the nodes
col(X,red) | ncol(X,red) :- node(X). ← three times
col(X,yellow) | ncol(X,yellow) :- node(X). ← more
col(X,blue) | ncol(X,blue) :- node(X). ← ground rules

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.

20 / 29

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

% guess a coloring for the nodes
col(X , red) | col(X , yellow) | col(X , blue) :- node(X).

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Example (3-col- encoding 2)

% guess a coloring for the nodes
col(X,red) | ncol(X,red) :- node(X). ← three times
col(X,yellow) | ncol(X,yellow) :- node(X). ← more
col(X,blue) | ncol(X,blue) :- node(X). ← ground rules

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2. ← additional constraint

20 / 29

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

% guess a coloring for the nodes
col(X , red) | col(X , yellow) | col(X , blue) :- node(X).

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Example (3-col- encoding 2 - Larger grounding!)

% guess a coloring for the nodes
col(X,red) | ncol(X,red) :- node(X). ← three times
col(X,yellow) | ncol(X,yellow) :- node(X). ← more
col(X,blue) | ncol(X,blue) :- node(X). ← ground rules

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.

20 / 29

Programming for performance: basic idea (2)

Example (3-col- encoding 1)

% guess a coloring for the nodes
col(X , red) | col(X , yellow) | col(X , blue) :- node(X).

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Example (3-col- encoding 2 - Larger Search Space!)

% guess a coloring for the nodes
col(X,red) | ncol(X,red) :- node(X). ← three times
col(X,yellow) | ncol(X,yellow) :- node(X). ← more
col(X,blue) | ncol(X,blue) :- node(X). ← ground rules

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.

20 / 29

Programming for performance: lesson learned

Prefer an encoding if:

Easier to ground

→ precomputes as much as possible

Smaller instantiation

→ use e.g., minimality, aggregates, ...

Produces less ground disjunctive rules and less “guessed atoms”

→ smaller search space

→ exponential gain

21 / 29

Programming Hints

Programming for Performance:

1 Consider complexity issues
2 Prefer Smaller/Faster Grounding
3 Reduce Search Space

4 Exploit the features of the implementation

22 / 29

Programming Hints

Programming for Performance:

1 Consider complexity issues
2 Prefer Smaller/Faster Grounding
3 Reduce Search Space
4 Exploit the features of the implementation

22 / 29

Grounding Bottleneck

When the time and/or the memory required to compute the
instantiation is too huge

When the number of produced rules cannot be processed
by the solver

Possible solutions?
Improve the encoding!

Use approaches based on lazy grounding

Replace portion of the encoding using dedicated
propagators

23 / 29

Grounding Bottleneck

When the time and/or the memory required to compute the
instantiation is too huge

When the number of produced rules cannot be processed
by the solver

Possible solutions?
Improve the encoding!

Use approaches based on lazy grounding

Replace portion of the encoding using dedicated
propagators

23 / 29

Grounding Bottleneck

When the time and/or the memory required to compute the
instantiation is too huge

When the number of produced rules cannot be processed
by the solver

Possible solutions?
Improve the encoding!

Use approaches based on lazy grounding

Replace portion of the encoding using dedicated
propagators

23 / 29

Grounding Bottleneck

When the time and/or the memory required to compute the
instantiation is too huge

When the number of produced rules cannot be processed
by the solver

Possible solutions?
Improve the encoding!

Use approaches based on lazy grounding

Replace portion of the encoding using dedicated
propagators

23 / 29

Grounding Bottleneck

When the time and/or the memory required to compute the
instantiation is too huge

When the number of produced rules cannot be processed
by the solver

Possible solutions?
Improve the encoding!

Use approaches based on lazy grounding

Replace portion of the encoding using dedicated
propagators

23 / 29

Stable Marriage

Definition

Given n men and n women, where each person has ranked all
members of the opposite sex with a unique number between 1
and n in order of preference, marry the men and women
together such that there are no two people of opposite sex who
would both rather have each other than their current partners.

M W
john mary
luca anna

P1 P2 Pref
john mary 1
john anna 2
luca mary 2
luca anna 1

P1 P2 Pref
mary john 1
anna john 2
mary luca 2
anna luca 1

24 / 29

Stable Marriage: Natural Encoding

% guess matching
match(M,W) | nMatch(M,W) :- man(M), woman(W).

% no polygamy
:- match(M1,W), match(M,W), M <> M1.
:- match(M,W), match(M,W1), W <> W1.

% no singles
married(M) :- match(M,W).
:- man(M), not married(M).

% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,

pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

25 / 29

Stable Marriage: First Optimization

% guess matching
{match(M,W)} :- man(M), woman(W).

% no polygamy
:- match(M1,W), match(M,W), M <> M1.
:- match(M,W), match(M,W1), W <> W1.

% no singles
married(M) :- match(M,W).
:- man(M), not married(M).

% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,

pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

26 / 29

Stable Marriage: Second Optimization

% guess matching
{match(M,W) : woman(W)} = 1 :- man(M).

% no singles
married(M) :- match(M,W).
:- woman(M), not married(M).

% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,

pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

27 / 29

Stable Marriage: Third Optimization

% guess matching
{match(M,W) : woman(W)} = 1 :- man(M).

% no singles
married(M) :- match(M,W).
:- woman(M), not married(M).

% strong stability condition
matched(m,M,S) :-match(M,W), pref(M,W,S).
matched(w,W,S-1) :-match(M,W), pref(W,M,S), S > 1.
matched(T,P,S-1) :-matched(T,P,S), S > 1.

:- pref(M,W,R), pref(W,M,S), not matched(m,M,R), not
matched(w,W,S).

28 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)

Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions

First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions

Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions

Third optimization 0.3 seconds approx. 40 thousands

29 / 29

Stable Marriage: Impact

Can an efficient encoding make a huge difference in
performance?

Does an efficient encoding impact on performance or on
number of rules?

Is this improvement limited to only one grounder?

In practice (Tested on one instance from 3rd ASP Competition)
Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

29 / 29

